
addftinfo(1) General Commands Manual addftinfo(1)

Name
addftinfo - add font metrics to troff fonts for use with groff

Synopsis
addftinfo [-asc-height n] [-body-depth n] [-body-height n] [-cap-height n] [-comma-depth n]

[-desc-depth n] [-fig-height n] [-x-height n] resolution unit-width font

addftinfo --help

addftinfo -v
addftinfo --version

Description
addftinfo reads an AT&T troff font description file font, adds additional font metric information required
by GNU troff (1), and writes the combined result to the standard output. The information added is derived
from the font’s existing parameters and assumptions about traditional troff names for characters. Among
the font metrics added are the heights and depths of characters (how far each extends vertically above and
below the baseline). The resolution and unit-width arguments should be the same as the corresponding pa-
rameters in the DESC file. font is the name of the file describing the font; if font ends with “I”, the font is
assumed to be oblique (or italic).

Options
--help displays a usage message, while -v and --version show version information; all exit afterward.

All other options change parameters that are used to derive the heights and depths. Like the existing quan-
tities in the font description file, each value n is in scaled points, inches/resolution for a font whose type
size is unit-width; see groff_font(5).

-asc-height n
height of characters with ascenders, such as “b”, “d”, or “l”

-body-depth n
depth of characters such as parentheses

-body-height n
height of characters such as parentheses

-cap-height n
height of uppercase letters such as “A”

-comma-depth n
depth of a comma

-desc-depth n
depth of characters with descenders, such as “p”, “q”, or “y”

-fig-height
height of figures (numerals)

-x-height n
height of lowercase letters without ascenders such as “x”

addftinfo makes no attempt to use the specified parameters to infer unspecified parameters. If a parameter
is not specified, the default will be used. The defaults are chosen to produce reasonable values for a Times
font.

See also
groff_font(5), groff (1), groff_char(7)

groff 1.23.0 2 July 2023 1

afmtodit(1) General Commands Manual afmtodit(1)

Name
afmtodit - adapt Adobe Font Metrics files for groff PostScript and PDF output

Synopsis
afmtodit [-ckmnsx] [-a slant] [-d device-description-file] [-e encoding-file] [-f internal-name]

[-i italic-correction-factor] [-o output-file] [-w space-width] afm-file map-file font-description-
file

afmtodit --help

afmtodit -v
afmtodit --version

Description
afmtodit adapts an Adobe Font Metric file, afm-file, for use with the ps and pdf output devices of troff (1).
map-file associates a groff ordinary or special character name with a PostScript glyph name. Output is
written in groff_font(5) format to font-description-file, a file named for the intended groff font name (but
see the -o option).

map-file should contain a sequence of lines of the form
ps-glyph groff-char

where ps-glyph is the PostScript glyph name and groff-char is a groff ordinary (if of unit length) or special
(if longer) character identifier. The same ps-glyph can occur multiple times in the file; each groff-char
must occur at most once. Lines starting with “#” and blank lines are ignored. If the file isn’t found in the
current directory, it is sought in the devps/generate subdirectory of the default font directory.

If a PostScript glyph is not mentioned in map-file, and a groff character name can’t be deduced using the
Adobe Glyph List (AGL, built into afmtodit), then afmtodit puts the PostScript glyph into the groff font de-
scription file as an unnamed glyph which can only be accessed by the “\N” escape sequence in a roff docu-
ment. In particular, this is true for glyph variants named in the form “ foo.bar”; all glyph names containing
one or more periods are mapped to unnamed entities. Unless -e is specified, the encoding defined in the
AFM file (i.e., entries with non-negative codes) is used. Refer to section “Using Symbols” in Groff: The
GNU Implementation of troff , the groff Texinfo manual, or groff_char(7), which describe how groff char-
acter identifiers are constructed.

Glyphs not encoded in the AFM file (i.e., entries indexed as “-1”) are still available in groff ; they get glyph
index values greater than 255 (or greater than the biggest code used in the AFM file in the unlikely case that
it is greater than 255) in the groff font description file. Unencoded glyph indices don’t have a specific or-
der; it is best to access them only via special character identifiers.

If the font file proper (not just its metrics) is available, listing it in the files /usr/share/groff/1.23.0/font/
devps/download and /usr/share/groff/1.23.0/font/devpdf/download enables it to be embedded in the output
produced by grops(1) and gropdf (1), respectively.

If the -i option is used, afmtodit automatically generates an italic correction, a left italic correction, and a
subscript correction for each glyph (the significance of these is explained in groff_font(5)); they can be
specified for individual glyphs by adding to the afm-file lines of the form:

italicCorrection ps-glyph n
leftItalicCorrection ps-glyph n
subscriptCorrection ps-glyph n

where ps-glyph is the PostScript glyph name, and n is the desired value of the corresponding parameter in
thousandths of an em. Such parameters are normally needed only for italic (or oblique) fonts.

The -s option should be given if the font is “special”, meaning that groff should search it whenever a glyph
is not found in the current font. In that case, font-description-file should be listed as an argument to the
fonts directive in the output device’s DESC file; if it is not special, there is no need to do so, since troff (1)
will automatically mount it when it is first used.

groff 1.23.0 2 July 2023 2

afmtodit(1) General Commands Manual afmtodit(1)

Options
--help displays a usage message, while -v and --version show version information; all exit afterward.

-a slant
Use slant as the slant (“angle”) parameter in the font description file; this is used by groff in the
positioning of accents. By default afmtodit uses the negative of the ItalicAngle specified in the
AFM file; with true italic fonts it is sometimes desirable to use a slant that is less than this. If you
find that an italic font places accents over base glyphs too far to the right, use -a to give it a
smaller slant.

-c Include comments in the font description file identifying the PostScript font.

-d device-description-file
The device description file is desc-file rather than the default DESC. If not found in the current di-
rectory, the devps subdirectory of the default font directory is searched (this is true for both the de-
fault device description file and a file given with option -d).

-e encoding-file
The PostScript font should be reencoded to use the encoding described in enc-file. The format of
enc-file is described in grops(1). If not found in the current directory, the devps subdirectory of
the default font directory is searched.

-f internal-name
The internal name of the groff font is set to name.

-i italic-correction-factor
Generate an italic correction for each glyph so that its width plus its italic correction is equal to
italic-correction-factor thousandths of an em plus the amount by which the right edge of the
glyph’s bounding box is to the right of its origin. If this would result in a negative italic correc-
tion, use a zero italic correction instead.

Also generate a subscript correction equal to the product of the tangent of the slant of the font and
four fifths of the x-height of the font. If this would result in a subscript correction greater than the
italic correction, use a subscript correction equal to the italic correction instead.

Also generate a left italic correction for each glyph equal to italic-correction-factor thousandths of
an em plus the amount by which the left edge of the glyph’s bounding box is to the left of its ori-
gin. The left italic correction may be negative unless option -m is given.

This option is normally needed only with italic (or oblique) fonts. The font description files dis-
tributed with groff were created using an option of -i50 for italic fonts.

-o output-file
Write to output-file instead of font-description-file.

-k Omit any kerning data from the groff font; use only for monospaced (constant-width) fonts.

-m Prevent negative left italic correction values. Font description files for roman styles distributed
with groff were created with “-i0 -m” to improve spacing with eqn(1).

-n Don’t output a ligatures command for this font; use with monospaced (constant-width) fonts.

-s Add the special directive to the font description file.

-w space-width
Use space-width as the with of inter-word spaces.

-x Don’t use the built-in Adobe Glyph List.

Files
/usr/share/groff/1.23.0/font/devps/DESC

describes the ps output device.

groff 1.23.0 2 July 2023 3

afmtodit(1) General Commands Manual afmtodit(1)

/usr/share/groff/1.23.0/font/devps/ F
describes the font known as F on device ps.

/usr/share/groff/1.23.0/font/devps/download
lists fonts available for embedding within the PostScript document (or download to the device).

/usr/share/groff/1.23.0/font/devps/generate/dingbats.map
/usr/share/groff/1.23.0/font/devps/generate/dingbats-reversed.map
/usr/share/groff/1.23.0/font/devps/generate/slanted-symbol.map
/usr/share/groff/1.23.0/font/devps/generate/symbol.map
/usr/share/groff/1.23.0/font/devps/generate/text.map

map names in the Adobe Glyph List to groff special character identifiers for Zapf Dingbats (ZD),
reversed Zapf Dingbats (ZDR), slanted symbol (SS), symbol (S), and text fonts, respectively.
These map-files are used to produce the font description files provided with groff for the grops
output driver.

Diagnostics
AGL name 'x' already mapped to groff name 'y'; ignoring AGL name 'uniXXXX '

You can disregard these if they’re in the form shown, where the ignored AGL name contains four
hexadecimal digits XXXX . The Adobe Glyph List (AGL) has its own names for glyphs; they are
often different from groff ’s special character names. afmtodit is constructing a mapping from
groff special character names to AGL names; this can be a one-to-one or many-to-one mapping,
but one-to-many will not work, so afmtodit discards the excess mappings. For example, if x is *D,
y is Delta, and z is uni0394, afmtodit is telling you that the groff font description that it is writing
cannot map the groff special character \[*D] to AGL glyphs Delta and uni0394 at the same time.

If you get a message like this but are unhappy with which mapping is ignored, a remedy is to craft
an alternative map-file and re-run afmtodit using it.

See also
Groff: The GNU Implementation of troff , by Trent A. Fisher and Werner Lemberg, is the primary groff
manual. Section “Using Symbols” may be of particular note. You can browse it interactively with “info
'(groff)Using Symbols'”.

groff (1), gropdf (1), grops(1), groff_font(5)

groff 1.23.0 2 July 2023 4

chem(1) General Commands Manual chem(1)

Name
chem - embed chemical structure diagrams in groff documents

Synopsis
chem [--] [file . . .]

chem -h
chem --help

chem -v
chem --version

Description
chem produces chemical structure diagrams. Today’s version is best suited for organic chemistry (bonds,
rings). The chem program is a groff preprocessor like eqn, pic, tbl, etc. It generates pic output such that
all chem parts are translated into diagrams of the pic language.

If no operands are given, or if file is “-”, chem reads the standard input stream. -h and --help display a
usage message, whereas -v and --version display version information; all exit.

The program chem originates from the Perl source file chem.pl. It tells pic to include a copy of the macro
file chem.pic. Moreover the groff source file pic.tmac is loaded.

In a style reminiscent of eqn and pic, the chem diagrams are written in a special language.

A set of chem lines looks like this

.cstart
chem data
.cend

Lines containing the keywords .cstart and .cend start and end the input for chem, respectively. In pic con-
text, i.e., after the call of .PS, chem input can optionally be started by the line begin chem and ended by the
line with the single word end instead.

Anything outside these initialization lines is copied through without modification; all data between the ini-
tialization lines is converted into pic commands to draw the diagram.

As an example,

.cstart
CH3
bond
CH3
.cend

prints two CH3 groups with a bond between them.

If you want to create just groff output, you must run chem followed by groff with the option -p for the ac-
tivation of pic:

chem [file . . .] | groff -p . . .

Language
The chem input language is rather small. It provides rings of several styles and a way to glue them together
as desired, bonds of several styles, moieties (e.g., C, NH3, . . ., and strings.

Setting variables
There are some variables that can be set by commands. Such commands have two possible forms, either

variable value

or

variable = value

This sets the given variable to the argument value. If more arguments are given only the last argument is
taken, all other arguments are ignored.

groff 1.23.0 2 July 2023 5

chem(1) General Commands Manual chem(1)

There are only a few variables to be set by these commands:

textht arg
Set the height of the text to arg; default is 0.16.

cwid arg
Set the character width to arg; default is 0.12.

db arg Set the bond length to arg; default is 0.2.

size arg
Scale the diagram to make it look plausible at point size arg; default is 10 point.

Bonds
This

bond [direction] [length n] [from Name|picstuff]

draws a single bond in direction from nearest corner of Name. bond can also be double bond, front bond,
back bond, etc. (We will get back to Name soon.)

direction is the angle in degrees (0 up, positive clockwise) or a direction word like up, down, sw (= south-
west), etc. If no direction is specified, the bond goes in the current direction (usually that of the last bond).

Normally the bond begins at the last object placed; this can be changed by naming a from place. For in-
stance, to make a simple alkyl chain:

CH3
bond (this one goes right from the CH3)
C (at the right end of the bond)
double bond up (from the C)
O (at the end of the double bond)
bond right from C
CH3

A length in inches may be specified to override the default length. Other pic commands can be tacked on
to the end of a bond command, to created dotted or dashed bonds or to specify a to place.

Rings
There are lots of rings, but only five- and six-sided rings get much support. ring by itself is a six-sided
ring; benzene is the benzene ring with a circle inside. aromatic puts a circle into any kind of ring.

ring [pointing (up|right|left|down)] [aromatic] [put Mol at n] [double i, j k,l . . . [picstuff]

The vertices of a ring are numbered 1, 2, . . . from the vertex that points in the natural compass direction.
So for a hexagonal ring with the point at the top, the top vertex is 1, while if the ring has a point at the east
side, that is vertex 1. This is expressed as

R1: ring pointing up
R2: ring pointing right

The ring vertices are named .V1, . . ., .Vn, with .V1 in the pointing direction. So the corners of R1 are
R1.V1 (the top), R1.V2, R1.V3, R1.V4 (the bottom), etc., whereas for R2, R2.V1 is the rightmost vertex
and R2.V4 the leftmost. These vertex names are used for connecting bonds or other rings. For example,

R1: benzene pointing right
R2: benzene pointing right with .V6 at R1.V2

creates two benzene rings connected along a side.

Interior double bonds are specified as double n1,n2 n3,n4 . . .; each number pair adds an interior bond. So
the alternate form of a benzene ring is

ring double 1,2 3,4 5,6

Heterocycles (rings with something other than carbon at a vertex) are written as put X at V, as in

groff 1.23.0 2 July 2023 6

chem(1) General Commands Manual chem(1)

R: ring put N at 1 put O at 2

In this heterocycle, R.N and R.O become synonyms for R.V1 and R.V2.

There are two five-sided rings. ring5 is pentagonal with a side that matches the six-sided ring; it has four
natural directions. A flatring is a five-sided ring created by chopping one corner of a six-sided ring so that
it exactly matches the six-sided rings.

The description of a ring has to fit on a single line.

Moieties and strings
A moiety is a string of characters beginning with a capital letter, such as N(C2H5)2. Numbers are con-
verted to subscripts (unless they appear to be fractional values, as in N2.5H). The name of a moiety is de-
termined from the moiety after special characters have been stripped out: e.g., N(C2H5)2) has the name
NC2H52.

Moieties can be specified in two kinds. Normally a moiety is placed right after the last thing mentioned,
separated by a semicolon surrounded by spaces, e.g.,

B1: bond ; OH

Here the moiety is OH; it is set after a bond.

As the second kind a moiety can be positioned as the first word in a pic-like command, e.g.,

CH3 at C + (0.5,0.5)

Here the moiety is CH3. It is placed at a position relative to C, a moiety used earlier in the chemical struc-
ture.

So moiety names can be specified as chem positions everywhere in the chem code. Beneath their printing
moieties are names for places.

The moiety BP is special. It is not printed but just serves as a mark to be referred to in later chem com-
mands. For example,

bond ; BP

sets a mark at the end of the bond. This can be used then for specifying a place. The name BP is derived
from branch point (i.e., line crossing).

A string within double quotes " is interpreted as a part of a chem command. It represents a string that
should be printed (without the quotes). Text within quotes ". . ." is treated more or less like a moiety except
that no changes are made to the quoted part.

Names
In the alkyl chain above, notice that the carbon atom C was used both to draw something and as the name
for a place. A moiety always defines a name for a place; you can use your own names for places instead,
and indeed, for rings you will have to. A name is just

Name: . . .

Name is often the name of a moiety like CH3, but it need not to be. Any name that begins with a capital
letter and which contains only letters and numbers is valid:

First: bond
bond 30 from First

Miscellaneous
The specific construction

bond . . . ; moiety

is equivalent to

bond
moiety

Otherwise, each item has to be on a separate line (and only one line). Note that there must be whitespace

groff 1.23.0 2 July 2023 7

chem(1) General Commands Manual chem(1)

after the semicolon which separates the commands.

A period character . or a single quote ' in the first column of a line signals a troff command, which is
copied through as-is.

A line whose first non-blank character is a hash character (#) is treated as a comment and thus ignored.
However, hash characters within a word are kept.

A line whose first word is pic is copied through as-is after the word pic has been removed.

The command

size n

scales the diagram to make it look plausible at point size n (default is 10 point).

Anything else is assumed to be pic code, which is copied through with a label.

Since chem is a pic preprocessor, it is possible to include pic statements in the middle of a diagram to draw
things not provided for by chem itself. Such pic statements should be included in chem code by adding pic
as the first word of this line for clarity.

The following pic commands are accepted as chem commands, so no pic command word is needed:

define Start the definition of pic macro within chem.

[Start a block composite.

] End a block composite.

{ Start a macro definition block.

} End a macro definition block.

The macro names from define statements are stored and their call is accepted as a chem command as well.

Wish list
This TODO list was collected by Brian Kernighan.

Error checking is minimal; errors are usually detected and reported in an oblique fashion by pic.

There is no library or file inclusion mechanism, and there is no shorthand for repetitive structures.

The extension mechanism is to create pic macros, but these are tricky to get right and don’t have all the
properties of built-in objects.

There is no in-line chemistry yet (e.g., analogous to the $. . .$ construct of eqn).

There is no way to control entry point for bonds on groups. Normally a bond connects to the carbon atom
if entering from the top or bottom and otherwise to the nearest corner.

Bonds from substituted atoms on heterocycles do not join at the proper place without adding a bit of pic.

There is no decent primitive for brackets.

Text (quoted strings) doesn’t work very well.

A squiggle bond is needed.

Files
/usr/share/groff/1.23.0/pic/chem.pic

A collection of pic macros needed by chem.

/usr/share/groff/1.23.0/tmac/pic.tmac
A macro file which redefines .PS, .PE, and .PF to center pic diagrams.

/usr/share/doc/groff-1.23.0/examples/chem/*.chem
Example files for chem.

/usr/share/doc/groff-1.23.0/examples/chem/122/*.chem
Example files from the chem article by its authors, “CHEM—A Program for Typesetting Chemical
Structure Diagrams: User Manual” (CSTR #122).

groff 1.23.0 2 July 2023 8

chem(1) General Commands Manual chem(1)

Authors
The GNU version of chem was written by Bernd Warken 〈groff-bernd.warken-72@web.de〉. It is based on
the documentation of Brian Kernighan’s original awk version of chem.

See also
“CHEM—A Program for Typesetting Chemical Diagrams: User Manual” by Jon L. Bentley, Lynn W. Jelin-
ski, and Brian W. Kernighan, 1992, AT&T Bell Laboratories Computing Science Technical Report No. 122

groff (1), pic(1)

groff 1.23.0 2 July 2023 9

eqn(1) General Commands Manual eqn(1)

Name
eqn - format mathematics (equations) for groff or MathML

Synopsis
eqn [-CNrR] [-d xy] [-f F] [-m n] [-M dir] [-p n] [-s n] [-T dev] [file . . .]

eqn --help

eqn -v
eqn --version

Description
The GNU implementation of eqn is part of the groff (7) document formatting system. eqn is a troff (1) pre-
processor that translates expressions in its own language, embedded in roff (7) input files, into mathematical
notation typeset by troff (1). It copies each file’s contents to the standard output stream, translating each
equation between lines starting with .EQ and .EN, or within a pair of user-specified delimiters. Normally,
eqn is not executed directly by the user, but invoked by specifying the -e option to groff (1). While GNU
eqn’s input syntax is highly compatible with AT&T eqn, the output eqn produces cannot be processed by
AT&T troff ; GNU troff (or a troff implementing relevant GNU extensions) must be used. If no file
operands are given on the command line, or if file is “-”, eqn reads the standard input stream.

Unless the -R option is used, eqn searches for the file eqnrc in the directories given with the -M option
first, then in /usr/share/groff/site-tmac, and finally in the standard macro directory /usr/share/groff/1.23.0/
tmac. If it exists and is readable, eqn processes it before any input files.

This man page primarily discusses the differences between GNU eqn and AT&T eqn. Most of the new fea-
tures of the GNU eqn input language are based on TEX. There are some references to the differences be-
tween TEX and GNU eqn below; these may safely be ignored if you do not know TEX.

Three points are worth special note.

• GNU eqn emits Presentation MathML output when invoked with the “-T MathML” option.

• GNU eqn does not support terminal devices well, though it may suffice for simple inputs.

• GNU eqn sets the input token “. . .” as an ellipsis on the text baseline, not the three centered dots of
AT&T eqn. Set an ellipsis on the math axis with the GNU extension macro cdots.

Anatomy of an equation
eqn input consists of tokens. Consider a form of Newton’s second law of motion. The input

.EQ
F =
m a
.EN

becomes F = ma. Each of F, =, m, and a is a token. Spaces and newlines are interchangeable; they sepa-
rate tokens but do not break lines or produce space in the output.

The following input characters not only separate tokens, but manage their grouping and spacing as well.

{ } Braces perform grouping. Whereas “e sup a b” expresses eab, “e sup { a b }” means eab. When
immediately preceded by a “left” or “right” primitive, a brace loses its special meaning.

^ ~ are the half space and full space, respectively. Use them to tune the appearance of the output.

Tab and leader characters separate tokens as well as advancing the drawing position to the next tab stop, but
are seldom used in eqn input. When they occur, they must appear at the outermost lexical scope. This
roughly means that they can’t appear within braces that are necessary to disambiguate the input; eqn will
diagnose an error in this event. (See subsection “Macros” below for additional token separation rules.)

Other tokens are primitives, macros, an argument to either of the foregoing, or components of an equation.

groff 1.23.0 2 July 2023 10

eqn(1) General Commands Manual eqn(1)

Primitives are fundamental keywords of the eqn language. They can configure an aspect of the preproces-
sor’s state, as when setting a “global” font selection or type size (gfont and gsize), or declaring or deleting
macros (“define” and undef); these are termed commands. Other primitives perform formatting operations
on the tokens after them (as with fat, over, sqrt, or up).

Equation components include mathematical variables, constants, numeric literals, and operators. eqn
remaps some input character sequences to groff special character escape sequences for economy in equa-
tion entry and to ensure that glyphs from an unstyled font are used; see groff_char(7).

+ \[pl] ' \[fm]
- \[mi] <= \[<=]
= \[eq] >= \[>=]

Macros permit primitives, components, and other macros to be collected and referred to by a single token.
Predefined macros make convenient the preparation of eqn input in a form resembling its spoken expres-
sion; for example, consider cos, hat, inf, and lim.

Spacing and typeface
GNU eqn imputes types to the components of an equation, adjusting the spacing between them accordingly.
Recognized types are as follows; most affect spacing only, whereas the “letter” subtype of “ordinary” also
assigns a style.

ordinary character such as “1”, “a”, or “!”
letter character to be italicized by default
digit n/a

operator large operator such as “Σ”
binary binary operator such as “+”
relation relational operator such as “=”
opening opening bracket such as “(”
closing closing bracket such as “)”
punctuation punctuation character such as “,”
inner sub-formula contained within brackets
suppress component to which automatic spacing is not applied

Two primitives apply types to equation components.

type t e Apply type t to expression e.

chartype t text
Assign each character in (unquoted) text type t, persistently.

eqn sets up spacings and styles as if by the following commands.

chartype "letter" abcdefghiklmnopqrstuvwxyz
chartype "letter" ABCDEFGHIKLMNOPQRSTUVWXYZ
chartype "letter" \[*a]\[*b]\[*g]\[*d]\[*e]\[*z]
chartype "letter" \[*y]\[*h]\[*i]\[*k]\[*l]\[*m]
chartype "letter" \[*n]\[*c]\[*o]\[*p]\[*r]\[*s]
chartype "letter" \[*t]\[*u]\[*f]\[*x]\[*q]\[*w]
chartype "binary" *\[pl]\[mi]
chartype "relation" <>\[eq]\[<=]\[>=]
chartype "opening" {([
chartype "closing" })]
chartype "punctuation" ,;:.
chartype "suppress" ^~

eqn assigns all other ordinary and special roff characters, including numerals 0–9, the “ordinary” type.
(The “digit” type is not used, but is available for customization.) In keeping with common practice in
mathematical typesetting, lowercase, but not uppercase, Greek letters are assigned the “letter” type to style
them in italics. The macros for producing ellipses, “. . .”, cdots, and ldots, use the “inner” type.

groff 1.23.0 2 July 2023 11

eqn(1) General Commands Manual eqn(1)

Primitives
eqn supports without alteration the AT&T eqn primitives above, back, bar, bold, define, down, fat, font,
from, fwd, gfont, gsize, italic, left, lineup, mark, matrix, ndefine, over, right, roman, size, sqrt, sub,
sup, tdefine, to, under, and up.

New primitives
The GNU extension primitives “type” and chartype are discussed in subsection “Spacing and typeface”
above; “set” in subsection “Customization” below; and grfont and gbfont in subsection “Fonts” below. In
the following synopses, X can be any character not appearing in the parameter thus bracketed.

e1 accent e2
Set e2 as an accent over e1. e2 is assumed to be at the appropriate height for a lowercase letter
without an ascender; eqn vertically shifts it depending on e1’s height. For example, hat is defined
as follows.

accent { "^" }

dotdot, dot, tilde, vec, and dyad are also defined using the accent primitive.

big e Enlarge the expression e; semantics like those of CSS “large” are intended. In troff output, the
type size is increased by 5 scaled points. MathML output emits the following.

<mstyle mathsize='big'>

copy file
include file

Interpolate the contents of file, omitting lines beginning with .EQ or .EN. If a relative path name,
file is sought relative to the current working directory.

ifdef name X anything X
If name is defined as a primitive or macro, interpret anything.

nosplit text
As "text", but since text is not quoted it is subject to macro expansion; it is not split up and the
spacing between characters not adjusted per subsection “Spacing and typeface” above.

e opprime
As prime, but set the prime symbol as an operator on e. In the input “A opprime sub 1”, the “1”
is tucked under the prime as a subscript to the “A” (as is conventional in mathematical typeset-
ting), whereas when prime is used, the “1” is a subscript to the prime character. The precedence
of opprime is the same as that of bar and “under”, and higher than that of other primitives except
accent and uaccent. In unquoted text, a neutral apostrophe (') that is not the first character on the
input line is treated like opprime.

sdefine name X anything X
As “define”, but name is not recognized as a macro if called with arguments.

e1 smallover e2
As over, but reduces the type size of e1 and e2, and puts less vertical space between e1 and e2 and
the fraction bar. The over primitive corresponds to the TEX \over primitive in displayed equation
styles; smallover corresponds to \over in non-display (“inline”) styles.

space n
Set extra vertical spacing around the equation, replacing the default values, where n is an integer
in hundredths of an em. If positive, n increases vertical spacing before the equation; if negative, it
does so after the equation. This primitive provides an interface to groff ’s \x escape sequence, but
with the opposite sign convention. It has no effect if the equation is part of a pic(1) picture.

special troff-macro e
Construct an object by calling troff-macro on e. The troff string 0s contains the eqn output for e,
and the registers 0w, 0h, 0d, 0skern, and 0skew the width, height, depth, subscript kern, and skew
of e, respectively. (The subscript kern of an object indicates how much a subscript on that object
should be “tucked in”, or placed to the left relative to a non-subscripted glyph of the same size.

groff 1.23.0 2 July 2023 12

eqn(1) General Commands Manual eqn(1)

The skew of an object is how far to the right of the center of the object an accent over it should be
placed.) The macro must modify 0s so that it outputs the desired result, returns the drawing posi-
tion to the text baseline at the beginning of e, and updates the foregoing registers to correspond to
the new dimensions of the result.

Suppose you want a construct that “cancels” an expression by drawing a diagonal line through it.

.de Ca

. ds 0s \
\Z'*(0s'\
\v'\\n(0du'\
\D'l \\n(0wu -\\n(0hu-\\n(0du'\
\v'\\n(0hu'
..
.EQ
special Ca "x \[mi] 3 \[pl] x" ~ 3
.EN

We use the \[mi] and \[pl] special characters instead of + and - because they are part of the argu-
ment to a troff macro, so eqn does not transform them to mathematical glyphs for us. Here’s a
more complicated construct that draws a box around an expression; the bottom of the box rests on
the text baseline. We define the eqn macro box to wrap the call of the troff macro Bx.

.de Bx

.ds 0s \
\Z'\\h'1n'*[0s]'\
\v'\\n(0du+1n'\
\D'l \\n(0wu+2n 0'\
\D'l 0 -\\n(0hu-\\n(0du-2n'\
\D'l -\\n(0wu-2n 0'\
\D'l 0 \\n(0hu+\\n(0du+2n'\
\h'\\n(0wu+2n'
.nr 0w +2n
.nr 0d +1n
.nr 0h +1n
..
.EQ
define box ' special Bx $1 '
box(foo) ~ "bar"
.EN

split "text"
As text, but since text is quoted, it is not subject to macro expansion; it is split up and the spacing
between characters adjusted per subsection “Spacing and typeface” above.

e1 uaccent e2
Set e2 as an accent under e1. e2 is assumed to be at the appropriate height for a letter without a
descender; eqn vertically shifts it depending on whether e1 has a descender. utilde is predefined
using uaccent as a tilde accent below the baseline.

undef name
Remove definition of macro or primitive name, making it undefined.

vcenter e
Vertically center e about the math axis, a horizontal line upon which fraction bars and characters
such as “+” and “−” are aligned. MathML already behaves this way, so eqn ignores this primitive
when producing that output format. The built-in sum macro is defined as if by the following.

define sum ! { type "operator" vcenter size +5 \(*S } !

groff 1.23.0 2 July 2023 13

eqn(1) General Commands Manual eqn(1)

Extended primitives
GNU eqn extends the syntax of some AT&T eqn primitives, introducing one deliberate incompatibility.

delim on
eqn recognizes an “on” argument to the delim primitive specially, restoring any delimiters previ-
ously disabled with “delim off”. If delimiters haven’t been specified, neither command has effect.
Few eqn documents are expected to use “o” and “n” as left and right delimiters, respectively. If
yours does, consider swapping them, or select others.

col n { . . . }
ccol n { . . . }
lcol n { . . . }
rcol n { . . . }
pile n { . . . }
cpile n { . . . }
lpile n { . . . }
rpile n { . . . }

The integer value n (in hundredths of an em) increases the vertical spacing between rows, using
groff ’s \x escape sequence (the value has no effect in MathML mode). Negative values are ac-
cepted but have no effect. If more than one n occurs in a matrix or pile, the largest is used.

Customization
When eqn generates troff input, the appearance of equations is controlled by a large number of parameters.
They have no effect when generating MathML, which delegates typesetting to a MathML rendering engine.
Configure these parameters with the set primitive.

set p n assigns parameter p the integer value n; n is interpreted in units of hundredths of an em unless
otherwise stated. For example,

set x_height 45

says that eqn should assume that the font’s x-height is 0.45 ems.

Available parameters are as follows; defaults are shown in parentheses. We intend these descrip-
tions to be expository rather than rigorous.

minimum_size sets a floor for the type size (in scaled points) at which equations are set (5).

fat_offset The fat primitive emboldens an equation by overprinting two copies of the
equation horizontally offset by this amount (4). In MathML mode, compo-
nents to which fat_offset applies instead use the following.

<mstyle mathvariant='double-struck'>

over_hang A fraction bar is longer by twice this amount than the maximum of the
widths of the numerator and denominator; in other words, it overhangs the
numerator and denominator by at least this amount (0).

accent_width When bar or under is applied to a single character, the line is this long (31).
Normally, bar or under produces a line whose length is the width of the ob-
ject to which it applies; in the case of a single character, this tends to produce
a line that looks too long.

delimiter_factor Extensible delimiters produced with the left and right primitives have a com-
bined height and depth of at least this many thousandths of twice the maxi-
mum amount by which the sub-equation that the delimiters enclose extends
away from the axis (900).

delimiter_shortfall Extensible delimiters produced with the left and right primitives have a com-
bined height and depth not less than the difference of twice the maximum
amount by which the sub-equation that the delimiters enclose extends away
from the axis and this amount (50).

groff 1.23.0 2 July 2023 14

eqn(1) General Commands Manual eqn(1)

null_delimiter_space
This much horizontal space is inserted on each side of a fraction (12).

script_space The width of subscripts and superscripts is increased by this amount (5).

thin_space This amount of space is automatically inserted after punctuation characters.
It also configures the width of the space produced by the ^ token (17).

medium_space This amount of space is automatically inserted on either side of binary opera-
tors (22).

thick_space This amount of space is automatically inserted on either side of relations. It
also configures the width of the space produced by the ~ token (28).

x_height The height of lowercase letters without ascenders such as “x” (45).

axis_height The height above the baseline of the center of characters such as “+” and “−”
(26). It is important that this value is correct for the font you are using.

default_rule_thickness
This should be set to the thickness of the \[ru] character, or the thickness of
horizontal lines produced with the \D escape sequence (4).

num1 The over primitive shifts up the numerator by at least this amount (70).

num2 The smallover primitive shifts up the numerator by at least this amount (36).

denom1 The over primitive shifts down the denominator by at least this amount (70).

denom2 The smallover primitive shifts down the denominator by at least this amount
(36).

sup1 Normally superscripts are shifted up by at least this amount (42).

sup2 Superscripts within superscripts or upper limits or numerators of smallover
fractions are shifted up by at least this amount (37). Conventionally, this is
less than sup1.

sup3 Superscripts within denominators or square roots or subscripts or lower limits
are shifted up by at least this amount (28). Conventionally, this is less than
sup2.

sub1 Subscripts are normally shifted down by at least this amount (20).

sub2 When there is both a subscript and a superscript, the subscript is shifted down
by at least this amount (23).

sup_drop The baseline of a superscript is no more than this much below the top of the
object on which the superscript is set (38).

sub_drop The baseline of a subscript is at least this much below the bottom of the ob-
ject on which the subscript is set (5).

big_op_spacing1 The baseline of an upper limit is at least this much above the top of the object
on which the limit is set (11).

big_op_spacing2 The baseline of a lower limit is at least this much below the bottom of the ob-
ject on which the limit is set (17).

big_op_spacing3 The bottom of an upper limit is at least this much above the top of the object
on which the limit is set (20).

big_op_spacing4 The top of a lower limit is at least this much below the bottom of the object
on which the limit is set (60).

big_op_spacing5 This much vertical space is added above and below limits (10).

groff 1.23.0 2 July 2023 15

eqn(1) General Commands Manual eqn(1)

baseline_sep The baselines of the rows in a pile or matrix are normally this far apart (140).
Usually equal to the sum of num1 and denom1.

shift_down The midpoint between the top baseline and the bottom baseline in a matrix or
pile is shifted down by this much from the axis (26). Usually equal to
axis_height.

column_sep This much space is added between columns in a matrix (100).

matrix_side_sep This much space is added at each side of a matrix (17).

draw_lines If non-zero, eqn draws lines using the troff \D escape sequence, rather than
the \l escape sequence and the \[ru] special character. The eqnrc file sets the
default: 1 on ps, html, and the X11 devices, otherwise 0.

body_height is the presumed height of an equation above the text baseline; eqn adds any
excess as extra pre-vertical line spacing with troff ’s \x escape sequence (85).

body_depth is the presumed depth of an equation below the text baseline; eqn adds any
excess as extra post-vertical line spacing with troff ’s \x escape sequence (35).

nroff If non-zero, then ndefine behaves like define and tdefine is ignored, other-
wise tdefine behaves like define and ndefine is ignored. The eqnrc file sets
the default: 1 on ascii, latin1, utf8, and cp1047 devices, otherwise 0.

Macros
In GNU eqn, macros can take arguments. A word defined by any of the define, ndefine, or tdefine primi-
tives followed immediately by a left parenthesis is treated as a parameterized macro call: subsequent to-
kens up to a matching right parenthesis are treated as comma-separated arguments. In this context only,
commas and parentheses also serve as token separators. A macro argument is not terminated by a comma
inside parentheses nested within it. In a macro definition, $n, where n is between 1 and 9 inclusive, is re-
placed by the nth argument; if there are fewer than n arguments, it is replaced by nothing.

Predefined macros
GNU eqn supports the predefined macros offered by AT&T eqn: and, approx, arc, cos, cosh, del, det, dot,
dotdot, dyad, exp, for, grad, half, hat, if, inter, Im, inf, int, lim, ln, log, max, min, nothing, partial,
prime, prod, Re, sin, sinh, sum, tan, tanh, tilde, times, union, vec, ==, !=, +=, ->, <-, <<, >>, and “. . .”.
The lowercase classical Greek letters are available as alpha, beta, chi, delta, epsilon, eta, gamma, iota,
kappa, lambda, mu, nu, omega, omicron, phi, pi, psi, rho, sigma, tau, theta, upsilon, xi, and zeta.
Spell them with an initial capital letter (Alpha) or in full capitals (ALPHA) to obtain uppercase forms.

GNU eqn further defines the macros cdot, cdots, and utilde (all discussed above), dollar, which sets a dol-
lar sign, and ldots, which sets an ellipsis on the text baseline.

Fonts
eqn uses up to three typefaces to set an equation: italic (oblique), roman (upright), and bold. Assign each a
groff typeface with the primitives gfont, grfont, and gbfont. The defaults are the styles I, R, and B (ap-
plied to the current font family). The chartype primitive (see above) sets a character’s type, which deter-
mines the face used to set it. The “letter” type is set in italics; others are set in roman. Use the bold primi-
tive to select an (upright) bold style.

gbfont f
Select f as the bold font. This is a GNU extension.

gfont f
Select f as the italic font.

grfont f
Select f as the roman font. This is a GNU extension.

groff 1.23.0 2 July 2023 16

eqn(1) General Commands Manual eqn(1)

Options
--help displays a usage message, while -v and --version show version information; all exit afterward.

-C Recognize .EQ and .EN even when followed by a character other than space or newline.

-d xy Specify delimiters x for left and y for right ends of equations not bracketed by .EQ/.EN. x and y
need not be distinct. Any “delim xy” statements in the source file override this option.

-f F is equivalent to “gfont F”.

-m n is equivalent to “set minimum_size n”.

-M dir Search dir for eqnrc before those listed in section “Description” above.

-N Prohibit newlines within delimiters. This option allows eqn to recover better from missing closing
delimiters.

-p n Set sub- and superscripts n points smaller than the surrounding text. This option is deprecated.
eqn normally sets sub- and superscripts at 70% of the type size of the surrounding text.

-r Reduce the type size of subscripts at most once relative to the base type size for the equation.

-R Don’t load eqnrc.

-s n is equivalent to “gsize n”. This option is deprecated.

-T dev Prepare output for the device dev. In most cases, the effect of this is to define a macro dev with a
value of 1; eqnrc uses this to provide definitions appropriate for the device. However, if the speci-
fied driver is “MathML”, the output is MathML markup rather than troff input, and eqnrc is not
loaded at all. The default output device is ps.

Files
/usr/share/groff/1.23.0/tmac/eqnrc

Initialization file.

MathML mode limitations
MathML is designed on the assumption that it cannot know the exact physical characteristics of the media
and devices on which it will be rendered. It does not support control of motions and sizes to the same de-
gree troff does.

• eqn customization parameters have no effect on generated MathML.

• The special, up, down, fwd, and back primitives cannot be implemented, and yield a MathML
“<merror>” message instead.

• The vcenter primitive is silently ignored, as centering on the math axis is the MathML default.

• Characters that eqn sets extra large in troff mode—notably the integral sign—may appear too small and
need to have their “<mstyle>” wrappers adjusted by hand.

As in its troff mode, eqn in MathML mode leaves the .EQ and .EN tokens in place, but emits nothing cor-
responding to delim delimiters. They can, however, be recognized as character sequences that begin with
“$”, end with “$”, and do not cross line boundaries.

Caveats
Tokens must be double-quoted in eqn input if they are not to be recognized as names of macros or primi-
tives, or if they are to be interpreted by troff . In particular, short ones, like “pi” and “PI”, can collide with
troff identifiers. For instance, the eqn command “gfont PI” does not select groff ’s Palatino italic font for
the global italic face; you must use “gfont "PI"” instead.

Delimited equations are set at the type size current at the beginning of the input line, not necessarily that
immediately preceding the opening delimiter.

Unlike TEX, eqn does not inherently distinguish displayed and inline equation styles; see the smallover
primitive above. However, macro packages frequently define EQ and EN macros such that the equation
within is displayed. These macros may accept arguments permitting the equation to be labeled or cap-
tioned; see the package’s documentation.

groff 1.23.0 2 July 2023 17

eqn(1) General Commands Manual eqn(1)

Bugs
eqn abuses terminology—its “equations” can be inequalities, bare expressions, or unintelligible gibberish.
But there’s no changing it now.

In nroff mode, lowercase Greek letters are rendered in roman instead of italic style.

In MathML mode, the mark and lineup features don’t work. These could, in theory, be implemented with
“<maligngroup>” elements.

In MathML mode, each digit of a numeric literal gets a separate “<mn></mn>” pair, and decimal points are
tagged with “<mo></mo>”. This is allowed by the specification, but inefficient.

Examples
We first illustrate eqn usage with a trigonometric identity.

.EQ
sin (alpha + beta) = sin alpha cos beta + cos alpha sin beta
.EN

sin(α + β) = sin α cos β + cos α sin β
It can be convenient to set up delimiters if mathematical content will appear frequently in running text.

.EQ
delim $$
.EN
Having cached a table of logarithms,
the property $ln (x y) = ln x + ln y$ sped calculations.

Having cached a table of logarithms, the property ln(xy) = ln x + ln y sped calculations.

The quadratic formula illustrates use of fractions and radicals, and affords an opportunity to use the full
space token ~.

.EQ
x = { - b ~ \[+-] ~ sqrt { b sup 2 - 4 a c } } over { 2 a }
.EN

x =
−b ± √b2 − 4ac

2a
Alternatively, we could define the plus-minus sign as a binary operator. Automatic spacing puts 0.06 em
less space on either side of the plus-minus than ~ does, this being the difference between the widths of the
medium_space parameter used by binary operators and that of the full space. Independently, we can de-
fine a macro “frac” for setting fractions.

.EQ
chartype "binary" \[+-]
define frac ! { $1 } over { $2 } !
x = frac(- b \[+-] sqrt { b sup 2 - 4 a c }, 2 a)
.EN

x =
−b ± √b2 − 4ac

2a
See also

“Typesetting Mathematics—User’s Guide” (2nd edition), by Brian W. Kernighan and Lorinda L. Cherry,
1978, AT&T Bell Laboratories Computing Science Technical Report No. 17.

The TEXbook, by Donald E. Knuth, 1984, Addison-Wesley Professional. Appendix G discusses many of
the parameters from section “Customization” above in greater detail.

groff_char(7), particularly subsections “Logical symbols”, “Mathematical symbols”, and “Greek glyphs”,
documents a variety of special character escape sequences useful in mathematical typesetting.

groff (1), troff (1), pic(1), groff_font(5)

groff 1.23.0 2 July 2023 18

eqn2graph(1) General Commands Manual eqn2graph(1)

Name
eqn2graph - convert an eqn equation into a cropped image

Synopsis
eqn2graph [-format output-format] [convert-argument . . .]

eqn2graph --help

eqn2graph -v
eqn2graph --version

Description
eqn2graph reads a one-line eqn(1) equation from the standard input and writes an image file, by default in
Portable Network Graphics (PNG) format, to the standard output.

The input EQN code should not be preceded by the .EQ macro that normally precedes it within groff (1)
macros; nor do you need to have dollar-sign or other delimiters around the equation.

Arguments not recognized by eqn2graph are passed to the ImageMagick or GraphicsMagick program
convert(1). By specifying these, you can give your image a border, set the image’s pixel density, or per-
form other useful transformations.

The output image is clipped using convert’s -trim option to the smallest possible bounding box that con-
tains all the black pixels.

Options
--help displays a usage message, while -v and --version show version information; all exit afterward.

-format output-format
Write the image in output-format, which must be understood by convert; the default is PNG.

Environment
GROFF_TMPDIR
TMPDIR
TMP
TEMP These environment variables are searched in the given order to determine the directory where tem-

porary files will be created. If none are set, /tmp is used.

Authors
eqn2graph was written by Eric S. Raymond 〈esr@thyrsus.com〉, based on a recipe for pic2graph(1), by W.
Richard Stevens.

See also
pic2graph(1), grap2graph(1), eqn(1), groff (1), convert(1)

groff 1.23.0 2 July 2023 19

gdiffmk(1) General Commands Manual gdiffmk(1)

Name
gdiffmk - mark differences between groff /nroff /troff files

Synopsis
gdiffmk [-a add-mark] [-c change-mark] [-d delete-mark] [-x diff-command] [-D [-B] [-M mark1

mark2]] [--] file1 file2 [output]

gdiffmk --help

gdiffmk --version

Description
gdiffmk compares two roff (7) documents, file1 and file2, and creates a roff document consisting of file2
with added margin character (.mc) requests indicating output lines that differ from file1. If the file1 or
file2 argument is “-”, gdiffmk reads the standard input stream for that input. If the output operand is
present, gdiffmk writes output to a file of that name. If it is “-” or absent, gdiffmk writes output to the stan-
dard output stream. “-” cannot be both an input and output operand.

Options
--help displays a usage message and --version shows version information; both exit afterward.

-a add-mark
Use add-mark for source lines not in file1 but present in file2. Default: “+”.

-B By default, the deleted texts marked by the -D option end with an added roff break request, .br, to
ensure that the deletions are marked properly. This is the only way to guarantee that deletions and
small changes get flagged. This option directs the program not to insert these breaks; it makes no
sense to use it without -D.

-c change-mark
Use change-mark for changed source lines. Default: “|”.

-d delete-mark
Use the delete-mark for deleted source lines. Default: “*”.

-D Show the deleted portions from changed and deleted text.

-M mark1 mark2
Change the delimiting marks for the -D option. It makes no sense to use this option without -D.
Default delimiting marks: “[[” . . . “]]”.

-x diff-command
Use the diff-command command to perform the comparison of file1 and file2. In particular, diff-
command should accept the GNU diff (1) -D option. Default: diff.

-- Treat all subsequent arguments as file names, even if they begin with “-”.

Bugs
The output is not necessarily compatible with all macro packages and all preprocessors. A workaround that
often overcomes preprocessor problems is to run gdiffmk on the output of all the preprocessors instead of
the input source.

gdiffmk relies on the -D option of GNU diff to make a merged “#ifdef” output format. Busybox diff is
known to not support it. Also see the -x diff-command option.

Authors
gdiffmk was written by Mike Bianchi 〈MBianchi@Foveal.com〉, now retired. It is maintained by the groff
developers.

See also
groff (1), nroff (1), gtroff (1), roff (7), diff (1)

groff 1.23.0 2 July 2023 20

glilypond(1) General Commands Manual glilypond(1)

Name
glilypond - embed LilyPond musical notation in groff documents

Synopsis
glilypond [-k] [{--ly2eps|--pdf2eps}] [-e directory] [-o output-file] [-p filename-prefix] [-t tdir]

[{-v|-V}] [--] [file . . .]
glilypond [{--ly2eps|--pdf2eps}] [--eps_dir directory] [--keep_all] [--output output-file] [--prefix

filename-prefix] [--temp_dir tdir] [--verbose] [--] [file . . .]

glilypond -?
glilypond -h
glilypond --help
glilypond --usage

glilypond -l
glilypond --license

glilypond --version

Description
glilypond is a groff (7) preprocessor that enables the embedding of LilyPond music scores in groff docu-
ments. If no operands are given, or if file is “-”, glilypond reads the standard input stream. A double-dash
argument (“--”) causes all subsequent arguments to be interpreted as file operands, even if their names
start with a dash.

Usage
At present, glilypond works with the groff ps, dvi, html, and xhtml devices. The lbp and lj4 devices are
untested. Unfortunately, the pdf device does not yet work.

Option overview
-?|-h|--help|--usage

Display usage information and exit.

--version
Display version information and exit.

-l|--license
Display copyright license information and exit.

Options for building EPS files
--ly2eps

Direct lilypond(1) to create Encapsulated PostScript (EPS) files. This is the default.

--pdf2eps
The program glilypond generates a PDF file using lilypond . Then the EPS file is generated by
pdf2ps and ps2eps.

Directories and files
-e|--eps_dir directory_name

Normally all EPS files are sent to the temporary directory. With this option, you can generate
your own directory, in which all useful EPS files are send. So at last, the temporary directory can
be removed.

-p|--prefix begin_of_name
Normally all temporary files get names that start with the ly. . . prefix. With this option, you can
freely change this prefix.

-k|--keep_all
Normally all temporary files without the eps files are deleted. With this option, all generated files
either by the lilypond program or other format transposers are kept.

groff 1.23.0 2 July 2023 21

glilypond(1) General Commands Manual glilypond(1)

-t|--temp_dir dir
With this option, you call a directory that is the base for the temporary directory. This directory
name is used as is without any extensions. If this directory does not exist it is be created. The
temporary directory is created by Perl’s security operations directly under this directory. In this
temporary directory, the temporary files are stored.

Output
-o|--output file_name

Normally all groff output of this program is sent to STDOUT. With this option, that can be
changed, such that the output is stored into a file named in the option argument file_name.

-v|-V|--verbose
A lot more of information is sent to STDERR.

Short option collections
The argument handling of options

Short options are arguments that start with a single dash -. Such an argument can consist of arbitrary many
options without option argument, composed as a collection of option characters following the single dash.

Such a collection can be terminated by an option character that expects an option argument. If this option
character is not the last character of the argument, the following final part of the argument is the option ar-
gument. If it is the last character of the argument, the next argument is taken as the option argument.

This is the standard for POSIX and GNU option management.

For example,

-kVe some_dir
is a collection of the short options -k and -V without option argument, followed by the short op-
tion -e with option argument that is the following part of the argument some_dir. So this argu-
ment could also be written as several arguments -k -V -e some_dir.

Handling of long options
Arguments that start with a double dash -- are so-called long options R . Each double dash argument can
only have a single long option.

Long options have or have not an option argument. An option argument can be the next argument or can be
appended with an equal sign = to the same argument as the long option.

--help is a long option without an option argument.

--eps_dir some_dir
--eps_dir=some_dir

is the long option --eps_dir with the option argument some_dir.

Moreover the program allows abbreviations of long options, as much as possible.

The long option --keep_all can be abbreviated from --keep_al up to --k because the program does not
have another long option whose name starts with the character k.

On the other hand, the option --version cannot be abbreviated further than --vers because there is also
the long option --verbose that can be abbreviated up to --verb.

An option argument can also be appended to an abbreviation. So is --e=some_dir the same as --eps_dir
some_dir.

Moreover the program allows an arbitrary usage of upper and lower case in the option name. This is Perl
style.

For example, the long option --keep_all can as well be written as --Keep_All or even as an abbreviation
like --KeE.

groff 1.23.0 2 July 2023 22

glilypond(1) General Commands Manual glilypond(1)

LilyPond regions in roff input
Integrated LilyPond code

A lilypond part within a structure written in the groff language is the whole part between the marks
.lilypond start

and
.lilypond end

A groff input can have several of these lilypond parts.

When processing such a lilypond part between .lilypond start and .lilypond end we say that the glilypond
program is in lilypond mode.

These lilypond parts are sent into temporary lilypond files with the file name extension .ly. These files are
transformed later on into EPS files.

Inclusion of .ly files
An additional command line for file inclusion of lilypond files is given by
.lilypond include file_name
in groff input. For each such include command, one file of lilypond code can be included into the groff
code. Arbitrarily many of these commands can be included in the groff input.

These include commands can only be used outside the lilypond parts. Within the lilypond mode, this inclu-
sion is not possible. So .lilypond include may not be used in lilypond mode, i.e. between .lilypond start
and .lilypond end. These included ly-files are also transformed into EPS files.

Generated files
By the transformation process of lilypond parts into EPS files, there are many files generated. By default,
these files are regarded as temporary files and as such stored in a temporary directory.

This process can be changed by command-line options.

Command-line options for directories
The temporary directory for this program is either created automatically or can be named by the option
-t|--temp_dir dir.

Moreover, the EPS files that are later on referred by .PSPIC command in the final groff output can be
stored in a different directory that can be set by the command-line option -e|--eps_dir directory_name.
With this option, the temporary directory can be removed completely at the end of the program.

The beginning of the names of the temporary files can be set by the command-line options -p or --prefix.

All of the temporary files except the EPS files are deleted finally. This can be changed by setting the com-
mand-line options -k or --keep_files. With this, all temporary files and directories are kept, not deleted.

These EPS files are stored in a temporary or EPS directory. But they cannot be deleted by the transforma-
tion process because they are needed for the display which can take a long time.

Transformation processes for generating EPS files
Mode pdf2eps

This mode is the actual default and can also be chosen by the option --pdf2eps.

In this mode, the .ly files are transformed by the lilypond(1) program into PDF files, using
lilypond --pdf --output=file-name

for each .ly file. The file-name must be provided without the extension .pdf. By this process, a file file-
name.pdf is generated.

The next step is to transform these PDF files into a PS file. This is done by the pdf2ps(1) program using
$ pdf2ps file-name.pdf file-name.pds

The next step creates an EPS file from the PS file. This is done by the ps2eps(1) program using
$ ps2eps file-name.ps

By that, a file file-name.eps is created for each lilypond part in the groff file or standard input.

The last step to be done is replacing all lilypond parts by the groff command
.PSPIC file-name.eps

groff 1.23.0 2 July 2023 23

glilypond(1) General Commands Manual glilypond(1)

Mode ly2eps
In earlier time, this mode was the default. But now it does not work any more, so accept the new default
pdf2eps. For testing, this mode can also be chosen by the glilypond option --ly2eps.

In this mode, the .ly files are transformed by the lilypond program into many files of different formats, in-
cluding eps files, using

$ lilypond --ps -dbackend=eps -dgs-load-fonts --output=file-name
for each .ly file. The output file-name must be provided without an extension, its directory is temporary.

There are many EPS files created. One having the complete transformed ly file, named file-name.eps.

Moreover there are EPS files for each page, named file-name-digit.eps.

The last step to be done is replacing all lilypond parts by the collection of the corresponding EPS page
files. This is done by groff commands
.PSPIC file-name-digit.eps

Generated groff output
The new groff (7) structure generated by glilypond is either

1) sent to standard output and can there be saved into a file or piped into groff (1) or

2) stored into a file by given the option -o | --output file_name

Authors
glilypond was written by Bernd Warken 〈groff-bernd.warken-72@web.de〉.

See also
groff (1)

describes the usage of the groff command and contains pointers to further documentation of the
groff system.

groff_tmac(5)
describes the .PSPIC request.

lilypond(1)
briefly describes the lilypond command and contains pointers to further documentation.

pdf2ps(1)
transforms a PDF file into a PostScript format.

ps2eps(1)
transforms a PS file into an EPS format.

groff 1.23.0 2 July 2023 24

gperl(1) General Commands Manual gperl(1)

Name
gperl - execute Perl commands in groff documents

Synopsis
gperl [file . . .]

gperl -h
gperl --help

gperl -v
gperl --version

Description
This is a preprocessor for groff (1). It allows the use of perl(7) code in groff (7) files. The result of a Perl
part can be stored in groff strings or numerical registers based on the arguments at a final line of a Perl
part.

If no operands are given, or if file is “-”, gperl reads the standard input stream. A double-dash argument
(“--”) causes all subsequent arguments to be interpreted as file operands, even if their names start with a
dash. -h and --help display a usage message, whereas -v and --version display version information; all
exit afterward.

Perl regions
Perl parts in groff files are enclosed by two .Perl requests with different arguments, a starting and an end-
ing command.

Starting Perl mode
The starting Perl request can either be without arguments, or by a request that has the term start as its only
argument.

• .Perl

• .Perl start

Ending Perl mode without storage
A .Perl command line with an argument different from start finishes a running Perl part. Of course, it
would be reasonable to add the argument stop; that’s possible, but not necessary.

• .Perl stop

• .Perl other_than_start
The argument other_than_start can additionally be used as a groff string variable name for storage — see
next section.

Ending Perl mode with storage
A useful feature of gperl is to store one or more results from the Perl mode.

The output of a Perl part can be got with backticks `...`.

This program collects all printing to STDOUT (normal standard output) by the Perl print program. This
pseudo-printing output can have several lines, due to printed line breaks with \n. By that, the output of a
Perl run should be stored into a Perl array, with a single line for each array member.

This Perl array output can be stored by gperl in either

groff strings
by creating a groff command .ds

groff register
by creating a groff command .rn

The storage modes can be determined by arguments of a final stopping .Perl command. Each argument .ds
changes the mode into groff string and .nr changes the mode into groff register for all following output
parts.

groff 1.23.0 2 July 2023 25

gperl(1) General Commands Manual gperl(1)

By default, all output is saved as strings, so .ds is not really needed before the first .nr command. That
suits to groff (7), because every output can be saved as groff string, but the registers can be very restrictive.

In string mode, gperl generates a groff string storage line
.ds var_name content

In register mode the following groff command is generated
.nr var_name content

We present argument collections in the following. You can add as first argument for all stop. We omit this
additional element.

.Perl .ds var_name
This will store 1 output line into the groff string named var_name by the automatically created
command

.ds var_name output

.Perl var_name
If var_name is different from start this is equivalent to the former command, because the string
mode is string with .ds command. default.

.Perl var_name1 var_name2
This will store 2 output lines into groff string names var_name1 and var_name2, because the de-
fault mode .ds is active, such that no .ds argument is needed. Of course, this is equivalent to

.Perl .ds var_name1 var_name2
and

.Perl .ds var_name1 .ds var_name2

.Perl .nr var_name1 varname2
stores both variables as register variables. gperl generates
.nr var_name1 output_line1
.nr var_name2 output_line2

.Perl .nr var_name1 .ds var_name2
stores the 1st argument as register and the second as string by
.nr var_name1 output_line1
.ds var_name2 output_line2

Example
A possible Perl part in a roff file could look like that:

before
.Perl start
my $result = 'some data';
print $result;
.Perl stop .ds string_var
after

This stores the result ”some data” into the roff string called string_var, such that the following line is
printed:

.ds string_var some data
by gperl as food for the coming groff run.

A Perl part with several outputs is:
.Perl start
print ”first\n”;
print ”second line\n”;
print ”3\n”;
.Perl var1 var2 .nr var3

This stores 3 printed lines into 3 groff strings. var1,var2,var3. So the following groff command lines are
created:

.ds var1 first

groff 1.23.0 2 July 2023 26

gperl(1) General Commands Manual gperl(1)

.ds var2 second line

.nr var3 3

Authors
gperl was written by Bernd Warken 〈groff-bernd.warken-72@web.de〉.

See also
Man pages related to groff are groff (1), groff (7), and grog(1).

Documents related to Perl are perl(1), perl(7).

groff 1.23.0 2 July 2023 27

gpinyin(1) General Commands Manual gpinyin(1)

Name
gpinyin - use Hanyu Pinyin Chinese in groff documents

Synopsis
gpinyin [file . . .]

gpinyin -h
gpinyin --help

gpinyin -v
gpinyin --version

Description
gpinyin is a preprocessor for groff (1) that facilitates use of Hanyu Pinyin in groff (7) files. Pinyin is a
method for writing the Mandarin Chinese language with the Latin alphabet. Mandarin consists of more
than four hundred base syllables, each spoken with one of five different tones. Changing the tone applied
to the syllable generally alters the meaning of the word it forms. In Pinyin, a syllable is written in the Latin
alphabet and a numeric tone indicator can be appended to each syllable.

Each input-file is a file name or the character “-” to indicate that the standard input stream should be read.
As usual, the argument “--” can be used in order to force interpretation of all remaining arguments as file
names, even if an input-file argument begins with a “-”. -h and --help display a usage message, while -v
and --version show version information; all exit afterward.

Pinyin sections
Pinyin sections in groff files are enclosed by two .pinyin requests with different arguments. The starting
request is

.pinyin start
or

.pinyin begin
and the ending request is

.pinyin stop
or

.pinyin end
.

Syllables
In Pinyin, each syllable is represented by one to six letters drawn from the fifty-two upper- and lowercase
letters of the Unicode basic Latin character set, plus the letter “U” with dieresis (umlaut) in both cases—in
other words, the members of the set “[a–zA–ZüÜ]”.

In groff input, all basic Latin letters are written as themselves. The “u with dieresis” can be written as
“\[:u]” in lowercase or “\[:U]” in uppercase. Within .pinyin sections, gpinyin supports the form “ue” for
lowercase and the forms “Ue” and “UE” for uppercase.

Tones
Each syllable has exactly one of five tones. The fifth tone is not explicitly written at all, but each of the first
through fourth tones is indicated with a diacritic above a specific vowel within the syllable.

In a gpinyin source file, these tones are written by adding a numeral in the range 0 to 5 after the syllable.
The tone numbers 1 to 4 are transformed into accents above vowels in the output. The tone numbers 0 and
5 are synonymous.

The tones are written as follows.

groff 1.23.0 2 July 2023 28

gpinyin(1) General Commands Manual gpinyin(1)

Tone Description Diacritic Example Input Example Output

first flat ¯ ma1 mā
second rising ´ ma2 má
third falling-rising ˇ ma3 mǎ
fourth falling ` ma4 mà

ma0
ma5

fifth neutral (none) ma

The neutral tone number can be omitted from a word-final syllable, but not otherwise.

Authors
gpinyin was written by Bernd Warken 〈groff-bernd.warken-72@web.de〉.

See also
Useful documents on the World Wide Web related to Pinyin include

Pinyin to Unicode 〈http://www.foolsworkshop.com/ptou/index.html〉,
On-line Chinese Tools 〈http://www.mandarintools.com/〉,
Pinyin.info: a guide to the writing of Mandarin Chinese in romanization 〈http://www.pinyin.info/
index.html〉,
“Where do the tone marks go?” 〈http://www.pinyin.info/rules/where.html〉,
pinyin.txt from the CJK macro package for TEX 〈http://git.savannah.gnu.org/gitweb/?p=cjk.git
;a=blob_plain;f=doc/pinyin.txt;hb=HEAD〉,

and
pinyin.sty from the CJK macro package for TEX 〈http://git.savannah.gnu.org/gitweb/?p=cjk.git
;a=blob_plain;f=texinput/pinyin.sty;hb=HEAD〉.

groff (1) and grog(1) explain how to view roff documents.

groff (7) and groff_char(7) are comprehensive references covering the language elements of GNU troff and
the available glyph repertoire, respectively.

groff 1.23.0 2 July 2023 29

grap2graph(1) General Commands Manual grap2graph(1)

Name
grap2graph - convert a grap diagram into a cropped image

Synopsis
grap2graph [-unsafe] [-format output-format] [convert-argument . . .]

grap2graph --help

grap2graph -v
grap2graph --version

Description
grap2graph reads a grap(1) program from the standard input and writes an image file, by default in
Portable Network Graphics (PNG) format, to the standard output.

The input GRAP code should not be wrapped with the .G1 and .G2 macros that normally guard it within
groff (1) documents.

Arguments not recognized by grap2graph are passed to the ImageMagick or GraphicsMagick program
convert(1). By specifying these, you can give your image a border, set the image’s pixel density, or per-
form other useful transformations.

The output image is clipped using convert’s -trim option to the smallest possible bounding box that con-
tains all the black pixels.

Options
--help displays a usage message, while -v and --version show version information; all exit afterward.

-format output-format
Write the image in output-format, which must be understood by convert; the default is PNG.

-unsafe
Run groff in unsafe mode, enabling the PIC command sh to execute arbitrary Unix shell com-
mands. The groff default is to forbid this.

Environment
GROFF_TMPDIR
TMPDIR
TMP
TEMP These environment variables are searched in the given order to determine the directory where tem-

porary files will be created. If none are set, /tmp is used.

Authors
grap2graph was written by Eric S. Raymond 〈esr@thyrsus.com〉, based on a recipe for pic2graph(1), by
W. Richard Stevens.

See also
pic2graph(1), eqn2graph(1), grap(1), pic(1), groff (1), convert(1)

groff 1.23.0 2 July 2023 30

grn(1) General Commands Manual grn(1)

Name
grn - embed Gremlin images in groff documents

Synopsis
grn [-C] [-T dev] [-M dir] [-F dir] [file . . .]

grn -?
grn --help

grn -v
grn --version

Description
grn is a preprocessor for including gremlin pictures in troff (1) input. grn writes to standard output, pro-
cessing only input lines between two that start with .GS and .GE. Those lines must contain grn commands
(see below). These macros request a gremlin file; the picture in that file is converted and placed in the troff
input stream. .GS may be called with a C, L, or R argument to center, left-, or right-justify the whole
gremlin picture (the default is to center). If no file is mentioned, the standard input is read. At the end of
the picture, the position on the page is the bottom of the gremlin picture. If the grn entry is ended with .GF
instead of .GE, the position is left at the top of the picture.

Currently only the me macro package has support for .GS, .GE, and .GF.

grn produces drawing escape sequences that use groff ’s color scheme extension (\D'F . . .'), and thus may
not work with other troff s.

grn commands
Each input line between .GS and .GE may have one grn command. Commands consist of one or two
strings separated by white space, the first string being the command and the second its operand. Com-
mands may be upper- or lowercase and abbreviated down to one character.

Commands that affect a picture’s environment (those listed before “default”, see below) are only in effect
for the current picture: the environment is reinitialized to the defaults at the start of the next picture. The
commands are as follows.

1 N
2 N
3 N
4 N Set gremlin’s text size number 1 (2, 3, or 4) to N points. The default is 12 (16, 24, and 36, respec-

tively).

roman f
italics f
bold f
special f

Set the roman (italics, bold, or special) font to troff ’s font f (either a name or number). The de-
fault is R (I, B, and S, respectively).

l f
stipple f

Set the stipple font to troff ’s stipple font f (name or number). The command stipple may be ab-
breviated down as far as “st” (to avoid confusion with “special”). There is no default for stipples
(unless one is set by the “default” command), and it is invalid to include a gremlin picture with
polygons without specifying a stipple font.

x N
scale N

Magnify the picture (in addition to any default magnification) by N , a floating-point number larger
than zero. The command scale may be abbreviated down to “sc”.

groff 1.23.0 2 July 2023 31

grn(1) General Commands Manual grn(1)

narrow N
medium N
thick N

Set the thickness of gremlin’s narrow (medium and thick, respectively) lines to N times 0.15pt
(this value can be changed at compile time). The default is 1.0 (3.0 and 5.0, respectively), which
corresponds to 0.15pt (0.45pt and 0.75pt, respectively). A thickness value of zero selects the
smallest available line thickness. Negative values cause the line thickness to be proportional to the
current point size.

pointscale [off|on]
Scale text to match the picture. Gremlin text is usually printed in the point size specified with the
commands 1, 2, 3, or 4, regardless of any scaling factors in the picture. Setting pointscale will
cause the point sizes to scale with the picture (within troff ’s limitations, of course). An operand of
anything but off will turn text scaling on.

default Reset the picture environment defaults to the settings in the current picture. This is meant to be
used as a global parameter setting mechanism at the beginning of the troff input file, but can be
used at any time to reset the default settings.

width N
Force the picture to be N inches wide. This overrides any scaling factors present in the same pic-
ture. “width 0” is ignored.

height N
Force the picture to be N inches high, overriding other scaling factors. If both width and height
are specified, the tighter constraint will determine the scale of the picture. height and width com-
mands are not saved with a “default” command. They will, however, affect point size scaling if
that option is set.

file name
Get picture from gremlin file name located the current directory (or in the library directory; see the
-M option above). If multiple file commands are given, the last one controls. If name doesn’t ex-
ist, an error message is reported and processing continues from the .GE line.

Usage with groff
Since grn is a preprocessor, it has no access to elements of formatter state, such as indentation, line length,
type size, or register values. Consequently, no troff input can be placed between the .GS and .GE macros.
However, gremlin text elements are subsequently processed by troff , so anything valid in a single line of
troff input is valid in a line of gremlin text (barring the dot control character “.” at the beginning of a line).
Thus, it is possible to have equations within a gremlin figure by including in the gremlin file eqn expres-
sions enclosed by previously defined delimiters (e.g., “$$”).

When using grn along with other preprocessors, it is best to run tbl(1) before grn, pic(1), and/or ideal to
avoid overworking tbl. eqn(1) should always be run last. groff (1) will automatically run preprocessors in
the correct order.

A picture is considered an entity, but that doesn’t stop troff from trying to break it up if it falls off the end
of a page. Placing the picture between “keeps” in the me macros will ensure proper placement.

grn uses troff ’s registers g1 through g9 and sets registers g1 and g2 to the width and height of the gremlin
figure (in device units) before entering the .GS macro (this is for those who want to rewrite these macros).

Gremlin file format
There exist two distinct gremlin file formats: the original format for AED graphic terminals, and the Sun or
X11 version. An extension used by the Sun/X11 version allowing reference points with negative coordi-
nates is not compatible with the AED version. As long as a gremlin file does not contain negative coordi-
nates, either format will be read correctly by either version of gremlin or grn. The other difference in
Sun/X11 format is the use of names for picture objects (e.g., POLYGON, CURVE) instead of numbers.
Files representing the same picture are shown below.

groff 1.23.0 2 July 2023 32

grn(1) General Commands Manual grn(1)

sungremlinfile gremlinfile
0 240.00 128.00 0 240.00 128.00
CENTCENT 2
240.00 128.00 240.00 128.00
185.00 120.00 185.00 120.00
240.00 120.00 240.00 120.00
296.00 120.00 296.00 120.00
* -1.00 -1.00
2 3 2 3
10 A Triangle 10 A Triangle
POLYGON 6
224.00 416.00 224.00 416.00
96.00 160.00 96.00 160.00
384.00 160.00 384.00 160.00
* -1.00 -1.00
5 1 5 1
0 0
-1 -1

• The first line of each gremlin file contains either the string “gremlinfile” (AED) or “sungremlinfile”
(Sun/X11).

• The second line of the file contains an orientation and x and y values for a positioning point, separated
by spaces. The orientation, either 0 or 1, is ignored by the Sun/X11 version. 0 means that gremlin will
display things in horizontal format (a drawing area wider than it is tall, with a menu across the top). 1
means that gremlin will display things in vertical format (a drawing area taller than it is wide, with a
menu on the left side). x and y are floating-point values giving a positioning point to be used when this
file is read into another file. The stuff on this line really isn’t all that important; a value of “1 0.00 0.00”
is suggested.

• The rest of the file consists of zero or more element specifications. After the last element specification is
a line containing the string “-1”.

• Lines longer than 127 characters are truncated to that length.

Element specifications
• The first line of each element contains a single decimal number giving the type of the element (AED) or

its name (Sun/X11).

gremlin File Format: Object Type Specification

AED Number Sun/X11 Name Description
0 BOTLEFT bottom-left-justified text
1 BOTRIGHT bottom-right-justified text
2 CENTCENT center-justified text
3 VECTOR vector
4 ARC arc
5 CURVE curve
6 POLYGON polygon
7 BSPLINE b-spline
8 BEZIER Bézier

10 TOPLEFT top-left-justified text
11 TOPCENT top-center-justified text
12 TOPRIGHT top-right-justified text
13 CENTLEFT left-center-justified text
14 CENTRIGHT right-center-justified text
15 BOTCENT bottom-center-justified text

groff 1.23.0 2 July 2023 33

grn(1) General Commands Manual grn(1)

• After the object type comes a variable number of lines, each specifying a point used to display the ele-
ment. Each line contains an x-coordinate and a y-coordinate in floating-point format, separated by
spaces. The list of points is terminated by a line containing the string “-1.0 -1.0” (AED) or a single as-
terisk, “*” (Sun/X11).

• After the points comes a line containing two decimal values, giving the brush and size for the element.
The brush determines the style in which things are drawn. For vectors, arcs, and curves there are six
valid brush values.

1 thin dotted lines
2 thin dot-dashed lines
3 thick solid lines
4 thin dashed lines
5 thin solid lines
6 medium solid lines

For polygons, one more value, 0, is valid. It specifies a polygon with an invisible border. For text, the
brush selects a font as follows.

1 roman (R font in troff)
2 italics (I font in troff)
3 bold (B font in troff)
4 special (S font in troff)

If you’re using grn to run your pictures through groff , the font is really just a starting font. The text
string can contain formatting sequences like “\fI” or “\d” which may change the font (as well as do many
other things). For text, the size field is a decimal value between 1 and 4. It selects the size of the font in
which the text will be drawn. For polygons, this size field is interpreted as a stipple number to fill the
polygon with. The number is used to index into a stipple font at print time.

• The last line of each element contains a decimal number and a string of characters, separated by a single
space. The number is a count of the number of characters in the string. This information is used only for
text elements, and contains the text string. There can be spaces inside the text. For arcs, curves, and vec-
tors, the character count is zero (0), followed by exactly one space before the newline.

Coordinates
gremlin was designed for AED terminals, and its coordinates reflect the AED coordinate space. For verti-
cal pictures, x values range 116 to 511, and y values from 0 to 483. For horizontal pictures, x values range
from 0 to 511, and y values from 0 to 367. Although you needn’t absolutely stick to this range, you’ll get
better results if you at least stay in this vicinity. Also, point lists are terminated by a point of (-1, -1), so
you shouldn’t ever use negative coordinates. gremlin writes out coordinates using the printf (3) format
“%f1.2”; it’s probably a good idea to use the same format if you want to modify the grn code.

Sun/X11 coordinates
There is no restriction on the range of coordinates used to create objects in the Sun/X11 version of gremlin.
However, files with negative coordinates will cause problems if displayed on the AED.

Options
-? and --help display a usage message, while -v and --version show version information; all exit after-
ward.

-C Recognize .GS and .GE (and .GF) even when followed by a character other than space or newline.

-F dir Search dir for subdirectories devname (name is the name of the output driver) for the DESC file
before the default font directories /usr/share/groff/site-font, /usr/share/groff/1.23.0/font, and /usr/
lib/font.

-M dir Prepend dir to the search path for gremlin files. The default search path is the current directory,
the home directory, /usr/share/groff/site-tmac, and /usr/share/groff/1.23.0/tmac, in that order.

groff 1.23.0 2 July 2023 34

grn(1) General Commands Manual grn(1)

-T dev Prepare device output using output driver dev. The default is ps. See groff (1) for a list of valid
devices.

Files
/usr/share/groff/1.23.0/font/devname /DESC

describes the output device name.

Authors
David Slattengren and Barry Roitblat wrote the original Berkeley grn. Daniel Senderowicz and Werner
Lemberg modified it for groff .

See also
gremlin(1), groff (1), pic(1), ideal(1)

groff 1.23.0 2 July 2023 35

grodvi(1) General Commands Manual grodvi(1)

Name
grodvi - groff output driver for TeX DVI format

Synopsis
grodvi [-dl] [-F dir] [-p paper-format] [-w n] [file . . .]

grodvi --help

grodvi -v
grodvi --version

Description
The GNU roff DVI output driver translates the output of troff (1) into TEX DVI format. Normally, grodvi is
invoked by groff (1) when the latter is given the “-T dvi” option. (In this installation, ps is the default out-
put device.) Use groff ’s -P option to pass any options shown above to grodvi. If no file arguments are
given, or if file is “-”, grodvi reads the standard input stream. Output is written to the standard output
stream.

The DVI file generated by grodvi can interpreted by any correctly written DVI driver. troff drawing primi-
tives are implemented using tpic version 2 specials. If the driver does not support these, \D escape se-
quences will not produce any output.

Encapsulated PostScript (EPS) files can be easily included; use the PSPIC macro. pspic.tmac is loaded au-
tomatically by dvi.tmac. See groff_tmac(5).

The default color used by the \m and \M escape sequences is black. Currently, the stroke color for \D
drawing escape sequences is black; fill color values are translated to gray.

In groff , as in AT&T troff , the \N escape sequence can be used to access any glyph in the current font by its
position in the corresponding TFM file.

By design, the DVI format doesn’t care about the physical dimensions of the output medium. Instead,
grodvi emits the equivalent to TEX’s \special{papersize=width,length} on the first page; dvips (or another
DVI driver) then sets the page size accordingly. If either the page width or length is not positive, no
papersize special is output.

A device control escape sequence \X'anything' is translated to the same DVI file instructions as would be
produced by \special{anything} in TEX; anything cannot contain a newline.

Typefaces
grodvi supports the standard four styles: R (roman), I (italic), B (bold), and BI (bold-italic). Fonts are
grouped into families T and H having members in each style. “CM” abbreviates “Computer Modern”.

TR CM Roman (cmr10)
TI CM Text Italic (cmti10)
TB CM Bold Extended Roman (cmbx10)
TBI CM Bold Extended Text Italic (cmbxti10)
HR CM Sans Serif (cmss10)
HI CM Slanted Sans Serif (cmssi10)
HB CM Sans Serif Bold Extended (cmssbx10)
HBI CM Slanted Sans Serif Bold Extended (cmssbxo10)

The following fonts are not members of a family.

CW CM Typewriter Text (cmtt10)
CWI CM Italic Typewriter Text (cmitt10)

Special fonts include MI (cmmi10), S (cmsy10), EX (cmex10), SC (cmtex10, only for CW), and, perhaps
surprisingly, TR, TI, and CW, because TEX places some glyphs in text fonts that troff generally does not.
For italic fonts, CWI is used instead of CW.

Finally, the symbol fonts of the American Mathematical Society are available as special fonts SA (msam10)
and SB (msbm10). They are are not mounted by default.

groff 1.23.0 2 July 2023 36

grodvi(1) General Commands Manual grodvi(1)

The troff option -mec loads the ec.tmac macro file, employing the EC and TC fonts instead of CM. These
are designed similarly to the Computer Modern fonts; further, they provide Euro \[Eu] and per mille \[%0]
glyphs. ec.tmac must be loaded before any language-specific macro files because it does not set up the
codes necessary for automatic hyphenation.

Font description files
Use tfmtodit(1) to create groff font description files from TFM (TEX font metrics) files. The font descrip-
tion file should contain the following additional directives, which tfmtodit generates automatically.

internalname name
The name of the TFM file (without the .tfm extension) is name.

checksum n
The checksum in the TFM file is n.

designsize n
The design size in the TFM file is n.

Drawing commands
grodvi supports an additional drawing command.

\D'R dh dv'
Draw a rule (solid black rectangle) with one corner at the drawing position, and the diagonally op-
posite corner at the drawing position +(dh,dv), which becomes the new drawing position after-
ward. This command produces a rule in the DVI file and so can be printed even with a driver that
does not support tpic specials, unlike the other \D commands.

Options
--help displays a usage message, while -v and --version show version information; all exit afterward.

-d Do not use tpic specials to implement drawing commands. Horizontal and vertical lines are im-
plemented by rules. Other drawing commands are ignored.

-F dir Prepend directory dir /devname to the search path for font and device description files; name is the
name of the device, usually dvi.

-l Use landscape orientation rather than portrait.

-p paper-format
Set physical dimensions of output medium, overriding the papersize, paperlength, and
paperwidth directives in the DESC file. paper-format can be any argument accepted by the
papersize directive; see groff_font(5).

-w n Draw rules (lines) with a thickness of n thousandths of an em. The default thickness is 40
(0.04 em).

Environment
GROFF_FONT_PATH

lists directories in which to search for devdvi, grodvi’s directory of device and font description
files. See troff (1) and groff_font(5).

Files
/usr/share/groff/1.23.0/font/devdvi/DESC

describes the dvi output device.

/usr/share/groff/1.23.0/font/devdvi/ F
describes the font known as F on device dvi.

/usr/share/groff/1.23.0/tmac/dvi.tmac
defines font mappings, special characters, and colors for use with the dvi output device. It is auto-
matically loaded by troffrc when the dvi output device is selected.

/usr/share/groff/1.23.0/tmac/ec.tmac
configures the dvi output device to use the EC and TC font families instead of CM (Computer
Modern).

groff 1.23.0 2 July 2023 37

grodvi(1) General Commands Manual grodvi(1)

Bugs
DVI files produced by grodvi use a different resolution (57,816 units per inch) from those produced by
TEX. Incorrectly written drivers which assume the resolution used by TEX, rather than using the resolution
specified in the DVI file, will not work with grodvi.

When using the -d option with boxed tables, vertical and horizontal lines can sometimes protrude by one
pixel. This is a consequence of the way TEX requires that the heights and widths of rules be rounded.

See also
“What are the EC fonts?” 〈https://texfaq.org/FAQ-ECfonts〉; TEX FAQ: Frequently Asked Question List
for TEX

tfmtodit(1), groff (1), troff (1), groff_out(5), groff_font(5), groff_char(7), groff_tmac(5)

groff 1.23.0 2 July 2023 38

groff (1) General Commands Manual groff (1)

Name
groff - front end to the GNU roff document formatting system

Synopsis
groff [-abcCeEgGijklNpRsStUVXzZ] [-d ctext] [-d string=text] [-D fallback-encoding] [-f font-

family] [-F font-directory] [-I inclusion-directory] [-K input-encoding] [-L spooler-argument]
[-m macro-package] [-M macro-directory] [-n page-number] [-o page-list] [-P postprocessor-
argument] [-r cnumeric-expression] [-r register=numeric-expression] [-T output-device]
[-w warning-category] [-W warning-category] [file . . .]

groff -h
groff --help

groff -v [option . . .] [file . . .]
groff --version [option . . .] [file . . .]

Description
groff is the primary front end to the GNU roff document formatting system. GNU roff is a typesetting sys-
tem that reads plain text input files that include formatting commands to produce output in PostScript, PDF,
HTML, DVI, or other formats, or for display to a terminal. Formatting commands can be low-level typeset-
ting primitives, macros from a supplied package, or user-defined macros. All three approaches can be com-
bined. If no file operands are specified, or if file is “-”, groff reads the standard input stream.

A reimplementation and extension of the typesetter from AT&T Unix, groff is present on most POSIX sys-
tems owing to its long association with Unix manuals (including man pages). It and its predecessor are no-
table for their production of several best-selling software engineering texts. groff is capable of producing
typographically sophisticated documents while consuming minimal system resources.

The groff command orchestrates the execution of preprocessors, the transformation of input documents into
a device-independent page description language, and the production of output from that language.

Options
-h and --help display a usage message and exit.

Because groff is intended to subsume most users’ direct invocations of the troff (1) formatter, the two pro-
grams share a set of options. However, groff has some options that troff does not share, and others which
groff interprets differently. At the same time, not all valid troff options can be given to groff .

groff-specific options
The following options either do not exist in GNU troff or are interpreted differently by groff .

-D enc Set fallback input encoding used by preconv(1) to enc; implies -k.

-e Run eqn(1) preprocessor.

-g Run grn(1) preprocessor.

-G Run grap(1) preprocessor; implies -p.

-I dir Works as troff ’s option (see below), but also implies -g and -s. It is passed to soelim(1) and the
output driver, and grn is passed an -M option with dir as its argument.

-j Run chem(1) preprocessor; implies -p.

-k Run preconv(1) preprocessor. Refer to its man page for its behavior if neither of groff ’s -K or -D
options is also specified.

-K enc Set input encoding used by preconv(1) to enc; implies -k.

-l Send the output to a spooler program for printing. The “print” directive in the device description
file specifies the default command to be used; see groff_font(5). If no such directive is present for
the output device, output is piped to lpr(1). See options -L and -X.

-L arg Pass arg to the print spooler program. If multiple args are required, pass each with a separate -L
option. groff does not prefix an option dash to arg before passing it to the spooler program.

groff 1.23.0 2 July 2023 39

groff (1) General Commands Manual groff (1)

-M Works as troff ’s option (see below), but is also passed to eqn(1), grap(1), and grn(1).

-N Prohibit newlines between eqn delimiters: pass -N to eqn(1).

-p Run pic(1) preprocessor.

-P arg Pass arg to the postprocessor. If multiple args are required, pass each with a separate -P option.
groff does not prefix an option dash to arg before passing it to the postprocessor.

-R Run refer(1) preprocessor. No mechanism is provided for passing arguments to refer because
most refer options have equivalent language elements that can be specified within the document.

-s Run soelim(1) preprocessor.

-S Operate in “safer” mode; see -U below for its opposite. For security reasons, safer mode is en-
abled by default.

-t Run tbl(1) preprocessor.

-T dev Direct troff to format the input for the output device dev. groff then calls an output driver to con-
vert troff ’s output to a form appropriate for dev; see subsection “Output devices” below.

-U Operate in unsafe mode: pass the -U option to pic and troff .

-v
--version

Write version information for groff and all programs run by it to the standard output stream; that
is, the given command line is processed in the usual way, passing -v to the formatter and any pre-
or postprocessors invoked.

-V Output the pipeline that groff would run to the standard output stream, but do not execute it. If
given more than once, groff both writes and runs the pipeline.

-X Use gxditview(1) instead of the usual postprocessor to (pre)view a document on an X11 display.
Combining this option with -Tps uses the font metrics of the PostScript device, whereas the
-TX75 and -TX100 options use the metrics of X11 fonts.

-Z Disable postprocessing. troff output will appear on the standard output stream (unless suppressed
with -z); see groff_out(5) for a description of this format.

Transparent options
The following options are passed as-is to the formatter program troff (1) and described in more detail in its
man page.

-a Generate a plain text approximation of the typeset output.

-b Write a backtrace to the standard error stream on each error or warning.

-c Start with color output disabled.

-C Enable AT&T troff compatibility mode; implies -c.

-d cs
-d name=string

Define string.

-E Inhibit troff error messages; implies -Ww.

-f fam Set default font family.

-F dir Search in directory dir for the selected output device’s directory of device and font description
files.

-i Process standard input after the specified input files.

-I dir Search dir for input files.

groff 1.23.0 2 July 2023 40

groff (1) General Commands Manual groff (1)

-m name
Process name.tmac before input files.

-M dir Search directory dir for macro files.

-n num
Number the first page num.

-o list Output only pages in list.

-r cnumeric-expression
-r register=numeric-expression

Define register.

-w name
-W name

Enable (-w) or inhibit (-W) emission of warnings in category name.

-z Suppress formatted device-independent output of troff .

Usage
The architecture of the GNU roff system follows that of other device-independent roff implementations,
comprising preprocessors, macro packages, output drivers (or “postprocessors”), a suite of utilities, and the
formatter troff at its heart. See roff (7) for a survey of how a roff system works.

The front end programs available in the GNU roff system make it easier to use than traditional roff s that re-
quired the construction of pipelines or use of temporary files to carry a source document from maintainable
form to device-ready output. The discussion below summarizes the constituent parts of the GNU roff sys-
tem. It complements roff (7) with groff -specific information.

Getting started
Those who prefer to learn by experimenting or are desirous of rapid feedback from the system may wish to
start with a “Hello, world!” document.

$ echo "Hello, world!" | groff -Tascii | sed '/^$/d'
Hello, world!

We used a sed command only to eliminate the 65 blank lines that would otherwise flood the terminal
screen. (roff systems were developed in the days of paper-based terminals with 66 lines to a page.)

Today’s users may prefer output to a UTF-8-capable terminal.

$ echo "Hello, world!" | groff -Tutf8 | sed '/^$/d'

Producing PDF, HTML, or TEX’s DVI is also straightforward. The hard part may be selecting a viewer pro-
gram for the output.

$ echo "Hello, world!" | groff -Tpdf > hello.pdf
$ evince hello.pdf
$ echo "Hello, world!" | groff -Thtml > hello.html
$ firefox hello.html
$ echo "Hello, world!" | groff -Tdvi > hello.dvi
$ xdvi hello.html

Using groff as a REPL
Those with a programmer’s bent may be pleased to know that they can use groff in a read-evaluate-print
loop (REPL). Doing so can be handy to verify one’s understanding of the formatter’s behavior and/or the
syntax it accepts. Turning on all warnings with -ww can aid this goal.

$ groff -ww -Tutf8
\# This is a comment. Let's define a register.
.nr a 1
\# Do integer arithmetic with operators evaluated left-to-right.
.nr b \n[a]+5/2

groff 1.23.0 2 July 2023 41

groff (1) General Commands Manual groff (1)

\# Let's get the result on the standard error stream.
.tm \n[b]
3
\# Now we'll define a string.
.ds name Leslie\" This is another form of comment.
.nr b (\n[a] + (7/2))
\# Center the next two text input lines.
.ce 2
Hi, *[name].
Your secret number is \n[b].
\# We will see that the division rounded toward zero.
It is
\# Here's an if-else control structure.
.ie (\n[b] % 2) odd.
.el even.
\# This trick sets the page length to the current vertical
\# position, so that blank lines don't spew when we're done.
.pl \n[nl]u
<Control-D>

Hi, Leslie.
Your secret number is 4.

It is even.

Paper format
In GNU roff , the page dimensions for the formatter troff and for output devices are handled separately. In
the formatter, requests are used to set the page length (.pl), page offset (or left margin, .po), and line length
(.ll). The right margin is not explicitly configured; the combination of page offset and line length provides
the information necessary to derive it. The papersize macro package, automatically loaded by troff , pro-
vides an interface for configuring page dimensions by convenient names, like “letter” or “A4”; see
groff_tmac(5). The formatter’s default in this installation is “A4”.

It is up to each macro package to respect the page dimensions configured in this way. Some offer alterna-
tive mechanisms.

For each output device, the size of the output medium can be set in its DESC file. Most output drivers also
recognize a command-line option -p to override the default dimensions and an option -l to use landscape
orientation. See groff_font(5) for a description of the papersize directive, which takes an argument of the
same form as -p. The output driver’s man page, such as grops(1), may also be helpful. groff uses the
command-line option -P to pass options to output devices; for example, use the following for PostScript
output on A4 paper in landscape orientation.

groff -Tps -dpaper=a4l -P-pa4 -P-l -ms foo.ms > foo.ps

Front end
The groff program is a wrapper around the troff (1) program. It allows one to specify preprocessors via
command-line options and automatically runs the appropriate postprocessor for the selected output device.
Doing so, the manual construction of pipelines or management of temporary files required of users of tradi-
tional roff (7) systems can be avoided. Use the grog(1) program to infer an appropriate groff command line
to format a document.

Language
Input to a roff system is in plain text interleaved with control lines and escape sequences. The combination
constitutes a document in one of a family of languages we also call roff ; see roff (7) for background. An
overview of GNU roff language syntax and features, including lists of all supported escape sequences, re-
quests, and predefined registers, can be found in groff (7). GNU roff extensions to the AT&T troff lan-
guage, a common subset of roff dialects extant today, are detailed in groff_diff (7).

groff 1.23.0 2 July 2023 42

groff (1) General Commands Manual groff (1)

Preprocessors
A preprocessor interprets a domain-specific language that produces roff language output. Frequently, such
input is confined to sections or regions of a roff input file (bracketed with macro calls specific to each pre-
processor), which it replaces. Preprocessors therefore often interpret a subset of roff syntax along with
their own language. GNU roff provides reimplementations of most preprocessors familiar to users of
AT&T troff ; these routinely have extended features and/or require GNU troff to format their output.

tbl lays out tables;
eqn typesets mathematics;
pic draws diagrams;
refer processes bibliographic references;
soelim preprocesses “sourced” input files;
grn renders gremlin(1) diagrams;
chem draws chemical structural formulæ using pic;
gperl populates groff registers and strings using perl(1);
glilypond embeds LilyPond sheet music; and
gpinyin eases Mandarin Chinese input using Hanyu Pinyin.

A preprocessor unique to GNU roff is preconv(1), which converts various input encodings to something
GNU troff can understand. When used, it is run before any other preprocessors.

Most preprocessors enclose content between a pair of characteristic tokens. Such a token must occur at the
beginning of an input line and use the dot control character. Spaces and tabs must not follow the control
character or precede the end of the input line. Deviating from these rules defeats a token’s recognition by
the preprocessor. Tokens are generally preserved in preprocessor output and interpreted as macro calls sub-
sequently by troff . The ideal preprocessor is not yet available in groff .

preprocessor starting token ending token

chem .cstart .cend
eqn .EQ .EN
grap .G1 .G2
grn .GS .GE
ideal .IS .IE

.IF
pic .PS .PE

.PF

.PY
refer .R1 .R2
tbl .TS .TE

glilypond .lilypond start .lilypond stop
gperl .Perl start .Perl stop
gpinyin .pinyin start .pinyin stop

Macro packages
Macro files are roff input files designed to produce no output themselves but instead ease the preparation of
other roff documents. When a macro file is installed at a standard location and suitable for use by a general
audience, it is termed a macro package.

Macro packages can be loaded prior to any roff input documents with the -m option. The GNU roff sys-
tem implements most well-known macro packages for AT&T troff in a compatible way and extends them.
These have one- or two-letter names arising from intense practices of naming economy in early Unix cul-
ture, a laconic approach that led to many of the packages being identified in general usage with the nroff
and troff option letter used to invoke them, sometimes to punning effect, as with “man” (short for “man-
ual”), and even with the option dash, as in the case of the s package, much better known as ms or even -ms.

Macro packages serve a variety of purposes. Some are “full-service” packages, adopting responsibility for
page layout among other fundamental tasks, and defining their own lexicon of macros for document com-
position; each such package stands alone and a given document can use at most one.

groff 1.23.0 2 July 2023 43

groff (1) General Commands Manual groff (1)

an is used to compose man pages in the format originating in Version 7 Unix (1979); see
groff_man(7). It can be specified on the command line as -man.

doc is used to compose man pages in the format originating in 4.3BSD-Reno (1990); see
groff_mdoc(7). It can be specified on the command line as -mdoc.

e is the Berkeley general-purpose macro suite, developed as an alternative to AT&T’s s; see
groff_me(7). It can be specified on the command line as -me.

m implements the format used by the second-generation AT&T macro suite for general documents, a
successor to s; see groff_mm(7). It can be specified on the command line as -mm.

om (invariably called “mom”) is a modern package written by Peter Schaffter specifically for GNU
roff . Consult the mom HTML manual 〈file:///usr/share/doc/groff-1.23.0/html/mom/toc.html〉 for
extensive documentation. She—for mom takes the female pronoun—can be specified on the com-
mand line as -mom.

s is the original AT&T general-purpose document format; see groff_ms(7). It can be specified on
the command line as -ms.

Others are supplemental. For instance, andoc is a wrapper package specific to GNU roff that recognizes
whether a document uses man or mdoc format and loads the corresponding macro package. It can be spec-
ified on the command line as -mandoc. A man(1) librarian program may use this macro file to delegate
loading of the correct macro package; it is thus unnecessary for man itself to scan the contents of a docu-
ment to decide the issue.

Many macro files augment the function of the full-service packages, or of roff documents that do not em-
ploy such a package—the latter are sometimes characterized as “raw”. These auxiliary packages are de-
scribed, along with details of macro file naming and placement, in groff_tmac(5).

Formatters
The formatter, the program that interprets roff language input, is troff (1). It provides the features of the
AT&T troff and nroff programs as well as many extensions. The command-line option -C switches troff
into compatibility mode, which tries to emulate AT&T troff as closely as is practical to enable the format-
ting of documents written for the older system.

A shell script, nroff (1), emulates the behavior of AT&T nroff . It attempts to correctly encode the output
based on the locale, relieving the user of the need to specify an output device with the -T option and is
therefore convenient for use with terminal output devices, described in the next subsection.

GNU troff generates output in a device-independent, but not device-agnostic, page description language de-
tailed in groff_out(5).

Output devices
troff output is formatted for a particular output device, typically specified by the -T option to the formatter
or a front end. If neither this option nor the GROFF_TYPESETTER environment variable is used, the de-
fault output device is ps. An output device may be any of the following.

ascii for terminals using the ISO 646 1991:IRV character set and encoding, also known as US-ASCII.

cp1047 for terminals using the IBM code page 1047 character set and encoding.

dvi for TeX DVI format.

html
xhtml for HTML and XHTML output, respectively.

latin1 for terminals using the ISO Latin-1 (ISO 8859-1) character set and encoding.

lbp for Canon CaPSL printers (LBP-4 and LBP-8 series laser printers).

lj4 for HP LaserJet4-compatible (or other PCL5-compatible) printers.

pdf for PDF output.

groff 1.23.0 2 July 2023 44

groff (1) General Commands Manual groff (1)

ps for PostScript output.

utf8 for terminals using the ISO 10646 (“Unicode”) character set in UTF-8 encoding.

X75 for previewing with gxditview using 75 dpi resolution and a 10-point base type size.

X75-12 for previewing with gxditview using 75 dpi resolution and a 12-point base type size.

X100 for previewing with gxditview using 100 dpi resolution and a 10-point base type size.

X100-12 for previewing with gxditview using 100 dpi resolution and a 12-point base type size.

Postprocessors
Any program that interprets the output of GNU troff is a postprocessor. The postprocessors provided by
GNU roff are output drivers, which prepare a document for viewing or printing. Postprocessors for other
purposes, such as page resequencing or statistical measurement of a document, are conceivable.

An output driver supports one or more output devices, each with its own device description file. A device
determines its postprocessor with the postpro directive in its device description file; see groff_font(5). The
-X option overrides this selection, causing gxditview to serve as the output driver.

grodvi(1)
provides dvi.

grohtml(1)
provides html and xhtml.

grolbp(1)
provides lbp.

grolj4(1)
provides lj4.

gropdf (1)
provides pdf.

grops(1)
provides ps.

grotty(1)
provides ascii, cp1047, latin1, and utf8.

gxditview(1)
provides X75, X75-12, X100, and X100-12, and additionally can preview ps.

Utilities
GNU roff includes a suite of utilities.

gdiffmk(1)
marks differences between a pair of roff input files.

grog(1) infers the groff command a document requires.

Several utilities prepare descriptions of fonts, enabling the formatter to use them when producing output for
a given device.

addftinfo(1)
adds information to AT&T troff font description files to enable their use with GNU troff .

afmtodit(1)
creates font description files for PostScript Type 1 fonts.

pfbtops(1)
translates a PostScript Type 1 font in PFB (Printer Font Binary) format to PFA (Printer Font
ASCII), which can then be interpreted by afmtodit.

groff 1.23.0 2 July 2023 45

groff (1) General Commands Manual groff (1)

hpftodit(1)
creates font description files for the HP LaserJet 4 family of printers.

tfmtodit(1)
creates font description files for the TeX DVI device.

xtotroff (1)
creates font description files for X Window System core fonts.

A trio of tools transform material constructed using roff preprocessor languages into graphical image files.

eqn2graph(1)
converts an eqn equation into a cropped image.

grap2graph(1)
converts a grap diagram into a cropped image.

pic2graph(1)
converts a pic diagram into a cropped image.

Another set of programs works with the bibliographic data files used by the refer(1) preprocessor.

indxbib(1)
makes inverted indices for bibliographic databases, speeding lookup operations on them.

lkbib(1)
searches the databases.

lookbib(1)
interactively searches the databases.

Exit status
groff exits with a failure status if there was a problem parsing its arguments and a successful status if either
of the options -h or --help was specified. Otherwise, groff runs a pipeline to process its input; if all com-
mands within the pipeline exit successfully, groff does likewise. If not, groff ’s exit status encodes a sum-
mary of problems encountered, setting bit 0 if a command exited with a failure status, bit 1 if a command
was terminated with a signal, and bit 2 if a command could not be executed. (Thus, if all three misfortunes
befell one’s pipeline, groff would exit with status 2^0 + 2^1 + 2^2 = 1+2+4 = 7.) To troubleshoot pipeline
problems, you may wish to re-run the groff command with the -V option and break the reported pipeline
down into separate stages, inspecting the exit status of and diagnostic messages emitted by each command.

Environment
Normally, the path separator in environment variables ending with PATH is the colon; this may vary de-
pending on the operating system. For example, Windows uses a semicolon instead.

GROFF_BIN_PATH
This search path, followed by PATH , is used to locate commands executed by groff . If it is not
set, the installation directory of the GNU roff executables, /usr/bin, is searched before PATH .

GROFF_COMMAND_PREFIX
GNU roff can be configured at compile time to apply a prefix to the names of the programs it pro-
vides that had a counterpart in AT&T troff , so that name collisions are avoided at run time. The
default prefix is empty.

When used, this prefix is conventionally the letter “g”. For example, GNU troff would be installed
as gtroff . Besides troff , the prefix applies to the formatter nroff ; the preprocessors eqn, grn, pic,
refer, tbl, and soelim; and the utilities indxbib and lookbib.

GROFF_ENCODING
The value of this variable is passed to the preconv(1) preprocessor’s -e option to select the charac-
ter encoding of input files. This variable’s existence implies the groff option -k. If set but empty,
groff calls preconv without an -e option. groff ’s -K option overrides GROFF_ENCODING.

groff 1.23.0 2 July 2023 46

groff (1) General Commands Manual groff (1)

GROFF_FONT_PATH
Seek the selected output device’s directory of device and font description files in this list of direc-
tories. See troff (1) and groff_font(5).

GROFF_TMAC_PATH
Seek macro files in this list of directories. See troff (1) and groff_tmac(5).

GROFF_TMPDIR
Create temporary files in this directory. If not set, but the environment variable TMPDIR is set,
temporary files are created there instead. On Windows systems, if neither of the foregoing are set,
the environment variables TMP and TEMP (in that order) are checked also. Otherwise, temporary
files are created in /tmp. The refer(1), grohtml(1), and grops(1) commands use temporary files.

GROFF_TYPESETTER
Set the default output device. If empty or not set, ps is used. The -T option overrides
GROFF_TYPESETTER.

SOURCE_DATE_EPOCH
A time stamp (expressed as seconds since the Unix epoch) to use as the output creation time stamp
in place of the current time. The time is converted to human-readable form using localtime(3)
when the formatter starts up and stored in registers usable by documents and macro packages.

TZ The time zone to use when converting the current time (or value of SOURCE_DATE_EPOCH) to
human-readable form; see tzset(3).

Examples
roff systems are best known for formatting man pages. Once a man(1) librarian program has located a man
page, it may execute a groff command much like the following.

groff -t -man -Tutf8 /usr/share/man/man1/groff.1
The librarian will also pipe the output through a pager, which might not interpret the SGR terminal escape
sequences groff emits for boldface, underlining, or italics; see section “Limitations” below.

To process a roff input file using the preprocessors tbl and pic and the me macro package in the way to
which AT&T troff users were accustomed, one would type (or script) a pipeline.

pic foo.me | tbl | troff -me -Tutf8 | grotty

Using groff , this pipe can be shortened to an equivalent command.

groff -p -t -me -T utf8 foo.me

An even easier way to do this is to use grog(1) to guess the preprocessor and macro options and execute the
result by using the command substitution feature of the shell.

$(grog -Tutf8 foo.me)

Each command-line option to a postprocessor must be specified with any required leading dashes “-” be-
cause groff passes the arguments as-is to the postprocessor; this permits arbitrary arguments to be transmit-
ted. For example, to pass a title to the gxditview postprocessor, the shell commands

groff -X -P -title -P 'trial run' mydoc.t
and

groff -X -Z mydoc.t | gxditview -title 'trial run' -
are equivalent.

Limitations
When paging output for the ascii, cp1047, latin1, and utf8 devices, programs like more(1) and less(1) may
require command-line options to correctly handle some terminal escape sequences; see grotty(1).

On EBCDIC hosts such as OS/390 Unix, the output devices ascii and latin1 aren’t available. Conversely,
the output device cp1047 is not available on systems based on the ISO 646 or ISO 8859 character encoding
standards.

groff 1.23.0 2 July 2023 47

groff (1) General Commands Manual groff (1)

Installation directories
GNU roff installs files in varying locations depending on its compile-time configuration. On this installa-
tion, the following locations are used.

/usr/bin
Directory containing groff ’s executable commands.

/usr/share/groff/1.23.0/eign
List of common words for indxbib(1).

/usr/share/groff/1.23.0
Directory for data files.

/usr/dict/papers/Ind
Default index for lkbib(1) and refer(1).

/usr/share/doc/groff-1.23.0
Documentation directory.

/usr/share/doc/groff-1.23.0/examples
Example directory.

/usr/share/groff/1.23.0/font
Font directory.

/usr/share/doc/groff-1.23.0/html
HTML documentation directory.

/usr/lib/font
Legacy font directory.

/usr/share/groff/site-font
Local font directory.

/usr/share/groff/site-tmac
Local macro package (tmac file) directory.

/usr/share/groff/1.23.0/tmac
Macro package (tmac file) directory.

/usr/share/groff/1.23.0/oldfont
Font directory for compatibility with old versions of groff ; see grops(1).

/usr/share/doc/groff-1.23.0/pdf
PDF documentation directory.

groff macro directory
Most macro files supplied with GNU roff are stored in /usr/share/groff/1.23.0/tmac for the installation cor-
responding to this document. As a rule, multiple directories are searched for macro files; see troff (1). For
a catalog of macro files GNU roff provides, see groff_tmac(5).

groff device and font description directory
Device and font description files supplied with GNU roff are stored in /usr/share/groff/1.23.0/font for the
installation corresponding to this document. As a rule, multiple directories are searched for device and font
description files; see troff (1). For the formats of these files, see groff_font(5).

Availability
Obtain links to groff releases for download, its source repository, discussion mailing lists, a support ticket
tracker, and further information from the groff page of the GNU website 〈http://www.gnu.org/software/
groff〉.

A free implementation of the grap preprocessor, written by Ted Faber 〈faber@lunabase.org〉, can be found
at the grap website 〈http://www.lunabase.org/~faber/Vault/software/grap/〉. groff supports only this grap.

groff 1.23.0 2 July 2023 48

groff (1) General Commands Manual groff (1)

Authors
groff (both the front-end command and the overall system) was primarily written by James Clark 〈jjc@
jclark.com〉. Contributors to this document include Clark, Trent A. Fisher, Werner Lemberg 〈wl@gnu.org〉,
Bernd Warken 〈groff-bernd.warken-72@web.de〉, and G. Branden Robinson 〈g.branden.robinson@gmail
.com〉.

See also
Groff: The GNU Implementation of troff , by Trent A. Fisher and Werner Lemberg, is the primary groff
manual. You can browse it interactively with “info groff”.

Introduction, history, and further reading:
roff (7)

Viewer for groff (and AT&T device-independent troff) documents:
gxditview(1)

Preprocessors:
chem(1), eqn(1), neqn(1), glilypond(1), grn(1), preconv(1), gperl(1), pic(1), gpinyin(1), refer(1),
soelim(1), tbl(1)

Macro packages and package-specific utilities:
groff_hdtbl(7), groff_man(7), groff_man_style(7), groff_mdoc(7), groff_me(7), groff_mm(7),
groff_mmse(7), mmroff (1), groff_mom(7), pdfmom(1), groff_ms(7), groff_rfc1345(7),
groff_trace(7), groff_www(7)

Bibliographic database management tools:
indxbib(1), lkbib(1), lookbib(1)

Language, conventions, and GNU extensions:
groff (7), groff_char(7), groff_diff (7), groff_font(5), groff_tmac(5)

Intermediate output language:
groff_out(5)

Formatter program:
troff (1)

Formatter wrappers:
nroff (1), pdfroff (1)

Postprocessors for output devices:
grodvi(1), grohtml(1), grolbp(1), grolj4(1), gropdf (1), grops(1), grotty(1)

Font support utilities:
addftinfo(1), afmtodit(1), hpftodit(1), pfbtops(1), tfmtodit(1), xtotroff (1)

Graphics conversion utilities:
eqn2graph(1), grap2graph(1), pic2graph(1)

Difference-marking utility:
gdiffmk(1)

“groff guess” utility:
grog(1)

groff 1.23.0 2 July 2023 49

grog(1) General Commands Manual grog(1)

Name
grog - “groff guess”—infer the groff command a document requires

Synopsis
grog [--run] [--ligatures] [groff-option . . .] [--] [file . . .]

grog -h
grog --help

grog -v
grog --version

Description
grog reads its input and guesses which groff (1) options are needed to render it. If no operands are given, or
if file is “-”, grog reads the standard input stream. The corresponding groff command is normally written
to the standard output stream. With the option --run, the inferred command is written to the standard er-
ror stream and then executed.

Options
-h and --help display a usage message, whereas -v and --version display version information; all exit
afterward.

--ligatures
includes the arguments -P-y -PU in the inferred groff command. These are supported only by
the pdf output device.

--run writes the inferred command to the standard error stream and then executes it.

All other specified short options (that is, arguments beginning with a minus sign “-” followed by a letter)
are interpreted as groff options or option clusters with or without an option argument. Such options are in-
cluded in the constructed groff command line.

Details
grog reads each file operand, pattern-matching strings that are statistically likely to be characteristic of
roff (7) documents. It tries to guess which of the following groff options are required to correctly render
the input: -e, -g, -G, -j, -p, -R, -t (preprocessors); and -man, -mdoc, -mdoc-old, -me, -mm, -mom,
and -ms (macro packages). The inferred groff command including these options and any file parameters
is written to the standard output stream.

It is possible to specify arbitrary groff options on the command line. These are included in the inferred
command without change. Choices of groff options include -C to enable AT&T troff compatibility mode
and -T to select a non-default output device. If the input is not encoded in US-ASCII, ISO 8859-1, or IBM
code page 1047, specification of a groff option to run the preconv(1) preprocessor is advised; see the -D,
-k, and -K options of groff (1). For UTF-8 input, -k is a good choice.

groff may issue diagnostic messages when an inappropriate -m option, or multiple conflicting ones, are
specified. Consequently, it is best to specify no -m options to grog unless it cannot correctly infer all of
the -m arguments a document requires. A roff document can also be written without recourse to any
macro package. In such cases, grog will infer a groff command without an -m option.

Limitations
grog presumes that the input does not change the escape, control, or no-break control characters. grog does
not parse roff input line continuation or control structures (brace escape sequences and the “if”, “ie”, and
“el” requests) nor groff ’s “while”. Thus the input

.if \
t .NH 1
.if n .SH
Introduction

will conceal the use of the ms macros NH and SH from grog. Such constructions are regarded by grog’s
implementors as insufficiently common to cause many inference problems. Preprocessors can be even
stricter when matching macro calls that bracket the regions of an input file they replace. pic, for example,
requires PS, PE, and PF calls to immediately follow the default control character at the beginning of a line.

groff 1.23.0 2 July 2023 50

grog(1) General Commands Manual grog(1)

Detection of the -s option (the soelim(1) preprocessor) is tricky; to correctly infer its necessity would re-
quire grog to recursively open all files given as arguments to the .so request under the same conditions that
soelim itself does so; see its man page. Recall that soelim is necessary only if sourced files need to be pre-
processed. Therefore, as a workaround, you may want to run the input through soelim manually, piping it
to grog, and compare the output to running grog on the input directly. If the “soelim”ed input causes grog
to infer additional preprocessor options, then -s is likely necessary.

$ printf ".TS\nl.\nI'm a table.\n.TE\n" > 3.roff
$ printf ".so 3.roff\n" > 2.roff
$ printf ".XP\n.so 2.roff\n" > 1.roff
$ grog 1.roff
groff -ms 1.roff
$ soelim 1.roff | grog
groff -t -ms -

In the foregoing example, we see that this procedure enabled grog to detect tbl(1) macros, so we would add
-s as well as the detected -t option to a revised grog or groff command.

$ grog -st 1.roff
groff -st -ms 1.roff

Exit status
grog exits with error status 1 if a macro package appears to be in use by the input document, but grog was
unable to infer which one, or 2 if there were problems handling an option or operand. It otherwise exits
with status 0. (If the --run option is specified, groff ’s exit status is discarded.) Inferring no preprocessors
or macro packages is not an error condition; a valid roff document need not use either. Even plain text is
valid input, if one is mindful of the syntax of the control and escape characters.

Examples
Running

grog /usr/share/doc/groff-1.23.0/meintro.me
at the command line results in

groff -me /usr/share/doc/groff-1.23.0/meintro.me
because grog recognizes that the file meintro.me is written using macros from the me package. The com-
mand

grog /usr/share/doc/groff-1.23.0/pic.ms
outputs

groff -e -p -t -ms /usr/share/doc/groff-1.23.0/pic.ms
on the other hand. Besides discerning the ms macro package, grog recognizes that the file pic.ms addition-
ally needs the combination of -t for tbl, -e for eqn, and -p for pic.

Consider a file doc/grnexampl.me, which uses the grn preprocessor to include a gremlin(1) picture file in an
me document. Let’s say we want to suppress color output, produce a DVI file, and get backtraces for any
errors that troff encounters. The command

grog -bc -Idoc -Tdvi doc/grnexmpl.me
is processed by grog into

groff -bc -Idoc -Tdvi -e -g -me doc/grnexmpl.me
where we can see that grog has inferred the me macro package along with the eqn and grn preprocessors.
(The input file is located in /usr/share/doc/groff-1.23.0 if you’d like to try this example yourself.)

Authors
grog was originally written in Bourne shell by James Clark. The current implementation in Perl was writ-
ten by Bernd Warken 〈groff-bernd.warken-72@web.de〉 and heavily revised by G. Branden Robinson
〈g.branden.robinson@gmail.com〉.

See also
groff (1)

groff 1.23.0 2 July 2023 51

grohtml(1) General Commands Manual grohtml(1)

Name
grohtml, post-grohtml, pre-grohtml - groff output driver for HTML

Synopsis
pre-grohtml [-epV] [-a anti-aliasing-text-bits] [-D image-directory] [-F font-directory] [-g anti-

aliasing-graphic-bits] [-i resolution] [-I image-stem] [-o image-vertical-offset] [-x html-
dialect] troff-command troff-argument . . .

pre-grohtml --help

pre-grohtml -v
pre-grohtml --version

post-grohtml [-bCGhlnrVy] [-F font-directory] [-j output-stem] [-s base-point-size] [-S heading-
level] [-x html-dialect] [file . . .]

post-grohtml --help

post-grohtml -v
post-grohtml --version

Description
The GNU roff system’s HTML support consists of a preprocessor, pre-grohtml, and an output driver,
post-grohtml; together, they translate roff (7) documents to HTML. Because a preprocessor is (uniquely)
required for this output driver, users should invoke grohtml via the groff (1) command with the -Thtml or
-Txhtml options. (In this installation, ps is the default output device.) Use groff ’s -P option to pass any
options shown above to grohtml. If no operands are given, or if file is “-”, grohtml reads the standard in-
put stream. Output is written to the standard output stream.

grohtml invokes groff twice. In the first pass, the preprocessor pre-grohtml renders pictures, equations,
and tables as images in PostScript format using the ps output device. In the second pass, the output driver
post-grohtml translates the output of troff (1) to HTML.

grohtml writes output encoded in UTF-8 and has built-in HTML entities for all non-composite Unicode
characters. In spite of this, groff may issue warnings about unknown special characters if they can’t be
found during the first pass. Such warnings can be safely ignored unless the special characters appear inside
a table or equation.

Typefaces
grohtml supports the standard four styles: R (roman), I (italic), B (bold), and BI (bold-italic). Fonts are
grouped into families T and C having members in each style.

TR Times roman
TI Times italic
TB Times bold
TBI Times bold-italic
CR Courier roman
CI Courier italic
CB Courier bold
CBI Courier bold-italic

A special font, S, is also provided to accommodate roff documents that expect it to always be available.

Font description files
The font description files used with grohtml expose the same glyph repertoire in their charset sections. See
groff_font(5).

Dependencies
pre-grohtml generates an image whenever an eqn equation, tbl table, or pic picture is encountered in the
input. grohtml therefore may run several commands as part of its operation. These include the Netpbm
tools pnmcrop, pnmcut, and pnmtopng; Ghostscript (gs); and the PSUtils tool psselect.

groff 1.23.0 2 July 2023 52

grohtml(1) General Commands Manual grohtml(1)

Options
--help displays a usage message, while -v and --version show version information; all exit afterward.

-a anti-aliasing-text-bits
Number of bits of antialiasing information to be used by text when generating PNG images. The
default is 4 but 0, 1, and 2 are also valid. Your system’s version of gs must support the
-dTextAlphaBits option in order to exploit antialiasing. A value of 0 stops grohtml from issuing
antialiasing commands to gs.

-b Initialize the background color to white.

-C Suppress output of “CreationDate:” HTML comment.

-D image-directory
Instruct grohtml to place all image files into directory image-directory.

-e Direct eqn to produce MathML.

This option should not be manually specified; it is synthesized by groff depending on whether it
was given the -Thtml or -Txhtml option.

-F font-directory
Prepend directory font-directory /devname to the search path for font and device description files;
name is the name of the device, usually html.

-g anti-aliasing-graphic-bits
Number of bits of antialiasing information to be used by graphics when generating PNG images.
The default is 4 but 0, 1, and 2 are also valid. Your system’s version of gs must support the
-dGraphicAlphaBits option in order to exploit antialiasing. A value of 0 stops grohtml from is-
suing antialiasing commands to gs.

-G Suppress output of “Creator:” HTML comment.

-h Generate section headings by using HTML B elements and increasing the font size, rather than
HTML H elements.

-i resolution
Set the image resolution in pixels per inch; the default is 100.

-I image-stem
Determine the image file name stem. If omitted, grohtml uses grohtml-XXXXX (where XXXXX
is the process ID). A dash is appended to the stem to separate it from the following image number.

-j output-stem
Instruct grohtml to split the HTML output into multiple files. Output is written to a new file at
each section heading (but see option -S below) named output-stem-n.html.

-l Turn off the production of automatic section links at the top of the document.

-n Generate simple heading anchors whenever a section/number heading is found. Without the op-
tion the anchor value is the textual heading. This can cause problems when a heading contains a
“?” on older versions of some browsers. This feature is automatically enabled if a heading con-
tains an image.

-o image-vertical-offset
Specify the vertical offset of images in points.

-p Display page rendering progress to the standard error stream. grohtml displays a page number
only when an image is required.

-r Turn off the automatic header and footer line (HTML rule).

-s base-type-size
Set the document’s base type size in points. When this size is used in the source, it corresponds to
the HTML base type size. Every increase of two points in the source will produce a “big” ele-
ment, and conversely when a decrease of two points is seen, a “small” element is emitted.

groff 1.23.0 2 July 2023 53

grohtml(1) General Commands Manual grohtml(1)

-S heading-level
When splitting HTML output (see option -j above), split at each nested heading level defined by
heading-level, or higher). The default is 1.

-V Create an XHTML or HTML validator button at the bottom of each page of the document.

-x html-dialect
Select HTML dialect. Currently, html-dialect should be either the digit 4 or the letter x, which in-
dicates whether grohtml should generate HTML 4 or XHTML, respectively.

This option should not be manually specified; it is synthesized by groff depending on whether it
was given the -Thtml or -Txhtml option.

-y Produce a right-aligned groff signature at the end of the document (only if -V is also specified).

Environment
GROFF_FONT_PATH

lists directories in which to search for devhtml, grohtml’s directory of device and font description
files. See troff (1) and groff_font(5).

SOURCE_DATE_EPOCH
A timestamp (expressed as seconds since the Unix epoch) to use as the output creation timestamp
in place of the current time. The time is converted to human-readable form using ctime(3) and
recorded in an HTML comment.

TZ The time zone to use when converting the current time (or value of SOURCE_DATE_EPOCH) to
human-readable form; see tzset(3).

Files
/usr/share/groff/1.23.0/font/devhtml/DESC

describes the html output device.

/usr/share/groff/1.23.0/font/devhtml/ F
describes the font known as F on device html.

/usr/share/groff/1.23.0/tmac/html.tmac
defines font mappings, special characters, and colors for use with the html output device. It is au-
tomatically loaded by troffrc when either of the html or xhtml output devices is selected.

/usr/share/groff/1.23.0/tmac/html-end.tmac
finalizes setup of the html output device. It is automatically loaded by troffrc-end when either of
the html or xhtml output devices is selected.

grohtml uses temporary files. See groff (1) for details about where such files are created.

Bugs
grohtml is still beta code.

grohtml does not truly support hyphenation, but you can fool it into hyphenating long input lines, which
can appear in HTML output with a hyphenated word followed by a space but no line break.

See also
groff (1), troff (1), groff_font(5)

groff 1.23.0 2 July 2023 54

grolbp(1) General Commands Manual grolbp(1)

Name
grolbp - groff output driver for Canon CaPSL printers

Synopsis
grolbp [-l] [-c num-copies] [-F font-directory] [-o orientation] [-p paper-format] [-w width] [file . . .]
grolbp [--copies=num-copies] [--fontdir= font-directory] [--landscape] [--linewidth=width]

[--orientation=orientation] [--papersize=paper-format] [file . . .]

grolbp -h
grolbp --help

grolbp -v
grolbp --version

Description
This GNU roff output driver translates the output of troff (1) into a CaPSL and VDM format suitable for
Canon LBP-4 and LBP-8 printers. Normally, grolbp is invoked by groff (1) when the latter is given the
“-T lbp” option. (In this installation, ps is the default output device.) Use groff ’s -P option to pass any
options shown above to grolbp. If no file arguments are given, or if file is “-”, grolbp reads the standard
input stream. Output is written to the standard output stream.

Typefaces
The driver supports the Dutch, Swiss, and Swiss-Narrow scalable typefaces, each in the regular, bold, italic,
and bold-italic styles. Additionally, the bitmapped, monospaced Courier and Elite typefaces are available
in regular, bold, and italic styles; Courier at 8 and 12 points, Elite at 8 and 10 points. The following chart
summarizes the groff font names used to access them.

Typeface Roman Bold Italic Bold-Italic
Dutch TR TB TI TBI

Swiss HR HB HI HBI

Swiss Narrow HNR HNB HNI HNBI

Courier CR CB CI

Elite ER EB EI

Paper format, orientation, and device description file
grolbp supports paper formats “A4”, “letter”, “legal”, and “executive”. These are matched case-insensi-
tively. The -p, --papersize option overrides any setting in the device description file DESC. If neither
specifies a paper format, A4 is assumed.

In its DESC file, grolbp (case-insensitively) recognizes an orientation directive accepting one mandatory
argument, portrait or landscape. The first valid orientation directive encountered controls. The -l, -o,
and --orientation command-line options override any setting in DESC. If none of the foregoing specify
the orientation, portrait is assumed.

Font description files
In addition to the font description file directives documented in groff_font(5), grolbp recognizes lbpname,
which maps the groff font name to the font name used internally by the printer. Its syntax is as follows.

lbpname printer-font-name
lbpname’s argument is case-sensitive. The printer’s font names are encoded as follows.

For bitmapped fonts, printer-font_name has the form
N〈base-font-name〉〈font-style〉

base-font-name is the font name as it appears in the printer’s font listings without the first letter, up to (but
not including) the font size. font-style can be one of the letters R, I, or B, indicating the roman, italic, and
bold styles, respectively. For instance, if the printer’s “font listing A” shows “Nelite12I.ISO_USA”, the
corresponding entry in the groff font description file is

lbpname NeliteI
You may need to modify grolbp to add support for new bitmapped fonts, since the available font names and
font sizes of bitmapped fonts (as documented above) are hard-coded into the program.

groff 1.23.0 2 July 2023 55

grolbp(1) General Commands Manual grolbp(1)

For scalable fonts, printer-font-name is identical to the font name as it appears in the printer’s “font listing
A”. For instance, to select the “Swiss” font in bold-italic style, which appears in the font listing as
“Swiss-BoldOblique”,

lbpname Swiss-BoldOblique
is the required directive, and this is what we find in the groff font description file HBI for the lbp device.

Drawing commands
For compatibility with grolj4(1), an additional drawing command is available.

\D'R dh dv'
Draw a rule (solid black rectangle) with one corner at the drawing position, and the diagonally op-
posite corner at the drawing position +(dh,dv).

Options
-h and --help display a usage message, while -v and --version show version information; all exit after-
ward.

-c num-copies
--copies=num-copies

Produce num-copies copies of each page.

-F font-directory
--fontdir= font-directory

Prepend directory font-directory /devname to the search path for font and device description files;
name is the name of the device, usually lbp.

-l
--landscape

Format the document in landscape orientation.

-o orientation
--orientation=orientation

Format the document in the given orientation, which must be “portrait” or “landscape”.

-p paper-format
--papersize=paper-format

Set the paper format to paper-format, which must be a valid paper format as described above.

-w width
--linewidth=width

Set the default line thickness to width thousandths of an em; the default is 40 (0.04 em).

Environment
GROFF_FONT_PATH

lists directories in which to seek the selected output device’s directory of device and font descrip-
tion files. See troff (1) and groff_font(5).

Files
/usr/share/groff/1.23.0/font/devlbp/DESC

describes the lbp output device.

/usr/share/groff/1.23.0/font/devlbp/ F
describes the font known as F on device lbp.

/usr/share/groff/1.23.0/tmac/lbp.tmac
defines macros for use with the lbp output device. It is automatically loaded by troffrc when the
lbp output device is selected.

See also
groff (1), troff (1), groff_out(5), groff_font(5), groff_char(7)

groff 1.23.0 2 July 2023 56

grolj4(1) General Commands Manual grolj4(1)

Name
grolj4 - groff output driver for HP LaserJet 4 and compatible printers

Synopsis
grolj4 [-l] [-c num-copies] [-d [n]] [-F font-directory] [-p paper-format] [-w line-width] [file . . .]

grolj4 --help

grolj4 -v
grolj4 --version

Description
This GNU roff output driver translates the output of troff (1) into a PCL5 format suitable for an HP LaserJet
4 printer. Normally, grolj4 is invoked by groff (1) when the latter is given the “-T lj4” option. (In this in-
stallation, ps is the default output device.) Use groff ’s -P option to pass any options shown above to
grolj4. If no file arguments are given, or if file is “-”, grolj4 reads the standard input stream. Output is
written to the standard output stream.

Typefaces
grolj4 supports the standard four styles: R (roman), I (italic), B (bold), and BI (bold-italic). Fonts are
grouped into families A, C, G, O, T, TN, U, and UC having members in each style.

AB Arial Bold
ABI Arial Bold Italic
AI Arial Italic
AR Arial Roman
CB Courier Bold
CBI Courier Bold Italic
CI Courier Italic
CR Courier Roman
GB Garamond Halbfett
GBI Garamond Kursiv Halbfett
GI Garamond Kursiv
GR Garamond Antiqua
OB CG Omega Bold
OBI CG Omega Bold Italic
OI CG Omega Italic
OR CG Omega Roman
OB CG Omega Bold
OBI CG Omega Bold Italic
OI CG Omega Italic
OR CG Omega Roman
TB CG Times Bold
TBI CG Times Bold Italic
TI CG Times Italic
TR CG Times Roman
TNRB M Times Bold
TNRBI M Times Bold Italic
TNRI M Times Italic
TNRR M Times Roman
UB Univers Bold
UBI Univers Bold Italic
UI Univers Medium Italic
UR Univers Medium
UCB Univers Condensed Bold
UCBI Univers Condensed Bold Italic

groff 1.23.0 2 July 2023 57

grolj4(1) General Commands Manual grolj4(1)

UCI Univers Condensed Medium Italic
UCR Univers Condensed Medium

The following fonts are not members of a family.

ALBB Albertus Extra Bold
ALBR Albertus Medium
AOB Antique Olive Bold
AOI Antique Olive Italic
AOR Antique Olive Roman
CLARENDON Clarendon
CORONET Coronet
LGB Letter Gothic Bold
LGI Letter Gothic Italic
LGR Letter Gothic Roman
MARIGOLD Marigold

The special font is S (PostScript Symbol); SYMBOL (M Symbol), and WINGDINGS (Wingdings) are
also available but not mounted by default.

Paper format and device description file
grolj4 supports paper formats “A4”, “B5”, “C5”, “com10”, “DL”, “executive”, “legal”, “letter”, and
“monarch”. These are matched case-insensitively. The -p option overrides any setting in the device de-
scription file DESC. If neither specifies a paper format, “letter” is assumed.

Font description files
grolj4 recognizes four font description file directives in addition to those documented in groff_font(5).

pclweight n
Set the stroke weight to n, an integer in the range -7 to +7; the default is 0.

pclstyle n
Set the style to n, an integer in the range 0 to 32767; the default is 0.

pclproportional n
Set the proportional spacing Boolean flag to n, which can be either 0 or 1; the default is 0.

pcltypeface n
Set the typeface family to n, an integer in the range 0 to 65535; the default is 0.

Drawing commands
An additional drawing command is recognized as an extension to those documented in groff (7).

\D'R dh dv'
Draw a rule (solid black rectangle) with one corner at the drawing position, and the diagonally op-
posite corner at the drawing position +(dh,dv), at which the drawing position will be afterward.
This generates a PCL fill rectangle command, and so will work on printers that do not support HP-
GL/2, unlike the other \D commands.

Fonts
Nominally, all Hewlett-Packard LaserJet 4-series and newer printers have the same internal fonts: 45 scal-
able fonts and one bitmapped Lineprinter font. The scalable fonts are available in sizes between 0.25 points
and 999.75 points, in 0.25-point increments; the Lineprinter font is available only in 8.5-point size.

The LaserJet font files included with groff assume that all printers since the LaserJet 4 are identical. There
are some differences between fonts in the earlier and more recent printers, however. The LaserJet 4 printer
used Agfa Intellifont technology for 35 of the internal scalable fonts; the remaining 10 scalable fonts were
TrueType. Beginning with the LaserJet 4000-series printers introduced in 1997, all scalable internal fonts
have been TrueType. The number of printable glyphs differs slightly between Intellifont and TrueType
fonts (generally, the TrueType fonts include more glyphs), and there are some minor differences in glyph
metrics. Differences among printer models are described in the PCL 5 Comparison Guide and the PCL 5
Comparison Guide Addendum (for printers introduced since approximately 2001).

groff 1.23.0 2 July 2023 58

grolj4(1) General Commands Manual grolj4(1)

LaserJet printers reference a glyph by a combination of a 256-glyph symbol set and an index within that
symbol set. Many glyphs appear in more than one symbol set; all combinations of symbol set and index
that reference the same glyph are equivalent. For each glyph, hpftodit(1) searches a list of symbol sets, and
selects the first set that contains the glyph. The printing code generated by hpftodit is an integer that en-
codes a numerical value for the symbol set in the high byte(s), and the index in the low byte. See
groff_font(5) for a complete description of the font file format; symbol sets are described in greater detail in
the PCL 5 Printer Language Technical Reference Manual.

Two of the scalable fonts, Symbol and Wingdings, are bound to 256-glyph symbol sets; the remaining scal-
able fonts, as well as the Lineprinter font, support numerous symbol sets, sufficient to enable printing of
more than 600 glyphs.

The metrics generated by hpftodit assume that the DESC file contains values of 1200 for res and 6350 for
unitwidth, or any combination (e.g., 2400 and 3175) for which res × unitwidth = 7 620 000. Although HP
PCL 5 LaserJet printers support an internal resolution of 7200 units per inch, they use a 16-bit signed inte-
ger for positioning; if devlj4 is to support U.S. ledger paper (11 in × 17 in; in = inch), the maximum usable
resolution is 32 767 ÷ 17, or 1927 units per inch, which rounds down to 1200 units per inch. If the largest
required paper dimension is less (e.g., 8.5 in × 11 in, or A5), a greater res (and lesser unitwidth) can be
specified.

Font metrics for Intellifont fonts were provided by Tagged Font Metric (TFM) files originally developed by
Agfa/Compugraphic. The TFM files provided for these fonts supported 600+ glyphs and contained exten-
sive lists of kerning pairs.

To accommodate developers who had become accustomed to TFM files, HP also provided TFM files for the
10 TrueType fonts included in the LaserJet 4. The TFM files for TrueType fonts generally included less in-
formation than the Intellifont TFMs, supporting fewer glyphs, and in most cases, providing no kerning in-
formation. By the time the LaserJet 4000 printer was introduced, most developers had migrated to other
means of obtaining font metrics, and support for new TFM files was very limited. The TFM files provided
for the TrueType fonts in the LaserJet 4000 support only the Latin 2 (ISO 8859-2) symbol set, and include
no kerning information; consequently, they are of little value for any but the most rudimentary documents.

Because the Intellifont TFM files contain considerably more information, they generally are preferable to
the TrueType TFM files even for use with the TrueType fonts in the newer printers. The metrics for the
TrueType fonts are very close, though not identical, to those for the earlier Intellifont fonts of the same
names. Although most output using the Intellifont metrics with the newer printers is quite acceptable, a few
glyphs may fail to print as expected. The differences in glyph metrics may be particularly noticeable with
composite parentheses, brackets, and braces used by eqn(1). A script, located in /usr/share/groff/1.23.0/
font/devlj4/generate, can be used to adjust the metrics for these glyphs in the special font “S” for use with
printers that have all TrueType fonts.

At the time HP last supported TFM files, only version 1.0 of the Unicode standard was available. Conse-
quently, many glyphs lacking assigned code points were assigned by HP to the Private Use Area (PUA).
Later versions of the Unicode standard included code points outside the PUA for many of these glyphs.
The HP-supplied TrueType TFM files use the PUA assignments; TFM files generated from more recent
TrueType font files require the later Unicode values to access the same glyphs. Consequently, two different
mapping files may be required: one for the HP-supplied TFM files, and one for more recent TFM files.

Options
--help displays a usage message, while -v and --version show version information; all exit afterward.

-c num-copies
Format num-copies copies of each page.

-d [n] Use duplex mode n: 1 is long-side binding (default), and 2 is short-side binding.

-F font-directory
Prepend directory font-directory/devname to the search path for font and device description files;
name is the name of the device, usually lj4.

groff 1.23.0 2 July 2023 59

grolj4(1) General Commands Manual grolj4(1)

-l Format the document in landscape orientation.

-p paper-format
Set the paper format to paper-format, which must be a valid paper format as described above.

-w line-width
Set the default line thickness to line-width thousandths of an em; the default is 40 (0.04 em).

Environment
GROFF_FONT_PATH

lists directories in which to seek the selected output device’s directory of device and font descrip-
tion files. See troff (1) and groff_font(5).

Files
/usr/share/groff/1.23.0/font/devlj4/DESC

describes the lj4 output device.

/usr/share/groff/1.23.0/font/devlj4/ F
describes the font known as F on device lj4.

/usr/share/groff/1.23.0/tmac/lj4.tmac
defines macros for use with the lj4 output device. It is automatically loaded by troffrc when the
lj4 output device is selected.

Bugs
Small dots.

See also
HP PCL/PJL Reference: PCL 5 Printer Language Technical Reference Manual, Part I 〈http://www.hp
.com/ctg/Manual/bpl13210.pdf〉

hpftodit(1), groff (1), troff (1), groff_out(5), groff_font(5), groff_char(7)

groff 1.23.0 2 July 2023 60

gropdf (1) General Commands Manual gropdf (1)

Name
gropdf - groff output driver for Portable Document Format

Synopsis
gropdf [-dels] [-F font-directory] [-I inclusion-directory] [-p paper-format] [-u [cmap-file]]

[-y foundry] [file . . .]

gropdf --help

gropdf -v
gropdf --version

Description
The GNU roff PDF output driver translates the output of troff (1) into Portable Document Format. Nor-
mally, gropdf is invoked by groff (1) when the latter is given the “-T pdf” option. (In this installation, ps
is the default output device.) Use groff ’s -P option to pass any options shown above to gropdf . If no file
arguments are given, or if file is “-”, gropdf reads the standard input stream. Output is written to the stan-
dard output stream.

See section “Font installation” below for a guide to installing fonts for gropdf .

Options
--help displays a usage message, while -v and --version show version information; all exit afterward.

-d Include debug information as comments within the PDF. Also produces an uncompressed PDF.

-e Forces gropdf to embed all fonts (even the 14 base PDF fonts).

-F dir Prepend directory dir/devname to the search path for font, and device description files; name is
the name of the device, usually pdf.

-I dir Search the directory dir for files named in \X'pdf: pdfpic' device control commands. -I may be
specified more than once; each dir is searched in the given order. To search the current working
directory before others, add “-I .” at the desired place; it is otherwise searched last.

-l Orient the document in landscape format.

-p paper-format
Set the physical dimensions of the output medium. This overrides the papersize, paperlength,
and paperwidth directives in the DESC file; it accepts the same arguments as the papersize direc-
tive. See groff_font(5) for details.

-s Append a comment line to end of PDF showing statistics, i.e. number of pages in document.
Ghostscript’s ps2pdf complains about this line if it is included, but works anyway.

-u [cmap-file]
gropdf normally includes a ToUnicode CMap with any font created using text.enc as the encoding
file, this makes it easier to search for words which contain ligatures. You can include your own
CMap by specifying a cmap-file or have no CMap at all by omitting the argument.

-y foundry
Set the foundry to use for selecting fonts of the same name.

Usage
The input to gropdf must be in the format output by troff (1). This is described in groff_out(5). In addi-
tion, the device and font description files for the device used must meet certain requirements: The resolu-
tion must be an integer multiple of 72 times the sizescale. The pdf device uses a resolution of 72000 and a
sizescale of 1000.

The device description file must contain a valid paper format; see groff_font(5). gropdf uses the same
Type 1 Adobe PostScript fonts as the grops device driver. Although the PDF Standard allows the use of
other font types (like TrueType) this implementation only accepts the Type 1 PostScript font. Fewer Type 1
fonts are supported natively in PDF documents than the standard 35 fonts supported by grops and all Post-
Script printers, but all the fonts are available since any which aren’t supported natively are automatically
embedded in the PDF.

groff 1.23.0 2 July 2023 61

gropdf (1) General Commands Manual gropdf (1)

gropdf supports the concept of foundries, that is different versions of basically the same font. During in-
stall a Foundry file controls where fonts are found and builds groff fonts from the files it discovers on your
system.

Each font description file must contain a command

internalname psname

which says that the PostScript name of the font is psname. Lines starting with # and blank lines are ig-
nored. The code for each character given in the font file must correspond to the code in the default encod-
ing for the font. This code can be used with the \N escape sequence in troff to select the character, even if
the character does not have a groff name. Every character in the font file must exist in the PostScript font,
and the widths given in the font file must match the widths used in the PostScript font.

Note that gropdf is currently only able to display the first 256 glyphs in any font. This restriction will be
lifted in a later version.

gropdf can automatically include the downloadable fonts necessary to print the document. Fonts may be in
PFA or PFB format.

Any downloadable fonts which should, when required, be included by gropdf must be listed in the file /usr/
share/groff/1.23.0/font/devpdf/download; this should consist of lines of the form

foundry font filename

where foundry is the foundry name or blank for the default foundry. font is the PostScript name of the
font, and filename is the name of the file containing the font; lines beginning with # and blank lines are ig-
nored; fields must be separated by tabs (spaces are not allowed); filename is searched for using the same
mechanism that is used for groff font metric files. The download file itself is also sought using this mecha-
nism. Foundry names are usually a single character (such as ‘U’ for the URW foundry) or empty for the
default foundry. This default uses the same fonts as ghostscript uses when it embeds fonts in a PDF file.

In the default setup there are styles called R, I, B, and BI mounted at font positions 1 to 4. The fonts are
grouped into families A, BM, C, H, HN, N, P, and T having members in each of these styles:

AR AvantGarde-Book
AI AvantGarde-BookOblique
AB AvantGarde-Demi
ABI AvantGarde-DemiOblique
BMR Bookman-Light
BMI Bookman-LightItalic
BMB Bookman-Demi
BMBI Bookman-DemiItalic
CR Courier
CI Courier-Oblique
CB Courier-Bold
CBI Courier-BoldOblique
HR Helvetica
HI Helvetica-Oblique
HB Helvetica-Bold
HBI Helvetica-BoldOblique
HNR Helvetica-Narrow
HNI Helvetica-Narrow-Oblique
HNB Helvetica-Narrow-Bold
HNBI Helvetica-Narrow-BoldOblique
NR NewCenturySchlbk-Roman
NI NewCenturySchlbk-Italic
NB NewCenturySchlbk-Bold

groff 1.23.0 2 July 2023 62

gropdf (1) General Commands Manual gropdf (1)

NBI NewCenturySchlbk-BoldItalic
PR Palatino-Roman
PI Palatino-Italic
PB Palatino-Bold
PBI Palatino-BoldItalic
TR Times-Roman
TI Times-Italic
TB Times-Bold
TBI Times-BoldItalic

There is also the following font which is not a member of a family:

ZCMI ZapfChancery-MediumItalic

There are also some special fonts called S for the PS Symbol font. The lower case greek characters are au-
tomatically slanted (to match the SymbolSlanted font (SS) available to PostScript). Zapf Dingbats is avail-
able as ZD; the “hand pointing left” glyph (\[lh]) is available since it has been defined using the \X'pdf:
xrev' device control command, which reverses the direction of letters within words.

The default color for \m and \M is black.

gropdf understands some of the device control commands supported by grops(1).

\X'ps: invis'
Suppress output.

\X'ps: endinvis'
Stop suppressing output.

\X'ps: exec gsave currentpoint 2 copy translate n rotate neg exch neg exch translate'
where n is the angle of rotation. This is to support the align command in pic(1).

\X'ps: exec grestore'
Used by pic(1) to restore state after rotation.

\X'ps: exec n setlinejoin'
where n can be one of the following values.

0 = Miter join
1 = Round join
2 = Bevel join

\X'ps: exec n setlinecap'
where n can be one of the following values.

0 = Butt cap
1 = Round cap, and
2 = Projecting square cap

\X'ps: . . . pdfmark'
All the pdfmark macros installed by using -m pdfmark or -m mspdf (see documentation in pdf-
mark.pdf). A subset of these macros are installed automatically when you use -Tpdf so you
should not need to use “-m pdfmark” to access most PDF functionality.

gropdf also supports a subset of the commands introduced in present.tmac. Specifically it supports:-

PAUSE
BLOCKS
BLOCKE

Which allows you to create presentation type PDFs. Many of the other commands are already available in
other macro packages.

These commands are implemented with groff X commands:-

groff 1.23.0 2 July 2023 63

gropdf (1) General Commands Manual gropdf (1)

\X'ps: exec %%%%PAUSE'
The section before this is treated as a block and is introduced using the current BLOCK transition
setting (see “\X'pdf: transition'” below). Equivalently, .pdfpause is available as a macro.

\X'ps: exec %%%%BEGINONCE'
Any text following this command (up to %%%%ENDONCE) is shown only once, the next
%%%%PAUSE will remove it. If producing a non-presentation PDF, i.e. ignoring the pauses, see
GROPDF_NOSLIDE below, this text is ignored.

\X'ps: exec %%%%ENDONCE'
This terminates the block defined by %%%%BEGINONCE. This pair of commands is what im-
plements the .BLOCKS Once/.BLOCKE commands in present.tmac.

The mom macro package already integrates these extensions, so you can build slides with mom.

If you use present.tmac with gropdf there is no need to run the program presentps(1) since the output will
already be a presentation PDF.

All other ps: tags are silently ignored.

One \X device control command used by the DVI driver is also recognised.

\X'papersize=paper-format'
where the paper-format parameter is the same as that to the papersize directive. See
groff_font(5). This means that you can alter the page size at will within the PDF file being created
by gropdf . If you do want to change the paper format, it must be done before you start creating
the page.

gropdf supports several more device control features using the pdf: tag. Some have counterpart conve-
nience macros that take the same arguments and behave equivalently.

\X'pdf: pdfpic file alignment width height line-length'
Place an image of the specified width containing the PDF drawing from file file of desired width
and height (if height is missing or zero then it is scaled proportionally). If alignment is -L the
drawing is left-aligned. If it is -C or -R a line-length greater than the width of the drawing is re-
quired as well. If width is specified as zero then the width is scaled in proportion to the height.

\X'pdf: xrev'
Toggle the reversal of glyph direction. This feature works “letter by letter”, that is, each letter in a
word is reversed left-to-right, not the entire word. One application is the reversal of glyphs in the
Zapf Dingbats font. To restore the normal glyph orientation, repeat the command.

\X'pdf: markstart /ANN-definition'
\X'pdf: markend'

Macros that support PDF bookmarks use these calls internally to start and stop (respectively) the
placement of the bookmark’s hot spot; the user will have called “.pdfhref L” with the text of the
hot spot. Normally, these are never used except from within the pdfmark macros.

\X'pdf: marksuspend'
\X'pdf: markrestart'

If you use a page location trap to produce a header or footer, or otherwise interrupt a document’s
text, you need to use these commands if a PDF hot spot crosses a trap boundary; otherwise any
text output by the trap will be marked as part of the hot spot. To prevent this error, place these de-
vice control commands or their corresponding convenience macros .pdfmarksuspend and
.pdfmarkrestart at the start and end of the trap macro, respectively.

\X'pdf: pagename name'
Assign the current page a name. All documents bear two default names, ‘top’ and ‘bottom’. The
convenience macro for this command is .pdfpagename.

\X’pdf: switchtopage when name'
Normally each new page is appended to the end of the document, this command allows following
pages to be inserted at a ‘named’ position within the document (see pagename command above).

groff 1.23.0 2 July 2023 64

gropdf (1) General Commands Manual gropdf (1)

‘when’ can be either ‘after’ or ‘before’. If it is omitted it defaults to ‘before’. It should be used at
the end of the page before you want the switch to happen. This allows pages such as a TOC to be
moved to elsewhere in the document, but more esoteric uses are possible. The convenience macro
for this command is .pdfswitchtopage.

\X'pdf: transition feature mode duration dimension motion direction scale bool'
where feature can be either SLIDE or BLOCK. When it is SLIDE the transition is used when a
new slide is introduced to the screen, if BLOCK then this transition is used for the individual
blocks which make up the slide.

mode is the transition type between slides:-

Split - Two lines sweep across the screen, revealing the new page. The lines may be ei-
ther horizontal or vertical and may move inward from the edges of the page or outward
from the center, as specified by the dimension and motion entries, respectively.
Blinds - Multiple lines, evenly spaced across the screen, synchronously sweep in the
same direction to reveal the new page. The lines may be either horizontal or vertical, as
specified by the dimension entry. Horizontal lines move downward; vertical lines move
to the right.
Box - A rectangular box sweeps inward from the edges of the page or outward from the
center, as specified by the motion entry, revealing the new page.
Wipe - A single line sweeps across the screen from one edge to the other in the direction
specified by the direction entry, revealing the new page.
Dissolve - The old page dissolves gradually to reveal the new one.
Glitter - Similar to Dissolve, except that the effect sweeps across the page in a wide band
moving from one side of the screen to the other in the direction specified by the direction
entry.
R - The new page simply replaces the old one with no special transition effect; the direc-
tion entry shall be ignored.
Fly - (PDF 1.5) Changes are flown out or in (as specified by motion), in the direction
specified by direction, to or from a location that is offscreen except when direction is
None.
Push - (PDF 1.5) The old page slides off the screen while the new page slides in, pushing
the old page out in the direction specified by direction.
Cover - (PDF 1.5) The new page slides on to the screen in the direction specified by di-
rection, covering the old page.
Uncover - (PDF 1.5) The old page slides off the screen in the direction specified by di-
rection, uncovering the new page in the direction specified by direction.
Fade - (PDF 1.5) The new page gradually becomes visible through the old one.

duration is the length of the transition in seconds (default 1).

dimension (Optional; Split and Blinds transition styles only) The dimension in which the specified
transition effect shall occur: H Horizontal, or V Vertical.

motion (Optional; Split, Box and Fly transition styles only) The direction of motion for the speci-
fied transition effect: I Inward from the edges of the page, or O Outward from the center of the
page.

direction (Optional; Wipe, Glitter, Fly, Cover, Uncover and Push transition styles only) The di-
rection in which the specified transition effect shall moves, expressed in degrees counterclockwise
starting from a left-to-right direction. If the value is a number, it shall be one of: 0 = Left to right,
90 = Bottom to top (Wipe only), 180 = Right to left (Wipe only), 270 = Top to bottom, 315 = Top-
left to bottom-right (Glitter only) The value can be None, which is relevant only for the Fly transi-
tion when the value of scale is not 1.0.

scale (Optional; PDF 1.5; Fly transition style only) The starting or ending scale at which the
changes shall be drawn. If motion specifies an inward transition, the scale of the changes drawn
shall progress from scale to 1.0 over the course of the transition. If motion specifies an outward

groff 1.23.0 2 July 2023 65

gropdf (1) General Commands Manual gropdf (1)

transition, the scale of the changes drawn shall progress from 1.0 to scale over the course of the
transition

bool (Optional; PDF 1.5; Fly transition style only) If true, the area that shall be flown in is rectan-
gular and opaque.

This command can be used by calling the macro .pdftransition using the parameters described
above. Any of the parameters may be replaced with a "." which signifies the parameter retains its
previous value, also any trailing missing parameters are ignored.

Note: not all PDF Readers support any or all these transitions.

\X'pdf: background cmd left top right bottom weight'
\X'pdf: background off'
\X'pdf: background footnote bottom'

produces a background rectangle on the page, where

cmd is the command, which can be any of “page|fill|box” in combination. Thus, “pagefill”
would draw a rectangle which covers the whole current page size (in which case the rest
of the parameters can be omitted because the box dimensions are taken from the current
media size). “boxfill”, on the other hand, requires the given dimensions to place the box.
Including “fill” in the command will paint the rectangle with the current fill colour (as
with \M[]) and including “box” will give the rectangle a border in the current stroke
colour (as with \m[]).

cmd may also be “off” on its own, which will terminate drawing the current box. If you
have specified a page colour with “pagefill”, it is always the first box in the stack, and if
you specify it again, it will replace the first entry. Be aware that the “pagefill” box ren-
ders the page opaque, so tools that “watermark” PDF pages are unlikely to be successful.
To return the background to transparent, issue an “off” command with no other boxes
open.

Finally, cmd may be “footnote” followed by a new value for bottom, which will be used
for all open boxes on the current page. This is to allow room for footnote areas that grow
while a page is processed (to accommodate multiple footnotes, for instance). (If the
value is negative, it is used as an offset from the bottom of the page.)

left
top
right
bottom are the coordinates of the box. The top and bottom coordinates are the minimum and

maximum for the box, since the actual start of the box is groff ’s drawing position when
you issue the command, and the bottom of the box is the point where you turn the box
“off”. The top and bottom coordinates are used only if the box drawing extends onto the
next page; ordinarily, they would be set to the header and footer margins.

weight provides the line width for the border if “box” is included in the command.

The convenience macro for this escape sequence is .pdfbackground. An sboxes macro file is also
available; see groff_tmac(5).

Macros
gropdf ’s support macros in pdf.tmac define the convenience macros described above. Some features have
no direct device control command counterpart.

.pdfinfo / field content . . .
Define PDF metadata. field may be be one of Title, Author, Subject, Keywords, or another da-
tum supported by the PDF standard or your reader. field must be prefixed with a slash.

Importing graphics
gropdf supports only the inclusion of other PDF files for inline images. Such a PDF file may, however,
contain any of the graphic formats supported by the PDF standard, such as JPEG/JFIF, PNG, and GIF. Any

groff 1.23.0 2 July 2023 66

gropdf (1) General Commands Manual gropdf (1)

application that outputs PDF can thus be used to prepare files for embedding in documents processed by
groff and gropdf .

The PDF file you wish to insert must be a single page and the drawing must just fit inside the media size of
the PDF file. In inkscape(1) or gimp(1), for example, make sure the canvas size just fits the image.

The PDF parser gropdf implements has not been rigorously tested with all applications that produce PDF.
If you find a single-page PDF which fails to import properly, try processing it with the pdftk(1) program.

pdftk existing-file output new-file
You may find that new-file imports successfully.

TrueType and other font formats
gropdf does not yet support any font formats besides Adobe Type 1 (PFA or PFB).

Font installation
The following is a step-by-step font installation guide for gropdf.

• Convert your font to something groff understands. This is a PostScript Type 1 font in PFA or PFB for-
mat, together with an AFM file. A PFA file begins as follows.

%!PS-AdobeFont-1.0:
A PFB file contains this string as well, preceded by some non-printing bytes. In the following steps, we
will consider the use of CTAN’s BrushScriptX-Italic 〈https://ctan.org/tex-archive/fonts/brushscr〉 font in
PFA format.

• Convert the AFM file to a groff font description file with the afmtodit(1) program. For instance,
$ afmtodit BrushScriptX-Italic.afm text.map BSI

converts the Adobe Font Metric file BrushScriptX-Italic.afm to the groff font description file BSI .

If you have a font family which provides regular upright (roman), bold, italic, and bold-italic styles,
(where “italic” may be “oblique” or “slanted”), we recommend using R, B, I, and BI, respectively, as
suffixes to the groff font family name to enable groff ’s font family and style selection features. An ex-
ample is groff ’s built-in support for Times: the font family name is abbreviated as T, and the groff font
names are therefore TR, TB, TI, and TBI. In our example, however, the BrushScriptX font is available
in a single style only, italic.

• Install the groff font description file(s) in a devpdf subdirectory in the search path that groff uses for de-
vice and font file descriptions. See the GROFF_FONT_PATH entry in section “Environment” of troff (1)
for the current value of the font search path. While groff doesn’t directly use AFM files, it is a good idea
to store them alongside its font description files.

• Register fonts in the devpdf/download file so they can be located for embedding in PDF files gropdf gen-
erates. Only the first download file encountered in the font search path is read. If in doubt, copy the de-
fault download file (see section “Files” below) to the first directory in the font search path and add your
fonts there. The PostScript font name used by gropdf is stored in the internalname field in the groff
font description file. (This name does not necessarily resemble the font’s file name.) If the font in our
example had originated from a foundry named Z, we would add the following line to download .

Z→BrushScriptX-Italic→BrushScriptX-Italic.pfa
A tab character, depicted as →, separates the fields. The default foundry has no name: its field is empty
and entries corresponding to it start with a tab character, as will the one in our example.

• Test the selection and embedding of the new font.
printf "\\f[BSI]Hello, world!\n" | groff -T pdf -P -e >hello.pdf
see hello.pdf

Environment
GROFF_FONT_PATH

A list of directories in which to seek the selected output device’s directory of device and font de-
scription files. If, in the download file, the font file has been specified with a full path, no directo-
ries are searched. See troff (1) and groff_font(5).

groff 1.23.0 2 July 2023 67

gropdf (1) General Commands Manual gropdf (1)

GROPDF_NOSLIDE
If set and evaluates to a true value (to Perl), gropdf ignores commands specific to presentation
PDFs, producing a normal PDF instead.

SOURCE_DATE_EPOCH
A timestamp (expressed as seconds since the Unix epoch) to use as the output creation timestamp
in place of the current time. The time is converted to human-readable form using Perl’s
localtime() function and recorded in a PDF comment.

TZ The time zone to use when converting the current time (or value of SOURCE_DATE_EPOCH) to
human-readable form; see tzset(3).

Files
/usr/share/groff/1.23.0/font/devpdf/DESC

describes the pdf output device.

/usr/share/groff/1.23.0/font/devpdf/ F
describes the font known as F on device pdf.

/usr/share/groff/1.23.0/font/devpdf/U-F
describes the font from the URW foundry (versus the Adobe default) known as F on device pdf.

/usr/share/groff/1.23.0/font/devpdf/download
lists fonts available for embedding within the PDF document (by analogy to the ps device’s down-
loadable font support).

/usr/share/groff/1.23.0/font/devpdf/Foundry
is a data file used by the groff build system to locate PostScript Type 1 fonts.

/usr/share/groff/1.23.0/font/devpdf/enc/text.enc
describes the encoding scheme used by most PostScript Type 1 fonts; the encoding directive of
font description files for the pdf device refers to it.

/usr/share/groff/1.23.0/tmac/pdf.tmac
defines macros for use with the pdf output device. It is automatically loaded by troffrc when the
pdf output device is selected.

/usr/share/groff/1.23.0/tmac/pdfpic.tmac
defines the PDFPIC macro for embedding images in a document; see groff_tmac(5). It is auto-
matically loaded by troffrc.

Authors
gropdf was written and is maintained by Deri James 〈deri@chuzzlewit.myzen.co.uk〉.

See also
/usr/share/doc/groff-1.23.0/sboxes/msboxes.ms
/usr/share/doc/groff-1.23.0/sboxes/msboxes.pdf

“Using PDF boxes with groff and the ms macros”, by Deri James.

present.tmac
is part of gpresent 〈https://bob.diertens.org/corner/useful/gpresent/〉, a software package by Bob
Diertens that works with groff to produce presentations (“foils”, or “slide decks”).

afmtodit(1), groff (1), troff (1), groff_font(5), groff_out(5)

groff 1.23.0 2 July 2023 68

grops(1) General Commands Manual grops(1)

Name
grops - groff output driver for PostScript

Synopsis
grops [-glm] [-b brokenness-flags] [-c num-copies] [-F font-directory] [-I inclusion-directory]

[-p paper-format] [-P prologue-file] [-w rule-thickness] [file . . .]

grops --help

grops -v
grops --version

Description
The GNU roff PostScript output driver translates the output of troff (1) into PostScript. Normally, grops is
invoked by groff (1) when the latter is given the “-T ps” option. (In this installation, ps is the default out-
put device.) Use groff ’s -P option to pass any options shown above to grops. If no file arguments are
given, or if file is “-”, grotty reads the standard input stream. Output is written to the standard output
stream.

When called with multiple file arguments, grops doesn’t produce a valid document structure (one conform-
ing to the Document Structuring Conventions). To print such concatenated output, it is necessary to deacti-
vate DSC handling in the printing program or previewer.

See section “Font installation” below for a guide to installing fonts for grops.

Options
--help displays a usage message, while -v and --version show version information; all exit afterward.

-b n Work around problems with spoolers, previewers, and older printers. Normally, grops produces
output at PostScript LanguageLevel 2 that conforms to version 3.0 of the Document Structuring
Conventions. Some software and devices can’t handle such a data stream. The value of n deter-
mines what grops does to make its output acceptable to such consumers. If n is 0, grops employs
no workarounds, which is the default; it can be changed by modifying the broken directive in
grops’s DESC file.

Add 1 to suppress generation of %%BeginDocumentSetup and %%EndDocumentSetup com-
ments; this is needed for early versions of TranScript that get confused by anything between the
%%EndProlog comment and the first %%Page comment.

Add 2 to omit lines in included files beginning with %!, which confuse Sun’s pageview previewer.

Add 4 to omit lines in included files beginning with %%Page, %%Trailer and %%EndProlog;
this is needed for spoolers that don’t understand %%BeginDocument and %%EndDocument
comments.

Add 8 to write %!PS-Adobe-2.0 rather than %!PS-Adobe-3.0 as the first line of the PostScript
output; this is needed when using Sun’s Newsprint with a printer that requires page reversal.

Add 16 to omit media size information (that is, output neither a %%DocumentMedia comment
nor the setpagedevice PostScript command). This was the behavior of groff 1.18.1 and earlier; it
is needed for older printers that don’t understand PostScript LanguageLevel 2, and is also neces-
sary if the output is further processed to produce an EPS file; see subsection “Escapsulated Post-
Script” below.

-c n Output n copies of each page.

-F dir Prepend directory dir /devname to the search path for font and device description and PostScript
prologue files; name is the name of the device, usually ps.

-g Generate PostScript code to guess the page length. The guess is correct only if the imageable area
is vertically centered on the page. This option allows you to generate documents that can be
printed on both U.S. letter and A4 paper formats without change.

groff 1.23.0 2 July 2023 69

grops(1) General Commands Manual grops(1)

-I dir Search the directory dir for files named in \X'ps: file' and \X'ps: import' escape sequences. -I
may be specified more than once; each dir is searched in the given order. To search the current
working directory before others, add “-I .” at the desired place; it is otherwise searched last.

-l Use landscape orientation rather than portrait.

-m Turn on manual feed for the document.

-p fmt Set physical dimensions of output medium, overriding the papersize, paperlength, and
paperwidth directives in the DESC file. fmt can be any argument accepted by the papersize di-
rective; see groff_font(5).

-P prologue
Use the file prologue, sought in the groff font search path, as the PostScript prologue, overriding
the default (see section “Files” below) and the environment variable GROPS_PROLOGUE.

-w n Draw rules (lines) with a thickness of n thousandths of an em. The default thickness is 40
(0.04 em).

Usage
The input to grops must be in the format output by troff (1), described in groff_out(5). In addition, the de-
vice and font description files for the device used must meet certain requirements. The device resolution
must be an integer multiple of 72 times the sizescale. The device description file must contain a valid paper
format; see groff_font(5). Each font description file must contain a directive

internalname psname
which says that the PostScript name of the font is psname.

A font description file may also contain a directive
encoding enc-file

which says that the PostScript font should be reencoded using the encoding described in enc-file; this file
should consist of a sequence of lines of the form

pschar code
where pschar is the PostScript name of the character, and code is its position in the encoding expressed as
a decimal integer; valid values are in the range 0 to 255. Lines starting with # and blank lines are ignored.
The code for each character given in the font description file must correspond to the code for the character
in encoding file, or to the code in the default encoding for the font if the PostScript font is not to be reen-
coded. This code can be used with the \N escape sequence in troff to select the character, even if it does
not have a groff glyph name. Every character in the font description file must exist in the PostScript font,
and the widths given in the font description file must match the widths used in the PostScript font. grops
assumes that a character with a groff name of space is blank (makes no marks on the page); it can make
use of such a character to generate more efficient and compact PostScript output.

grops is able to display all glyphs in a PostScript font; it is not limited to 256 of them. enc-file (or the de-
fault encoding if no encoding file is specified) just defines the order of glyphs for the first 256 characters;
all other glyphs are accessed with additional encoding vectors which grops produces on the fly.

grops can embed fonts in a document that are necessary to render it; this is called “downloading”. Such
fonts must be in PFA format. Use pfbtops(1) to convert a Type 1 font in PFB format. Downloadable fonts
must be listed a download file containing lines of the form

psname file
where psname is the PostScript name of the font, and file is the name of the file containing it; lines begin-
ning with # and blank lines are ignored; fields may be separated by tabs or spaces. file is sought using the
same mechanism as that for groff font description files. The download file itself is also sought using this
mechanism; currently, only the first matching file found in the device and font description search path is
used.

If the file containing a downloadable font or imported document conforms to the Adobe Document Struc-
turing Conventions, then grops interprets any comments in the files sufficiently to ensure that its own out-
put is conforming. It also supplies any needed font resources that are listed in the download file as well as
any needed file resources. It is also able to handle inter-resource dependencies. For example, suppose that

groff 1.23.0 2 July 2023 70

grops(1) General Commands Manual grops(1)

you have a downloadable font called Garamond, and also a downloadable font called Garamond-Outline
which depends on Garamond (typically it would be defined to copy Garamond’s font dictionary, and change
the PaintType), then it is necessary for Garamond to appear before Garamond-Outline in the PostScript
document. grops handles this automatically provided that the downloadable font file for Garamond-Outline
indicates its dependence on Garamond by means of the Document Structuring Conventions, for example by
beginning with the following lines.

%!PS-Adobe-3.0 Resource-Font
%%DocumentNeededResources: font Garamond
%%EndComments
%%IncludeResource: font Garamond

In this case, both Garamond and Garamond-Outline would need to be listed in the download file. A down-
loadable font should not include its own name in a %%DocumentSuppliedResources comment.

grops does not interpret %%DocumentFonts comments. The %%DocumentNeededResources,
%%DocumentSuppliedResources, %%IncludeResource, %%BeginResource, and %%EndResource
comments (or possibly the old %%DocumentNeededFonts, %%DocumentSuppliedFonts,
%%IncludeFont, %%BeginFont, and %%EndFont comments) should be used.

The default stroke and fill color is black. For colors defined in the “rgb” color space, setrgbcolor is used;
for “cmy” and “cmyk”, setcmykcolor; and for “gray”, setgray. setcmykcolor is a PostScript
LanguageLevel 2 command and thus not available on some older printers.

Typefaces
Styles called R, I, B, and BI mounted at font positions 1 to 4. Text fonts are grouped into families A, BM,
C, H, HN, N, P, and T, each having members in each of these styles.

AR AvantGarde-Book
AI AvantGarde-BookOblique
AB AvantGarde-Demi
ABI AvantGarde-DemiOblique
BMR Bookman-Light
BMI Bookman-LightItalic
BMB Bookman-Demi
BMBI Bookman-DemiItalic
CR Courier
CI Courier-Oblique
CB Courier-Bold
CBI Courier-BoldOblique
HR Helvetica
HI Helvetica-Oblique
HB Helvetica-Bold
HBI Helvetica-BoldOblique
HNR Helvetica-Narrow
HNI Helvetica-Narrow-Oblique
HNB Helvetica-Narrow-Bold
HNBI Helvetica-Narrow-BoldOblique
NR NewCenturySchlbk-Roman
NI NewCenturySchlbk-Italic
NB NewCenturySchlbk-Bold
NBI NewCenturySchlbk-BoldItalic
PR Palatino-Roman
PI Palatino-Italic
PB Palatino-Bold
PBI Palatino-BoldItalic
TR Times-Roman

groff 1.23.0 2 July 2023 71

grops(1) General Commands Manual grops(1)

TI Times-Italic
TB Times-Bold
TBI Times-BoldItalic

Another text font is not a member of a family.

ZCMI ZapfChancery-MediumItalic

Special fonts include S, the PostScript Symbol font; ZD, Zapf Dingbats; SS (slanted symbol), which con-
tains oblique forms of lowercase Greek letters derived from Symbol; EURO, which offers a Euro glyph for
use with old devices lacking it; and ZDR, a reversed version of ZapfDingbats (with symbols flipped about
the vertical axis). Most glyphs in these fonts are unnamed and must be accessed using \N. The last three
are not standard PostScript fonts, but supplied by groff and therefore included in the default download file.

Device control commands
grops recognizes device control commands produced by the \X escape sequence, but interprets only those
that begin with a “ps:” tag.

\X'ps: exec code'
Execute the arbitrary PostScript commands code. The PostScript currentpoint is set to the groff
drawing position when the \X escape sequence is interpreted before executing code. The origin is
at the top left corner of the page; x coordinates increase to the right, and y coordinates down the
page. A procedure u is defined that converts groff basic units to the coordinate system in effect
(provided the user doesn’t change the scale). For example,

.nr x 1i
\X'ps: exec \nx u 0 rlineto stroke'

draws a horizontal line one inch long. code may make changes to the graphics state, but any
changes persist only to the end of the page. A dictionary containing the definitions specified by
the def and mdef commands is on top of the dictionary stack. If your code adds definitions to this
dictionary, you should allocate space for them using “\X'ps: mdef n'”. Any definitions persist
only until the end of the page. If you use the \Y escape sequence with an argument that names a
macro, code can extend over multiple lines. For example,

.nr x 1i

.de y
ps: exec
\nx u 0 rlineto
stroke
..
\Yy

is another way to draw a horizontal line one inch long. The single backslash before “nx”—the
only reason to use a register while defining the macro “y”—is to convert a user-specified dimen-
sion “1i” to groff basic units which are in turn converted to PostScript units with the u procedure.

grops wraps user-specified PostScript code into a dictionary, nothing more. In particular, it
doesn’t start and end the inserted code with save and restore, respectively. This must be supplied
by the user, if necessary.

\X'ps: file name'
This is the same as the exec command except that the PostScript code is read from file name.

\X'ps: def code'
Place a PostScript definition contained in code in the prologue. There should be at most one defin-
ition per \X command. Long definitions can be split over several \X commands; all the code argu-
ments are simply joined together separated by newlines. The definitions are placed in a dictionary
which is automatically pushed on the dictionary stack when an exec command is executed. If you
use the \Y escape sequence with an argument that names a macro, code can extend over multiple
lines.

groff 1.23.0 2 July 2023 72

grops(1) General Commands Manual grops(1)

\X'ps: mdef n code'
Like def, except that code may contain up to n definitions. grops needs to know how many defini-
tions code contains so that it can create an appropriately sized PostScript dictionary to contain
them.

\X'ps: import file llx lly urx ury width [height]'
Import a PostScript graphic from file. The arguments llx, lly, urx, and ury give the bounding box
of the graphic in the default PostScript coordinate system. They should all be integers: llx and lly
are the x and y coordinates of the lower left corner of the graphic; urx and ury are the x and y co-
ordinates of the upper right corner of the graphic; width and height are integers that give the de-
sired width and height in groff basic units of the graphic.

The graphic is scaled so that it has this width and height and translated so that the lower left corner
of the graphic is located at the position associated with \X command. If the height argument is
omitted it is scaled uniformly in the x and y axes so that it has the specified width.

The contents of the \X command are not interpreted by troff , so vertical space for the graphic is
not automatically added, and the width and height arguments are not allowed to have attached
scaling indicators.

If the PostScript file complies with the Adobe Document Structuring Conventions and contains a
%%BoundingBox comment, then the bounding box can be automatically extracted from within
groff input by using the psbb request.

See groff_tmac(5) for a description of the PSPIC macro which provides a convenient high-level
interface for inclusion of PostScript graphics.

\X'ps: invis'
\X'ps: endinvis'

No output is generated for text and drawing commands that are bracketed with these \X com-
mands. These commands are intended for use when output from troff is previewed before being
processed with grops; if the previewer is unable to display certain characters or other constructs,
then other substitute characters or constructs can be used for previewing by bracketing them with
these \X commands.

For example, gxditview is not able to display a proper \[em] character because the standard X11
fonts do not provide it; this problem can be overcome by executing the following request

.char \[em] \X'ps: invis'\
\Z'\v'-.25m'\h'.05m'\D'l .9m 0'\h'.05m''\
\X'ps: endinvis'\[em]

In this case, gxditview is unable to display the \[em] character and draws the line, whereas grops
prints the \[em] character and ignores the line (this code is already in file Xps.tmac, which is
loaded if a document intended for grops is previewed with gxditview).

If a PostScript procedure BPhook has been defined via a “ps: def” or “ps: mdef” device control command,
it is executed at the beginning of every page (before anything is drawn or written by groff). For example,
to underlay the page contents with the word “DRAFT” in light gray, you might use

.de XX
ps: def
/BPhook
{ gsave .9 setgray clippath pathbbox exch 2 copy
.5 mul exch .5 mul translate atan rotate pop pop
/NewCenturySchlbk-Roman findfont 200 scalefont setfont
(DRAFT) dup stringwidth pop -.5 mul -70 moveto show
grestore }

def
..
.devicem XX

groff 1.23.0 2 July 2023 73

grops(1) General Commands Manual grops(1)

Or, to cause lines and polygons to be drawn with square linecaps and mitered linejoins instead of the round
linecaps and linejoins normally used by grops, use

.de XX
ps: def
/BPhook { 2 setlinecap 0 setlinejoin } def
..
.devicem XX

(square linecaps, as opposed to butt linecaps (“0 setlinecap”), give true corners in boxed tables even though
the lines are drawn unconnected).

Encapsulated PostScript
grops itself doesn’t emit bounding box information. The following script, groff2eps, produces an EPS file.

#! /bin/sh
groff -P-b16 "$1" > "$1".ps
gs -dNOPAUSE -sDEVICE=bbox -- "$1".ps 2> "$1".bbox
sed -e "/^%%Orientation/r $1.bbox" \

-e "/^%!PS-Adobe-3.0/s/$/ EPSF-3.0/" "$1".ps > "$1".eps
rm "$1".ps "$1".bbox

You can then use “groff2eps foo” to convert file foo to foo.eps.

TrueType and other font formats
TrueType fonts can be used with grops if converted first to Type 42 format, a PostScript wrapper equivalent
to the PFA format described in pfbtops(1). Several methods exist to generate a Type 42 wrapper; some of
them involve the use of a PostScript interpreter such as Ghostscript—see gs(1).

One approach is to use FontForge 〈https://fontforge.org/〉, a font editor that can convert most outline font
formats. Here’s an example of using the Roboto Slab Serif font with groff . Several variables are used so
that you can more easily adapt it into your own script.

MAP=/usr/share/groff/1.23.0/font/devps/generate/text.map
TTF=/usr/share/fonts/truetype/roboto/slab/RobotoSlab-Regular.ttf
BASE=$(basename "$TTF")
INT=${BASE%.ttf}
PFA=$INT.pfa
AFM=$INT.afm
GFN=RSR
DIR=$HOME/.local/groff/font
mkdir -p "$DIR"/devps
fontforge -lang=ff -c "Open(\"$TTF\");\
Generate(\"$DIR/devps/$PFA\");"
afmtodit "$DIR/devps/$AFM" "$MAP" "$DIR/devps/$GFN"
printf "$BASE\t$PFA\n" >> "$DIR/devps/download"

fontforge and afmtodit may generate warnings depending on the attributes of the font. The test procedure
is simple.

printf ".ft RSR\nHello, world!\n" | groff -F "$DIR" > hello.ps

Once you’re satisfied that the font works, you may want to generate any available related styles (for in-
stance, Roboto Slab also has “Bold”, “Light”, and “Thin” styles) and set up GROFF_FONT_PATH in your
environment to include the directory you keep the generated fonts in so that you don’t have to use the -F
option.

Font installation
The following is a step-by-step font installation guide for grops.

• Convert your font to something groff understands. This is a PostScript Type 1 font in PFA format or a
PostScript Type 42 font, together with an AFM file. A PFA file begins as follows.

%!PS-AdobeFont-1.0:

groff 1.23.0 2 July 2023 74

grops(1) General Commands Manual grops(1)

A PFB file contains this string as well, preceded by some non-printing bytes. If your font is in PFB for-
mat, use groff ’s pfbtops(1) program to convert it to PFA. For TrueType and other font formats, we rec-
ommend fontforge, which can convert most outline font formats. A Type 42 font file begins as follows.

%!PS-TrueTypeFont
This is a wrapper format for TrueType fonts. Old PostScript printers might not support them (that is,
they might not have a built-in TrueType font interpreter). In the following steps, we will consider the use
of CTAN’s BrushScriptX-Italic 〈https://ctan.org/tex-archive/fonts/brushscr〉 font in PFA format.

• Convert the AFM file to a groff font description file with the afmtodit(1) program. For instance,
$ afmtodit BrushScriptX-Italic.afm text.map BSI

converts the Adobe Font Metric file BrushScriptX-Italic.afm to the groff font description file BSI .

If you have a font family which provides regular upright (roman), bold, italic, and bold-italic styles
(where “italic” may be “oblique” or “slanted”), we recommend using the letters R, B, I, and BI, respec-
tively, as suffixes to the groff font family name to enable groff ’s font family and style selection features.
An example is groff ’s built-in support for Times: the font family name is abbreviated as T, and the groff
font names are therefore TR, TB, TI, and TBI. In our example, however, the BrushScriptX font is avail-
able in a single style only, italic.

• Install the groff font description file(s) in a devps subdirectory in the search path that groff uses for de-
vice and font file descriptions. See the GROFF_FONT_PATH entry in section “Environment” of troff (1)
for the current value of the font search path. While groff doesn’t directly use AFM files, it is a good idea
to store them alongside its font description files.

• Register fonts in the devps/download file so they can be located for embedding in PostScript files grops
generates. Only the first download file encountered in the font search path is read. If in doubt, copy the
default download file (see section “Files” below) to the first directory in the font search path and add
your fonts there. The PostScript font name used by grops is stored in the internalname field in the groff
font description file. (This name does not necessarily resemble the font’s file name.) We add the follow-
ing line to download .

BrushScriptX-Italic→BrushScriptX-Italic.pfa
A tab character, depicted as →, separates the fields.

• Test the selection and embedding of the new font.
printf "\\f[BSI]Hello, world!\n" | groff -T ps -P -e >hello.ps
see hello.pdf

Old fonts
groff versions 1.19.2 and earlier contained descriptions of a slightly different set of the base 35 PostScript
level 2 fonts defined by Adobe. The older set has 229 glyphs and a larger set of kerning pairs; the newer
one has 314 glyphs and includes the Euro glyph. For backwards compatibility, these old font descriptions
are also installed in the /usr/share/groff/1.23.0/oldfont/devps directory.

To use them, make sure that grops finds the fonts before the default system fonts (with the same names): ei-
ther give grops the -F command-line option,

$ groff -Tps -P-F -P/usr/share/groff/1.23.0/oldfont ...
or add the directory to groff ’s font and device description search path environment variable,

$ GROFF_FONT_PATH=/usr/share/groff/1.23.0/oldfont \
groff -Tps ...

when the command runs.

Environment
GROFF_FONT_PATH

A list of directories in which to seek the selected output device’s directory of device and font de-
scription files. See troff (1) and groff_font(5).

GROPS_PROLOGUE
If this is set to foo, then grops uses the file foo (in the font path) instead of the default prologue
file prologue. The option -P overrides this environment variable.

groff 1.23.0 2 July 2023 75

grops(1) General Commands Manual grops(1)

SOURCE_DATE_EPOCH
A timestamp (expressed as seconds since the Unix epoch) to use as the output creation timestamp
in place of the current time. The time is converted to human-readable form using ctime(3) and
recorded in a PostScript comment.

TZ The time zone to use when converting the current time (or value of SOURCE_DATE_EPOCH) to
human-readable form; see tzset(3).

Files
/usr/share/groff/1.23.0/font/devps/DESC

describes the ps output device.

/usr/share/groff/1.23.0/font/devps/ F
describes the font known as F on device ps.

/usr/share/groff/1.23.0/font/devps/download
lists fonts available for embedding within the PostScript document (or download to the device).

/usr/share/groff/1.23.0/font/devps/prologue
is the default PostScript prologue prefixed to every output file.

/usr/share/groff/1.23.0/font/devps/text.enc
describes the encoding scheme used by most PostScript Type 1 fonts; the encoding directive of
font description files for the ps device refers to it.

/usr/share/groff/1.23.0/tmac/ps.tmac
defines macros for use with the ps output device. It is automatically loaded by troffrc when the ps
output device is selected.

/usr/share/groff/1.23.0/tmac/pspic.tmac
defines the PSPIC macro for embedding images in a document; see groff_tmac(5). It is automati-
cally loaded by troffrc.

/usr/share/groff/1.23.0/tmac/psold.tmac
provides replacement glyphs for text fonts that lack complete coverage of the ISO Latin-1 charac-
ter set; using it, groff can produce glyphs like eth (ð) and thorn (þ) that older PostScript printers
do not natively support.

grops creates temporary files using the template “gropsXXXXXX”; see groff (1) for details on their storage
location.

See also
PostScript Language Document Structuring Conventions Specification 〈http://partners.adobe.com/public/
developer/en/ps/5001.DSC_Spec.pdf〉

afmtodit(1), groff (1), troff (1), pfbtops(1), groff_char(7), groff_font(5), groff_out(5), groff_tmac(5)

groff 1.23.0 2 July 2023 76

grotty(1) General Commands Manual grotty(1)

Name
grotty - groff output driver for typewriter-like (terminal) devices

Synopsis
grotty [-dfho] [-i|-r] [-F dir] [file . . .]

grotty -c [-bBdfhouU] [-F dir] [file . . .]

grotty --help

grotty -v
grotty --version

Description
The GNU roff TTY (“Teletype”) output driver translates the output of troff (1) into a form suitable for type-
writer-like devices, including terminal emulators. Normally, grotty is invoked by groff (1) when the latter is
given one of the “-T ascii”, “-T latin1”, -Tlatin1, or “-T utf8” options on systems using ISO character
encoding standards, or with “-T cp1047” or “-T utf8” on EBCDIC-based hosts. (In this installation, ps is
the default output device.) Use groff ’s -P option to pass any options shown above to grotty. If no file ar-
guments are given, or if file is “-”, grotty reads the standard input stream. Output is written to the standard
output stream.

By default, grotty emits SGR escape sequences (from ISO 6429, popularly called “ANSI escapes”) to
change text attributes (bold, italic, underline, reverse video [“negative image”] and colors). Devices sup-
porting the appropriate sequences can view roff documents using eight different background and fore-
ground colors. Following ISO 6429, the following colors are defined in tty.tmac: black, white, red, green,
blue, yellow, magenta, and cyan. Unrecognized colors are mapped to the default color, which is dependent
on the settings of the terminal. OSC 8 hyperlinks are produced for these devices.

In keeping with long-standing practice and the rarity of terminals (and emulators) that support oblique or
italic fonts, italicized text is represented with underlining by default—but see the -i option below.

SGR and OSC support in pagers
When paging grotty’s output with less(1), the latter program must be instructed to pass SGR and OSC se-
quences through to the device; its -R option is one way to achieve this (less version 566 or later is required
for OSC 8 support). Consequently, programs like man(1) that page roff documents with less must call it
with an appropriate option.

Legacy output format
The -c option tells grotty to use an output format compatible with paper terminals, like the Teletype ma-
chines for which roff and nroff were first developed but which are no longer in wide use. SGR escape se-
quences are not emitted; bold, italic, and underlining character attributes are thus not manipulated. Instead,
grotty overstrikes, representing a bold character c with the sequence “c BACKSPACE c”, an italic character
c with the sequence “_ BACKSPACE c”, and bold italics with “_ BACKSPACE c BACKSPACE c”. This
rendering is inherently ambiguous when the character c is itself the underscore.

The legacy output format can be rendered on a video terminal (or emulator) by piping grotty’s output
through ul(1), which may render bold italics as reverse video. Some implementations of more(1) are also
able to display these sequences; you may wish to experiment with that command’s -b option. less renders
legacy bold and italics without requiring options. In contrast to the terminal output drivers of some other
roff implementations, grotty never outputs reverse line feeds. There is therefore no need to filter its output
through col(1).

Device control commands
grotty understands one device control function produced by the roff \X escape sequence in a document.

\X'tty: link [uri [key=value] . . .]'
Embed a hyperlink using the OSC 8 terminal escape sequence. Specifying uri starts hyperlinked
text, and omitting it ends the hyperlink. When uri is present, any number of additional key/value
pairs can be specified; their interpretation is the responsibility of the pager or terminal. Spaces or
tabs cannot appear literally in uri, key, or value; they must be represented in an alternate form.

groff 1.23.0 2 July 2023 77

grotty(1) General Commands Manual grotty(1)

Device description files
If the DESC file for the character encoding contains the “unicode” directive, grotty emits Unicode charac-
ters in UTF-8 encoding. Otherwise, it emits characters in a single-byte encoding depending on the data in
the font description files. See groff_font(5).

A font description file may contain a directive “internalname n” where n is a decimal integer. If the 01 bit
in n is set, then the font is treated as an italic font; if the 02 bit is set, then it is treated as a bold font.

Typefaces
grotty supports the standard four styles: R (roman), I (italic), B (bold), and BI (bold-italic). Because the
output driver operates in nroff mode, attempts to set or change the font family or type size are ignored.

Options
--help displays a usage message, while -v and --version show version information; all exit afterward.

-b Suppress the use of overstriking for bold characters in legacy output format.

-B Use only overstriking for bold-italic characters in legacy output format.

-c Use grotty’s legacy output format (see subsection “Legacy output format” above). SGR and OSC
escape sequences are not emitted.

-d Ignore all \D drawing escape sequences in the input. By default, grotty renders \D'l . . .' escape se-
quences that have at least one zero argument (and so are either horizontal or vertical) using Uni-
code box drawing characters (for the utf8 device) or the -, |, and + characters (for all other de-
vices). grotty handles \D'p . . .' escape sequences that consist entirely of horizontal and vertical
lines similarly.

-f Emit a form feed at the end of each page having no output on its last line.

-F dir Prepend directory dir /devname to the search path for font and device description files; name de-
scribes the output device’s character encoding, one of ascii, latin1, utf8, or cp1047.

-h Use literal horizontal tab characters in the output. Tabs are assumed to be set every 8 columns.

-i Render oblique-styled fonts (I and BI) with the SGR attribute for italic text rather than underlined
text. Many terminals don’t support this attribute; however, xterm(1), since patch #314
(2014-12-28), does. Ignored if -c is also specified.

-o Suppress overstriking (other than for bold and/or underlined characters when the legacy output
format is in use).

-r Render oblique-styled fonts (I and BI) with the SGR attribute for reverse video text rather than un-
derlined text. Ignored if -c or -i is also specified.

-u Suppress the use of underlining for italic characters in legacy output format.

-U Use only underlining for bold-italic characters in legacy output format.

Environment
GROFF_FONT_PATH

A list of directories in which to seek the selected output device’s directory of device and font de-
scription files. See troff (1) and groff_font(5).

GROFF_NO_SGR
If set, grotty’s legacy output format is used just as if the -c option were specified; see subsection
“Legacy output format” above.

Files
/usr/share/groff/1.23.0/font/devascii/DESC

describes the ascii output device.

/usr/share/groff/1.23.0/font/devascii/ F
describes the font known as F on device ascii.

groff 1.23.0 2 July 2023 78

grotty(1) General Commands Manual grotty(1)

/usr/share/groff/1.23.0/font/devcp1047/DESC
describes the cp1047 output device.

/usr/share/groff/1.23.0/font/devcp1047/ F
describes the font known as F on device cp1047.

/usr/share/groff/1.23.0/font/devlatin1/DESC
describes the latin1 output device.

/usr/share/groff/1.23.0/font/devlatin1/ F
describes the font known as F on device latin1.

/usr/share/groff/1.23.0/font/devutf8/DESC
describes the utf8 output device.

/usr/share/groff/1.23.0/font/devutf8/ F
describes the font known as F on device utf8.

/usr/share/groff/1.23.0/tmac/tty.tmac
defines macros for use with the ascii, cp1047, latin1, and utf8 output devices. It is automatically
loaded by troffrc when any of those output devices is selected.

/usr/share/groff/1.23.0/tmac/tty-char.tmac
defines fallback characters for use with grotty. See nroff (1).

Limitations
grotty is intended only for simple documents.

• There is no support for fractional horizontal or vertical motions.

• roff \D escape sequences producing anything other than horizontal and vertical lines are not supported.

• Characters above the first line (that is, with a vertical drawing position of 0) cannot be rendered.

• Color handling differs from other output drivers. The groff requests and escape sequences that set the
stroke and fill colors instead set the foreground and background character cell colors, respectively.

Examples
The following groff document exercises several features for which output device support varies: (1) bold
style; (2) italic (underline) style; (3) bold-italic style; (4) character composition by overstriking (“coöper-
ate”); (5) foreground color; (6) background color; and (7) horizontal and vertical line-drawing.

You might see \f[B]bold\f[] and \f[I]italic\f[].
Some people see \f[BI]both\f[].
If the output device does (not) co\z\[ad]operate,
you might see \m[red]red\m[].
Black on cyan can have a \M[cyan]\m[black]prominent\m[]\M[]
\D'l 1i 0'\D'l 0 2i'\D'l 1i 0' look.
.\" If in nroff mode, end page now.
.if n .pl \n[nl]u

Given the foregoing input, compare and contrast the output of the following.

$ groff -T ascii file
$ groff -T utf8 -P -i file
$ groff -T utf8 -P -c file | ul

See also
“Control Functions for Coded Character Sets” (ECMA-48) 5th edition, Ecma International, June 1991. A
gratis version of ISO 6429, this document includes a normative description of SGR escape sequences.
Available at 〈http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-048.pdf〉.

“Hyperlinks in Terminal Emulators” 〈https://gist.github.com/egmontkob/eb114294efbcd5ad
b1944c9f3cb5feda〉, Egmont Koblinger.

groff (1), troff (1), groff_out(5), groff_font(5), groff_char(7), ul(1), more(1), less(1), man(1)

groff 1.23.0 2 July 2023 79

hpftodit(1) General Commands Manual hpftodit(1)

Name
hpftodit - create font description files for use with groff and grolj4

Synopsis
hpftodit [-aqs] [-i n] tfm-file map-file font-description

hpftodit -d tfm-file [map-file]

hpftodit --help

hpftodit -v
hpftodit --version

Description
hpftodit creates a font description file for use with a Hewlett-Packard LaserJet 4-series (or newer) printer
with the grolj4(1) output driver of groff (1), using data from an HP tagged font metric (TFM) file. tfm-file
is the name of the font’s TFM file; Intellifont and TrueType TFM files are supported, but symbol set TFM
files are not. map-file is a file giving the groff special character identifiers for glyphs in the font; this file
should consist of a sequence of lines of the form

m u c1 c2 ... [# comment]
where m is a decimal integer giving the glyph’s MSL (Master Symbol List) number, u is a hexadecimal in-
teger giving its Unicode character code, and c1, c2, . . . are its groff glyph names (see groff_char(7) for a
list). The values can be separated by any number of spaces and/or tabs. The Unicode value must use up-
percase hexadecimal digits A–F, and must lack a leading “0x”, “u”, or “U+”. Unicode values correspond-
ing to composite glyphs are decomposed; that is “u00C0” becomes “u0041_0300”. A glyph without a
groff special character identifier may be named uXXXX if the glyph corresponds to a Unicode value, or as
an unnamed glyph “---”. If the given Unicode value is in the Private Use Area (PUA) (0xE000–0xF8FF),
the glyph is included as an unnamed glyph. Refer to groff_diff (1) for additional information about un-
named glyphs and how to access them.

Blank lines and lines beginning with “#” are ignored. A “#” following one or more groff names begins a
comment. Because “#” is a valid groff name, it must appear first in a list of groff names if a comment is
included, as in

3 0023 # # number sign
or

3 0023 # sh # number sign
whereas in

3 0023 sh # # number sign
the first “#” is interpreted as the beginning of the comment.

Output is written in groff_font(5) format to font-description, a file named for the intended groff font name;
if this operand is “-”, the font description is written to the standard output stream.

If the -i option is used, hpftodit automatically will generate an italic correction, a left italic correction, and
a subscript correction for each glyph (the significance of these parameters is explained in groff_font(5)).

Options
--help displays a usage message, while -v and --version show version information; all exit afterward.

-a Include glyphs in the TFM file that are not included in map-file. A glyph with corresponding Uni-
code value is given the name uXXXX ; a glyph without a Unicode value is included as an unnamed
glyph “---”. A glyph with a Unicode value in the Private Use Area (0xE000–0xF8FF) is also in-
cluded as an unnamed glyph.

This option provides a simple means of adding Unicode-named and unnamed glyphs to a font
without including them in the map file, but it affords little control over which glyphs are placed in
a regular font and which are placed in a special font. The presence or absence of the -s option has
some effect on which glyphs are included: without it, only the “text” symbol sets are searched for
matching glyphs; with it, only the “mathematical” symbol sets are searched. Nonetheless, restrict-
ing the symbol sets searched isn’t very selective—many glyphs are placed in both regular and spe-
cial fonts. Normally, -a should be used only as a last resort.

groff 1.23.0 2 July 2023 80

hpftodit(1) General Commands Manual hpftodit(1)

-d Dump information about the TFM file to the standard output stream; use this to ensure that a TFM
file is a proper match for a font, and that its contents are suitable. The information includes the
values of important TFM tags and a listing (by MSL number for Intellifont TFM files or by Uni-
code value for TrueType TFM files) of the glyphs included in the TFM file. The unit of measure
“DU” for some tags indicates design units; there are 8782 design units per em for Intellifont fonts,
and 2048 design units per em for TrueType fonts. Note that the accessibility of a glyph depends
on its inclusion in a symbol set; some TFM files list many glyphs but only a few symbol sets.

The glyph listing includes the glyph index within the TFM file, the MSL or Unicode value, and the
symbol set and character code that will be used to print the glyph. If map-file is given, groff
names are given for matching glyphs. If only the glyph index and MSL or Unicode value are
given, the glyph does not appear in any supported symbol set and cannot be printed.

With the -d option, map-file is optional, and output-font is ignored if given.

-i n Generate an italic correction for each glyph so that its width plus its italic correction is equal to n
thousandths of an em plus the amount by which the right edge of the glyphs’s bounding box is to
the right of its origin. If a negative italic correction would result, use a zero italic correction in-
stead.

Also generate a subscript correction equal to the product of the tangent of the slant of the font and
four fifths of the x-height of the font. If a subscript correction greater than the italic correction
would result, use a subscript correction equal to the italic correction instead.

Also generate a left italic correction for each glyph equal to n thousandths of an em plus the
amount by which the left edge of the glyphs’s bounding box is to the left of its origin. The left
italic correction may be negative.

This option normally is needed only with italic or oblique fonts; a value of 50 (0.05 em) usually is
a reasonable choice.

-q Suppress warnings about glyphs in the map file that were not found in the TFM file. Warnings
never are given for unnamed glyphs or by glyphs named by their Unicode values. This option is
useful when sending the output of hpftodit to the standard output stream.

-s Add the special directive to the font description file, affecting the order in which HP symbol sets
are searched for each glyph. Without this option, the “text” sets are searched before the “mathe-
matical” symbol sets. With it, the search order is reversed.

Files
/usr/share/groff/1.23.0/font/devlj4/DESC

describes the lj4 output device.

/usr/share/groff/1.23.0/font/devlj4/ F
describes the font known as F on device lj4.

/usr/share/groff/1.23.0/font/devlj4/generate/Makefile
is a make(1) script that uses hpftodit(1) to prepare the groff font description files above from HP
TFM data; in can be used to regenerate them in the event the TFM files are updated.

/usr/share/groff/1.23.0/font/devlj4/generate/special.awk
is an awk(1) script that corrects the Intellifont-based height metrics for several glyphs in the S
(special) font for TrueType CG Times used in the HP LaserJet 4000 and later.

/usr/share/groff/1.23.0/font/devlj4/generate/special.map
/usr/share/groff/1.23.0/font/devlj4/generate/symbol.map
/usr/share/groff/1.23.0/font/devlj4/generate/text.map
/usr/share/groff/1.23.0/font/devlj4/generate/wingdings.map

map MSL indices and HP Unicode PUA assignments to groff special character identifiers.

See also
groff (1), groff_diff (1), grolj4(1), groff_font(5)

groff 1.23.0 2 July 2023 81

indxbib(1) General Commands Manual indxbib(1)

Name
indxbib - make inverted index for bibliographic databases

Synopsis
indxbib [-w] [-c common-words-file] [-d dir] [-f list-file] [-h min-hash-table-size] [-i excluded-fields]

[-k max-keys-per-record] [-l min-key-length] [-n threshold] [-o file] [-t max-key-length]
[file . . .]

indxbib --help

indxbib -v
indxbib --version

Description
indxbib makes an inverted index for the bibliographic databases in each file for use with refer(1),
lookbib(1), and lkbib(1). Each created index is named file.i; writing is done to a temporary file which is
then renamed to this. If no file operands are given on the command line because the -f option has been
used, and no -o option is given, the index will be named Ind.i.

Bibliographic databases are divided into records by blank lines. Within a record, each field starts with a %
character at the beginning of a line. Fields have a one letter name that follows the % character.

The values set by the -c, -l, -n, and -t options are stored in the index: when the index is searched, keys
will be discarded and truncated in a manner appropriate to these options; the original keys will be used for
verifying that any record found using the index actually contains the keys. This means that a user of an in-
dex need not know whether these options were used in the creation of the index, provided that not all the
keys to be searched for would have been discarded during indexing and that the user supplies at least the
part of each key that would have remained after being truncated during indexing. The value set by the -i
option is also stored in the index and will be used in verifying records found using the index.

Options
--help displays a usage message, while -v and --version show version information; all exit afterward.

-c common-words-file
Read the list of common words from common-words-file instead of /usr/share/groff/1.23.0/eign.

-d dir Use dir as the name of the directory to store in the index, instead of that returned by getcwd(2).
Typically, dir will be a symbolic link whose target is the current working directory.

-f list-file
Read the files to be indexed from list-file. If list-file is -, files will be read from the standard input
stream. The -f option can be given at most once.

-h min-hash-table-size
Use the first prime number greater than or equal to the argument for the size of the hash table.
Larger values will usually make searching faster, but will make the index file larger and cause
indxbib to use more memory. The default hash table size is 997.

-i excluded-fields
Don’t index the contents of fields whose names are in excluded-fields. Field names are one char-
acter each. If this option is not present, indxbib excludes fields X, Y, and Z.

-k max-keys-per-record
Use no more keys per input record than specified in the argument. If this option is not present, the
maximum is 100.

-l min-key-length
Discard any key whose length in characters is shorter than the value of the argument. If this op-
tion is not present, the minimum key length is 3.

-n threshold
Discard the threshold most common words from the common words file. If this option is not
present, the 100 most common words are discarded.

groff 1.23.0 2 July 2023 82

indxbib(1) General Commands Manual indxbib(1)

-o basename
Name the index basename.i.

-t max-key-length
Truncate keys to max-key-length in characters. If this option is not present, keys are truncated to 6
characters.

-w Index whole files. Each file is a separate record.

Files
file.i index for file

Ind.i default index name

/usr/share/groff/1.23.0/eign
contains the list of common words. The traditional name, “eign”, is an abbreviation of “English
ignored [word list]”.

indxbibXXXXXX
temporary file

See also
“Some Applications of Inverted Indexes on the Unix System”, by M. E. Lesk, 1978, AT&T Bell Laborato-
ries Computing Science Technical Report No. 69.

refer(1), lkbib(1), lookbib(1)

groff 1.23.0 2 July 2023 83

lkbib(1) General Commands Manual lkbib(1)

Name
lkbib - search bibliographic databases

Synopsis
lkbib [-n] [-i fields] [-p file] . . . [-t n] key . . .

lkbib --help

lkbib -v
lkbib --version

Description
lkbib searches bibliographic databases for references containing keywords key and writes any references
found to the standard output stream. It reads databases given by -p options and then (unless -n is given) a
default database. The default database is taken from the REFER environment variable if it is set, otherwise
it is /usr/dict/papers/Ind . For each database file to be searched, if an index file.i created by indxbib(1) ex-
ists, then it will be searched instead; each index can cover multiple databases.

Options
--help displays a usage message, while -v and --version show version information; all exit afterward.

-i string
When searching files for which no index exists, ignore the contents of fields whose names are in
string.

-n Suppress search of default database.

-p file Search file. Multiple -p options can be used.

-t n Require only the first n characters of keys to be given. The default is 6.

Environment
REFER

Default database.

Files
/usr/dict/papers/Ind

Default database to be used if the REFER environment variable is not set.

file.i Index files.

See also
“Some Applications of Inverted Indexes on the Unix System”, by M. E. Lesk, 1978, AT&T Bell Laborato-
ries Computing Science Technical Report No. 69.

refer(1), lookbib(1), indxbib(1)

groff 1.23.0 2 July 2023 84

lookbib(1) General Commands Manual lookbib(1)

Name
lookbib - search bibliographic databases

Synopsis
lookbib [-i string] [-t n] file . . .

lookbib --help

lookbib -v
lookbib --version

Description
lookbib writes a prompt to the standard error stream (unless the standard input stream is not a terminal),
reads from the standard input a line containing a set of keywords, searches each bibliographic database file
for references containing those keywords, writes any references found to the standard output stream, and re-
peats this process until the end of input. For each database file to be searched, if an index file.i created by
indxbib(1) exists, then it will be searched instead; each index can cover multiple databases.

Options
--help displays a usage message, while -v and --version show version information; all exit afterward.

-i string
When searching files for which no index exists, ignore the contents of fields whose names are in
string.

-t n Require only the first n characters of keys to be given. The default is 6.

Files
file.i Index files.

See also
“Some Applications of Inverted Indexes on the Unix System”, by M. E. Lesk, 1978, AT&T Bell Laborato-
ries Computing Science Technical Report No. 69.

refer(1), lkbib(1), indxbib(1)

groff 1.23.0 2 July 2023 85

mmroff (1) General Commands Manual mmroff (1)

Name
mmroff - cross-referencing front end for GNU roff mm macro package

Synopsis
mmroff [-x] groff-argument . . .

mmroff --help

mmroff --version

Description
mmroff is a simple wrapper for groff , used to expand cross references in mm; see groff_mm(7). It runs
groff with the -mm option twice, first with -z and -rRef=1 to populate cross-reference and index files
with their corresponding entries, and then again to produce the document. It also handles the inclusion of
PostScript images with the PIC macro. Documents that do not use these features of groff mm (the INITI,
IND, INDP, INITR, SETR, GETHN, GETPN, GETR, GETST, and PIC macros) do not require
mmroff .

Options
--help displays a usage message, while --version shows version information; both exit afterward.

-x Create or update the cross-reference file and exit.

Authors
mmroff was written by Jörgen Hägg 〈jh@axis.se〉 of Lund, Sweden.

See also
groff_mm(7), groff_mmse(7), groff (1), troff (1), tbl(1), pic(1), eqn(1)

groff 1.23.0 2 July 2023 86

neqn(1) General Commands Manual neqn(1)

Name
neqn - format equations for character-cell terminal output

Synopsis
neqn [eqn-argument . . .]

Description
neqn invokes the eqn(1) command with the ascii output device.

eqn does not support low-resolution, typewriter-like devices, although it may work adequately for very sim-
ple input.

See also
eqn(1)

groff 1.23.0 2 July 2023 87

nroff (1) General Commands Manual nroff (1)

Name
nroff - format documents with groff for TTY (terminal) devices

Synopsis
nroff [-bcCEhikpRStUVz] [-d ctext] [-d string=text] [-K fallback-encoding] [-m macro-package]

[-M macro-directory] [-n page-number] [-o page-list] [-P postprocessor-argument]
[-r cnumeric-expression] [-r register=numeric-expression] [-T output-device] [-w warning-
category] [-W warning-category] [file . . .]

nroff --help

nroff -v
nroff --version

Description
nroff formats documents written in the groff (7) language for typewriter-like devices such as terminal emu-
lators. GNU nroff emulates the AT&T nroff command using groff (1). nroff generates output via
grotty(1), groff ’s terminal output driver, which needs to know the character encoding scheme used by the
device. Consequently, acceptable arguments to the -T option are ascii, latin1, utf8, and cp1047; any oth-
ers are ignored. If neither the GROFF_TYPESETTER environment variable nor the -T command-line op-
tion (which overrides the environment variable) specifies a (valid) device, nroff consults the locale to select
an appropriate output device. It first tries the locale(1) program, then checks several locale-related environ-
ment variables; see section “Environment” below. If all of the foregoing fail, -Tascii is implied.

The -b, -c, -C, -d, -E, -i, -m, -M, -n, -o, -r, -U, -w, -W, and -z options have the effects described
in troff (1). -c and -h imply “-P-c” and “-P-h”, respectively; -c is also interpreted directly by troff . In
addition, this implementation ignores the AT&T nroff options -e, -q, and -s (which are not implemented
in groff). The options -k, -K, -p, -P, -R, -t, and -S are documented in groff (1). -V causes nroff to
display the constructed groff command on the standard output stream, but does not execute it. -v and
--version show version information about nroff and the programs it runs, while --help displays a usage
message; all exit afterward.

Exit status
nroff exits with error status 2 if there was a problem parsing its arguments, with status 0 if any of the op-
tions -V, -v, --version, or --help were specified, and with the status of groff otherwise.

Environment
Normally, the path separator in environment variables ending with PATH is the colon; this may vary de-
pending on the operating system. For example, Windows uses a semicolon instead.

GROFF_BIN_PATH
is a colon-separated list of directories in which to search for the groff executable before searching
in PATH . If unset, /usr/bin is used.

GROFF_TYPESETTER
specifies the default output device for groff .

LC_ALL
LC_CTYPE
LANG
LESSCHARSET

are pattern-matched in this order for contents matching standard character encodings supported by
groff in the event no -T option is given and GROFF_TYPESETTER is unset, or the values speci-
fied are invalid.

Files
/usr/share/groff/1.23.0/tmac/tty-char.tmac

defines fallback definitions of roff special characters. These definitions more poorly optically ap-
proximate typeset output than those of tty.tmac in favor of communicating semantic information.
nroff loads it automatically.

groff 1.23.0 2 July 2023 88

nroff (1) General Commands Manual nroff (1)

Notes
Pager programs like more(1) and less(1) may require command-line options to correctly handle some out-
put sequences; see grotty(1).

See also
groff (1), troff (1), grotty(1), locale(1), roff (7)

groff 1.23.0 2 July 2023 89

pdfmom(1) General Commands Manual pdfmom(1)

Name
pdfmom - produce PDF documents using the mom macro package for groff

Synopsis
pdfmom [-Tpdf] [groff-options] [file . . .]

pdfmom -Tps [pdfroff-options] [groff-options] [file . . .]

pdfmom -v
pdfmom --version

Description
pdfmom is a wrapper around groff (1) that facilitates the production of PDF documents from files formatted
with the mom macros.

pdfmom prints to the standard output, so output must usually be redirected to a destination file. The size of
the final PDF can be reduced by piping the output through ps2pdf (1).

If called with the -Tpdf option (which is the default), pdfmom processes files using groff ’s native PDF dri-
ver, gropdf (1). If -Tps is given, processing is passed over to pdfroff , which uses groff ’s PostScript driver.
In either case, multiple runs of the source file are performed in order to satisfy any forward references in the
document.

pdfmom accepts all the same options as groff . If -Tps is given, the options associated with pdfroff are ac-
cepted as well. When pdfmom calls pdfroff , the options “-mpdfmark -mom --no-toc” options are im-
plied and should not be given on the command line. Equally, it is not necessary to supply the -mom or
-m mom options when -Tps is absent.

PDF integration with the mom macros is discussed in full in the manual “Producing PDFs with groff and
mom”, which was itself produced with pdfmom.

If called with the -v or --version options, pdfmom displays its version information and exits.

Authors
pdfmom was written by Deri James 〈deri@chuzzlewit.myzen.co.uk〉 and Peter Schaffter 〈peter@schaffter
.ca〉, and is maintained by James.

See also
/usr/share/doc/groff-1.23.0/pdf/mom-pdf.pdf

“Producing PDFs with groff and mom”, by Deri James and Peter Schaffter. This file, together
with its source, mom-pdf.mom, is part of the groff distribution.

groff (1), gropdf (1), pdfroff (1), ps2pdf (1)

groff 1.23.0 2 July 2023 90

pdfroff (1) General Commands Manual pdfroff (1)

Name
pdfroff - construct files in Portable Document Format using groff

Synopsis
pdfroff [groff-option] [--emit-ps] [--no-toc-relocation] [--no-kill-null-pages]

[--stylesheet=name] [--no-pdf-output] [--pdf-output=name] [--no-reference-dictionary]
[--reference-dictionary=name] [--report-progress] [--keep-temporary-files] [file . . .]

pdfroff -h
pdfroff --help

pdfroff -v [groff-option . . .]
pdfroff --version [groff-option . . .]

groff-option is any short option supported by groff (1) except for -h, -T, and -v; see section “Usage” be-
low.

Description
pdfroff is a wrapper program for the GNU text processing system, groff . It transparently handles the me-
chanics of multiple pass groff processing, when applied to suitably marked up groff source files, such that
tables of contents and body text are formatted separately, and are subsequently combined in the correct or-
der, for final publication as a single PDF document. A further optional “style sheet” capability is provided;
this allows for the definition of content which is required to precede the table of contents, in the published
document.

For each invocation of pdfroff , the ultimate groff output stream is post-processed by the Ghostscript gs(1)
interpreter to produce a finished PDF document.

pdfroff makes no assumptions about, and imposes no restrictions on, the use of any groff macro packages
which the user may choose to employ, in order to achieve a desired document format; however, it does in-
clude specific built in support for the pdfmark macro package, should the user choose to employ it. Specifi-
cally, if the pdfhref macro, defined in the pdfmark.tmac package, is used to define public reference marks,
or dynamic links to such reference marks, then pdfroff performs as many preformatting groff passes as re-
quired, up to a maximum limit of four, in order to compile a document reference dictionary, to resolve ref-
erences, and to expand the dynamically defined content of links.

Usage
The command line is parsed in accordance with normal GNU conventions, but with one exception—when
specifying any short form option (i.e., a single character option introduced by a single hyphen), and if that
option expects an argument, then it must be specified independently (i.e., it may not be appended to any
group of other single character short form options).

Long form option names (i.e., those introduced by a double hyphen) may be abbreviated to their minimum
length unambiguous initial substring.

Otherwise, pdfroff usage closely mirrors that of groff itself. Indeed, with the exception of the -h, -v, and
-T dev short form options, and all long form options, which are parsed internally by pdfroff , all options
and file name arguments specified on the command line are passed on to groff , to control the formatting of
the PDF document. Consequently, pdfroff accepts all options and arguments, as specified in groff (1),
which may also be considered as the definitive reference for all standard pdfroff options and argument us-
age.

Options
pdfroff accepts all of the short form options (i.e., those introduced by a single hyphen), which are available
with groff itself. In most cases, these are simply passed transparently to groff ; the following, however, are
handled specially by pdfroff .

-h Same as --help; see below.

-i Process standard input, after all other specified input files. This is passed transparently to groff ,
but, if grouped with other options, it must be the first in the group. Hiding it within a group breaks
standard input processing, in the multiple-pass groff processing context of pdfroff .

groff 1.23.0 2 July 2023 91

pdfroff (1) General Commands Manual pdfroff (1)

-T dev Only -T ps is supported by pdfroff . Attempting to specify any other device causes pdfroff to
abort.

-v Same as --version; see below.

See groff (1) for a description of all other short form options, which are transparently passed through
pdfroff to groff .

All long form options (i.e., those introduced by a double hyphen) are interpreted locally by pdfroff ; they
are not passed on to groff , unless otherwise stated below.

--help Causes pdfroff to display a summary of the its usage syntax, and supported options, and then exit.

--emit-ps
Suppresses the final output conversion step, causing pdfroff to emit PostScript output instead of
PDF. This may be useful to capture intermediate PostScript output when using a specialised post-
processor, such as gpresent for example, in place of the default Ghostscript PDF writer.

--keep-temporary-files
Suppresses the deletion of temporary files, which normally occurs after pdfroff has completed
PDF document formatting; this may be useful when debugging formatting problems.

See section “Files” below for a description of the temporary files used by pdfroff .

--no-pdf-output
May be used with the --reference-dictionary=name option (described below) to eliminate the
overhead of PDF formatting when running pdfroff to create a reference dictionary for use in a dif-
ferent document.

--no-reference-dictionary
May be used to eliminate the overhead of creating a reference dictionary, when it is known that the
target PDF document contains no public references, created by the pdfhref macro.

--no-toc-relocation
May be used to eliminate the extra groff processing pass, which is required to generate a table of
contents, and relocate it to the start of the PDF document, when processing any document which
lacks an automatically generated table of contents.

--no-kill-null-pages
While preparing for simulation of the manual collation step, which is traditionally required to relo-
cate a table of contents to the start of a document, pdfroff accumulates a number of empty page
descriptions into the intermediate PostScript output stream. During the final collation step, these
empty pages are normally discarded from the finished document; this option forces pdfroff to
leave them in place.

--pdf-output=name
Specifies the name to be used for the resultant PDF document; if unspecified, the PDF output is
written to standard output. A future version of pdfroff may use this option, to encode the docu-
ment name in a generated reference dictionary.

--reference-dictionary=name
Specifies the name to be used for the generated reference dictionary file; if unspecified, the refer-
ence dictionary is created in a temporary file, which is deleted when pdfroff completes processing
of the current document. This option must be specified, if it is desired to save the reference dictio-
nary, for use in references placed in other PDF documents.

--report-progress
Causes pdfroff to display an informational message on standard error, at the start of each groff
processing pass.

--stylesheet=name
Specifies the name of an input file, to be used as a style sheet for formatting of content, which is to
be placed before the table of contents, in the formatted PDF document.

groff 1.23.0 2 July 2023 92

pdfroff (1) General Commands Manual pdfroff (1)

--version
Causes pdfroff to display a version identification message. The entire command line is then
passed transparently to groff , in a one pass operation only, in order to display the associated groff
version information, before exiting.

Environment
The following environment variables may be set, and exported, to modify the behaviour of pdfroff .

PDFROFF_COLLATE
Specifies the program to be used for collation of the finished PDF document.

This collation step may be required to move tables of contents to the start of the finished PDF doc-
ument, when formatting with traditional macro packages, which print them at the end. However,
users should not normally need to specify PDFROFF_COLLATE, (and indeed, are not encouraged
to do so). If unspecified, pdfroff uses sed(1) by default, which normally suffices.

If PDFROFF_COLLATE is specified, then it must act as a filter, accepting a list of file name argu-
ments, and write its output to the standard output stream, whence it is piped to the
PDFROFF_POSTPROCESSOR_COMMAND, to produce the finished PDF output.

When specifying PDFROFF_COLLATE, it is normally necessary to also specify
PDFROFF_KILL_NULL_PAGES.

PDFROFF_COLLATE is ignored, if pdfroff is invoked with the --no-kill-null-pages option.

PDFROFF_KILL_NULL_PAGES
Specifies options to be passed to the PDFROFF_COLLATE program.

It should not normally be necessary to specify PDFROFF_KILL_NULL_PAGES. The internal de-
fault is a sed(1) script, which is intended to remove completely blank pages from the collated out-
put stream, and which should be appropriate in most applications of pdfroff . However, if any al-
ternative to sed(1) is specified for PDFROFF_COLLATE, then it is likely that a corresponding al-
ternative specification for PDFROFF_KILL_NULL_PAGES is required.

As in the case of PDFROFF_COLLATE, PDFROFF_KILL_NULL_PAGES is ignored, if pdfroff
is invoked with the --no-kill-null-pages option.

PDFROFF_POSTPROCESSOR_COMMAND
Specifies the command to be used for the final document conversion from PostScript intermediate
output to PDF. It must behave as a filter, writing its output to the standard output stream, and must
accept an arbitrary number of files . . . arguments, with the special case of “-” representing the
standard input stream.

If unspecified, PDFROFF_POSTPROCESSOR_COMMAND defaults to
gs -dBATCH -dQUIET -dNOPAUSE -dSAFER -sDEVICE=pdfwrite \

-sOutputFile=-

GROFF_TMPDIR
Identifies the directory in which pdfroff should create temporary files. If GROFF_TMPDIR is not
specified, then the variables TMPDIR, TMP and TEMP are considered in turn as possible tempo-
rary file repositories. If none of these are set, then temporary files are created in the current direc-
tory.

GROFF_GHOSTSCRIPT_INTERPRETER
Specifies the program to be invoked when pdfroff converts groff PostScript output to PDF. If
PDFROFF_POSTPROCESSOR_COMMAND is specified, then the command name it specifies is
implicitly assigned to GROFF_GHOSTSCRIPT_INTERPRETER, overriding any explicit setting
specified in the environment. If GROFF_GHOSTSCRIPT_INTERPRETER is not specified, then
pdfroff searches the process PATH , looking for a program with any of the well known names for
the Ghostscript interpreter; if no Ghostscript interpreter can be found, pdfroff aborts.

groff 1.23.0 2 July 2023 93

pdfroff (1) General Commands Manual pdfroff (1)

GROFF_AWK_INTERPRETER
Specifies the program to be invoked when pdfroff is extracting reference dictionary entries from a
groff intermediate message stream. If GROFF_AWK_INTERPRETER is not specified, then
pdfroff searches the process PATH , looking for any of the preferred programs, gawk, mawk,
nawk, and awk, in that order; if none of these are found, pdfroff issues a warning message, and
continue processing; however, in this case, no reference dictionary is created.

OSTYPE
Typically defined automatically by the operating system, OSTYPE is used on Microsoft
Win32/MS-DOS platforms only, to infer the default PATH_SEPARATOR character, which is used
when parsing the process PATH to search for external helper programs.

PATH_SEPARATOR
If set, PATH_SEPARATOR overrides the default separator character, (‘:’ on POSIX/Unix systems,
inferred from OSTYPE on Microsoft Win32/MS-DOS), which is used when parsing the process
PATH to search for external helper programs.

SHOW_PROGRESS
If this is set to a non-empty value, then pdfroff always behaves as if the --report-progress op-
tion is specified on the command line.

Files
Input and output files for pdfroff may be named according to any convention of the user’s choice. Typi-
cally, input files may be named according to the choice of the principal normatting macro package, e.g.,
file.ms might be an input file for formatting using the ms macros (s.tmac); normally, the final output file
should be named file.pdf .

Temporary files created by pdfroff are placed in the file system hierarchy, in or below the directory speci-
fied by environment variables (see section “Environment” above). If mktemp(1) is available, it is invoked to
create a private subdirectory of the nominated temporary files directory, (with subdirectory name derived
from the template pdfroff-XXXXXXXXXX); if this subdirectory is successfully created, the temporary files
will be placed within it, otherwise they will be placed directly in the directory nominated in the environ-
ment.

All temporary files themselves are named according to the convention pdf $$.*, where $$ is the standard
shell variable representing the process identifier of the pdfroff process itself, and * represents any of the ex-
tensions used by pdfroff to identify the following temporary and intermediate files.

pdf $$.tmp
A scratch pad file, used to capture reference data emitted by groff , during the reference dictionary
compilation phase.

pdf $$.ref
The reference dictionary, as compiled in the last but one pass of the reference dictionary compila-
tion phase; (at the start of the first pass, this file is created empty; in successive passes, it contains
the reference dictionary entries, as collected in the preceding pass).

If the --reference-dictionary=name option is specified, this intermediate file becomes perma-
nent, and is named name, rather than pdf $$.ref .

pdf $$.cmp
Used to collect reference dictionary entries during the active pass of the reference dictionary com-
pilation phase. At the end of any pass, when the content of pdf $$.cmp compares as identical to
pdf $$.ref , (or the corresponding file named by the --reference-dictionary=name option), then
reference dictionary compilation is terminated, and the document reference map is appended to
this intermediate file, for inclusion in the final formatting passes.

pdf $$.tc
An intermediate PostScript file, in which “Table of Contents” entries are collected, to facilitate re-
location before the body text, on ultimate output to the Ghostscript postprocessor.

groff 1.23.0 2 July 2023 94

pdfroff (1) General Commands Manual pdfroff (1)

pdf $$.ps
An intermediate PostScript file, in which the body text is collected prior to ultimate output to the
Ghostscript postprocessor, in the proper sequence, after pdf $$.tc.

Authors
pdfroff was written by Keith Marshall 〈keith.d.marshall@ntlworld.com〉, who maintains it at his groff-pdf-
mark OSDN site 〈https://osdn.net/users/keith/pf/groff-pdfmark/wiki/FrontPage〉. groff ’s version may be
withdrawn in a future release.

See also
Groff: The GNU Implementation of troff , by Trent A. Fisher and Werner Lemberg, is the primary groff
manual. You can browse it interactively with “info groff”.

Since pdfroff provides a superset of all groff capabilities, the above manual, or its terser reference page,
groff (7) may also be considered definitive references to all standard capabilities of pdfroff , with this docu-
ment providing the reference to pdfroff ’s extended features.

While pdfroff imposes neither any restriction on, nor any requirement for, the use of any specific groff
macro package, a number of supplied macro packages, and in particular those associated with the package
pdfmark.tmac, are best suited for use with pdfroff as the preferred formatter.

/usr/share/doc/groff-1.23.0/pdf/pdfmark.pdf
“Portable Document Format Publishing with GNU Troff ”, by Keith Marshall, offers detailed docu-
mentation on the use of these packages. This file, together with its source, pdfmark.ms, is part of
the groff distribution.

groff 1.23.0 2 July 2023 95

pfbtops(1) General Commands Manual pfbtops(1)

Name
pfbtops - translate PostScript Printer Font Binary files to Printer Font ASCII

Synopsis
pfbtops [pfb-file]

pfbtops --help

pfbtops -v
pfbtops --version

Description
pfbtops translates a PostScript Type 1 font in Printer Font Binary (PFB) format to Printer Font ASCII
(PFA) format, splitting overlong lines in text packets into smaller chunks. If pfb-file is omitted, the PFB
file will be read from the standard input stream. The PFA font will be written on the standard output
stream. PostScript fonts for MS-DOS were historically supplied in PFB format. Use of a PostScript Type 1
font with groff requires conversion of its metrics (AFM file) to a groff font description file; see
afmtodit(1).

The --help option displays a usage message, while -v and --version show version information; all exit
afterward.

See also
grops(1), gropdf (1)

groff 1.23.0 2 July 2023 96

pic(1) General Commands Manual pic(1)

Name
pic - compile pictures for troff or TeX

Synopsis
pic [-CnSU] [file . . .]

pic -t [-cCSUz] [file . . .]

pic --help

pic -v
pic --version

Description
The GNU implementation of pic is part of the groff (1) document formatting system. pic is a troff (1) pre-
processor that translates descriptions of diagrammatic pictures embedded in roff (7) or TEX input files into
the language understood by TEX or troff . It copies the contents of each file to the standard output stream,
except that lines between .PS and any of .PE, .PF, or .PY are interpreted as picture descriptions in the pic
language. End a pic picture with .PE to leave the drawing position at the bottom of the picture, and with
.PF or .PY to leave it at the top. Normally, pic is not executed directly by the user, but invoked by specify-
ing the -p option to groff (1). If no file operands are given on the command line, or if file is “-”, the stan-
dard input stream is read.

It is the user’s responsibility to provide appropriate definitions of the PS, PE, and one or both of the PF and
PY macros. When a macro package does not supply these, obtain simple definitions with the groff option
-mpic; these will center each picture.

GNU pic supports PY as a synonym of PF to work around a name space collision with the mm macro
package, which defines PF as a page footer management macro. Use PF preferentially unless a similar
problem faces your document.

Options
--help displays a usage message, while -v and --version show version information; all exit afterward.

-c Be more compatible with tpic; implies -t. Lines beginning with \ are not passed through transpar-
ently. Lines beginning with . are passed through with the initial . changed to \. A line beginning
with .ps is given special treatment: it takes an optional integer argument specifying the line thick-
ness (pen size) in milliinches; a missing argument restores the previous line thickness; the default
line thickness is 8 milliinches. The line thickness thus specified takes effect only when a non-neg-
ative line thickness has not been specified by use of the thickness attribute or by setting the
linethick variable.

-C Recognize .PS, .PE, .PF, and .PY even when followed by a character other than space or newline.

-n Don’t use groff extensions to the troff drawing commands. Specify this option if a postprocessor
you’re using doesn’t support these extensions, described in groff_out(5). This option also causes
pic not to use zero-length lines to draw dots in troff mode.

-S Operate in safer mode; sh commands are ignored. This mode, enabled by default, can be useful
when operating on untrustworthy input.

-t Produce TEX output.

-U Operate in unsafe mode; sh commands are interpreted.

-z In TEX mode, draw dots using zero-length lines.

The following options supported by other versions of pic are ignored.

-D Draw all lines using the \D escape sequence. GNU pic always does this.

-T dev Generate output for the troff device dev. This is unnecessary because the troff output generated
by GNU pic is device-independent.

groff 1.23.0 2 July 2023 97

pic(1) General Commands Manual pic(1)

Usage
This section primarily discusses the differences between GNU pic and the Eighth Edition Research Unix
version of AT&T pic (1985). Many of these differences also apply to later versions of AT&T pic.

TEX mode
TEX-compatible output is produced when the -t option is specified. You must use a TEX driver that sup-
ports tpic version 2 specials. (tpic was a fork of AT&T pic by Tim Morgan of the University of California
at Irvine that diverged from its source around 1984. It is best known today for lending its name to a group
of \special commands it produced for TEX.)

Lines beginning with \ are passed through transparently; a % is added to the end of the line to avoid un-
wanted spaces. You can safely use this feature to change fonts or the value of \baselineskip. Anything else
may well produce undesirable results; use at your own risk. By default, lines beginning with a dot are not
treated specially—but see the -c option.

In TEX mode, pic will define a vbox called \graph for each picture. Use GNU pic’s figname command to
change the name of the vbox. You must print that vbox yourself using the command

\centerline{\box\graph}
for instance. Since the vbox has a height of zero (it is defined with \vtop) this will produce slightly more
vertical space above the picture than below it;

\centerline{\raise 1em\box\graph}
would avoid this. To give the vbox a positive height and a depth of zero (as used by LATEX’s graphics.sty,
for example) define the following macro in your document.

\def\gpicbox#1{%
\vbox{\unvbox\csname #1\endcsname\kern 0pt}}

You can then simply say \gpicbox{graph} instead of \box\graph.

Commands
Several commands new to GNU pic accept delimiters, shown in their synopses as braces { }. Nesting of
braces is supported. Any other characters (except a space, tab, or newline) may be used as alternative de-
limiters, in which case the members of a given pair must be identical. Strings are recognized within delim-
iters of either kind; they may contain the delimiter character or unbalanced braces.

for variable = expr1 to expr2 [by [*]expr3] do X body X
Set variable to expr1. While the value of variable is less than or equal to expr2, do body and in-
crement variable by expr3; if by is not given, increment variable by 1. If expr3 is prefixed by *
then variable will instead be multiplied by expr3. The value of expr3 can be negative for the addi-
tive case; variable is then tested whether it is greater than or equal to expr2. For the multiplicative
case, expr3 must be greater than zero. If the constraints aren’t met, the loop isn’t executed. X can
be any character not occurring in body.

if expr then X if-true X [else Y if-false Y]
Evaluate expr; if it is non-zero then do if-true, otherwise do if-false. X can be any character not
occurring in if-true. Y can be any character not occurring in if-false.

print arg . . .
Concatenate and write arguments to the standard error stream followed by a newline. Each arg
must be an expression, a position, or text. This is useful for debugging.

command arg . . .
Concatenate arguments and pass them as a line to troff or TEX. Each arg must be an expression, a
position, or text. command allows the values of pic variables to be passed to the formatter. For
example,

.PS
x = 14
command ".ds string x is " x "."
.PE
*[string]

produces

groff 1.23.0 2 July 2023 98

pic(1) General Commands Manual pic(1)

x is 14.
when formatted with troff .

sh X command X
Pass command to a shell.

copy " filename"
Include filename at this point in the file.

copy [" filename"] thru X body X [until "word"]
copy [" filename"] thru macro [until "word"]

This construct does body once for each line of filename; the line is split into blank-delimited
words, and occurrences of $i in body, for i between 1 and 9, are replaced by the i-th word of the
line. If filename is not given, lines are taken from the current input up to .PE. If an until clause is
specified, lines will be read only until a line the first word of which is word; that line will then be
discarded. X can be any character not occurring in body. For example,

.PS
copy thru % circle at ($1,$2) % until "END"
1 2
3 4
5 6
END
box
.PE

and
.PS
circle at (1,2)
circle at (3,4)
circle at (5,6)
box
.PE

are equivalent. The commands to be performed for each line can also be taken from a macro de-
fined earlier by giving the name of the macro as the argument to thru. The argument after thru is
looked up as a macro name first; if not defined, its first character is interpreted as a delimiter.

reset
reset pvar1[,] pvar2 . . .

Reset predefined variables pvar1, pvar2 . . . to their default values; if no arguments are given, reset
all predefined variables to their default values. Variable names may be separated by commas,
spaces, or both. Assigning a value to scale also causes all predefined variables that control dimen-
sions to be reset to their default values times the new value of scale.

plot expr ["text"]
This is a text object which is constructed by using text as a format string for sprintf with an argu-
ment of expr. If text is omitted a format string of "%g" is used. Attributes can be specified in the
same way as for a normal text object. Be very careful that you specify an appropriate format
string; pic does only very limited checking of the string. This is deprecated in favour of sprintf.

var := expr
This syntax resembles variable assignment with = except that var must already be defined, and
expr will be assigned to var without creating a variable local to the current block. (By contrast, =
defines var in the current block if it is not already defined there, and then changes the value in the
current block only.) For example,

.PS
x = 3
y = 3
[
x := 5

groff 1.23.0 2 July 2023 99

pic(1) General Commands Manual pic(1)

y = 5
]
print x y
.PE

writes
5 3

to the standard error stream.

Expressions
The syntax for expressions has been significantly extended.

x ^ y (exponentiation)
sin(x)
cos(x)
atan2(y, x)
log(x) (base 10)
exp(x) (base 10, i.e. 10x)
sqrt(x)
int(x)
rand() (return a random number between 0 and 1)
rand(x) (return a random number between 1 and x; deprecated)
srand(x) (set the random number seed)
max(e1, e2)
min(e1, e2)
!e
e1 && e2
e1 || e2
e1 == e2
e1 != e2
e1 >= e2
e1 > e2
e1 <= e2
e1 < e2
"str1" == "str2"
"str1" != "str2"

String comparison expressions must be parenthesised in some contexts to avoid ambiguity.

Other changes
A bare expression, expr, is acceptable as an attribute; it is equivalent to dir expr, where dir is the current
direction. For example

line 2i

means draw a line 2 inches long in the current direction. The ‘i’ (or ‘I’) character is ignored; to use another
measurement unit, set the scale variable to an appropriate value.

The maximum width and height of the picture are taken from the variables maxpswid and maxpsht. Ini-
tially, these have values 8.5 and 11.

Scientific notation is allowed for numbers. For example

x = 5e-2

Text attributes can be compounded. For example,

"foo" above ljust

is valid.

There is no limit to the depth to which blocks can be examined. For example,

[A: [B: [C: box]]] with .A.B.C.sw at 1,2

groff 1.23.0 2 July 2023 100

pic(1) General Commands Manual pic(1)

circle at last [].A.B.C

is acceptable.

Arcs now have compass points determined by the circle of which the arc is a part.

Circles, ellipses, and arcs can be dotted or dashed. In TEX mode splines can be dotted or dashed also.

Boxes can have rounded corners. The rad attribute specifies the radius of the quarter-circles at each corner.
If no rad or diam attribute is given, a radius of boxrad is used. Initially, boxrad has a value of 0. A box
with rounded corners can be dotted or dashed.

Boxes can have slanted sides. This effectively changes the shape of a box from a rectangle to an arbitrary
parallelogram. The xslanted and yslanted attributes specify the x and y offset of the box’s upper right cor-
ner from its default position.

The .PS line can have a second argument specifying a maximum height for the picture. If the width of zero
is specified the width will be ignored in computing the scaling factor for the picture. GNU pic will always
scale a picture by the same amount vertically as well as horizontally. This is different from DWB 2.0 pic
which may scale a picture by a different amount vertically than horizontally if a height is specified.

Each text object has an invisible box associated with it. The compass points of a text object are determined
by this box. The implicit motion associated with the object is also determined by this box. The dimensions
of this box are taken from the width and height attributes; if the width attribute is not supplied then the
width will be taken to be textwid; if the height attribute is not supplied then the height will be taken to be
the number of text strings associated with the object times textht. Initially, textwid and textht have a value
of 0.

In (almost all) places where a quoted text string can be used, an expression of the form

sprintf(" format", arg, . . .)

can also be used; this will produce the arguments formatted according to format, which should be a string
as described in printf (3) appropriate for the number of arguments supplied. Only the modifiers “#”, “-”,
“+”, and “ ” [space]), a minimum field width, an optional precision, and the conversion specifiers %e, %E,
%f, %g, %G, and %% are supported.

The thickness of the lines used to draw objects is controlled by the linethick variable. This gives the thick-
ness of lines in points. A negative value means use the default thickness: in TEX output mode, this means
use a thickness of 8 milliinches; in TEX output mode with the -c option, this means use the line thickness
specified by .ps lines; in troff output mode, this means use a thickness proportional to the pointsize. A zero
value means draw the thinnest possible line supported by the output device. Initially, it has a value of -1.
There is also a thick[ness] attribute. For example,

circle thickness 1.5

would draw a circle using a line with a thickness of 1.5 points. The thickness of lines is not affected by the
value of the scale variable, nor by the width or height given in the .PS line.

Boxes (including boxes with rounded corners or slanted sides), circles and ellipses can be filled by giving
them an attribute of fill[ed]. This takes an optional argument of an expression with a value between 0 and
1; 0 will fill it with white, 1 with black, values in between with a proportionally gray shade. A value
greater than 1 can also be used: this means fill with the shade of gray that is currently being used for text
and lines. Normally this will be black, but output devices may provide a mechanism for changing this.
Without an argument, then the value of the variable fillval will be used. Initially, this has a value of 0.5.
The invisible attribute does not affect the filling of objects. Any text associated with a filled object will be
added after the object has been filled, so that the text will not be obscured by the filling.

Additional modifiers are available to draw colored objects: outline[d] sets the color of the outline, shaded
the fill color, and colo[u]r[ed] sets both. All expect a subsequent string argument specifying the color.

circle shaded "green" outline "black"
Color is not yet supported in TEX mode. Device macro files like ps.tmac declare color names; you can de-
fine additional ones with the defcolor request (see groff (7)).

groff 1.23.0 2 July 2023 101

pic(1) General Commands Manual pic(1)

To change the name of the vbox in TEX mode, set the pseudo-variable figname (which is actually a spe-
cially parsed command) within a picture. Example:

.PS
figname = foobar;
...
.PE

The picture is then available in the box \foobar.

pic assumes that at the beginning of a picture both glyph and fill color are set to the default value.

Arrow heads will be drawn as solid triangles if the variable arrowhead is non-zero and either TEX mode is
enabled or the -n option has not been given. Initially, arrowhead has a value of 1. Solid arrow heads are
always filled with the current outline color.

The troff output of pic is device-independent. The -T option is therefore redundant. All numbers are
taken to be in inches; numbers are never interpreted to be in troff machine units.

Objects can have an aligned attribute. This will only work if the postprocessor is grops(1) or gropdf (1).
Any text associated with an object having the aligned attribute will be rotated about the center of the object
so that it is aligned in the direction from the start point to the end point of the object. This attribute will
have no effect on objects whose start and end points are coincident.

In places where nth is allowed, 'expr'th is also allowed. “'th“ is a single token: no space is allowed be-
tween the apostrophe and the “th”. For example,

for i = 1 to 4 do {
line from 'i'th box.nw to 'i+1'th box.se

}

Conversion
To obtain a stand-alone picture from a pic file, enclose your pic code with .PS and .PE requests; roff con-
figuration commands may be added at the beginning of the file, but no roff text.

It is necessary to feed this file into groff without adding any page information, so you must check which
.PS and .PE requests are actually called. For example, the mm macro package adds a page number, which
is very annoying. At the moment, calling standard groff without any macro package works. Alternatively,
you can define your own requests, e.g., to do nothing:

.de PS

..

.de PE

..

groff itself does not provide direct conversion into other graphics file formats. But there are lots of possi-
bilities if you first transform your picture into PostScript® format using the groff option -Tps. Since this
ps-file lacks BoundingBox information it is not very useful by itself, but it may be fed into other conversion
programs, usually named ps2other or pstoother or the like. Moreover, the PostScript interpreter Ghost-
script (gs(1)) has built-in graphics conversion devices that are called with the option

gs -sDEVICE=<devname>

Call

gs --help

for a list of the available devices.

An alternative may be to use the -Tpdf option to convert your picture directly into PDF format. The Medi-
aBox of the file produced can be controlled by passing a -P-p papersize to groff .

As the Encapsulated PostScript File Format EPS is getting more and more important, and the conversion
wasn’t regarded trivial in the past you might be interested to know that there is a conversion tool named
ps2eps which does the right job. It is much better than the tool ps2epsi packaged with gs.

groff 1.23.0 2 July 2023 102

pic(1) General Commands Manual pic(1)

For bitmapped graphic formats, you should use pstopnm; the resulting (intermediate) pnm(5) file can be
then converted to virtually any graphics format using the tools of the netpbm package.

Files
/usr/share/groff/1.23.0/tmac/pic.tmac

offers simple definitions of the PS, PE, PF, and PY macros.

Bugs
Characters that are invalid as input to GNU troff (see the groff Texinfo manual or groff_char(7) for a list)
are rejected even in TEX mode.

The interpretation of fillval is incompatible with the pic in Tenth Edition Research Unix, which interprets 0
as black and 1 as white.

See also
/usr/share/doc/groff-1.23.0/pic.ps

“Making Pictures with GNU pic”, by Eric S. Raymond. This file, together with its source, pic.ms,
is part of the groff distribution.

“PIC—A Graphics Language for Typesetting: User Manual”, by Brian W. Kernighan, 1984 (revised 1991),
AT&T Bell Laboratories Computing Science Technical Report No. 116

ps2eps is available from CTAN mirrors, e.g., 〈ftp://ftp.dante.de/tex-archive/support/ps2eps/〉

W. Richard Stevens, Turning PIC into HTML 〈http://www.kohala.com/start/troff/pic2html.html〉

W. Richard Stevens, Examples of pic Macros 〈http://www.kohala.com/start/troff/pic.examples.ps〉

troff (1), groff_out(5), tex(1), gs(1), ps2eps(1), pstopnm(1), ps2epsi(1), pnm(5)

groff 1.23.0 2 July 2023 103

pic2graph(1) General Commands Manual pic2graph(1)

Name
pic2graph - convert a pic diagram into a cropped image

Synopsis
pic2graph [-unsafe] [-format output-format] [-eqn delimiters] [convert-argument . . .]

pic2graph --help

pic2graph -v
pic2graph --version

Description
pic2graph reads a pic(1) program from the standard input and writes an image file, by default in Portable
Network Graphics (PNG) format, to the standard output. It furthermore translates eqn(1) constructs, so it
can be used for generating images of mathematical formulae.

The input PIC code should not be wrapped with the .PS and .PE/.PF macros that normally guard it within
groff (1) documents.

Arguments not recognized by pic2graph are passed to the ImageMagick or GraphicsMagick program
convert(1). By specifying these, you can give your image a border, set the image’s pixel density, or per-
form other useful transformations.

The output image is clipped using convert’s -trim option to the smallest possible bounding box that con-
tains all the black pixels.

Options
--help displays a usage message, while -v and --version show version information; all exit afterward.

-eqn delimiters
Use delimiters as the opening and closing characters that delimit eqn directives; the default is
“$$”. The option argument delimiters should be a two-character string, but an empty string ("") is
accepted as a directive to disable eqn processing.

-format output-format
Write the image in output-format, which must be understood by convert; the default is PNG.

-unsafe
Run groff in unsafe mode, enabling the PIC command sh to execute arbitrary Unix shell com-
mands. The groff default is to forbid this.

Environment
GROFF_TMPDIR
TMPDIR
TMP
TEMP These environment variables are searched in the given order to determine the directory where tem-

porary files will be created. If none are set, /tmp is used.

Authors
pic2graph was written by Eric S. Raymond 〈esr@thyrsus.com〉, based on a recipe by W. Richard Stevens.

See also
W. Richard Stevens, Turning PIC into HTML 〈http://www.kohala.com/start/troff/pic2html.html〉

eqn2graph(1), grap2graph(1), pic(1), eqn(1), groff (1), convert(1)

groff 1.23.0 2 July 2023 104

preconv(1) General Commands Manual preconv(1)

Name
preconv - prepare files for typesetting with groff

Synopsis
preconv [-dr] [-D fallback-encoding] [-e encoding] [file . . .]

preconv -h
preconv --help

preconv -v
preconv --version

Description
preconv reads each file, converts its encoded characters to a form troff (1) can interpret, and sends the result
to the standard output stream. Currently, this means that code points in the range 0–127 (in US-ASCII,
ISO 8859, or Unicode) remain as-is and the remainder are converted to the groff special character form
“\[uXXXX]”, where XXXX is a hexadecimal number of four to six digits corresponding to a Unicode code
point. By default, preconv also inserts a roff .lf request at the beginning of each file, identifying it for the
benefit of later processing (including diagnostic messages); the -r option suppresses this behavior.

In typical usage scenarios, preconv need not be run directly; instead it should be invoked with the -k or -K
options of groff . If no file operands are given on the command line, or if file is “-”, the standard input
stream is read.

preconv tries to find the input encoding with the following algorithm, stopping at the first success.

1. If the input encoding has been explicitly specified with option -e, use it.

2. If the input starts with a Unicode Byte Order Mark, determine the encoding as UTF-8, UTF-16, or
UTF-32 accordingly.

3. If the input stream is seekable, check the first and second input lines for a recognized GNU Emacs file-
local variable identifying the character encoding, here referred to as the “coding tag” for brevity. If
found, use it.

4. If the input stream is seekable, and if the uchardet library is available on the system, use it to try to in-
fer the encoding of the file.

5. If the -D option specifies an encoding, use it.

6. Use the encoding specified by the current locale (LC_CTYPE), unless the locale is “C”, “POSIX”, or
empty, in which case assume Latin-1 (ISO 8859-1).

The coding tag and uchardet methods in the above procedure rely upon a seekable input stream; when pre-
conv reads from a pipe, the stream is not seekable, and these detection methods are skipped. If character
encoding detection of your input files is unreliable, arrange for one of the other methods to succeed by us-
ing preconv’s -D or -e options, or by configuring your locale appropriately. groff also supports a
GROFF_ENCODING environment variable, which can be overridden by its -K option. Valid values for
(or parameters to) all of these are enumerated in the lists of recognized coding tags in the next subsection,
and are further influenced by iconv library support.

Coding tags
Text editors that support more than a single character encoding need tags within the input files to mark the
file’s encoding. While it is possible to guess the right input encoding with the help of heuristics that are re-
liable for a preponderance of natural language texts, they are not absolutely reliable. Heuristics can fail on
inputs that are too short or don’t represent a natural language.

Consequently, preconv supports the coding tag convention used by GNU Emacs (with some restrictions).
This notation appears in specially marked regions of an input file designated for “file-local variables”.

preconv interprets the following syntax if it occurs in a roff comment in the first or second line of the input
file. Both “\"” and “\#” comment forms are recognized, but the control (or no-break control) character must
be the default and must begin the line. Similarly, the escape character must be the default.

-*- [...;] coding: encoding[; ...] -*-

groff 1.23.0 2 July 2023 105

preconv(1) General Commands Manual preconv(1)

The only variable preconv interprets is “coding”, which can take the values listed below.

The following list comprises all MIME “charset” parameter values recognized, case-insensitively, by pre-
conv.

big5, cp1047, euc-jp, euc-kr, gb2312, iso-8859-1, iso-8859-2, iso-8859-5, iso-8859-7,
iso-8859-9, iso-8859-13, iso-8859-15, koi8-r, us-ascii, utf-8, utf-16, utf-16be, utf-16le

In addition, the following list of other coding tags is recognized, each of which is mapped to an appropriate
value from the list above.

ascii, chinese-big5, chinese-euc, chinese-iso-8bit, cn-big5, cn-gb, cn-gb-2312, cp878, csascii,
csisolatin1, cyrillic-iso-8bit, cyrillic-koi8, euc-china, euc-cn, euc-japan, euc-japan-1990,
euc-korea, greek-iso-8bit, iso-10646/utf8, iso-10646/utf-8, iso-latin-1, iso-latin-2,
iso-latin-5, iso-latin-7, iso-latin-9, japanese-euc, japanese-iso-8bit, jis8, koi8, korean-euc,
korean-iso-8bit, latin-0, latin1, latin-1, latin-2, latin-5, latin-7, latin-9, mule-utf-8,
mule-utf-16, mule-utf-16be, mule-utf-16-be, mule-utf-16be-with-signature, mule-utf-16le,
mule-utf-16-le, mule-utf-16le-with-signature, utf8, utf-16-be, utf-16-be-with-signature,
utf-16be-with-signature, utf-16-le, utf-16-le-with-signature, utf-16le-with-signature

Trailing “-dos”, “-unix”, and “-mac” suffixes on coding tags (which indicate the end-of-line convention
used in the file) are disregarded for the purpose of comparison with the above tags.

iconv support
While preconv recognizes all of the coding tags listed above, it is capable on its own of interpreting only
three encodings: Latin-1, code page 1047, and UTF-8. If iconv support is configured at compile time and
available at run time, all others are passed to iconv library functions, which may recognize many additional
encoding strings. The command “preconv -v” discloses whether iconv support is configured.

The use of iconv means that characters in the input that encode invalid code points for that encoding may be
dropped from the output stream or mapped to the Unicode replacement character (U+FFFD). Compare the
following examples using the input “café” (note the “e” with an acute accent), which due to its short length
challenges inference of the encoding used.

printf 'caf\351\n' | LC_ALL=en_US.UTF-8 preconv
printf 'caf\351\n' | preconv -e us-ascii
printf 'caf\351\n' | preconv -e latin-1

The fate of the accented “e” differs in each case. In the first, uchardet fails to detect an encoding (though
the library on your system may behave differently) and preconv falls back to the locale settings, where oc-
tal 351 starts an incomplete UTF-8 sequence and results in the Unicode replacement character. In the sec-
ond, it is not a representable character in the declared input encoding of US-ASCII and is discarded by
iconv. In the last, it is correctly detected and mapped.

Limitations
preconv cannot perform any transformation on input that it cannot see. Examples include files that are in-
terpolated by preprocessors that run subsequently, including soelim(1); files included by troff itself through
“so” and similar requests; and string definitions passed to troff through its -d command-line option.

preconv assumes that its input uses the default escape character, a backslash \, and writes special character
escape sequences accordingly.

Options
-h and --help display a usage message, while -v and --version show version information; all exit after-
ward.

-d Emit debugging messages to the standard error stream.

-D fallback-encoding
Report fallback-encoding if all detection methods fail.

-e encoding
Skip detection and assume encoding; see groff ’s -K option.

groff 1.23.0 2 July 2023 106

preconv(1) General Commands Manual preconv(1)

-r Write files “raw”; do not add .lf requests.

See also
groff (1), iconv(3), locale(7)

groff 1.23.0 2 July 2023 107

refer(1) General Commands Manual refer(1)

Name
refer - process bibliographic references for groff

Synopsis
refer [-bCenPRS] [-a n] [-B field .macro] [-c fields] [-f n] [-i fields] [-k field] [-l range-expression]

[-p database-file] [-s fields] [-t n] [file . . .]

refer --help

refer -v
refer --version

Description
The GNU implementation of refer is part of the groff (1) document formatting system. refer is a troff (1)
preprocessor that prepares bibilographic citations by looking up keywords specified in a roff (7) input docu-
ment, obviating the need to type such annotations, and permitting the citation style in formatted output to
be altered independently and systematically. It copies the contents of each file to the standard output
stream, except that it interprets lines between .[and .] as citations to be translated into groff input, and lines
between .R1 and .R2 as instructions regarding how citations are to be processed. Normally, refer is not ex-
ecuted directly by the user, but invoked by specifying the -R option to groff (1). If no file operands are
given on the command line, or if file is “-”, the standard input stream is read.

Each citation specifies a reference. The citation can specify a reference that is contained in a bibliographic
database by giving a set of keywords that only that reference contains. Alternatively it can specify a refer-
ence by supplying a database record in the citation. A combination of these alternatives is also possible.

For each citation, refer can produce a mark in the text. This mark consists of some label which can be sep-
arated from the text and from other labels in various ways. For each reference it also outputs groff (7) lan-
guage commands that can be used by a macro package to produce a formatted reference for each citation.
The output of refer must therefore be processed using a suitable macro package, such as me, mm, mom, or
ms. The commands to format a citation’s reference can be output immediately after the citation, or the ref-
erences may be accumulated, and the commands output at some later point. If the references are accumu-
lated, then multiple citations of the same reference will produce a single formatted reference.

The interpretation of lines between .R1 and .R2 as prepreocessor commands is a feature of GNU refer.
Documents making use of this feature can still be processed by AT&T refer just by adding the lines

.de R1

.ig R2

..
to the beginning of the document. This will cause troff (1) to ignore everything between .R1 and .R2. The
effect of some commands can also be achieved by options. These options are supported mainly for compat-
ibility with AT&T refer. It is usually more convenient to use commands.

refer generates .lf requests so that file names and line numbers in messages produced by commands that
read refer output will be correct; it also interprets lines beginning with .lf so that file names and line num-
bers in the messages and .lf lines that it produces will be accurate even if the input has been preprocessed
by a command such as soelim(1).

Bibliographic databases
The bibliographic database is a text file consisting of records separated by one or more blank lines. Within
each record fields start with a % at the beginning of a line. Each field has a one character name that imme-
diately follows the %. It is best to use only upper and lower case letters for the names of fields. The name
of the field should be followed by exactly one space, and then by the contents of the field. Empty fields are
ignored. The conventional meaning of each field is as follows:

%A The name of an author. If the name contains a suffix such as “Jr.”, it should be separated from the
last name by a comma. There can be multiple occurrences of the %A field. The order is signifi-
cant. It is a good idea always to supply an %A field or a %Q field.

groff 1.23.0 2 July 2023 108

refer(1) General Commands Manual refer(1)

%B For an article that is part of a book, the title of the book.

%C The place (city) of publication.

%D The date of publication. The year should be specified in full. If the month is specified, the name
rather than the number of the month should be used, but only the first three letters are required. It
is a good idea always to supply a %D field; if the date is unknown, a value such as in press or un-
known can be used.

%E For an article that is part of a book, the name of an editor of the book. Where the work has editors
and no authors, the names of the editors should be given as %A fields and “, (ed.)” or “, (eds.)”
should be appended to the last author.

%G U.S. government ordering number.

%I The publisher (issuer).

%J For an article in a journal, the name of the journal.

%K Keywords to be used for searching.

%L Label.

%N Journal issue number.

%O Other information. This is usually printed at the end of the reference.

%P Page number. A range of pages can be specified as m-n.

%Q The name of the author, if the author is not a person. This will only be used if there are no %A
fields. There can only be one %Q field.

%R Technical report number.

%S Series name.

%T Title. For an article in a book or journal, this should be the title of the article.

%V Volume number of the journal or book.

%X Annotation.

For all fields except %A and %E, if there is more than one occurrence of a particular field in a record, only
the last such field will be used.

If accent strings are used, they should follow the character to be accented. This means that an ms document
must call the .AM macro when it initializes. Accent strings should not be quoted: use one \ rather than two.
Accent strings are an obsolescent feature of the me and ms macro packages; modern documents should use
groff special character escape sequences instead; see groff_char(7).

Citations
Citations have a characteristic format.

.[opening-text
flags keywords
fields
.]closing-text

The opening-text, closing-text, and flags components are optional. Only one of the keywords and fields
components need be specified.

The keywords component says to search the bibliographic databases for a reference that contains all the
words in keywords. It is an error if more than one reference is found.

The fields components specifies additional fields to replace or supplement those specified in the reference.
When references are being accumulated and the keywords component is non-empty, then additional fields
should be specified only on the first occasion that a particular reference is cited, and will apply to all cita-
tions of that reference.

groff 1.23.0 2 July 2023 109

refer(1) General Commands Manual refer(1)

The opening-text and closing-text components specify strings to be used to bracket the label instead of
those in the bracket-label command. If either of these components is non-empty, the strings specified in
the bracket-label command will not be used; this behavior can be altered using the [and] flags. Leading
and trailing spaces are significant for these components.

The flags component is a list of non-alphanumeric characters each of which modifies the treatment of this
particular citation. AT&T refer will treat these flags as part of the keywords and so will ignore them since
they are non-alphanumeric. The following flags are currently recognized.

Use the label specified by the short-label command, instead of that specified by the label com-
mand. If no short label has been specified, the normal label will be used. Typically the short label
is used with author-date labels and consists of only the date and possibly a disambiguating letter;
the “#” is supposed to be suggestive of a numeric type of label.

[Precede opening-text with the first string specified in the bracket-label command.

] Follow closing-text with the second string specified in the bracket-label command.

An advantage of using the [and] flags rather than including the brackets in opening-text and closing-text is
that you can change the style of bracket used in the document just by changing the bracket-label com-
mand. Another is that sorting and merging of citations will not necessarily be inhibited if the flags are
used.

If a label is to be inserted into the text, it will be attached to the line preceding the .[line. If there is no such
line, then an extra line will be inserted before the .[line and a warning will be given.

There is no special notation for making a citation to multiple references. Just use a sequence of citations,
one for each reference. Don’t put anything between the citations. The labels for all the citations will be at-
tached to the line preceding the first citation. The labels may also be sorted or merged. See the description
of the <> label expression, and of the sort-adjacent-labels and abbreviate-label-ranges commands. A
label will not be merged if its citation has a non-empty opening-text or closing-text. However, the labels
for a citation using the] flag and without any closing-text immediately followed by a citation using the [
flag and without any opening-text may be sorted and merged even though the first citation’s opening-text or
the second citation’s closing-text is non-empty. (If you wish to prevent this, use the dummy character es-
cape sequence \& as the first citation’s closing-text.)

Commands
Commands are contained between lines starting with .R1 and .R2. Recognition of these lines can be pre-
vented by the -R option. When a .R1 line is recognized any accumulated references are flushed out. Nei-
ther .R1 nor .R2 lines, nor anything between them, is output.

Commands are separated by newlines or semicolons. A number sign (#) introduces a comment that extends
to the end of the line, but does not conceal the newline. Each command is broken up into words. Words
are separated by spaces or tabs. A word that begins with a (neutral) double quote (") extends to the next
double quote that is not followed by another double quote. If there is no such double quote, the word ex-
tends to the end of the line. Pairs of double quotes in a word beginning with a double quote collapse to one
double quote. Neither a number sign nor a semicolon is recognized inside double quotes. A line can be
continued by ending it with a backslash “\”; this works everywhere except after a number sign.

Each command name that is marked with * has an associated negative command no-name that undoes the
effect of name. For example, the no-sort command specifies that references should not be sorted. The
negative commands take no arguments.

In the following description each argument must be a single word; field is used for a single upper or lower
case letter naming a field; fields is used for a sequence of such letters; m and n are used for a non-negative
numbers; string is used for an arbitrary string; file is used for the name of a file.

abbreviate* fields string1 string2 string3 string4
Abbreviate the first names of fields. An initial letter will be separated from another initial letter
by string1, from the last name by string2, and from anything else (such as “von” or “de”) by
string3. These default to a period followed by a space. In a hyphenated first name, the initial of
the first part of the name will be separated from the hyphen by string4; this defaults to a period.

groff 1.23.0 2 July 2023 110

refer(1) General Commands Manual refer(1)

No attempt is made to handle any ambiguities that might result from abbreviation. Names are ab-
breviated before sorting and before label construction.

abbreviate-label-ranges* string
Three or more adjacent labels that refer to consecutive references will be abbreviated to a label
consisting of the first label, followed by string, followed by the last label. This is mainly useful
with numeric labels. If string is omitted, it defaults to “-”.

accumulate*
Accumulate references instead of writing out each reference as it is encountered. Accumulated
references will be written out whenever a reference of the form

.[
$LIST$
.]

is encountered, after all input files have been processed, and whenever a .R1 line is recognized.

annotate* field string
field is an annotation; print it at the end of the reference as a paragraph preceded by the line

.string

If string is omitted, it will default to AP; if field is also omitted it will default to X. Only one field
can be an annotation.

articles string . . .
Each string is a definite or indefinite article, and should be ignored at the beginning of T fields
when sorting. Initially, “a”, “an”, and “the” are recognized as articles.

bibliography file . . .
Write out all the references contained in each bibliographic database file. This command should
come last in an .R1/.R2 block.

bracket-label string1 string2 string3
In the text, bracket each label with string1 and string2. An occurrence of string2 immediately fol-
lowed by string1 will be turned into string3. The default behavior is as follows.

bracket-label *([. *(.] ", "

capitalize fields
Convert fields to caps and small caps.

compatible*
Recognize .R1 and .R2 even when followed by a character other than space or newline.

database file . . .
Search each bibliographic database file. For each file, if an index file.i created by indxbib(1) ex-
ists, then it will be searched instead; each index can cover multiple databases.

date-as-label* string
string is a label expression that specifies a string with which to replace the D field after construct-
ing the label. See subsection “Label expressions” below for a description of label expressions.
This command is useful if you do not want explicit labels in the reference list, but instead want to
handle any necessary disambiguation by qualifying the date in some way. The label used in the
text would typically be some combination of the author and date. In most cases you should also
use the no-label-in-reference command. For example,

date-as-label D.+yD.y%a*D.-y
would attach a disambiguating letter to the year part of the D field in the reference.

default-database*
The default database should be searched. This is the default behavior, so the negative version of
this command is more useful. refer determines whether the default database should be searched
on the first occasion that it needs to do a search. Thus a no-default-database command must be
given before then, in order to be effective.

groff 1.23.0 2 July 2023 111

refer(1) General Commands Manual refer(1)

discard* fields
When the reference is read, fields should be discarded; no string definitions for fields will be out-
put. Initially, fields are XYZ.

et-al* string m n
Control use of et al. in the evaluation of @ expressions in label expressions. If the number of au-
thors needed to make the author sequence unambiguous is u and the total number of authors is t
then the last t - u authors will be replaced by string provided that t - u is not less than m and t is
not less than n. The default behavior is as follows.

et-al " et al" 2 3
Note the absence of a dot from the end of the abbreviation, which is arguably not correct. (Et al[.]
is short for et alli, as etc. is short for et cetera.)

include file
Include file and interpret the contents as commands.

join-authors string1 string2 string3
Join multiple authors together with strings. When there are exactly two authors, they will be
joined with string1. When there are more than two authors, all but the last two will be joined with
string2, and the last two authors will be joined with string3. If string3 is omitted, it will default to
string1; if string2 is also omitted it will also default to string1. For example,

join-authors " and " ", " ", and "
will restore the default method for joining authors.

label-in-reference*
When outputting the reference, define the string [F to be the reference’s label. This is the default
behavior, so the negative version of this command is more useful.

label-in-text*
For each reference output a label in the text. The label will be separated from the surrounding text
as described in the bracket-label command. This is the default behavior, so the negative version
of this command is more useful.

label string
string is a label expression describing how to label each reference.

separate-label-second-parts string
When merging two-part labels, separate the second part of the second label from the first label
with string. See the description of the <> label expression.

move-punctuation*
In the text, move any punctuation at the end of line past the label. It is usually a good idea to give
this command unless you are using superscripted numbers as labels.

reverse* string
Reverse the fields whose names are in string. Each field name can be followed by a number which
says how many such fields should be reversed. If no number is given for a field, all such fields will
be reversed.

search-ignore* fields
While searching for keys in databases for which no index exists, ignore the contents of fields. Ini-
tially, fields XYZ are ignored.

search-truncate* n
Only require the first n characters of keys to be given. In effect when searching for a given key
words in the database are truncated to the maximum of n and the length of the key. Initially, n
is 6.

short-label* string
string is a label expression that specifies an alternative (usually shorter) style of label. This is used
when the # flag is given in the citation. When using author-date style labels, the identity of the au-
thor or authors is sometimes clear from the context, and so it may be desirable to omit the author

groff 1.23.0 2 July 2023 112

refer(1) General Commands Manual refer(1)

or authors from the label. The short-label command will typically be used to specify a label con-
taining just a date and possibly a disambiguating letter.

sort* string
Sort references according to string. References will automatically be accumulated. string should
be a list of field names, each followed by a number, indicating how many fields with the name
should be used for sorting. “+” can be used to indicate that all the fields with the name should be
used. Also . can be used to indicate the references should be sorted using the (tentative) label.
(Subsection “Label expressions” below describes the concept of a tentative label.)

sort-adjacent-labels*
Sort labels that are adjacent in the text according to their position in the reference list. This com-
mand should usually be given if the abbreviate-label-ranges command has been given, or if the
label expression contains a <> expression. This will have no effect unless references are being ac-
cumulated.

Label expressions
Label expressions can be evaluated both normally and tentatively. The result of normal evaluation is used
for output. The result of tentative evaluation, called the tentative label, is used to gather the information
that normal evaluation needs to disambiguate the label. Label expressions specified by the date-as-label
and short-label commands are not evaluated tentatively. Normal and tentative evaluation are the same for
all types of expression other than @, *, and % expressions. The description below applies to normal evalu-
ation, except where otherwise specified.

field
field n The n-th part of field . If n is omitted, it defaults to 1.

'string' The characters in string literally.

@ All the authors joined as specified by the join-authors command. The whole of each author’s
name will be used. However, if the references are sorted by author (that is, the sort specification
starts with “A+”), then authors’ last names will be used instead, provided that this does not intro-
duce ambiguity, and also an initial subsequence of the authors may be used instead of all the au-
thors, again provided that this does not introduce ambiguity. The use of only the last name for the
i-th author of some reference is considered to be ambiguous if there is some other reference, such
that the first i - 1 authors of the references are the same, the i-th authors are not the same, but the i-
th authors last names are the same. A proper initial subsequence of the sequence of authors for
some reference is considered to be ambiguous if there is a reference with some other sequence of
authors which also has that subsequence as a proper initial subsequence. When an initial subse-
quence of authors is used, the remaining authors are replaced by the string specified by the et-al
command; this command may also specify additional requirements that must be met before an ini-
tial subsequence can be used. @ tentatively evaluates to a canonical representation of the authors,
such that authors that compare equally for sorting purpose will have the same representation.

%n
%a
%A
%i
%I The serial number of the reference formatted according to the character following the %. The ser-

ial number of a reference is 1 plus the number of earlier references with same tentative label as
this reference. These expressions tentatively evaluate to an empty string.

expr* If there is another reference with the same tentative label as this reference, then expr, otherwise an
empty string. It tentatively evaluates to an empty string.

expr+n
expr-n The first (+) or last (-) n upper or lower case letters or digits of expr. roff special characters (such

as \('a) count as a single letter. Accent strings are retained but do not count towards the total.

groff 1.23.0 2 July 2023 113

refer(1) General Commands Manual refer(1)

expr.l expr converted to lowercase.

expr.u expr converted to uppercase.

expr.c expr converted to caps and small caps.

expr.r expr reversed so that the last name is first.

expr.a expr with first names abbreviated. Fields specified in the abbreviate command are abbreviated
before any labels are evaluated. Thus .a is useful only when you want a field to be abbreviated in
a label but not in a reference.

expr.y The year part of expr.

expr.+y
The part of expr before the year, or the whole of expr if it does not contain a year.

expr.-y
The part of expr after the year, or an empty string if expr does not contain a year.

expr.n The last name part of expr.

expr1~expr2
expr1 except that if the last character of expr1 is - then it will be replaced by expr2.

expr1 expr2
The concatenation of expr1 and expr2.

expr1|expr2
If expr1 is non-empty then expr1 otherwise expr2.

expr1&expr2
If expr1 is non-empty then expr2 otherwise an empty string.

expr1?expr2:expr3
If expr1 is non-empty then expr2 otherwise expr3.

<expr> The label is in two parts, which are separated by expr. Two adjacent two-part labels which have
the same first part will be merged by appending the second part of the second label onto the first
label separated by the string specified in the separate-label-second-parts command (initially, a
comma followed by a space); the resulting label will also be a two-part label with the same first
part as before merging, and so additional labels can be merged into it. It is permissible for the first
part to be empty; this may be desirable for expressions used in the short-label command.

(expr) The same as expr. Used for grouping.

The above expressions are listed in order of precedence (highest first); & and | have the same precedence.

Macro interface
Each reference starts with a call to the macro]-. The string [F will be defined to be the label for this refer-
ence, unless the no-label-in-reference command has been given. There then follows a series of string de-
finitions, one for each field: string [X corresponds to field X . The register [P is set to 1 if the P field con-
tains a range of pages. The [T, [A and [O registers are set to 1 according as the T, A and O fields end with
any of .?! (an end-of-sentence character). The [E register will be set to 1 if the [E string contains more than
one name. The reference is followed by a call to the][macro. The first argument to this macro gives a
number representing the type of the reference. If a reference contains a J field, it will be classified as
type 1, otherwise if it contains a B field, it will be type 3, otherwise if it contains a G or R field it will be
type 4, otherwise if it contains an I field it will be type 2, otherwise it will be type 0. The second argument
is a symbolic name for the type: other, journal-article, book, article-in-book, or tech-report. Groups
of references that have been accumulated or are produced by the bibliography command are preceded by a
call to the]< macro and followed by a call to the]> macro.

groff 1.23.0 2 July 2023 114

refer(1) General Commands Manual refer(1)

Options
--help displays a usage message, while -v and --version show version information; all exit afterward.

-R Don’t recognize lines beginning with .R1/.R2.

Other options are equivalent to refer commands.

-a n reverse An

-b no-label-in-text; no-label-in-reference

-B See below.

-c fields capitalize fields

-C compatible

-e accumulate

-f n label %n

-i fields search-ignore fields

-k label L~%a

-k field label field~%a

-l label A.nD.y%a

-l m label A.n+mD.y%a

-l ,n label A.nD.y-n%a

-l m,n label A.n+mD.y-n%a

-n no-default-database

-p db-file database db-file

-P move-punctuation

-s spec sort spec

-S label "(A.n|Q) ', ' (D.y|D)"; bracket-label " (") "; "

-t n search-truncate n

The B option has command equivalents with the addition that the file names specified on the command line
are processed as if they were arguments to the bibliography command instead of in the normal way.

-B annotate X AP; no-label-in-reference

-B field .macro annotate field macro; no-label-in-reference

Environment
REFER

If set, overrides the default database.

Files
/usr/dict/papers/Ind

Default database.

file.i Index files.

/usr/share/groff/1.23.0/tmac/refer.tmac
defines macros and strings facilitating integration with macro packages that wish to support refer.

refer uses temporary files. See the groff (1) man page for details of where such files are created.

Bugs
In label expressions, <> expressions are ignored inside .char expressions.

groff 1.23.0 2 July 2023 115

refer(1) General Commands Manual refer(1)

Examples
We can illustrate the operation of refer with a sample bibliographic database containing one entry and a
simple roff document to cite that entry.

$ cat > my-db-file
%A Daniel P.\& Friedman
%A Matthias Felleisen
%C Cambridge, Massachusetts
%D 1996
%I The MIT Press
%T The Little Schemer, Fourth Edition
$ refer -p my-db-file
Read the book
.[
friedman
.]
on your summer vacation.
<Control+D>
.lf 1 -
Read the book*([.1*(.]
.ds [F 1
.]-
.ds [A Daniel P. Friedman and Matthias Felleisen
.ds [C Cambridge, Massachusetts
.ds [D 1996
.ds [I The MIT Press
.ds [T The Little Schemer, Fourth Edition
.nr [T 0
.nr [A 0
.][2 book
.lf 5 -
on your summer vacation.

The foregoing shows us that refer (a) produces a label “1”; (b) brackets that label with interpolations of the
“[.” and “.]” strings; (c) calls a macro “]-”; (d) defines strings and registers containing the label and bibli-
ographic data for the reference; (e) calls a macro “][”; and (f) uses the lf request to restore the line numbers
of the original input. As discussed in subsection “Macro interface” above, it is up to the document or a
macro package to employ and format this information usefully. Let us see how we might turn groff_ms(7)
to this task.

$ REFER=my-db-file groff -R -ms
.LP
Read the book
.[
friedman
.]
on your summer vacation.
Commentary is available.*{**}
.FS *{**}
Space reserved for penetrating insight.
.FE

ms’s automatic footnote numbering mechanism is not aware of refer’s label numbering, so we have manu-
ally specified a (superscripted) symbolic footnote for our non-bibliographic aside.

groff 1.23.0 2 July 2023 116

refer(1) General Commands Manual refer(1)

See also
“Some Applications of Inverted Indexes on the Unix System”, by M. E. Lesk, 1978, AT&T Bell Laborato-
ries Computing Science Technical Report No. 69.

indxbib(1), lookbib(1), lkbib(1)

groff 1.23.0 2 July 2023 117

soelim(1) General Commands Manual soelim(1)

Name
soelim - recursively interpolate source requests in roff or other text files

Synopsis
soelim [-Crt] [-I dir] [input-file . . .]

soelim --help

soelim -v
soelim --version

Description
GNU soelim is a preprocessor for the groff (7) document formatting system. soelim works as a filter to
eliminate source requests in roff (7) input files; that is, it replaces lines of the form “.so included-file” within
each text input-file with the contents of included-file, recursively. By default, it writes lf requests as well to
record the name and line number of each input-file and included-file, so that any diagnostics produced by
later processing can be accurately traced to the original input. Options allow this information to be sup-
pressed (-r) or supplied in TEX comments instead (-t). In the absence of input-file arguments, soelim reads
the standard input stream. Output is written to the standard output stream.

If the name of a macro-file contains a backslash, use \\ or \e to embed it. To embed a space, write “\ ”
(backslash followed by a space). Any other escape sequence in macro-file, including “\[rs]”, prevents
soelim from replacing the source request.

The dot must be at the beginning of a line and must be followed by “so” without intervening spaces or tabs
for soelim to handle it. This convention allows source requests to be “protected” from processing by
soelim, for instance as part of macro definitions or “if” requests.

There must also be at least one space between “so” and its macro-file argument. The -C option overrides
this requirement.

The foregoing is the limit of soelim’s understanding of the roff language; it does not, for example, replace
the input line

.if 1 .so otherfile
with the contents of otherfile. With its -r option, therefore, soelim can be used to process text files in gen-
eral, to flatten a tree of input documents.

soelim was designed to handle situations where the target of a roff source request requires a preprocessor
such as eqn(1), pic(1), refer(1), or tbl(1). The usual processing sequence of groff (1) is as follows.

input
file

preprocessor troff

sourced
file

postprocessor

output
file

That is, files sourced with “so” are normally read only by the formatter, troff . soelim is not required for
troff to source files.

If a file to be sourced should also be preprocessed, it must already be read before the input file passes
through the preprocessor. soelim, normally invoked via groff ’s -s option, handles this.

groff 1.23.0 2 July 2023 118

soelim(1) General Commands Manual soelim(1)

input
file

soelim

sourced
file

preprocessor troff postprocessor

output
file

Options
--help displays a usage message, while -v and --version show version information; all exit afterward.

-C Recognize an input line starting with .so even if a character other than a space or newline follows.

-I dir Search the directory dir path for input- and included-files. -I may be specified more than once;
each dir is searched in the given order. To search the current working directory before others, add
“-I .” at the desired place; it is otherwise searched last.

-r Write files “raw”; do not add lf requests.

-t Emit TEX comment lines starting with “%” indicating the current file and line number, rather than
lf requests for the same purpose.

If both -r and -t are given, the last one specified controls.

See also
groff (1)

groff 1.23.0 2 July 2023 119

tbl(1) General Commands Manual tbl(1)

Name
tbl - prepare tables for groff documents

Synopsis
tbl [-C] [file . . .]

tbl --help

tbl -v
tbl --version

Description
The GNU implementation of tbl is part of the groff (1) document formatting system. tbl is a troff (1) pre-
processor that translates descriptions of tables embedded in roff (7) input files into the language understood
by troff . It copies the contents of each file to the standard output stream, except that lines between .TS and
.TE are interpreted as table descriptions. While GNU tbl’s input syntax is highly compatible with AT&T
tbl, the output GNU tbl produces cannot be processed by AT&T troff ; GNU troff (or a troff implementing
any GNU extensions employed) must be used. Normally, tbl is not executed directly by the user, but in-
voked by specifying the -t option to groff (1). If no file operands are given on the command line, or if file
is “-”, tbl reads the standard input stream.

Overview
tbl expects to find table descriptions between input lines that begin with .TS (table start) and .TE (table
end). Each such table region encloses one or more table descriptions. Within a table region, table descrip-
tions beyond the first must each be preceded by an input line beginning with .T&. This mechanism does
not start a new table region; all table descriptions are treated as part of their .TS/.TE enclosure, even if they
are boxed or have column headings that repeat on subsequent pages (see below).

(Experienced roff users should observe that tbl is not a roff language interpreter: the default control charac-
ter must be used, and no spaces or tabs are permitted between the control character and the macro name.
These tbl input tokens remain as-is in the output, where they become ordinary macro calls. Macro pack-
ages often define TS, T&, and TE macros to handle issues of table placement on the page. tbl produces
groff code to define these macros as empty if their definitions do not exist when the formatter encounters a
table region.)

Each table region may begin with region options, and must contain one or more table definitions; each table
definition contains a format specification followed by one or more input lines (rows) of entries. These en-
tries comprise the table data.

Region options
The line immediately following the .TS token may specify region options, keywords that influence the in-
terpretation or rendering of the region as a whole or all table entries within it indiscriminately. They must
be separated by commas, spaces, or tabs. Those that require a parenthesized argument permit spaces and
tabs between the option’s name and the opening parenthesis. Options accumulate and cannot be unset
within a region once declared; if an option that takes a parameter is repeated, the last occurrence controls.
If present, the set of region options must be terminated with a semicolon (;).

Any of the allbox, box, doublebox, frame, and doubleframe region options makes a table “boxed” for the
purpose of later discussion.

allbox Enclose each table entry in a box; implies box.

box Enclose the entire table region in a box. As a GNU extension, the alternative option name frame
is also recognized.

center Center the table region with respect to the current indentation and line length; the default is to left-
align it. As a GNU extension, the alternative option name centre is also recognized.

decimalpoint(c)
Recognize character c as the decimal separator in columns using the N (numeric) classifier (see
subsection “Column classifiers” below). This is a GNU extension.

groff 1.23.0 2 July 2023 120

tbl(1) General Commands Manual tbl(1)

delim(xy)
Recognize characters x and y as start and end delimiters, respectively, for eqn(1) input, and ignore
input between them. x and y need not be distinct.

doublebox
Enclose the entire table region in a double box; implies box. As a GNU extension, the alternative
option name doubleframe is also recognized.

expand
Spread the table horizontally to fill the available space (line length minus indentation) by increas-
ing column separation. Ordinarily, a table is made only as wide as necessary to accommodate the
widths of its entries and its column separations (whether specified or default). When expand ap-
plies to a table that exceeds the available horizontal space, column separation is reduced as far as
necessary (even to zero). tbl produces groff input that issues a diagnostic if such compression oc-
curs. The column modifier x (see below) overrides this option.

linesize(n)
Draw lines or rules (e.g., from box) with a thickness of n points. The default is the current type
size when the region begins. This option is ignored on terminal devices.

nokeep Don’t use roff diversions to manage page breaks. Normally, tbl employs them to avoid breaking a
page within a table row. This usage can sometimes interact badly with macro packages’ own use
of diversions—when footnotes, for example, are employed. This is a GNU extension.

nospaces
Ignore leading and trailing spaces in table entries. This is a GNU extension.

nowarn
Suppress diagnostic messages produced at document formatting time when the line or page
lengths are inadequate to contain a table row. This is a GNU extension.

tab(c) Use the character c instead of a tab to separate entries in a row of table data.

Table format specification
The table format specification is mandatory: it determines the number of columns in the table and directs
how the entries within it are to be typeset. The format specification is a series of column descriptors. Each
descriptor encodes a classifier followed by zero or more modifiers. Classifiers are letters (recognized case-
insensitively) or punctuation symbols; modifiers consist of or begin with letters or numerals. Spaces, tabs,
newlines, and commas separate descriptors. Newlines and commas are special; they apply the descriptors
following them to a subsequent row of the table. (This enables column headings to be centered or embold-
ened while the table entries for the data are not, for instance.) We term the resulting group of column de-
scriptors a row definition. Within a row definition, separation between column descriptors (by spaces or
tabs) is often optional; only some modifiers, described below, make separation necessary.

Each column descriptor begins with a mandatory classifier, a character that selects from one of several
arrangements. Some determine the positioning of table entries within a rectangular cell: centered, left-
aligned, numeric (aligned to a configurable decimal separator), and so on. Others perform special opera-
tions like drawing lines or spanning entries from adjacent cells in the table. Except for “|”, any classifier
can be followed by one or more modifiers; some of these accept an argument, which in GNU tbl can be
parenthesized. Modifiers select fonts, set the type size, and perform other tasks described below.

The format specification can occupy multiple input lines, but must conclude with a dot “.” followed by a
newline. Each row definition is applied in turn to one row of the table. The last row definition is applied to
rows of table data in excess of the row definitions.

For clarity in this document’s examples, we shall write classifiers in uppercase and modifiers in lowercase.
Thus, “CbCb,LR.” defines two rows of two columns. The first row’s entries are centered and boldfaced;
the second and any further rows’ first and second columns are left- and right-aligned, respectively.

The row definition with the most column descriptors determines the number of columns in the table; any
row definition with fewer is implicitly extended on the right-hand side with L classifiers as many times as
necessary to make the table rectangular.

groff 1.23.0 2 July 2023 121

tbl(1) General Commands Manual tbl(1)

Column classifiers
The L, R, and C classifiers are the easiest to understand and use.

A, a Center longest entry in this column, left-align remaining entries in the column with respect to the
centered entry, then indent all entries by one en. Such “alphabetic” entries (hence the name of the
classifier) can be used in the same column as L-classified entries, as in “LL,AR.”. The A entries
are often termed “sub-columns” due to their indentation.

C, c Center entry within the column.

L, l Left-align entry within the column.

N, n Numerically align entry in the column. tbl aligns columns of numbers vertically at the units place.
If multiple decimal separators are adjacent to a digit, it uses the rightmost one for vertical align-
ment. If there is no decimal separator, the rightmost digit is used for vertical alignment; otherwise,
tbl centers the entry within the column. The roff dummy character \& in an entry marks the glyph
preceding it (if any) as the units place; if multiple instances occur in the data, the leftmost is used
for alignment.

If N-classified entries share a column with L or R entries, tbl centers the widest N entry with re-
spect to the widest L or R entry, preserving the alignment of N entries with respect to each other.

The appearance of eqn equations within N-classified columns can be troublesome due to the fore-
going textual scan for a decimal separator. Use the delim region option to make tbl ignore the
data within eqn delimiters for that purpose.

R, r Right-align entry within the column.

S, s Span previous entry on the left into this column.

^ Span entry in the same column from the previous row into this row.

_, - Replace table entry with a horizontal rule. An empty table entry is expected to correspond to this
classifier; if data are found there, tbl issues a diagnostic message.

= Replace table entry with a double horizontal rule. An empty table entry is expected to correspond
to this classifier; if data are found there, tbl issues a diagnostic message.

| Place a vertical rule (line) on the corresponding row of the table (if two of these are adjacent, a
double vertical rule). This classifier does not contribute to the column count and no table entries
correspond to it. A | to the left of the first column descriptor or to the right of the last one pro-
duces a vertical rule at the edge of the table; these are redundant (and ignored) in boxed tables.

To change the table format within a tbl region, use the .T& token at the start of a line. It is followed by a
format specification and table data, but not region options. The quantity of columns in a new table format
thus introduced cannot increase relative to the previous table format; in that case, you must end the table re-
gion and start another. If that will not serve because the region uses box options or the columns align in an
undesirable manner, you must design the initial table format specification to include the maximum quantity
of columns required, and use the S horizontal spanning classifier where necessary to achieve the desired
columnar alignment.

Attempting to horizontally span in the first column or vertically span on the first row is an error. Non-rec-
tangular span areas are also not supported.

Column modifiers
Any number of modifiers can follow a column classifier. Arguments to modifiers, where accepted, are
case-sensitive. If the same modifier is applied to a column specifier more than once, or if conflicting modi-
fiers are applied, only the last occurrence has effect. The modifier x is mutually exclusive with e and w, but
e is not mutually exclusive with w; if these are used in combination, x unsets both e and w, while either e or
w overrides x.

groff 1.23.0 2 July 2023 122

tbl(1) General Commands Manual tbl(1)

b, B Typeset entry in boldface, abbreviating f(B).

d, D Align a vertically spanned table entry to the bottom (“down”), instead of the center, of its range.
This is a GNU extension.

e, E Equalize the widths of columns with this modifier. The column with the largest width controls.
This modifier sets the default line length used in a text block.

f, F Select the typeface for the table entry. This modifier must be followed by a font or style name
(one or two characters not starting with a digit), font mounting position (a single digit), or a name
or mounting position of any length in parentheses. The last form is a GNU extension. (The para-
meter corresponds to that accepted by the troff ft request.) A one-character argument not in
parentheses must be separated by one or more spaces or tabs from what follows.

i, I Typeset entry in an oblique or italic face, abbreviating f(I).

m, M Call a groff macro before typesetting a text block (see subsection “Text blocks” below). This is a
GNU extension. This modifier must be followed by a macro name of one or two characters or a
name of any length in parentheses. A one-character macro name not in parentheses must be sepa-
rated by one or more spaces or tabs from what follows. The named macro must be defined before
the table region containing this column modifier is encountered. The macro should contain only
simple groff requests to change text formatting, like adjustment or hyphenation. The macro is
called after the column modifiers b, f, i, p, and v take effect; it can thus override other column
modifiers.

p, P Set the type size for the table entry. This modifier must be followed by an integer n with an op-
tional leading sign. If unsigned, the type size is set to n scaled points. Otherwise, the type size is
incremented or decremented per the sign by n scaled points. The use of a signed multi-digit num-
ber is a GNU extension. (The parameter corresponds to that accepted by the troff ps request.) If a
type size modifier is followed by a column separation modifier (see below), they must be separated
by at least one space or tab.

t, T Align a vertically spanned table entry to the top, instead of the center, of its range.

u, U Move the column up one half-line, “staggering” the rows. This is a GNU extension.

v, V Set the vertical spacing to be used in a text block. This modifier must be followed by an integer n
with an optional leading sign. If unsigned, the vertical spacing is set to n points. Otherwise, the
vertical spacing is incremented or decremented per the sign by n points. The use of a signed
multi-digit number is a GNU extension. (This parameter corresponds to that accepted by the troff
vs request.) If a vertical spacing modifier is followed by a column separation modifier (see be-
low), they must be separated by at least one space or tab.

w, W Set the column’s minimum width. This modifier must be followed by a number, which is either a
unitless integer, or a roff horizontal measurement in parentheses. Parentheses are required if the
width is to be followed immediately by an explicit column separation (alternatively, follow the
width with one or more spaces or tabs). If no unit is specified, ens are assumed. This modifier
sets the default line length used in a text block.

x, X Expand the column. After computing the column widths, distribute any remaining line length
evenly over all columns bearing this modifier. Applying the x modifier to more than one column is
a GNU extension. This modifier sets the default line length used in a text block.

z, Z Ignore the table entries corresponding to this column for width calculation purposes; that is, com-
pute the column’s width using only the information in its descriptor.

n A numeric suffix on a column descriptor sets the separation distance (in ens) from the succeeding
column; the default separation is 3n. This separation is proportionally multiplied if the expand re-
gion option is in effect; in the case of tables wider than the output line length, this separation
might be zero. A negative separation cannot be specified. A separation amount after the last col-
umn in a row is nonsensical and provokes a diagnostic from tbl.

groff 1.23.0 2 July 2023 123

tbl(1) General Commands Manual tbl(1)

Table data
The table data come after the format specification. Each input line corresponds to a table row, except that a
backslash at the end of a line of table data continues an entry on the next input line. (Text blocks, discussed
below, also spread table entries across multiple input lines.) Table entries within a row are separated in the
input by a tab character by default; see the tab region option above. Excess entries in a row of table data
(those that have no corresponding column descriptor, not even an implicit one arising from rectangulariza-
tion of the table) are discarded with a diagnostic message. roff control lines are accepted between rows of
table data and within text blocks. If you wish to visibly mark an empty table entry in the document source,
populate it with the \& roff dummy character. The table data are interrupted by a line consisting of the .T&
input token, and conclude with the line .TE.

Ordinarily, a table entry is typeset rigidly. It is not filled, broken, hyphenated, adjusted, or populated with
additional inter-sentence space. tbl instructs the formatter to measure each table entry as it occurs in the in-
put, updating the width required by its corresponding column. If the z modifier applies to the column, this
measurement is ignored; if w applies and its argument is larger than this width, that argument is used in-
stead. In contrast to conventional roff input (within a paragraph, say), changes to text formatting, such as
font selection or vertical spacing, do not persist between entries.

Several forms of table entry are interpreted specially.

• If a table row contains only an underscore or equals sign (_ or =), a single or double horizontal rule
(line), respectively, is drawn across the table at that point.

• A table entry containing only _ or = on an otherwise populated row is replaced by a single or double hor-
izontal rule, respectively, joining its neighbors.

• Prefixing a lone underscore or equals sign with a backslash also has meaning. If a table entry consists
only of _ or \= on an otherwise populated row, it is replaced by a single or double horizontal rule, re-
spectively, that does not (quite) join its neighbors.

• A table entry consisting of \Rx, where x is any roff ordinary or special character, is replaced by enough
repetitions of the glyph corresponding to x to fill the column, albeit without joining its neighbors.

• On any row but the first, a table entry of \^ causes the entry above it to span down into the current one.

On occasion, these special tokens may be required as literal table data. To use either _ or = literally and
alone in an entry, prefix or suffix it with the roff dummy character \&. To express _, \=, or \R, use a roff
escape sequence to interpolate the backslash (\e or \[rs]). A reliable way to emplace the \^ glyph sequence
within a table entry is to use a pair of groff special character escape sequences (\[rs]\[ha]).

Rows of table entries can be interleaved with groff control lines; these do not count as table data. On such
lines the default control character (.) must be used (and not changed); the no-break control character is not
recognized. To start the first table entry in a row with a dot, precede it with the roff dummy character \&.

Text blocks
An ordinary table entry’s contents can make a column, and therefore the table, excessively wide; the table
then exceeds the line length of the page, and becomes ugly or is exposed to truncation by the output device.
When a table entry requires more conventional typesetting, breaking across more than one output line (and
thereby increasing the height of its row), it can be placed within a text block.

tbl interprets a table entry beginning with “T{” at the end of an input line not as table data, but as a token
starting a text block. Similarly, “T}” at the start of an input line ends a text block; it must also end the table
entry. Text block tokens can share an input line with other table data (preceding T{ and following T}). In-
put lines between these tokens are formatted in a diversion by troff . Text blocks cannot be nested. Multi-
ple text blocks can occur in a table row.

Text blocks are formatted as was the text prior to the table, modified by applicable column descriptors.
Specifically, the classifiers A, C, L, N, R, and S determine a text block’s alignment within its cell, but not
its adjustment. Add na or ad requests to the beginning of a text block to alter its adjustment distinctly from
other text in the document. As with other table entries, when a text block ends, any alterations to format-
ting parameters are discarded. They do not affect subsequent table entries, not even other text blocks.

groff 1.23.0 2 July 2023 124

tbl(1) General Commands Manual tbl(1)

If w or x modifiers are not specified for all columns of a text block’s span, the default length of the text
block (more precisely, the line length used to process the text block diversion) is computed as L×C/(N+1),
where L is the current line length, C the number of columns spanned by the text block, and N the number
of columns in the table. If necessary, you can also control a text block’s width by including an ll (line
length) request in it prior to any text to be formatted. Because a diversion is used to format the text block,
its height and width are subsequently available in the registers dn and dl, respectively.

roff interface
The register TW stores the width of the table region in basic units; it can’t be used within the region itself,
but is defined before the .TE token is output so that a groff macro named TE can make use of it. T. is a
Boolean-valued register indicating whether the bottom of the table is being processed. The #T register
marks the top of the table. Avoid using these names for any other purpose.

tbl also defines a macro T# to produce the bottom and side lines of a boxed table. While tbl itself arranges
for the output to include a call of this macro at the end of such a table, it can also be used by macro pack-
ages to create boxes for multi-page tables by calling it from a page footer macro that is itself called by a
trap planted near the bottom of the page. See section “Limitations” below for more on multi-page tables.

GNU tbl internally employs register, string, macro, and diversion names beginning with the numeral 3. A
document to be preprocessed with GNU tbl should not use any such identifiers.

Interaction with eqn
tbl should always be called before eqn(1). (groff (1) automatically arranges preprocessors in the correct or-
der.) Don’t call the EQ and EN macros within tables; instead, set up delimiters in your eqn input and use
the delim region option so that tbl will recognize them.

GNU tbl enhancements
In addition to extensions noted above, GNU tbl removes constraints endured by users of AT&T tbl.

• Region options can be specified in any lettercase.

• There is no limit on the number of columns in a table, regardless of their classification, nor any limit on
the number of text blocks.

• All table rows are considered when deciding column widths, not just those occurring in the first 200 in-
put lines of a region. Similarly, table continuation (.T&) tokens are recognized outside a region’s first
200 input lines.

• Numeric and alphabetic entries may appear in the same column.

• Numeric and alphabetic entries may span horizontally.

Using GNU tbl within macros
You can embed a table region inside a macro definition. However, since tbl writes its own macro defini-
tions at the beginning of each table region, it is necessary to call end macros instead of ending macro defini-
tions with “..”. Additionally, the escape character must be disabled.

Not all tbl features can be exercised from such macros because tbl is a roff preprocessor: it sees the input
earlier than troff does. For example, vertically aligning decimal separators fails if the numbers containing
them occur as macro or string parameters; the alignment is performed by tbl itself, which sees only \$1, \$2,
and so on, and therefore can’t recognize a decimal separator that only appears later when troff interpolates
a macro or string definition.

Using tbl macros within conditional input (that is, contingent upon an if, ie, el, or while request) can result
in misleading line numbers in subsequent diagnostics. tbl unconditionally injects its output into the source
document, but the conditional branch containing it may not be taken, and if it is not, the lf requests that tbl
injects to restore the source line number cannot take effect. Consider copying the input line counter register
c. and restoring its value at a convenient location after applicable arithmetic.

groff 1.23.0 2 July 2023 125

tbl(1) General Commands Manual tbl(1)

Options
--help displays a usage message, while -v and --version show version information; all exit afterward.

-C Enable AT&T compatibility mode: recognize .TS and .TE even when followed by a character
other than space or newline. Furthermore, interpret the uninterpreted leader escape sequence \a.

Limitations
Multi-page tables, if boxed and/or if you want their column headings repeated after page breaks, require
support at the time the document is formatted. A convention for such support has arisen in macro packages
such as ms, mm, and me. To use it, follow the .TS token with a space and then “H”; this will be interpreted
by the formatter as a TS macro call with an H argument. Then, within the table data, call the TH macro;
this informs the macro package where the headings end. If your table has no such heading rows, or you do
not desire their repetition, call TH immediately after the table format specification. If a multi-page table is
boxed or has repeating column headings, do not enclose it with keep/release macros, or divert it in any
other way. Further, the bp request will not cause a page break in a “TS H” table. Define a macro to wrap
bp: invoke it normally if there is no current diversion. Otherwise, pass the macro call to the enclosing di-
version using the transparent line escape sequence \!; this will “bubble up” the page break to the output de-
vice. See section “Examples” below for a demonstration.

Double horizontal rules are not supported by grotty(1); single rules are used instead. grotty also ignores
half-line motions, so the u column modifier has no effect. On terminal devices (“nroff mode”), horizontal
rules and box borders occupy a full vee of space; this amount is doubled for doublebox tables. Tables us-
ing these features thus require more vertical space in nroff mode than in troff mode: write ne requests ac-
cordingly. Vertical rules between columns are drawn in the space between columns in nroff mode; using
double vertical rules and/or reducing the column separation below the default can make them ugly or over-
strike them with table data.

A text block within a table must be able to fit on one page.

Using \a to put leaders in table entries does not work in GNU tbl, except in compatibility mode. This is
correct behavior: \a is an uninterpreted leader. You can still use the roff leader character (Control+A) or
define a string to use \a as it was designed: to be interpreted only in copy mode.

.ds a \a

.TS
box center tab(;);
Lw(2i)0 L.
Population*a;6,327,119
.TE

Population..6,327,119

A leading and/or trailing | in a format specification, such as “|LCR|.”, produces an en space between the
vertical rules and the content of the adjacent columns. If no such space is desired (so that the rule abuts the
content), you can introduce “dummy” columns with zero separation and empty corresponding table entries
before and/or after.

.TS
center tab(#);
R0|L C R0|L.
_
#levulose#glucose#dextrose#
_
.TE

These dummy columns have zero width and are therefore invisible; unfortunately they usually don’t work
as intended on terminal devices.

levulose glucose dextrose

groff 1.23.0 2 July 2023 126

tbl(1) General Commands Manual tbl(1)

Examples
It can be easier to acquire the language of tbl through examples than formal description, especially at first.

.TS
box center tab(#);
Cb Cb
L L.
Ability#Application
Strength#crushes a tomato
Dexterity#dodges a thrown tomato
Constitution#eats a month-old tomato without becoming ill
Intelligence#knows that a tomato is a fruit
Wisdom#chooses \f[I]not\f[] to put tomato in a fruit salad
Charisma#sells obligate carnivores tomato-based fruit salads
.TE

Ability Application
Strength crushes a tomato
Dexterity dodges a thrown tomato
Constitution eats a month-old tomato without becoming ill
Intelligence knows that a tomato is a fruit
Wisdom chooses not to put tomato in a fruit salad
Charisma sells obligate carnivores tomato-based fruit salads

The A and N column classifiers can be easier to grasp in visual rendering than in description.

.TS
center tab(;);
CbS,LN,AN.
Daily energy intake (in MJ)
Macronutrients
.\" assume 3 significant figures of precision
Carbohydrates;4.5
Fats;2.25
Protein;3
.T&
LN,AN.
Mineral
Pu-239;14.6
_
.T&
LN.
Total;\[ti]24.4
.TE

Daily energy intake (in MJ)
Macronutrients

Carbohydrates 4.5
Fats 2.25
Protein 3

Mineral
Pu-239 14.6

Total ~24.4

groff 1.23.0 2 July 2023 127

tbl(1) General Commands Manual tbl(1)

Next, we’ll lightly adapt a compact presentation of spanning, vertical alignment, and zero-width column
modifiers from the mandoc reference for its tbl interpreter. It rewards close study.

.TS
box center tab(:);
Lz S | Rt
Ld| Cb| ^
^ | Rz S.
left:r
l:center:
:right
.TE

left
center

r

rightl

Row staggering is not visually achievable on terminal devices, but a table using it can remain comprehensi-
ble nonetheless.

.TS
center tab(|);
Cf(BI) Cf(BI) Cf(B), C C Cu.
n|n\f[B]\[tmu]\f[]n|difference
1|1
2|4|3
3|9|5
4|16|7
5|25|9
6|36|11
.TE

n n×n difference
1 1
2 4

3

3 9
5

4 16
7

5 25
9

6 36
11

Some tbl features cannot be illustrated in the limited environment of a portable man page.

We can define a macro outside of a tbl region that we can call from within it to cause a page break inside a
multi-page boxed table. You can choose a different name; be sure to change both occurrences of “BP”.

.de BP

. ie '\\n(.z'' .bp \\$1

. el \!.BP \\$1

..

See also
“Tbl—A Program to Format Tables”, by M. E. Lesk, 1976 (revised 16 January 1979), AT&T Bell Labora-
tories Computing Science Technical Report No. 49.

The spanning example above was taken from mandoc’s man page for its tbl implementation
〈https://man.openbsd.org/tbl.7〉.

groff (1), troff (1)

groff 1.23.0 2 July 2023 128

tfmtodit(1) General Commands Manual tfmtodit(1)

Name
tfmtodit - adapt TeX Font Metrics files for use with groff and grodvi

Synopsis
tfmtodit [-s] [-g gf-file] [-k skew-char] tfm-file map-file font-description

tfmtodit --help

tfmtodit -v
tfmtodit --version

Description
tfmtodit creates a font description file for use with groff (1)’s dvi output device. tfm-file is the name of the
TEX font metric file for the font. map-file assigns groff ordinary or special character identifiers to glyph in-
dices in the font; it should consist of a sequence of lines of the form

i c1 . . . cn
where i is a position of the glyph in the font in decimal, and c1 through cn are glyph identifiers in the form
used by groff font descriptions. If a glyph has no groff names but exists in tfm-file, it is put in the groff
font description file as an unnamed glyph. Output is written in groff_font(5) format to font-description, a
file named for the intended groff font name.

If the font is “special”, meaning that groff should search it whenever a glyph is not found in the current
font, use the -s option and name font-description in the fonts directive in the output device’s DESC file.

To do a good job of math typesetting, groff requires font metric information not present in tfm-file. This is
because TEX has separate math italic fonts, whereas groff uses normal italic fonts for math. The additional
information required by groff is given by the two arguments to the math_fit macro in the Metafont pro-
grams for the Computer Modern fonts. In a text font (a font for which math_fit is false), Metafont nor-
mally ignores these two arguments. Metafont can be made to put this information into the GF (“generic
font”) files it produces by loading the following definition after cmbase when creating cm.base.

def ignore_math_fit(expr left_adjustment,right_adjustment) =
special "adjustment";
numspecial left_adjustment*16/designsize;
numspecial right_adjustment*16/designsize;
enddef;

For the EC font family, load the following definition after exbase; consider patching exbase.mf locally.
def ignore_math_fit(expr left_adjustment,right_adjustment) =

ori_special "adjustment";
ori_numspecial left_adjustment*16/designsize;
ori_numspecial right_adjustment*16/designsize;
enddef;

The only difference from the previous example is the “ori_” prefix to “special” and “numspecial”. The GF
file created using this modified cm.base or exbase.mf should be specified with the -g option, which should
not be given for a font for which math_fit is true.

Options
--help displays a usage message, while -v and --version show version information; all exit afterward.

-g gf-file
Use the gf-file produced by Metafont containing “special” and “numspecial” commands to obtain
additional font metric information.

-k skew-char
The skew character of this font is at position skew-char. skew-char should be an integer; it may be
given in decimal, with a leading 0 in octal, or with a leading 0x in hexadecimal. Any kerns whose
second component is skew-char are ignored.

-s Add the special directive to the font description file.

groff 1.23.0 2 July 2023 129

tfmtodit(1) General Commands Manual tfmtodit(1)

Files
/usr/share/groff/1.23.0/font/devdvi/DESC

describes the dvi output device.

/usr/share/groff/1.23.0/font/devdvi/ F
describes the font known as F on device dvi.

/usr/share/groff/1.23.0/font/devdvi/generate/ec.map
/usr/share/groff/1.23.0/font/devdvi/generate/msam.map
/usr/share/groff/1.23.0/font/devdvi/generate/msbm.map
/usr/share/groff/1.23.0/font/devdvi/generate/tc.map
/usr/share/groff/1.23.0/font/devdvi/generate/texb.map
/usr/share/groff/1.23.0/font/devdvi/generate/texex.map
/usr/share/groff/1.23.0/font/devdvi/generate/texi.map
/usr/share/groff/1.23.0/font/devdvi/generate/texitt.map
/usr/share/groff/1.23.0/font/devdvi/generate/texmi.map
/usr/share/groff/1.23.0/font/devdvi/generate/texr.map
/usr/share/groff/1.23.0/font/devdvi/generate/texsy.map
/usr/share/groff/1.23.0/font/devdvi/generate/textex.map
/usr/share/groff/1.23.0/font/devdvi/generate/textt.map

map glyph indices in TEX fonts to groff ordinary and special character identifiers. ec.map is used
for TREC, TIEC, TBEC, TBIEC, HREC, HIEC, HBEC, HBIEC, CWEC, and CWIEC;
msam.map for SA; msbm.map for SB; tc.map for TRTC, TITC, TBTC, TBITC, HRTC, HITC,
HBTC, HBITC, CWTC, and CWITC; texb.map for TB, HR, HI, HB, and HBI; texex.map for
EX; texi.map for TI and TBI; texitt.map for CWI; texmi.map for MI; texr.map for TR; texsy.map
for S; textex.map for SC; and textt.map for CW.

See also
groff (1), grodvi(1), groff_font(5)

groff 1.23.0 2 July 2023 130

troff (1) General Commands Manual troff (1)

Name
troff - GNU roff typesetter and document formatter

Synopsis
troff [-abcCEiRUz] [-d ctext] [-d string=text] [-f font-family] [-F font-directory] [-I inclusion-

directory] [-m macro-package] [-M macro-directory] [-n page-number] [-o page-list]
[-r cnumeric-expression] [-r register=numeric-expression] [-T output-device] [-w warning-
category] [-W warning-category] [file . . .]

troff --help

troff -v
troff --version

Description
GNU troff transforms groff (7) language input into the device-independent output format described in
groff_out(5); troff is thus the heart of the GNU roff document formatting system. If no file operands are
given on the command line, or if file is “-”, the standard input stream is read.

GNU troff is functionally compatible with the AT&T troff typesetter and features numerous extensions.
Many people prefer to use the groff (1) command, a front end which also runs preprocessors and output dri-
vers in the appropriate order and with appropriate options.

Options
-h and --help display a usage message, while -v and --version show version information; all exit after-
ward.

-a Generate a plain text approximation of the typeset output. The read-only register .A is set to 1.
This option produces a sort of abstract preview of the formatted output.

• Page breaks are marked by a phrase in angle brackets; for example, “<beginning of page>”.

• Lines are broken where they would be in the formatted output.

• A horizontal motion of any size is represented as one space. Adjacent horizontal motions are
not combined. Inter-sentence space nodes (those arising from the second argument to the .ss re-
quest) are not represented.

• Vertical motions are not represented.

• Special characters are rendered in angle brackets; for example, the default soft hyphen character
appears as “<hy>”.

The above description should not be considered a specification; the details of -a output are subject
to change.

-b Write a backtrace reporting the state of troff ’s input parser to the standard error stream with each
diagnostic message. The line numbers given in the backtrace might not always be correct, because
troff ’s idea of line numbers can be confused by requests that append to macros.

-c Start with color output disabled.

-C Enable AT&T troff compatibility mode; implies -c. See groff_diff (7).

-d ctext
-d string=text

Define roff string c or string as text. c must be one character; string can be of arbitrary length.
Such string assignments happen before any macro file is loaded, including the startup file. Due to
getopt_long(3) limitations, c cannot be, and string cannot contain, an equals sign, even though that
is a valid character in a roff identifier.

-E Inhibit troff error messages; implies -Ww. This option does not suppress messages sent to the
standard error stream by documents or macro packages using tm or related requests.

groff 1.23.0 2 July 2023 131

troff (1) General Commands Manual troff (1)

-f fam Use fam as the default font family.

-F dir Search in directory dir for the selected output device’s directory of device and font description
files. See the description of GROFF_FONT_PATH in section “Environment” below for the de-
fault search locations and ordering.

-i Read the standard input stream after all named input files have been processed.

-I dir Search the directory dir for files (those named on the command line; in psbb, so, and soquiet re-
quests; and in “\X'ps: import'”, “\X'ps: file'”, and “\X'pdf: pdfpic'” device control escape se-
quences). -I may be specified more than once; each dir is searched in the given order. To search
the current working directory before others, add “-I .” at the desired place; it is otherwise
searched last. -I works similarly to, and is named for, the “include” option of Unix C compilers.

-m name
Process the file name.tmac prior to any input files. If not found, tmac.name is attempted. name
(in both arrangements) is presumed to be a macro file; see the description of
GROFF_TMAC_PATH in section “Environment” below for the default search locations and order-
ing.

-M dir Search directory dir for macro files. See the description of GROFF_TMAC_PATH in section “En-
vironment” below for the default search locations and ordering.

-n num
Begin numbering pages at num. The default is 1.

-o list Output only pages in list, which is a comma-separated list of inclusive page ranges; n means page
n, m-n means every page between m and n, -n means every page up to n, and n- means every
page from n on. troff stops processing and exits after formatting the last page enumerated in list.

-r cnumeric-expression
-r register=numeric-expression

Define roff register c or register as numeric-expression. c must be a one-character name; register
can be of arbitrary length. Such register assignments happen before any macro file is loaded, in-
cluding the startup file. Due to getopt_long(3) limitations, c cannot be, and register cannot con-
tain, an equals sign, even though that is a valid character in a roff identifier.

-R Don’t load troffrc and troffrc-end .

-T dev Prepare output for device dev. The default is ps; see groff (1).

-U Operate in unsafe mode, enabling the open, opena, pi, pso, and sy requests, which are disabled by
default because they allow an untrusted input document to write to arbitrary file names and run ar-
bitrary commands. This option also adds the current directory to the macro package search path;
see the -m and -M options above.

-w name
-W name

Enable (-w) or inhibit (-W) warnings in category name. See section “Warnings” below.

-z Suppress formatted output.

Warnings
Warning diagnostics emitted by troff are divided into named, numbered categories. The name associated
with each warning category is used by the -w and -W options. Each category is also assigned a power of
two; the sum of enabled category codes is used by the warn request and the .warn register. Warnings of
each category are produced under the following circumstances.

groff 1.23.0 2 July 2023 132

troff (1) General Commands Manual troff (1)

Bit Code Category Bit Code Category

0 1 char 10 1024 reg
1 2 number 11 2048 tab
2 4 break 12 4096 right-brace
3 8 delim 13 8192 missing
4 16 el 14 16384 input
5 32 scale 15 32768 escape
6 64 range 16 65536 space
7 128 syntax 17 131072 font
8 256 di 18 262144 ig
9 512 mac 19 524288 color

20 1048576 file

break 4 A filled output line could not be broken such that its length was less than the output
line length \n[.l]. This category is enabled by default.

char 1 No mounted font defines a glyph for the requested character. This category is en-
abled by default.

color 524288 An undefined color name was selected, an attempt was made to define a color using
an unrecognized color space, an invalid component in a color definition was en-
countered, or an attempt was made to redefine a default color.

delim 8 The closing delimiter in an escape sequence was missing or mismatched.

di 256 A di, da, box, or boxa request was invoked without an argument when there was no
current diversion.

el 16 The el request was encountered with no prior corresponding ie request.

escape 32768 An unsupported escape sequence was encountered.

file 1048576 An attempt was made to load a file that does not exist. This category is enabled by
default.

font 131072 A non-existent font was selected, or the selection was ignored because a font selec-
tion escape sequence was used after the output line continuation escape sequence
on an input line. This category is enabled by default.

ig 262144 An invalid escape sequence occurred in input ignored using the ig request. This
warning category diagnoses a condition that is an error when it occurs in non-ig-
nored input.

input 16384 An invalid character occurred on the input stream.

mac 512 An undefined string, macro, or diversion was used. When such an object is derefer-
enced, an empty one of that name is automatically created. So, unless it is later
deleted, at most one warning is given for each.

This warning is also emitted upon an attempt to move an unplanted trap macro. In
such cases, the unplanted macro is not dereferenced, so it is not created if it does
not exist.

missing 8192 A request was invoked with a mandatory argument absent.

number 2 An invalid numeric expression was encountered. This category is enabled by de-
fault.

range 64 A numeric expression was out of range for its context.

reg 1024 An undefined register was used. When an undefined register is dereferenced, it is
automatically defined with a value of 0. So, unless it is later deleted, at most one
warning is given for each.

groff 1.23.0 2 July 2023 133

troff (1) General Commands Manual troff (1)

right-brace 4096 A right brace escape sequence \} was encountered where a number was expected.

scale 32 A scaling unit inappropriate to its context was used in a numeric expression.

space 65536 A space was missing between a request or macro and its argument. This warning is
produced when an undefined name longer than two characters is encountered and
the first two characters of the name constitute a defined name. No request is in-
voked, no macro called, and an empty macro is not defined. This category is en-
abled by default. It never occurs in compatibility mode.

syntax 128 A self-contradictory hyphenation mode was requested; an empty or incomplete nu-
meric expression was encountered; an operand to a numeric operator was missing;
an attempt was made to define a recursive, empty, or nonsensical character class; or
a groff extension conditional expression operator was used while in compatibility
mode.

tab 2048 A tab character was encountered where a number was expected, or appeared in an
unquoted macro argument.

Two warning names group other warning categories for convenience.

all All warning categories except di, mac, and reg. This shorthand is intended to produce all warn-
ings that are useful with macro packages and documents written for AT&T troff and its descen-
dants, which have less fastidious diagnostics than GNU troff .

w All warning categories. Authors of documents and macro packages targeting groff are encouraged
to use this setting.

Environment
GROFF_FONT_PATH and GROFF_TMAC_PATH each accept a search path of directories; that is, a list of
directory names separated by the system’s path component separator character. On Unix systems, this char-
acter is a colon (:); on Windows systems, it is a semicolon (;).

GROFF_FONT_PATH
A list of directories in which to seek the selected output device’s directory of device and font de-
scription files. troff will scan directories given as arguments to any specified -F options before
these, then in a site-specific directory (/usr/share/groff/site-font), a standard location (/usr/share/
groff/1.23.0/font), and a compatibility directory (/usr/lib/font) after them.

GROFF_TMAC_PATH
A list of directories in which to search for macro files. troff will scan directories given as argu-
ments to any specified -M options before these, then the current directory (only if in unsafe
mode), the user’s home directory, a site-specific directory (/usr/share/groff/site-tmac), and a stan-
dard location (/usr/share/groff/1.23.0/tmac) after them.

GROFF_TYPESETTER
Set the default output device. If empty or not set, ps is used. The -T option overrides
GROFF_TYPESETTER.

SOURCE_DATE_EPOCH
A timestamp (expressed as seconds since the Unix epoch) to use as the output creation timestamp
in place of the current time. The time is converted to human-readable form using localtime(3)
when the formatter starts up and stored in registers usable by documents and macro packages.

TZ The timezone to use when converting the current time (or value of SOURCE_DATE_EPOCH) to
human-readable form; see tzset(3).

Files
/usr/share/groff/1.23.0/tmac/troffrc

is an initialization macro file loaded before any macro packages specified with -m options.

groff 1.23.0 2 July 2023 134

troff (1) General Commands Manual troff (1)

/usr/share/groff/1.23.0/tmac/troffrc-end
is an initialization macro file loaded after all macro packages specified with -m options.

/usr/share/groff/1.23.0/tmac/name.tmac
are macro files distributed with groff .

/usr/share/groff/1.23.0/font/devname /DESC
describes the output device name.

/usr/share/groff/1.23.0/font/devname / F
describes the font F of device name.

troffrc and troffrc-end are sought neither in the current nor the home directory by default for security rea-
sons, even if the -U option is specified. Use the -M command-line option or the GROFF_TMAC_PATH
environment variable to add these directories to the search path if necessary.

Authors
The GNU version of troff was originally written by James Clark; he also wrote the original version of this
document, which was updated by Werner Lemberg 〈wl@gnu.org〉, Bernd Warken 〈groff-bernd
.warken-72@web.de〉, and G. Branden Robinson 〈g.branden.robinson@gmail.com〉.

See also
Groff: The GNU Implementation of troff , by Trent A. Fisher and Werner Lemberg, is the primary groff
manual. You can browse it interactively with “info groff”.

groff (1)
offers an overview of the GNU roff system and describes its front end executable.

groff (7)
details the groff language, including a short but complete reference of all predefined requests, reg-
isters, and escape sequences.

groff_char(7)
explains the syntax of groff special character escape sequences, and lists all special characters pre-
defined by the language.

groff_diff (7)
enumerates the differences between AT&T device-independent troff and groff .

groff_font(5)
covers the format of groff device and font description files.

groff_out(5)
describes the format of troff ’s output.

groff_tmac(5)
includes information about macro files that ship with groff .

roff (7) supplies background on roff systems in general, including pointers to further related documenta-
tion.

groff 1.23.0 2 July 2023 135

groff_font(5) File Formats Manual groff_font(5)

Name
groff_font - GNU roff device and font description files

Description
The groff font and output device description formats are slight extensions of those used by AT&T device-
independent troff . In distinction to the AT&T implementation, groff lacks a binary format; all files are text
files. (Plan 9 troff has also abandoned the binary format.) The device and font description files for a device
name are stored in a devname directory. The device description file is called DESC, and, for each font sup-
ported by the device, a font description file is called f, where f is usually an abbreviation of a font’s name
and/or style. For example, the ps (PostScript) device has groff font description files for Times roman (TR)
and Zapf Chancery Medium italic (ZCMI), among many others, while the utf8 device (for terminal emula-
tors) has only font descriptions for the roman, italic, bold, and bold-italic styles (R, I, B, and BI, respec-
tively).

Device and font description files are read by the formatter, troff , and by output drivers. The programs typi-
cally delegate these files’ processing to an internal library, libgroff , ensuring their consistent interpretation.

DESC file format
The DESC file contains a series of directives; each begins a line. Their order is not important, with two ex-
ceptions: (1) the res directive must precede any papersize directive; and (2) the charset directive must
come last (if at all). If a directive name is repeated, later entries in the file override previous ones (except
that the paper dimensions are computed based on the res directive last seen when papersize is encoun-
tered). Spaces and/or tabs separate words and are ignored at line boundaries. Comments start with the “#”
character and extend to the end of a line. Empty lines are ignored.

family fam
The default font family is fam.

fonts n F1 . . . Fn
Fonts F1, . . . , Fn are mounted at font positions m + 1, . . ., m + n where m is the number of styles
(see below). This directive may extend over more than one line. A font name of 0 causes no font
to be mounted at the corresponding position.

hor n The horizontal motion quantum is n basic units. Horizontal quantities are rounded to multiples
of n.

image_generator program
Use program to generate PNG images from PostScript input. Under GNU/Linux, this is usually
gs(1), but under other systems (notably Cygwin) it might be set to another name. The grohtml(1)
driver uses this directive.

paperlength n
The vertical dimension of the output medium is n basic units (deprecated: use papersize instead).

papersize format-or-dimension-pair-or-file-name . . .
The dimensions of the output medium are as according to the argument, which is either a standard
paper format, a pair of dimensions, or the name of a plain text file containing either of the forego-
ing. Recognized paper formats are the ISO and DIN formats A0–A7, B0–B7, C0–C7, and
D0–D7; the U.S. formats letter, legal, tabloid, ledger, statement, and executive; and the enve-
lope formats com10, monarch, and DL. Matching is performed without regard for lettercase.

Alternatively, the argument can be a custom paper format length,width (with no spaces before or
after the comma). Both length and width must have a unit appended; valid units are “i” for inches,
“c” for centimeters, “p” for points, and “P” for picas. Example: “12c,235p”. An argument that
starts with a digit is always treated as a custom paper format.

Finally, the argument can be a file name (e.g., /etc/papersize); if the file can be opened, the first
line is read and a match attempted against each other form. No comment syntax is supported.

More than one argument can be specified; each is scanned in turn and the first valid paper specifi-
cation used.

groff 1.23.0 2 July 2023 136

groff_font(5) File Formats Manual groff_font(5)

paperwidth n
The horizontal dimension of the output medium is n basic units (deprecated: use papersize in-
stead).

pass_filenames
Direct troff to emit the name of the source file being processed. This is achieved with the interme-
diate output command “x F”, which grohtml interprets.

postpro program
Use program as the postprocessor.

prepro program
Use program as a preprocessor. The html and xhtml output devices use this directive.

print program
Use program as the print spooler. If omitted, groff ’s -l and -L options are ignored.

res n The device resolution is n basic units per inch.

sizes s1 . . . sn 0
The device has fonts at s1, . . ., sn scaled points (see below). The list of sizes must be terminated
by a 0. Each si can also be a range of sizes m–n. The list can extend over more than one line.

sizescale n
A typographical point is subdivided into n scaled points. The default is 1.

styles S1 . . . Sm
The first m font mounting positions are associated with styles S1, . . ., Sm.

tcommand
The postprocessor can handle the t and u intermediate output commands.

unicode
The output device supports the complete Unicode repertoire. This directive is useful only for de-
vices which produce character entities instead of glyphs.

If unicode is present, no charset section is required in the font description files since the Unicode
handling built into groff is used. However, if there are entries in a font description file’s charset
section, they either override the default mappings for those particular characters or add new map-
pings (normally for composite characters).

The utf8, html, and xhtml output devices use this directive.

unitwidth n
Quantities in the font description files are in basic units for fonts whose type size is n scaled
points.

unscaled_charwidths
Make the font handling module always return unscaled glyph widths. The grohtml driver uses this
directive.

use_charnames_in_special
troff should encode named glyphs inside device control commands. The grohtml driver uses this
directive.

vert n The vertical motion quantum is n basic units. Vertical quantities are rounded to multiples of n.

charset
This directive and the rest of the file are ignored. It is recognized for compatibility with other troff
implementations. In GNU troff , character set repertoire is described on a per-font basis.

troff recognizes but ignores the directives spare1, spare2, and biggestfont.

The res, unitwidth, fonts, and sizes lines are mandatory. Directives not listed above are ignored by troff
but may be used by postprocessors to obtain further information about the device.

groff 1.23.0 2 July 2023 137

groff_font(5) File Formats Manual groff_font(5)

Font description file format
On typesetting output devices, each font is typically available at multiple sizes. While paper measurements
in the device description file are in absolute units, measurements applicable to fonts must be proportional to
the type size. groff achieves this using the precedent set by AT&T device-independent troff : one font size
is chosen as a norm, and all others are scaled linearly relative to that basis. The “unit width” is the number
of basic units per point when the font is rendered at this nominal size.

For instance, groff ’s lbp device uses a unitwidth of 800. Its Times roman font (“TR”) has a spacewidth
of 833; this is also the width of its comma, period, centered period, and mathematical asterisk, while its
“M” is 2,963 basic units. Thus, an “M” on the lbp device is 2,963 basic units wide at a notional type size
of 800 points. (800-point type is not practical for most purposes, but using it enables the quantities in the
font description files to be expressed as integers.)

A font description file has two sections. The first is a sequence of directives, and is parsed similarly to the
DESC file described above. Except for the directive names that begin the second section, their ordering is
immaterial. Later directives of the same name override earlier ones, spaces and tabs are handled in the
same way, and the same comment syntax is supported. Empty lines are ignored throughout.

name F
The name of the font is F . “DESC” is an invalid font name. Simple integers are valid, but their
use is discouraged. (groff requests and escape sequences interpret non-negative font names as
mounting positions instead. Further, a font named “0” cannot be automatically mounted by the
fonts directive of a DESC file.)

spacewidth n
The width of an unadjusted inter-word space is n basic units.

The directives above must appear in the first section; those below are optional.

slant n The font’s glyphs have a slant of n degrees; a positive n slants in the direction of text flow.

ligatures lig1 . . . lign [0]
Glyphs lig1, . . ., lign are ligatures; possible ligatures are ff, fi, fl, ffi, and ffl. For compatibility
with other troff implementations, the list of ligatures may be terminated with a 0. The list of liga-
tures must not extend over more than one line.

special The font is special: when a glyph is requested that is not present in the current font, it is sought in
any mounted fonts that bear this property.

Other directives in this section are ignored by troff , but may be used by postprocessors to obtain further in-
formation about the font.

The second section contains one or two subsections. These can appear in either order; the first one encoun-
tered commences the second section. Each starts with a directive on a line by itself. A charset subsection
is mandatory unless the associated DESC file contains the unicode directive. Another subsection,
kernpairs, is optional.

The directive charset starts the character set subsection. (For typesetter devices, this directive is misnamed
since it starts a list of glyphs, not characters.) It precedes a series of glyph descriptions, one per line. Each
such glyph description comprises a set of fields separated by spaces or tabs and organized as follows.

name metrics type code [entity-name] [-- comment]

name identifies the glyph: if name is a printable character c, it corresponds to the troff ordinary character c.
If name is a multi-character sequence not beginning with \, it corresponds to the GNU troff special charac-
ter escape sequence “\[name]”. A name consisting of three minus signs, “---”, indicates that the glyph is
unnamed: such glyphs can be accessed only by the \N escape sequence in troff . A special character named
“---” can still be defined using .char and similar requests. The name “\-” defines the minus sign glyph.
Finally, name can be the horizontal motion escape sequences, \| and \^ (“thin” and “hair” spaces, respec-
tively), in which case only the width metric described below is applied; a font can thus customize the
widths of these spaces.

groff 1.23.0 2 July 2023 138

groff_font(5) File Formats Manual groff_font(5)

The form of the metrics field is as follows (on one line; it may be broken here for readability).

width[,[height[,[depth[,[italic-correction[,[left-italic-correction[,[subscript-correction]]]]]]]]]]

There must not be any spaces, tabs, or newlines between these subfields, which are in basic units expressed
as decimal integers. Unspecified subfields default to 0. Since there is no associated binary format, these
values are not required to fit into the C language data type char as they are in AT&T device-independent
troff .

The width subfield gives the width of the glyph. The height subfield gives the height of the glyph (upwards
is positive); if a glyph does not extend above the baseline, it should be given a zero height, rather than a
negative height. The depth subfield gives the depth of the glyph, that is, the distance below the baseline to
which the glyph extends (downwards is positive); if a glyph does not extend below the baseline, it should
be given a zero depth, rather than a negative depth. Italic corrections are relevant to glyphs in italic or
oblique styles. The italic-correction is the amount of space that should be added after an oblique glyph to
be followed immediately by an upright glyph. The left-italic-correction is the amount of space that should
be added before an oblique glyph to be preceded immediately by an upright glyph. The subscript-correc-
tion is the amount of space that should be added after an oblique glyph to be followed by a subscript; it
should be less than the italic correction.

For fonts used with typesetting devices, the type field gives a featural description of the glyph: it is a bit
mask recording whether the glyph is an ascender, descender, both, or neither. When a \w escape sequence
is interpolated, these values are bitwise or-ed together for each glyph and stored in the ct register. In font
descriptions for terminal devices, all glyphs might have a type of zero, regardless of their appearance.

0 means the glyph lies entirely between the baseline and a horizontal line at the “x-height” of the
font, as with “a”, “c”, and “x”;

1 means the glyph descends below the baseline, like “p”;

2 means the glyph ascends above the font’s x-height, like “A” or “b”); and

3 means the glyph is both an ascender and a descender—this is true of parentheses in some fonts.

The code field gives a numeric identifier that the postprocessor uses to render the glyph. The glyph can be
specified to troff using this code by means of the \N escape sequence. The code can be any integer (that is,
any integer parsable by the C standard library’s strtol(3) function).

The entity-name field defines an identifier for the glyph that the postprocessor uses to print the troff glyph
name. This field is optional; it was introduced so that the grohtml output driver could encode its character
set. For example, the glyph \[Po] is represented by “£” in HTML 4.0. For efficiency, these data
are now compiled directly into grohtml. grops uses the field to build sub-encoding arrays for PostScript
fonts containing more than 256 glyphs. Anything on the line after the entity-name field or “--” is ignored.

A line in the charset section can also have the form
name "

identifying name as another name for the glyph mentioned in the preceding line. Such aliases can be
chained.

The directive kernpairs starts a list of kerning adjustments to be made to adjacent glyph pairs from this
font. It contains a sequence of lines formatted as follows.

g1 g2 n
The foregoing means that when glyph g1 is typeset immediately before g2, the space between them should
be increased by n. Most kerning pairs should have a negative value for n.

Files
/usr/share/groff/1.23.0/font/devname /DESC

describes the output device name.

/usr/share/groff/1.23.0/font/devname / F
describes the font known as F on device name.

groff 1.23.0 2 July 2023 139

groff_font(5) File Formats Manual groff_font(5)

See also
Groff: The GNU Implementation of troff , by Trent A. Fisher and Werner Lemberg, is the primary groff
manual. You can browse it interactively with “info groff”.

“Troff User’s Manual” by Joseph F. Ossanna, 1976 (revised by Brian W. Kernighan, 1992), AT&T Bell
Laboratories Computing Science Technical Report No. 54, widely called simply “CSTR #54”, documents
the language, device and font description file formats, and device-independent output format referred to
collectively in groff documentation as “AT&T troff ”.

“A Typesetter-independent TROFF” by Brian W. Kernighan, 1982, AT&T Bell Laboratories Computing
Science Technical Report No. 97, provides additional insights into the device and font description file for-
mats and device-independent output format.

groff (1), subsection “Utilities”, lists programs available for describing fonts in a variety of formats such
that groff output drivers can use them.

troff (1) documents the default device and font description file search path.

groff_out(5), addftinfo(1)

groff 1.23.0 2 July 2023 140

groff_out(5) File Formats Manual groff_out(5)

Name
groff_out - GNU roff intermediate output format

Description
The fundamental operation of the troff (1) formatter is the translation of the groff (7) input language into a
series of instructions concerned primarily with placing glyphs or geometric objects at specific positions on
a rectangular page. In the following discussion, the term command refers to this intermediate output lan-
guage, never to the groff (7) language intended for use by document authors. Intermediate output com-
mands comprise several categories: glyph output; font, color, and text size selection; motion of the printing
position; page advancement; drawing of geometric primitives; and device control commands, a catch-all for
other operations. The last includes directives to start and stop output, identify the intended output device,
and embed URL hyperlinks in supported output formats.

Because the front-end command groff (1) is a wrapper that normally runs the troff formatter to generate in-
termediate output and an output driver (“postprocessor”) to consume it, users normally do not encounter
this language. The groff program’s -Z option inhibits postprocessing such that this intermediate output is
sent to the standard output stream as when troff is run manually.

groff ’s intermediate output facilitates the development of output drivers and other postprocessors by offer-
ing a common programming interface. It is an extension of the page description language developed by
Brian Kernighan for AT&T device-independent troff circa 1980. Where a distinction is necessary, we will
say “troff output” to describe the output of GNU troff , and “intermediate output” to denote the language
accepted by the parser implemented in groff ’s internal C++ library used by most of its output drivers.

Language concepts
During the run of troff , the roff input is cracked down to the information on what has to be printed at what
position on the intended device. So the language of the intermediate output format can be quite small. Its
only elements are commands with or without arguments. In this document, the term “command” always
refers to the intermediate output language, never to the roff language used for document formatting. There
are commands for positioning and text writing, for drawing, and for device controlling.

Separation
Classical troff output had strange requirements on whitespace. The groff output parser, however, is smart
about whitespace by making it maximally optional. The whitespace characters, i.e., the tab, space, and
newline characters, always have a syntactical meaning. They are never printable because spacing within
the output is always done by positioning commands.

Any sequence of space or tab characters is treated as a single syntactical space. It separates commands
and arguments, but is only required when there would occur a clashing between the command code and the
arguments without the space. Most often, this happens when variable length command names, arguments,
argument lists, or command clusters meet. Commands and arguments with a known, fixed length need not
be separated by syntactical space.

A line break is a syntactical element, too. Every command argument can be followed by whitespace, a
comment, or a newline character. Thus a syntactical line break is defined to consist of optional syntactical
space that is optionally followed by a comment, and a newline character.

The normal commands, those for positioning and text, consist of a single letter taking a fixed number of ar-
guments. For historical reasons, the parser allows stacking of such commands on the same line, but fortu-
nately, in groff intermediate output, every command with at least one argument is followed by a line break,
thus providing excellent readability.

The other commands — those for drawing and device controlling — have a more complicated structure;
some recognize long command names, and some take a variable number of arguments. So all D and x com-
mands were designed to request a syntactical line break after their last argument. Only one command,
‘x X’ has an argument that can stretch over several lines, all other commands must have all of their argu-
ments on the same line as the command, i.e., the arguments may not be split by a line break.

Lines containing only spaces and/or a comment are treated as empty and ignored.

groff 1.23.0 2 July 2023 141

groff_out(5) File Formats Manual groff_out(5)

Argument units
Some commands accept integer arguments that represent measurements, but the scaling units of the format-
ter’s language are never used. Most commands assume a scaling unit of “u” (basic units), and others
use “z” (scaled points); These are defined by the parameters specified in the device’s DESC file; see
groff_font(5) and, for more on scaling units, groff (7) and Groff: The GNU Implementation of troff , the
groff Texinfo manual. Color-related commands use dimensionless integers.

Note that single characters can have the eighth bit set, as can the names of fonts and special characters (this
is, glyphs). The names of glyphs and fonts can be of arbitrary length. A glyph that is to be printed will al-
ways be in the current font.

A string argument is always terminated by the next whitespace character (space, tab, or newline); an em-
bedded # character is regarded as part of the argument, not as the beginning of a comment command. An
integer argument is already terminated by the next non-digit character, which then is regarded as the first
character of the next argument or command.

Document parts
A correct intermediate output document consists of two parts, the prologue and the body.

The task of the prologue is to set the general device parameters using three exactly specified commands.
The groff prologue is guaranteed to consist of the following three lines (in that order):

x T device
x res n h v
x init

with the arguments set as outlined in subsection “Device Control Commands” below. However, the parser
for the intermediate output format is able to swallow additional whitespace and comments as well.

The body is the main section for processing the document data. Syntactically, it is a sequence of any com-
mands different from the ones used in the prologue. Processing is terminated as soon as the first x stop
command is encountered; the last line of any groff intermediate output always contains such a command.

Semantically, the body is page oriented. A new page is started by a p command. Positioning, writing, and
drawing commands are always done within the current page, so they cannot occur before the first p com-
mand. Absolute positioning (by the H and V commands) is done relative to the current page, all other posi-
tioning is done relative to the current location within this page.

Command reference
This section describes all intermediate output commands, the classical commands as well as the groff ex-
tensions.

Comment command
#anything〈line-break〉

A comment. Ignore any characters from the # character up to the next newline. Each comment
can be preceded by arbitrary syntactical space; every command can be terminated by a comment.

Simple commands
The commands in this subsection have a command code consisting of a single character, taking a fixed
number of arguments. Most of them are commands for positioning and text writing. These commands are
smart about whitespace. Optionally, syntactical space can be inserted before, after, and between the com-
mand letter and its arguments. All of these commands are stackable, i.e., they can be preceded by other
simple commands or followed by arbitrary other commands on the same line. A separating syntactical
space is necessary only when two integer arguments would clash or if the preceding argument ends with a
string argument.

C id〈white-space〉
Typeset the glyph of the special character id . Trailing syntactical space is necessary to allow spe-
cial character names of arbitrary length. The drawing position is not advanced.

groff 1.23.0 2 July 2023 142

groff_out(5) File Formats Manual groff_out(5)

c c Typeset the glyph of the ordinary character character c. The drawing position is not advanced.

f n Select the font mounted at position n. n cannot be negative.

H n Horizontally move the drawing position to n basic units from the left edge of the page. n cannot
be negative.

h n Move the drawing position right n basic units. AT&T troff allowed negative n; GNU troff does
not produce such values, but groff ’s output driver library handles them.

m scheme [component . . .]
Select the stroke color using the components in the color space scheme. Each component is an in-
teger between 0 and 65536. The quantity of components and their meanings vary with each
scheme. This command is a groff extension.

mc cyan magenta yellow
Use the CMY color scheme with components cyan, magenta, and yellow.

md Use the default color (no components; black in most cases).

mg gray
Use a grayscale color scheme with a component ranging between 0 (black) and 65536
(white).

mk cyan magenta yellow black
Use the CMYK color scheme with components cyan, magenta, yellow, and black.

mr red green blue
Use the RGB color scheme with components red, green, and blue.

N n Typeset the glyph with index n in the current font. n is normally a non-negative integer. The
drawing position is not advanced. The html and xhtml devices use this command with negative n
to produce unbreakable space; the absolute value of n is taken and interpreted in basic units.

n b a Indicate a break. No action is performed; the command is present to make the output more easily
parsed. The integers b and a describe the vertical space amounts before and after the break, re-
spectively. GNU troff issues this command but groff ’s output driver library ignores it. See v and
V.

p n Begin a new page, setting its number to n. Each page is independent, even from those using the
same number. The vertical drawing position is set to 0. All positioning, writing, and drawing
commands are interpreted in the context of a page, so a p command must precede them.

s n Set type size to n scaled points (unit z in GNU troff). AT&T troff used unscaled points (p) in-
stead; see section “Compatibility” below.

t xyz . . .〈white-space〉
t xyz . . . dummy-arg〈white-space〉

Typeset word xyz; that is, set a sequence of ordinary glyphs named x, y, z, . . . , terminated by a
space or newline; an optional second integer argument is ignored (this allows the formatter to gen-
erate an even number of arguments). Each glyph is set at the current drawing position, and the po-
sition is then advanced horizontally by the glyph’s width. A glyph’s width is read from its metrics
in the font description file, scaled to the current type size, and rounded to a multiple of the hori-
zontal motion quantum. Use the C command to emplace glyphs of special characters. The t com-
mand is a groff extension and is output only for devices whose DESC file contains the tcommand
directive; see groff_font(5).

u n xyz . . .
u xyz . . . dummy-arg〈white-space〉

Typeset word xyz with track kerning. As t, but after placing each glyph, the drawing position is
further advanced horizontally by n basic units. The u command is a groff extension and is output
only for devices whose DESC file contains the tcommand directive; see groff_font(5).

groff 1.23.0 2 July 2023 143

groff_out(5) File Formats Manual groff_out(5)

V n Vertically move the drawing position to n basic units from the top edge of the page. n cannot be
negative.

v n Move the drawing position down n basic units. AT&T troff allowed negative n; GNU troff does
not produce such values, but groff ’s output driver library handles them.

w Indicate an inter-word space. No action is performed; the command is present to make the output
more easily parsed. Only adjustable, breakable inter-word spaces are thus described; those result-
ing from \~ or horizontal motion escape sequences are not. GNU troff issues this command but
groff ’s output driver library ignores it. See h and H.

Graphics commands
Each graphics or drawing command in the intermediate output starts with the letter D followed by one or
two characters that specify a subcommand; this is followed by a fixed or variable number of integer argu-
ments that are separated by a single space character. A D command may not be followed by another com-
mand on the same line (apart from a comment), so each D command is terminated by a syntactical line
break.

troff output follows the classical spacing rules (no space between command and subcommand, all argu-
ments are preceded by a single space character), but the parser allows optional space between the command
letters and makes the space before the first argument optional. As usual, each space can be any sequence of
tab and space characters.

Some graphics commands can take a variable number of arguments. In this case, they are integers repre-
senting a size measured in basic units u. The h arguments stand for horizontal distances where positive
means right, negative left. The v arguments stand for vertical distances where positive means down, nega-
tive up. All these distances are offsets relative to the current location.

Unless indicated otherwise, each graphics command directly corresponds to a similar groff \D escape se-
quence; see groff (7).

Unknown D commands are assumed to be device-specific. Its arguments are parsed as strings; the whole
information is then sent to the postprocessor.

In the following command reference, the syntax element 〈line-break〉 means a syntactical line break as de-
fined in subsection “Separation” above.

D~ h
1

v
1

h
2

v
2

. . . h
n

v
n

〈line-break〉
Draw B-spline from current position to offset (h

1
, v

1
), then to offset (h

2
, v

2
) if given, etc., up to

(h
n
, v

n
). This command takes a variable number of argument pairs; the current position is moved

to the terminal point of the drawn curve.

Da h
1

v
1

h
2

v
2

〈line-break〉
Draw arc from current position to (h

1
, v

1
) + (h

2
, v

2
) with center at (h

1
, v

1
); then move the current

position to the final point of the arc.

DC d 〈line-break〉
DC d dummy-arg 〈line-break〉

Draw a solid circle using the current fill color with diameter d (integer in basic units u) with left-
most point at the current position; then move the current position to the rightmost point of the cir-
cle. An optional second integer argument is ignored (this allows the formatter to generate an even
number of arguments). This command is a groff extension.

Dc d 〈line-break〉
Draw circle line with diameter d (integer in basic units u) with leftmost point at the current posi-
tion; then move the current position to the rightmost point of the circle.

DE h v 〈line-break〉
Draw a solid ellipse in the current fill color with a horizontal diameter of h and a vertical diameter
of v (both integers in basic units u) with the leftmost point at the current position; then move to the
rightmost point of the ellipse. This command is a groff extension.

groff 1.23.0 2 July 2023 144

groff_out(5) File Formats Manual groff_out(5)

De h v 〈line-break〉
Draw an outlined ellipse with a horizontal diameter of h and a vertical diameter of v (both integers
in basic units u) with the leftmost point at current position; then move to the rightmost point of the
ellipse.

DF color-scheme [component . . .] 〈line-break〉
Set fill color for solid drawing objects using different color schemes; the analogous command for
setting the color of text, line graphics, and the outline of graphic objects is m. The color compo-
nents are specified as integer arguments between 0 and 65536. The number of color components
and their meaning vary for the different color schemes. These commands are generated by the
groff escape sequences \D'F . . .’ and \M (with no other corresponding graphics commands). This
command is a groff extension.

DFc cyan magenta yellow 〈line-break〉
Set fill color for solid drawing objects using the CMY color scheme, having the 3 color
components cyan, magenta, and yellow.

DFd 〈line-break〉
Set fill color for solid drawing objects to the default fill color value (black in most cases).
No component arguments.

DFg gray 〈line-break〉
Set fill color for solid drawing objects to the shade of gray given by the argument, an inte-
ger between 0 (black) and 65536 (white).

DFk cyan magenta yellow black 〈line-break〉
Set fill color for solid drawing objects using the CMYK color scheme, having the 4 color
components cyan, magenta, yellow, and black.

DFr red green blue 〈line-break〉
Set fill color for solid drawing objects using the RGB color scheme, having the 3 color
components red, green, and blue.

Df n 〈line-break〉
The argument n must be an integer in the range -32767 to 32767.

0 ≤ n ≤ 1000
Set the color for filling solid drawing objects to a shade of gray, where 0 corresponds to
solid white, 1000 (the default) to solid black, and values in between to intermediate
shades of gray; this is obsoleted by command DFg.

n < 0 or n > 1000
Set the filling color to the color that is currently being used for the text and the outline,
see command m. For example, the command sequence

mg 0 0 65536
Df -1

sets all colors to blue.

This command is a groff extension.

Dl h v 〈line-break〉
Draw line from current position to offset (h, v) (integers in basic units u); then set current position
to the end of the drawn line.

Dp h
1

v
1

h
2

v
2

. . . h
n

v
n

〈line-break〉
Draw a polygon line from current position to offset (h

1
, v

1
), from there to offset (h

2
, v

2
), etc., up to

offset (h
n
, v

n
), and from there back to the starting position. For historical reasons, the position is

changed by adding the sum of all arguments with odd index to the current horizontal position and
the even ones to the vertical position. Although this doesn’t make sense it is kept for compatibil-
ity. This command is a groff extension.

groff 1.23.0 2 July 2023 145

groff_out(5) File Formats Manual groff_out(5)

DP h
1

v
1

h
2

v
2

. . . h
n

v
n

〈line-break〉
The same macro as the corresponding Dp command with the same arguments, but draws a solid
polygon in the current fill color rather than an outlined polygon. The position is changed in the
same way as with Dp. This command is a groff extension.

Dt n 〈line-break〉
Set the current line thickness to n (an integer in basic units u) if n > 0; if n = 0 select the smallest
available line thickness; otherwise, the line thickness is made proportional to the type size, which
is the default. For historical reasons, the horizontal position is changed by adding the argument to
the current horizontal position, while the vertical position is not changed. Although this doesn’t
make sense, it is kept for compatibility. This command is a groff extension.

Device control commands
Each device control command starts with the letter x followed by a space character (optional or arbitrary
space/tab in groff) and a subcommand letter or word; each argument (if any) must be preceded by a syntac-
tical space. All x commands are terminated by a syntactical line break; no device control command can be
followed by another command on the same line (except a comment).

The subcommand is basically a single letter, but to increase readability, it can be written as a word, i.e., an
arbitrary sequence of characters terminated by the next tab, space, or newline character. All characters of
the subcommand word but the first are simply ignored. For example, troff outputs the initialization com-
mand x i as x init and the resolution command x r as x res. But writings like x i_like_groff and
x roff_is_groff are accepted as well to mean the same commands.

In the following, the syntax element 〈line-break〉 means a syntactical line break as defined in subsection
“Separation” above.

xF name 〈line-break〉
(Filename control command)
Use name as the intended name for the current file in error reports. This is useful for remembering
the original file name when groff uses an internal piping mechanism. The input file is not changed
by this command. This command is a groff extension.

xf n s 〈line-break〉
(font control command)
Mount font position n (a non-negative integer) with font named s (a text word); see groff_font(5).

xH n 〈line-break〉
(Height control command)
Set character height to n (a positive integer in scaled points z). Classical troff used the unit points
(p) instead; see section “Compatibility” below.

xi 〈line-break〉
(init control command)
Initialize device. This is the third command of the prologue.

xp 〈line-break〉
(pause control command)
Parsed but ignored. The classical documentation reads pause device, can be restarted .

xr n h v 〈line-break〉
(resolution control command)
Resolution is n, while h is the minimal horizontal motion, and v the minimal vertical motion pos-
sible with this device; all arguments are positive integers in basic units u per inch. This is the sec-
ond command of the prologue.

xS n 〈line-break〉
(Slant control command)
Set slant to n degrees (an integer in basic units u).

groff 1.23.0 2 July 2023 146

groff_out(5) File Formats Manual groff_out(5)

xs 〈line-break〉
(stop control command)
Terminates the processing of the current file; issued as the last command of any intermediate troff
output.

xt 〈line-break〉
(trailer control command)
Generate trailer information, if any. In groff, this is currently ignored.

xT xxx 〈line-break〉
(Typesetter control command)
Set the name of the output driver to xxx, a sequence of non-whitespace characters terminated by
whitespace. The possible names correspond to those of groff ’s -T option. This is the first com-
mand of the prologue.

xu n 〈line-break〉
(underline control command)
Configure underlining of spaces. If n is 1, start underlining of spaces; if n is 0, stop underlining of
spaces. This is needed for the cu request in nroff mode and is ignored otherwise. This command
is a groff extension.

xX anything 〈line-break〉
(X-escape control command)
Send string anything uninterpreted to the device. If the line following this command starts with a
+ character this line is interpreted as a continuation line in the following sense. The + is ignored,
but a newline character is sent instead to the device, the rest of the line is sent uninterpreted. The
same applies to all following lines until the first character of a line is not a + character. This com-
mand is generated by the groff escape sequence \X. The line-continuing feature is a groff exten-
sion.

Obsolete command
In classical troff output, emitting a single glyph was mostly done by a very strange command that com-
bined a horizontal move and the printing of a glyph. It didn’t have a command code, but is represented by a
3-character argument consisting of exactly 2 digits and a character.

ddc Move right dd (exactly two decimal digits) basic units u, then print glyph with single-letter
name c.

In groff , arbitrary syntactical space around and within this command is allowed to be added.
Only when a preceding command on the same line ends with an argument of variable length a sep-
arating space is obligatory. In classical troff , large clusters of these and other commands were
used, mostly without spaces; this made such output almost unreadable.

For modern high-resolution devices, this command does not make sense because the width of the glyphs
can become much larger than two decimal digits. In groff , it is used only for output to the X75, X75-12,
X100, and X100-12 devices. For others, the commands t and u provide greater functionality and superior
troubleshooting capacity.

Postprocessing
The roff postprocessors are programs that have the task to translate the intermediate output into actions that
are sent to a device. A device can be some piece of hardware such as a printer, or a software file format
suitable for graphical or text processing. The groff system provides powerful means that make the pro-
gramming of such postprocessors an easy task.

There is a library function that parses the intermediate output and sends the information obtained to the de-
vice via methods of a class with a common interface for each device. So a groff postprocessor must only
redefine the methods of this class. For details, see the reference in section “Files” below.

Example
This section presents the intermediate output generated from the same input for three different devices.
The input is the sentence hell world fed into groff on the command line.

groff 1.23.0 2 July 2023 147

groff_out(5) File Formats Manual groff_out(5)

• High-resolution device ps

shell> echo "hell world" | groff -Z -T ps

x T ps
x res 72000 1 1
x init
p1
x font 5 TR
f5
s10000
V12000
H72000
thell
wh2500
tw
H96620
torld
n12000 0
x trailer
V792000
x stop

This output can be fed into the postprocessor grops(1) to get its representation as a PostScript file, or
gropdf (1) to output directly to PDF.

• Low-resolution device latin1

This is similar to the high-resolution device except that the positioning is done at a minor scale. Some
comments (lines starting with #) were added for clarification; they were not generated by the format-
ter.

shell> "hell world" | groff -Z -T latin1

prologue
x T latin1
x res 240 24 40
x init
begin a new page
p1
font setup
x font 1 R
f1
s10
initial positioning on the page
V40
H0
write text 'hell'
thell
inform about a space, and do it by a horizontal jump
wh24
write text 'world'
tworld
announce line break, but do nothing because ...
n40 0
... the end of the document has been reached
x trailer
V2640
x stop

groff 1.23.0 2 July 2023 148

groff_out(5) File Formats Manual groff_out(5)

This output can be fed into the postprocessor grotty(1) to get a formatted text document.

• Classical style output

As a computer monitor has a very low resolution compared to modern printers the intermediate output
for the X devices can use the jump-and-write command with its 2-digit displacements.

shell> "hell world" | groff -Z -T X100

x T X100
x res 100 1 1
x init
p1
x font 5 TR
f5
s10
V16
H100
write text with old-style jump-and-write command
ch07e07l03lw06w11o07r05l03dh7
n16 0
x trailer
V1100
x stop

This output can be fed into the postprocessor xditview(1x) or gxditview(1) for displaying in X.

Due to the obsolete jump-and-write command, the text clusters in the classical output are almost unread-
able.

Compatibility
The intermediate output language of the classical troff was first documented in [CSTR #97]. The groff in-
termediate output format is compatible with this specification except for the following features.

• The classical quasi device independence is not yet implemented.

• The old hardware was very different from what we use today. So the groff devices are also fundamen-
tally different from the ones in classical troff . For example, the classical PostScript device was called
post and had a resolution of 720 units per inch, while groff ’s ps device has a resolution of 72000 units
per inch. Maybe, by implementing some rescaling mechanism similar to the classical quasi device in-
dependence, these could be integrated into modern groff .

• The B-spline command D~ is correctly handled by the intermediate output parser, but the drawing
routines aren’t implemented in some of the postprocessor programs.

• The argument of the commands s and x H has the implicit unit scaled point z in groff , while classical
troff had point (p). This isn’t an incompatibility, but a compatible extension, for both units coincide
for all devices without a sizescale parameter, including all classical and the groff text devices. The
few groff devices with a sizescale parameter either did not exist, had a different name, or seem to have
had a different resolution. So conflicts with classical devices are very unlikely.

• The position changing after the commands Dp, DP, and Dt is illogical, but as old versions of groff
used this feature it is kept for compatibility reasons.

The differences between groff and classical troff are documented in groff_diff (7).

Files
/usr/share/groff/1.23.0/font/devname /DESC

describes the output device name.

groff 1.23.0 2 July 2023 149

groff_out(5) File Formats Manual groff_out(5)

Authors
James Clark wrote an early version of this document, which described only the differences between AT&T
device-independent troff ’s output format and that of GNU roff . The present version was completely rewrit-
ten in 2001 by Bernd Warken 〈groff-bernd.warken-72@web.de〉.

See also
Groff: The GNU Implementation of troff , by Trent A. Fisher and Werner Lemberg, is the primary groff
manual. You can browse it interactively with “info groff”.

“Troff User’s Manual” by Joseph F. Ossanna, 1976 (revised by Brian W. Kernighan, 1992), AT&T Bell
Laboratories Computing Science Technical Report No. 54, widely called simply “CSTR #54”, documents
the language, device and font description file formats, and device-independent output format referred to
collectively in groff documentation as “AT&T troff ”.

“A Typesetter-independent TROFF” by Brian W. Kernighan, 1982, AT&T Bell Laboratories Computing
Science Technical Report No. 97, provides additional insights into the device and font description file for-
mats and device-independent output format.

groff (1)
documents the -Z option and contains pointers to further groff documentation.

groff (7)
describes the groff language, including its escape sequences and system of units.

groff_font(5)
details the device scaling parameters of device DESC files.

troff (1) generates the device-independent intermediate output documented here.

roff (7) presents historical aspects and the general structure of roff systems.

groff_diff (7)
enumerates differences between the intermediate output produced by AT&T troff and that of
groff .

gxditview(1)
is a viewer for intermediate output.

Roff.js 〈https://github.com/Alhadis/Roff.js/〉 is a viewer for intermediate output written in JavaScript.

grodvi(1), grohtml(1), grolbp(1), grolj4(1), gropdf (1), grops(1), and grotty(1) are groff postprocessors.

groff 1.23.0 2 July 2023 150

groff_tmac(5) File Formats Manual groff_tmac(5)

Name
groff_tmac - macro files in the GNU roff typesetting system

Description
Definitions of macros, strings, and registers for use in a roff (7) document can be collected into macro files,
roff input files designed to produce no output themselves but instead ease the preparation of other roff doc-
uments. There is no syntactical difference between a macro file and any other roff document; only its pur-
pose distinguishes it. When a macro file is installed at a standard location, named according to a certain
convention, and suitable for use by a general audience, it is termed a macro package. Macro packages can
be loaded by supplying the -m option to troff (1) or a groff front end.

Each macro package stores its macro, string, and register definitions in one or more tmac files. This name
originated in early Unix culture as an abbreviation of “troff macros”.

A macro file must have a name in the form name.tmac (or tmac.name) and be placed in a “tmac directory”
to be loadable with the -mname option. Section “Environment” of troff (1) lists these directories. Alterna-
tively, a groff document requiring a macro file can load it with the mso (“macro source”) request.

Like any other roff document, a macro file can use the “so” request (“source”) to load further files relative
to its own location.

Macro files are named for their most noteworthy application, but a macro file need not define any macros.
It can restrict itself to defining registers and strings or invoking other groff requests. It can even be empty.

Macro packages
Macro packages come in two varieties; those which assume responsibility for page layout and other critical
functions (“major” or “full-service”) and those which do not (“supplemental” or “auxiliary”). GNU roff
provides most major macro packages found in AT&T and BSD Unix systems, an additional full-service
package, and many supplemental packages. Multiple full-service macro packages cannot be used by the
same document. Auxiliary packages can generally be freely combined, though attention to their use of the
groff language name spaces for identifiers (particularly registers, macros, strings, and diversions) should be
paid. Name space management was a significant challenge in AT&T troff ; groff ’s support for arbitrarily
long identifiers affords few excuses for name collisions, apart from attempts at compatibility with the de-
mands of historical documents.

Man pages
an
man an is used to compose man pages in the format originating in Version 7 Unix (1979). It has a

small macro interface and is widely used; see groff_man(7).

doc
mdoc doc is used to compose man pages in the format originating in 4.3BSD-Reno (1990). It provides

many more features than an, but is also larger, more complex, and not as widely adopted; see
groff_mdoc(7).

Because readers of man pages often do not know in advance which macros are used to format a given docu-
ment, a wrapper is available.

andoc
mandoc

This macro file, specific to groff , recognizes whether a document uses man or mdoc format and
loads the corresponding macro package. Multiple man pages, in either format, can be handled;
andoc reloads each macro package as necessary.

Full-service packages
The packages in this section provide a complete set of macros for writing documents of any kind, up to
whole books. They are similar in functionality; it is a matter of taste which one to use.

me The classical me macro package; see groff_me(7).

groff 1.23.0 2 July 2023 151

groff_tmac(5) File Formats Manual groff_tmac(5)

mm The semi-classical mm macro package; see groff_mm(7).

mom The mom macro package, only available in groff. As this was not based on other packages, it was
freely designed as quite a nice, modern macro package. See groff_mom(7).

ms The classical ms macro package; see groff_ms(7).

Localization packages
For Western languages, the localization file sets the hyphenation mode and loads hyphenation patterns and
exceptions. Localization files can also adjust the date format and provide translations of strings used by
some of the full-service macro packages; alter the input encoding (see the next section); and change the
amount of additional inter-sentence space. For Eastern languages, the localization file defines character
classes and sets flags on them. By default, troffrc loads the localization file for English.

trans loads localized strings used by various macro packages after their localized forms have been pre-
pared by a localization macro file.

groff provides the following localization files.

cs Czech; localizes man, me, mm, mom, and ms. Sets the input encoding to Latin-2 by loading
latin2.tmac.

de
den German; localizes man, me, mm, mom, and ms. Sets the input encoding to Latin-1 by loading

latin1.tmac.

de.tmac selects hyphenation patterns for traditional orthography, and den.tmac does the same for
the new orthography (“Rechtschreibreform”).

en English.

fr French; localizes man, me, mm, mom, and ms. Sets the input encoding to Latin-9 by loading
latin9.tmac.

it Italian; localizes man, me, mm, mom, and ms.

ja Japanese.

sv Swedish; localizes man, me, mm, mom, and ms. Sets the input encoding to Latin-1 by loading
latin1.tmac. Some of the localization of the mm package is handled separately; see
groff_mmse(7).

zh Chinese.

Input encodings
latin1
latin2
latin5
latin9 are various ISO 8859 input encodings supported by groff . On systems using ISO character encod-

ings, groff loads latin1.tmac automatically at startup. A document that uses Latin-2, Latin-5, or
Latin-9 can specify one of these alternative encodings.

cp1047 provides support for EBCDIC-based systems. On those platforms, groff loads cp1047.tmac auto-
matically at startup.

Because different input character codes constitute valid GNU troff input on ISO and EBCDIC systems, the
latin macro files cannot be used on EBCDIC systems, and cp1047 cannot be used on ISO systems.

Auxiliary packages
The macro packages in this section are not intended for stand-alone use, but can add functionality to any
other macro package or to plain (“raw”) groff documents.

62bit provides macros for addition, multiplication, and division of 62-bit integers (allowing safe multi-
plication of signed 31-bit integers, for example).

groff 1.23.0 2 July 2023 152

groff_tmac(5) File Formats Manual groff_tmac(5)

hdtbl allows the generation of tables using a syntax similar to the HTML table model. This Heidel-
berger table macro package is not a preprocessor, which can be useful if the contents of table en-
tries are determined by macro calls or string interpolations. Compare to tbl(1). It works only with
the ps and pdf output devices. See groff_hdtbl(7).

papersize
enables the paper format to be set on the command line by giving a “-d paper= format” option to
troff . Possible values for format are the ISO and DIN formats “A0–A6”, “B0–B6”, “C0–C6”,
and “D0–D6”; the U.S. formats “letter”, “legal”, “tabloid”, “ledger”, “statement”, and
“executive”; and the envelope formats “com10”, “monarch”, and “DL”. All formats, even those
for envelopes, are in portrait orientation: the length measurement is vertical. Appending “l” (ell)
to any of these denotes landscape orientation instead. This macro file assumes one-inch horizontal
margins, and sets registers recognized by the groff man, mdoc, mm, mom, and ms packages to
configure them accordingly. If you want different margins, you will need to use those packages’
facilities, or troff ll and/or po requests to adjust them. An output device typically requires com-
mand-line options -p and -l to override the paper dimensions and orientation, respectively, de-
fined in its DESC file; see subsection “Paper format” of groff (1). This macro file is normally
loaded at startup by the troffrc file when formatting for a typesetting device (but not a terminal).

pdfpic provides a single macro, PDFPIC, to include a PDF graphic in a document using features of the
pdf output driver. For other output devices, PDFPIC calls PSPIC, with which it shares an inter-
face (see below). This macro file is normally loaded at startup by the troffrc file.

pic supplies definitions of the macros PS, PE, and PF, usable with the pic(1) preprocessor. They cen-
ter each picture. Use it if your document does not use a full-service macro package, or that pack-
age does not supply working pic macro definitions. Except for man and mdoc, those provided
with groff already do so (exception: mm employs the name PF for a different purpose).

pspic provides a macro, PSPIC, that includes a PostScript graphic in a document. The ps, dvi, html,
and xhtml output devices support such inclusions; for all other drivers, the image is replaced with
a rectangular border of the same size. pspic.tmac is loaded at startup by the troffrc file.

Its syntax is as follows.

.PSPIC [-L | -R | -C | -I n] file [width [height]]

file is the name of the PostScript file; width and height give the desired width and height of the
image. If neither a width nor a height argument is specified, the image’s natural width (as given in
the file’s bounding box) or the current line length is used as the width, whatever is smaller. The
width and height arguments may have scaling units attached; the default scaling unit is i. PSPIC
scales the graphic uniformly in the horizontal and vertical directions so that it is no more than
width wide and height high. Option -C centers the graphic horizontally; this is the default. -L
and -R left- and right-align the graphic, respectively. -I indents the graphic by n (with a default
scaling unit of m).

To use PSPIC within a diversion, we recommend extending it with the following code, assuring
that the diversion’s width completely covers the image’s width.

.am PSPIC

. vpt 0
\h'(\\n[ps-offset]u + \\n[ps-deswid]u)'
. sp -1
. vpt 1
..

Failure to load PSPIC’s image argument is not an error. (The psbb request does issue an error di-
agnostic.) To make such a failure fatal, append to the pspic*error-hook macro.

.am pspic*error-hook

. ab

..

groff 1.23.0 2 July 2023 153

groff_tmac(5) File Formats Manual groff_tmac(5)

ptx provides a macro, xx, to format permuted index entries as produced by the GNU ptx(1) program.
If your formatting needs differ, copy the macro into your document and adapt it to your needs.

rfc1345
defines special character escape sequences named for the glyph mnemonics specified in RFC 1345
and the digraph table of the Vim text editor. See groff_rfc1345(7).

sboxes offers an interface to the “pdf: background” device control command supported by gropdf (1).
Using this package, groff ms documents can draw colored rectangles beneath any output.

.BOXSTART SHADED color OUTLINED color INDENT size WEIGHT size
begins a box, where the argument after SHADED gives the fill color and that after
OUTLINED the border color. Omit the former to get a borderless filled box and the lat-
ter for a border with no fill. The specified WEIGHT is used if the box is OUTLINED.

INDENT precedes a value which leaves a gap between the border and the contents inside
the box.

Each color must be a defined groff color name, and each size a valid groff numeric ex-
pression. The keyword/value pairs can be specified in any order.

Boxes can be stacked, so you can start a box within another box; usually the later boxes would be
smaller than the containing box, but this is not enforced. When using BOXSTART, the left posi-
tion is the current indent minus the INDENT in the command, and the right position is the left po-
sition (calculated above) plus the current line length and twice the indent.

.BOXSTOP
takes no parameters. It closes the most recently started box at the current vertical posi-
tion after adding its INDENT spacing.

Your groff documents can conditionally exercise the sboxes macros. The register GSBOX is de-
fined if the package is loaded, and interpolates a true value if the pdf output device is in use.

sboxes furthermore hooks into the groff_ms(7) package to receive notifications when footnotes are
growing, so that it can close boxes on a page before footnotes are printed. When that condition
obtains, sboxes will close open boxes two points above the footnote separator and re-open them on
the next page. (This amount probably will not match the box’s INDENT.)

See “Using PDF boxes with groff and the ms macros” 〈file:///usr/share/doc/groff-1.23.0/msboxes
.pdf〉 for a demonstration.

trace aids the debugging of groff documents by tracing macro calls. See groff_trace(7).

www defines macros corresponding to HTML elements. See groff_www(7).

Naming
AT&T nroff and troff were implemented before the conventions of the modern C getopt(3) call evolved,
and used a naming scheme for macro packages that looks odd to modern eyes. Macro packages were typi-
cally loaded using the -m option to the formatter; when directly followed by its argument without an inter-
vening space, this looked like a long option preceded by a single minus—a sensation in the computer stone
age. Macro packages therefore came to be known by names that started with the letter “m”, which was
omitted from the name of the macro file as stored on disk. For example, the manuscript macro package was
stored as tmac.s and loaded with the option -ms.

groff commands permit space between an option and its argument. The syntax “groff -m s” makes the
macro file name more clear but may surprise users familiar with the original convention, unaware that the
package’s “real” name was “s” all along. For such packages of long pedigree, groff accommodates differ-
ent users’ expectations by supplying wrapper macro files that load the desired file with mso requests. Thus,
all of “groff -m s”, “groff -m ms”, “groff -ms”, and “groff -mms” serve to load the manuscript macros.

Wrappers are not provided for packages of more recent vintage, like www.tmac.

As noted in passing above, AT&T troff named macro files in the form tmac.name. It has since become
conventional in operating systems to use a suffixed file name extension to suggest a file type or format.

groff 1.23.0 2 July 2023 154

groff_tmac(5) File Formats Manual groff_tmac(5)

Inclusion
The traditional method of employing a macro package is to specify the -m package option to the formatter,
which then reads package’s macro file prior to any input files. Historically, package was sought in a file
named tmac.package (that is, with a “tmac.” prefix). GNU troff searches for package.tmac in the macro
path; if not found, it looks for tmac.package instead, and vice versa.

Alternatively, one could include a macro file by using the request “.so file-name” in the document; file-
name is resolved relative to the location of the input document. GNU troff offers an improved feature in
the similar request “mso package-file-name”, which searches the macro path for package-file-name. Be-
cause its argument is a file name, its “.tmac” component must be included for the file to be found; however,
as a convenience, if opening it fails, mso strips any such suffix and tries again with a “tmac.” prefix, and
vice versa.

If a sourced file requires preprocessing, for example if it includes tbl tables or eqn equations, the preproces-
sor soelim(1) must be used. This can be achieved with a pipeline or, in groff , by specifying the -s option to
the formatter (or front end). man(1) librarian programs generally call soelim automatically. (Macro pack-
ages themselves generally do not require preprocessing.)

Writing macros
A roff (7) document is a text file that is enriched by predefined formatting constructs, such as requests, es-
cape sequences, strings, numeric registers, and macros from a macro package. These elements are de-
scribed in roff (7).

To give a document a personal style, it is most useful to extend the existing elements by defining some
macros for repeating tasks; the best place for this is near the beginning of the document or in a separate file.

Macros without arguments are just like strings. But the full power of macros occurs when arguments are
passed with a macro call. Within the macro definition, the arguments are available as the escape sequences
\$1, . . ., \$9, \$[. . .], \$*, and \$@, the name under which the macro was called is in \$0, and the number of
arguments is in register \n[.$]; see groff (7).

Draft mode
Writing groff macros is easy when the escaping mechanism is temporarily disabled. In groff, this is done
by enclosing the macro definition(s) within a pair of .eo and .ec requests. Then the body in the macro defi-
nition is just like a normal part of the document — text enhanced by calls of requests, macros, strings, reg-
isters, etc. For example, the code above can be written in a simpler way by

.eo

.ds midpart was called with the following

.de print_args
\f[I]\$0\f[] *[midpart] \n[.$] arguments:
\$*
..
.ec

Unfortunately, draft mode cannot be used universally. Although it is good enough for defining normal
macros, draft mode fails with advanced applications, such as indirectly defined strings, registers, etc. An
optimal way is to define and test all macros in draft mode and then do the backslash doubling as a final
step; do not forget to remove the .eo request.

Tips for macro definitions
• Start every line with a dot, for example, by using the groff request .nop for text lines, or write your

own macro that handles also text lines with a leading dot.

.de Text

. if (\\n[.$] == 0) \

. return

. nop \)\\$*\)

..

groff 1.23.0 2 July 2023 155

groff_tmac(5) File Formats Manual groff_tmac(5)

• Write a comment macro that works both for copy and draft modes; since the escape character is
off in draft mode, trouble might occur when comment escape sequences are used. For example,
the following macro just ignores its arguments, so it acts like a comment line:

.de c

..

.c This is like a comment line.

• In long macro definitions, make ample use of comment lines or almost-empty lines (this is, lines
which have a leading dot and nothing else) for a better structuring.

• To increase readability, use groff’s indentation facility for requests and macro calls (arbitrary
whitespace after the leading dot).

Diversions
Diversions can be used to implement quite advanced programming constructs. They are comparable to
pointers to large data structures in the C programming language, but their usage is quite different.

In their simplest form, diversions are multi-line strings, but diversions get their power when used dynami-
cally within macros. The (formatted) information stored in a diversion can be retrieved by calling the diver-
sion just like a macro.

Most of the problems arising with diversions can be avoided if you remember that diversions always store
complete lines. Using diversions when the line buffer has not been flushed produces strange results; not
knowing this, many people get desperate about diversions. To ensure that a diversion works, add line
breaks at the right places. To be safe, enclose everything that has to do with diversions within a pair of line
breaks; for example, by explicitly using .br requests. This rule should be applied to diversion definition,
both inside and outside, and to all calls of diversions. This is a bit of overkill, but it works nicely.

(If you really need diversions which should ignore the current partial line, use environments to save the cur-
rent partial line and/or use the .box request.)

The most powerful feature using diversions is to start a diversion within a macro definition and end it
within another macro. Then everything between each call of this macro pair is stored within the diversion
and can be manipulated from within the macros.

Authors
This document was written by Bernd Warken 〈groff-bernd.warken-72@web.de〉, Werner Lemberg 〈wl@
gnu.org〉, and G. Branden Robinson 〈g.branden.robinson@gmail.com〉.

See also
Groff: The GNU Implementation of troff , by Trent A. Fisher and Werner Lemberg, is the primary groff
manual. You can browse it interactively with “info groff”.

The Filesystem Hierarchy Standard 〈https://wiki.linuxfoundation.org/lsb/fhs〉 is maintained by the Linux
Foundation.

groff (1)
is an overview of the groff system.

groff_man(7),
groff_mdoc(7),
groff_me(7),
groff_mm(7),
groff_mom(7),
groff_ms(7),
groff_rfc1345(7),
groff_trace(7),

and
groff_www(7)

are groff macro packages.

groff 1.23.0 2 July 2023 156

groff_tmac(5) File Formats Manual groff_tmac(5)

groff (7)
summarizes the language recognized by GNU troff .

troff (1) documents the default macro file search path.

groff 1.23.0 2 July 2023 157

groff (7) Miscellaneous Information Manual groff (7)

Name
groff - GNU roff language reference

Description
groff is short for GNU roff , a free reimplementation of the AT&T device-independent troff typesetting sys-
tem. See roff (7) for a survey of and background on roff systems.

This document is intended as a reference. The primary groff manual, Groff: The GNU Implementation of
troff , by Trent A. Fisher and Werner Lemberg, is a better resource for learners, containing many examples
and much discussion. It is written in Texinfo; you can browse it interactively with “info groff”. Additional
formats, including plain text, HTML, DVI, and PDF, may be available in /usr/share/doc/groff-1.23.0.

groff is also a name for an extended dialect of the roff language. We use “roff” to denote features that are
universal, or nearly so, among implementations of this family. We apply the term “groff” to the language
documented here, the GNU implementation of the overall system, the project that develops that system, and
the command of that name.

GNU troff , installed on this system as troff (1), is the formatter: a program that reads device and font de-
scriptions (groff_font(5)), interprets the groff language expressed in text input files, and translates that input
into a device-independent output format (groff_out(5)) that is usually then post-processed by an output dri-
ver to produce PostScript, PDF, HTML, DVI, or terminal output.

Input format
Input to GNU troff is organized into lines separated by the Unix newline character (U+000A), and must be
in one of two character encodings it can recognize: IBM code page 1047 on EBCDIC systems, and
ISO Latin-1 (8859-1) otherwise. Use of ISO 646-1991:IRV (“US-ASCII”) or (equivalently) the “Basic
Latin” subset of ISO 10646 (“Unicode”) is recommended; see groff_char(7). The preconv(1) preprocessor
transforms other encodings, including UTF-8, to satisfy troff ’s requirements.

Syntax characters
Several input characters are syntactically significant to groff .

. A dot at the beginning of an input line marks it as a control line. It can also follow the .el and .nop re-
quests, and the condition in .if, .ie, and .while requests. The control character invokes requests and
calls macros by the name that follows it. The .cc request can change the control character.

' The neutral apostrophe is the no-break control character, recognized where the control character is. It
suppresses the (first) break implied by the .bp, .cf, .fi, .fl, .in, .nf, .rj, .sp, .ti, and .trf requests. The re-
quested operation takes effect at the next break. It makes .br nilpotent. The no-break control charac-
ter can be changed with the .c2 request. When formatted, “'” may be typeset as a typographical quota-
tion mark; use the \[aq] special character escape sequence to format a neutral apostrophe glyph.

" The neutral double quote can be used to enclose arguments to macros and strings, and is required if
those arguments contain space or tab characters. In the .ds, .ds1, .as, and .as1 requests, an initial neu-
tral double quote in the second argument is stripped off to allow embedding of leading spaces. To in-
clude a double quote inside a quoted argument, use the \[dq] special character escape sequence (which
also serves to typeset the glyph in text).

\ A backslash introduces an escape sequence. The escape character can be changed with the .ec request;
.eo disables escape sequence recognition. Use the \[rs] special character escape sequence to format a
backslash glyph, and \e to typeset the glyph of the current escape character.

(An opening parenthesis is special only in certain escape sequences; when recognized, it introduces an
argument of exactly two characters. groff offers the more flexible square bracket syntax.

[An opening bracket is special only in certain escape sequences; when recognized, it introduces an ar-
gument (list) of any length, not including a closing bracket.

] A closing bracket is special only when an escape sequence using an opening bracket as an argument
delimiter is being interpreted. It ends the argument (list).

Additionally, the Control+A character (U+0001) in text is interpreted as a leader (see below).

groff 1.23.0 2 July 2023 158

groff (7) Miscellaneous Information Manual groff (7)

Horizontal white space characters are significant to groff, but trailing spaces on text lines are ignored.

space Space characters separate arguments in request invocations, macro calls, and string interpolations.
In text, they separate words. Multiple adjacent space characters in text cause groff to attempt
end-of-sentence detection on the preceding word (and trailing punctuation). The amount of space
between words and sentences is controlled by the .ss request. When filling is enabled (the de-
fault), a line may be broken at a space. When adjustment is enabled (the default), inter-word
spaces are expanded until the output line reaches the configured length. An adjustable but non-
breaking space is available with \~. To get a space of fixed width, use one of the escape se-
quences ‘\ ’ (the escape character followed by a space), \0, \|, \^, or \h; see section “Escape se-
quences” below.

newline In text, a newline puts an inter-word space onto the output and, if filling is enabled, triggers end-
of-sentence recognition on the preceding text. See section “Line continuation” below.

tab A tab character in text causes the drawing position to advance to the next defined tab stop.

Tabs and leaders
The formatter interprets input horizontal tab characters (“tabs”) and Control+A characters (“leaders”) into
movements to the next tab stop. Tabs simply move to the next tab stop; leaders place enough periods to fill
the space. Tab stops are by default located every half inch measured from the drawing position correspond-
ing to the beginning of the input line; see section “Page geometry” of roff (7). Tabs and leaders do not
cause breaks and therefore do not interrupt filling. Tab stops can be configured with the ta request, and tab
and leader glyphs with the tc and lc requests, respectively.

Line continuation
When filling is enabled, input and output line breaks generally do not correspond. The roff language there-
fore distinguishes input and output line continuation.

A backslash \ immediately followed by a newline, sometimes discussed as \newline, suppresses the effects
of that newline on the input. The next input line thus retains the classification of its predecessor as a con-
trol or text line. \newline is useful for managing line lengths in the input during document maintenance;
you can break an input line in the middle of a request invocation, macro call, or escape sequence. Input line
continuation is invisible to the formatter, with two exceptions: the operator recognizes the new input line,
and the input line counter register .c is incremented.

The \c escape sequence continues an output line. Nothing on the input line after it is formatted. In contrast
to \newline, a line after \c is treated as a new input line, so a control character is recognized at its beginning.
The visual results depend on whether filling is enabled. An intervening control line that causes a break
overrides \c, flushing out the pending output line in the usual way. The register .int contains a positive
value if the last output line was continued with \c; this datum is associated with the environment.

Colors
groff supports color output with a variety of color spaces and up to 16 bits per channel. Some devices, par-
ticularly terminals, may be more limited. When color support is enabled, two colors are current at any
given time: the stroke color, with which glyphs, rules (lines), and geometric objects like circles and poly-
gons are drawn, and the fill color, which can be used to paint the interior of a closed geometric figure. The
color, defcolor, gcolor, and fcolor requests; \m and \M escape sequences; and .color, .m, and .M registers
exercise color support.

Each output device has a color named “default”, which cannot be redefined. A device’s default stroke and
fill colors are not necessarily the same. For the dvi, html, pdf, ps, and xhtml output devices, troff auto-
matically loads a macro file defining many color names at startup. By the same mechanism, the devices
supported by grotty(1) recognize the eight standard ISO 6429/ECMA-48 color names (also known vulgarly
as “ANSI colors”).

Measurements
Numeric parameters that specify measurements are expressed as integers or decimal fractions with an op-
tional scaling unit suffixed. A scaling unit is a letter that immediately follows the last digit of a number.
Digits after the decimal point are optional.

groff 1.23.0 2 July 2023 159

groff (7) Miscellaneous Information Manual groff (7)

Measurements are scaled by the scaling unit and stored internally (with any fractional part discarded) in ba-
sic units. The device resolution can therefore be obtained by storing a value of “1i” to a register. The only
constraint on the basic unit is that it is at least as small as any other unit.

u Basic unit.
i Inch; defined as 2.54 centimeters.
c Centimeter.
p Point; a typesetter’s unit used for measuring type size. There are 72 points to an inch.
P Pica; another typesetter’s unit. There are 6 picas to an inch and 12 points to a pica.
s, z Scaled points and multiplication by the output device’s sizescale parameter, respectively.
f Multiplication by 65,536; scales decimal fractions in the interval [0, 1] to 16-bit unsigned integers.

The magnitudes of other scaling units depend on the text formatting parameters in effect.

m Em; an em is equal to the current type size in points.
n En; an en is one-half em.
v Vee; distance between text baselines.
M Hundredth of an em.

Motion quanta
An output device’s basic unit u is not necessarily its smallest addressable length; u can be smaller to avoid
problems with integer roundoff. The minimum distances that a device can work with in the horizontal and
vertical directions are termed its motion quanta, stored in the .H and .V registers, respectively. Measure-
ments are rounded to applicable motion quanta. Half-quantum fractions round toward zero.

Default units
A general-purpose register (one created or updated with the nr request; see section “Registers” below) is
implicitly dimensionless, or reckoned in basic units if interpreted in a measurement context. But it is con-
venient for many requests and escape sequences to infer a scaling unit for an argument if none is specified.
An explicit scaling unit (not after a closing parenthesis) can override an undesirable default. Effectively,
the default unit is suffixed to the expression if a scaling unit is not already present. GNU troff ’s use of inte-
ger arithmetic should also be kept in mind; see below.

Numeric expressions
A numeric expression evaluates to an integer. The following operators are recognized.

+ addition
- subtraction
* multiplication
/ truncating division
% modulus

unary + assertion, motion, incrementation
unary - negation, motion, decrementation

; scaling
>? maximum
<? minimum

< less than
> greater than
<= less than or equal
>= greater than or equal
= equal
== equal

& logical conjunction (“and”)
: logical disjunction (“or”)
! logical complementation (“not”)

() precedence

| boundary-relative motion

groff 1.23.0 2 July 2023 160

groff (7) Miscellaneous Information Manual groff (7)

troff provides a set of mathematical and logical operators familiar to programmers—as well as some un-
usual ones—but supports only integer arithmetic. (Provision is made for interpreting and reporting decimal
fractions in certain cases.) The internal data type used for computing results is usually a 32-bit signed inte-
ger, which suffices to represent magnitudes within a range of ±2 billion. (If that’s not enough, see
groff_tmac(5) for the 62bit.tmac macro package.)

Arithmetic infix operators perform a function on the numeric expressions to their left and right; they are +
(addition), - (subtraction), * (multiplication), / (truncating division), and % (modulus). Truncating divi-
sion rounds to the integer nearer to zero, no matter how large the fractional portion. Overflow and division
(or modulus) by zero are errors and abort evaluation of a numeric expression.

Arithmetic unary operators operate on the numeric expression to their right; they are - (negation) and + (as-
sertion—for completeness; it does nothing). The unary minus must often be used with parentheses to avoid
confusion with the decrementation operator, discussed below.

The sign of the modulus of operands of mixed signs is determined by the sign of the first. Division and
modulus operators satisfy the following property: given a dividend a and a divisor b, a quotient q formed
by “(a / b)” and a remainder r by “(a % b)”, then qb + r = a.

GNU troff ’s scaling operator, used with parentheses as (c;e), evaluates a numeric expression e using c as
the default scaling unit. If c is omitted, scaling units are ignored in the evaluation of e. GNU troff also
provides a pair of operators to compute the extrema of two operands: >? (maximum) and <? (minimum).

Comparison operators comprise < (less than), > (greater than), <= (less than or equal), >= (greater than or
equal), and = (equal). == is a synonym for =. When evaluated, a comparison is replaced with “0” if it is
false and “1” if true. In the roff language, positive values are true, others false.

We can operate on truth values with the logical operators & (logical conjunction or “and”) and : (logical
disjunction or “or”). They evaluate as comparison operators do. A logical complementation (“not”) opera-
tor, !, works only within “if”, “ie”, and “while” requests. Furthermore, ! is recognized only at the begin-
ning of a numeric expression not contained by another numeric expression. In other words, it must be the
“outermost” operator. Including it elsewhere in the expression produces a warning in the “number” cate-
gory (see troff (1)), and its expression evaluates false. This unfortunate limitation maintains compatibility
with AT&T troff . Test a numeric expression for falsity by comparing it to a false value.

The roff language has no operator precedence: expressions are evaluated strictly from left to right, in con-
trast to schoolhouse arithmetic. Use parentheses () to impose a desired precedence upon subexpressions.

For many requests and escape sequences that cause motion on the page, the unary operators + and - work
differently when leading a numeric expression. They then indicate a motion relative to the drawing posi-
tion: positive is down in vertical contexts, right in horizontal ones.

+ and - are also treated differently by the following requests and escape sequences: bp, in, ll, pl, pn, po,
ps, pvs, rt, ti, \H, \R, and \s. Here, leading plus and minus signs serve as incrementation and decrementa-
tion operators, respectively. To negate an expression, subtract it from zero or include the unary minus in
parentheses with its argument.

A leading operator indicates a motion relative not to the drawing position but to a boundary. For horizon-
tal motions, the measurement specifies a distance relative to a drawing position corresponding to the begin-
ning of the input line. By default, tab stops reckon movements in this way. Most escape sequences do not;
tells them to do so. For vertical motions, the operator specifies a distance from the first text baseline on

the page or in the current diversion, using the current vertical spacing.

The \B escape sequence tests its argument for validity as a numeric expression.

A register interpolated as an operand in a numeric expression must have an Arabic format; luckily, this is
the default.

Due to the way arguments are parsed, spaces are not allowed in numeric expressions unless the (sub)ex-
pression containing them is surrounded by parentheses.

groff 1.23.0 2 July 2023 161

groff (7) Miscellaneous Information Manual groff (7)

Identifiers
An identifier labels a GNU troff datum such as a register, name (macro, string, or diversion), typeface,
color, special character, character class, environment, or stream. Valid identifiers consist of one or more or-
dinary characters. An ordinary character is an input character that is not the escape character, a leader, tab,
newline, or invalid as GNU troff input.

Invalid input characters are subset of control characters (from the sets “C0 Controls” and “C1 Controls” as
Unicode describes them). When troff encounters one in an identifier, it produces a warning in category
“input” (see section “Warnings” in troff (1)). They are removed during interpretation: an identifier “foo”,
followed by an invalid character and then “bar”, is processed as “foobar”.

On a machine using the ISO 646, 8859, or 10646 character encodings, invalid input characters are 0x00,
0x08, 0x0B, 0x0D–0x1F, and 0x80–0x9F. On an EBCDIC host, they are 0x00–0x01, 0x08, 0x09, 0x0B,
0x0D–0x14, 0x17–0x1F, and 0x30–0x3F. Some of these code points are used by troff internally, making it
non-trivial to extend the program to accept UTF-8 or other encodings that use characters from these ranges.

An identifier with a closing bracket (“]”) in its name can’t be accessed with bracket-form escape sequences
that expect an identifier as a parameter. Similarly, the identifier “(” can’t be interpolated except with
bracket forms.

If you begin a macro, string, or diversion name with either of the characters “[” or “]”, you foreclose use of
the refer(1) preprocessor, which recognizes “.[” and “.]” as bibliographic reference delimiters.

The escape sequence \A tests its argument for validity as an identifier.

How GNU troff handles the interpretation of an undefined identifier depends on the context. There is no
way to invoke an undefined request; such syntax is interpreted as a macro call instead. If the identifier is in-
terpreted as a string, macro, or diversion, troff emits a warning in category “mac”, defines it as empty, and
interpolates nothing. If the identifier is interpreted as a register, troff emits a warning in category “reg”,
initializes it to zero, and interpolates that value. See section “Warnings” in troff (1), and subsection “Inter-
polating registers” and section “Strings” below. Attempting to use an undefined typeface, style, special
character, color, character class, environment, or stream generally provokes an error diagnostic.

Identifiers for requests, macros, strings, and diversions share one name space; special characters and char-
acter classes another. No other object types do.

Control characters
Control characters are recognized only at the beginning of an input line, or at the beginning of the branch of
a control structure request; see section “Control structures” below.

A few requests cause a break implicitly; use the no-break control character to prevent the break. Break sup-
pression is its sole behavioral distinction. Employing the no-break control character to invoke requests that
don’t cause breaks is harmless but poor style.

The control character “.” and the no-break control character “ ' ” can be changed with the cc and c2 re-
quests, respectively. Within a macro definition, register .br indicates the control character used to call it.

Invoking requests
A control character is optionally followed by tabs and/or spaces and then an identifier naming a request or
macro. The invocation of an unrecognized request is interpreted as a macro call. Defining a macro with the
same name as a request replaces the request. Deleting a request name with the rm request makes it un-
available. The als request can alias requests, permitting them to be wrapped or non-destructively replaced.
See section “Strings” below.

There is no inherent limit on argument length or quantity. Most requests take one or more arguments, and
ignore any they do not expect. A request may be separated from its arguments by tabs or spaces, but only
spaces can separate an argument from its successor. Only one between arguments is necessary; any excess
is ignored. GNU troff does not allow tabs for argument separation.

Generally, a space within a request argument is not relevant, not meaningful, or is supported by bespoke
provisions, as with the tl request’s delimiters. Some requests, like ds, interpret the remainder of the control
line as a single argument. See section “Strings” below.

groff 1.23.0 2 July 2023 162

groff (7) Miscellaneous Information Manual groff (7)

Spaces and tabs immediately after a control character are ignored. Commonly, authors structure the source
of documents or macro files with them.

Calling macros
If a macro of the desired name does not exist when called, it is created, assigned an empty definition, and a
warning in category “mac” is emitted. Calling an undefined macro does end a macro definition naming it
as its end macro (see section “Writing macros” below).

To embed spaces within a macro argument, enclose the argument in neutral double quotes ‘ " ’. Horizontal
motion escape sequences are sometimes a better choice for arguments to be formatted as text.

The foregoing raises the question of how to embed neutral double quotes or backslashes in macro argu-
ments when those characters are desired as literals. In GNU troff , the special character escape sequence
\[rs] produces a backslash and \[dq] a neutral double quote.

In GNU troff ’s AT&T compatibility mode, these characters remain available as \(rs and \(dq, respectively.
AT&T troff did not consistently define these special characters, but its descendants can be made to support
them. See groff_font(5). If even that is not feasible, see the “Calling Macros” section of the groff Texinfo
manual for the complex macro argument quoting rules of AT&T troff .

Using escape sequences
Whereas requests must occur on control lines, escape sequences can occur intermixed with text and may
appear in arguments to requests, macros, and other escape sequences. An escape sequence is introduced by
the escape character, a backslash \. The next character selects the escape’s function.

Escape sequences vary in length. Some take an argument, and of those, some have different syntactical
forms for a one-character, two-character, or arbitrary-length argument. Others accept only an arbitrary-
length argument. In the former scheme, a one-character argument follows the function character immedi-
ately, an opening parenthesis “(” introduces a two-character argument (no closing parenthesis is used), and
an argument of arbitrary length is enclosed in brackets “[]”. In the latter scheme, the user selects a delim-
iter character. A few escape sequences are idiosyncratic, and support both of the foregoing conventions
(\s), designate their own termination sequence (\?), consume input until the next newline (\!, \", \#), or
support an additional modifier character (\s again, and \n).

If an escape character is followed by a character that does not identify a defined operation, the escape char-
acter is ignored (producing a diagnostic of the “escape” warning category, which is not enabled by default)
and the following character is processed normally.

Escape sequence interpolation is of higher precedence than escape sequence argument interpretation. This
rule affords flexibility in using escape sequences to construct parameters to other escape sequences.

The escape character can be interpolated (\e). Requests permit the escape mechanism to be deactivated (eo)
and restored, or the escape character changed (ec), and to save and restore it (ecs and ecr).

Delimiters
Some escape sequences that require parameters use delimiters. The neutral apostrophe ' is a popular choice
and shown in this document. The neutral double quote " is also commonly seen. Letters, numerals, and
leaders can be used. Punctuation characters are likely better choices, except for those defined as infix oper-
ators in numeric expressions; see below.

The following escape sequences don’t take arguments and thus are allowed as delimiters: \space, \%, \|, \^,
\{, \}, \', \`, \-, _, \!, \?, \), \/, \,, \&, \:, \~, \0, \a, \c, \d, \e, \E, \p, \r, \t, and \u. However, using them this
way is discouraged; they can make the input confusing to read.

A few escape sequences, \A, \b, \o, \w, \X, and \Z, accept a newline as a delimiter. Newlines that serve as
delimiters continue to be recognized as input line terminators. Use of newlines as delimiters in escape se-
quences is also discouraged.

Finally, the escape sequences \D, \h, \H, \l, \L, \N, \R, \s, \S, \v, and \x prohibit many delimiters.

• the numerals 0–9 and the decimal point “.”

groff 1.23.0 2 July 2023 163

groff (7) Miscellaneous Information Manual groff (7)

• the (single-character) operators +-/*%<>=&:()

• any escape sequences other than \%, \:, \{, \}, \', \`, \-, _, \!, \/, \c, \e, and \p

Delimiter syntax is complex and flexible primarily for historical reasons; the foregoing restrictions need be
kept in mind mainly when using groff in AT&T compatibility mode. GNU troff keeps track of the nesting
depth of escape sequence interpolations, so the only characters you need to avoid using as delimiters are
those that appear in the arguments you input, not any that result from interpolation. Typically, ' works fine.
See section “Implementation differences” in groff_diff (7).

Dummy characters
As discussed in roff (7), the first character on an input line is treated specially. Further, formatting a glyph
has many consequences on formatter state (see section “Environments” below). Occasionally, we want to
escape this context or embrace some of those consequences without actually rendering a glyph to the out-
put. \& interpolates a dummy character, which is constitutive of output but invisible. Its presence alters the
interpretation context of a subsequent input character, and enjoys several applications: preventing the inser-
tion of extra space after an end-of-sentence character, preventing interpretation of a control character at the
beginning of an input line, preventing kerning between two glyphs, and permitting the tr request to remap a
character to “nothing”. \) works as \& does, except that it does not cancel a pending end-of-sentence state.

Control structures
groff has “if” and “while” control structures like other languages. However, the syntax for grouping multi-
ple input lines in the branches or bodies of these structures is unusual.

They have a common form: the request name is (except for .el “else”) followed by a conditional expression
cond-expr; the remainder of the line, anything, is interpreted as if it were an input line. Any quantity of
spaces between arguments to requests serves only to separate them; leading spaces in anything are there-
fore not seen. anything effectively cannot be omitted; if cond-expr is true and anything is empty, the new-
line at the end of the control line is interpreted as a blank line (and therefore a blank text line).

It is frequently desirable for a control structure to govern more than one request, macro call, or text line, or
a combination of the foregoing. The opening and closing brace escape sequences \{ and \} perform such
grouping. Brace escape sequences outside of control structures have no meaning and produce no output.

\{ should appear (after optional spaces and tabs) immediately subsequent to the request’s conditional ex-
pression. \} should appear on a line with other occurrences of itself as necessary to match \{ sequences. It
can be preceded by a control character, spaces, and tabs. Input after any quantity of \} sequences on the
same line is processed only if all the preceding conditions to which they correspond are true. Furthermore,
a \} closing the body of a .while request must be the last such escape sequence on an input line.

Conditional expressions
The .if, .ie, and .while requests test the truth values of numeric expressions. They also support several addi-
tional Boolean operators; the members of this expanded class are termed conditional expressions; their
truth values are as shown below.

cond-expr.is true if. . .
's1's2' s1 produces the same formatted output as s2.

c g a glyph g is available.
d m a string, macro, diversion, or request m is defined.

e the current page number is even.
F f a font named f is available.
m c a color named c is defined.

n the formatter is in nroff mode.
o the current page number is odd.

r n a register named n is defined.
S s a font style named s is available.

t the formatter is in troff mode.
v n/a (historical artifact; always false).

groff 1.23.0 2 July 2023 164

groff (7) Miscellaneous Information Manual groff (7)

If the first argument to an .if, .ie, or .while request begins with a non-alphanumeric character apart from !
(see below); it performs an output comparison test. Shown first in the table above, the output comparison
operator interpolates a true value if formatting its comparands s1 and s2 produces the same output com-
mands. Other delimiters can be used in place of the neutral apostrophes. troff formats s1 and s2 in sepa-
rate environments; after the comparison, the resulting data are discarded. The resulting glyph properties,
including font family, style, size, and slant, must match, but not necessarily the requests and/or escape se-
quences used to obtain them. Motions must match in orientation and magnitude to within the applicable
horizontal or vertical motion quantum of the device, after rounding.

Surround the comparands with \? to avoid formatting them; this causes them to be compared character by
character, as with string comparisons in other programming languages. Since comparands protected with \?
are read in copy mode, they need not even be valid groff syntax. The escape character is still lexically rec-
ognized, however, and consumes the next character.

The above operators can’t be combined with most others, but a leading “!”, not followed immediately by
spaces or tabs, complements an expression. Spaces and tabs are optional immediately after the “c”, “d”,
“F”, “m”, “r”, and “S” operators, but right after “!”, they end the predicate and the conditional evaluates
true. (This bizarre behavior maintains compatibility with AT&T troff .)

Syntax reference conventions
In the following request and escape sequence specifications, most argument names were chosen to be de-
scriptive. A few denotations may require introduction.

c denotes a single input character.
font a font either specified as a font name or a numeric mounting position.
anything all characters up to the end of the line, to the ending delimiter for the escape se-

quence, or within \{ and \}. Escape sequences may generally be used freely in any-
thing, except when it is read in copy mode.

message is a character sequence to be emitted on the standard error stream. Special character
escape sequences are not interpreted.

n is a numeric expression that evaluates to a non-negative integer.
npl is a numeric expression constituting a count of subsequent productive input lines; that

is, those that directly produce formatted output. Text lines produce output, as do con-
trol lines containing requests like .tl or escape sequences like \D. Macro calls are not
themselves productive, but their interpolated contents can be.

±N is a numeric expression with a meaning dependent on its sign.

If a numeric expression presented as ±N starts with a ‘+’ sign, an increment in the amount of of N is ap-
plied to the value applicable to the request or escape sequence. If it starts with a ‘-’ sign, a decrement of
magnitude N is applied instead. Without a sign, N replaces any existing value. A leading minus sign in N
is always interpreted as a decrementation operator, not an algebraic sign. To assign a register a negative
value or the negated value of another register, enclose it with its operand in parentheses or subtract it from
zero. If a prior value does not exist (the register was undefined), an increment or decrement is applied as if
to 0.

Request short reference
Not all details of request behavior are outlined here. See the groff Texinfo manual or, for features new to
GNU troff , groff_diff (7).

.ab Abort processing; exit with failure status.

.ab message
Abort processing; write message to the standard error stream and exit with failure status.

.ad Enable output line alignment and adjustment using the mode stored in \n[.j].

.ad c Enable output line alignment and adjustment in mode c (c=b,c,l,n,r). Sets \n[.j].

.af register c
Assign format c to register, where c is “i”, “I”, “a”, “A”, or a sequence of decimal digits
whose quantity denotes the minimum width in digits to be used when the register is interpo-
lated. “i” and “a” indicate Roman numerals and basic Latin alphabetics, respectively, in the
lettercase specified. The default is 0.

groff 1.23.0 2 July 2023 165

groff (7) Miscellaneous Information Manual groff (7)

.aln new old
Create alias (additional name) new for existing register named old .

.als new old
Create alias (additional name) new for existing request, string, macro, or diversion old .

.am macro
Append to macro until .. is encountered.

.am macro end
Append to macro until .end is called.

.am1 macro
Same as .am but with compatibility mode switched off during macro expansion.

.am1 macro end
Same as .am but with compatibility mode switched off during macro expansion.

.ami macro
Append to a macro whose name is contained in the string macro until .. is encountered.

.ami macro end
Append to a macro indirectly. macro and end are strings whose contents are interpolated for
the macro name and the end macro, respectively.

.ami1 macro
Same as .ami but with compatibility mode switched off during macro expansion.

.ami1 macro end
Same as .ami but with compatibility mode switched off during macro expansion.

.as name
Create string name with empty contents; no operation if name already exists.

.as name contents
Append contents to string name.

.as1 string

.as1 string contents
As .as, but with compatibility mode disabled when contents interpolated.

.asciify diversion
Unformat ASCII characters, spaces, and some escape sequences in diversion.

.backtrace
Write the state of the input stack to the standard error stream. See the -b option of groff (1).

.bd font Stop emboldening font font.

.bd font n
Embolden font by overstriking its glyphs offset by n-1 units. See register .b.

.bd special-font font
Stop emboldening special-font when font is selected.

.bd special-font font n
Embolden special-font, overstriking its glyphs offset by n-1 units when font is selected. See
register .b.

.blm Unset blank line macro (trap). Restore default handling of blank lines.

.blm name
Set blank line macro (trap) to name.

.box Stop directing output to current diversion; any pending output line is discarded.

.box name
Direct output to diversion name, omitting a partially collected line.

.boxa Stop appending output to current diversion; any pending output line is discarded.

.boxa name
Append output to diversion name, omitting a partially collected line.

.bp Break page and start a new one.

.bp ±N Break page, starting a new one numbered ±N .

.br Break output line.

groff 1.23.0 2 July 2023 166

groff (7) Miscellaneous Information Manual groff (7)

.brp Break output line; adjust if applicable.

.break Break out of a while loop.

.c2 Reset no-break control character to “'”.

.c2 o Recognize ordinary character o as no-break control character.

.cc Reset control character to ‘.’.

.cc o Recognize ordinary character o as the control character.

.ce Break, center the output of the next productive input line without filling, and break again.

.ce npl Break, center the output of the next npl productive input lines without filling, then break again.
If npl ≤ 0, stop centering.

.cf file Copy contents of file without formatting to the (top-level) diversion.

.cflags n c1 c2 . . .
Assign properties encoded by n to characters c1, c2, and so on.

.ch name
Unplant page location trap name.

.ch name vpos
Change page location trap name planted by .wh by moving its location to vpos (default scaling
unit v).

.char c contents
Define ordinary or special character c as contents.

.chop object
Remove the last character from the macro, string, or diversion named object.

.class name c1 c2 . . .
Define a (character) class name comprising the characters or range expressions c1, c2, and so
on.

.close stream
Close the stream.

.color Enable output of color-related device-independent output commands.

.color n
If n is zero, disable output of color-related device-independent output commands; otherwise,
enable them.

.composite from to
Map glyph name from to glyph name to while constructing a composite glyph name.

.continue
Finish the current iteration of a while loop.

.cp Enable compatibility mode.

.cp n If n is zero, disable compatibility mode, otherwise enable it.

.cs font n m
Set constant character width mode for font to n/36 ems with em m.

.cu Continuously underline the output of the next productive input line.

.cu npl Continuously underline the output of the next npl productive input lines. If npl=0, stop contin-
uously underlining.

.da Stop appending output to current diversion.

.da name
Append output to diversion name.

.de macro
Define or redefine macro until “..” occurs at the start of a control line in the current conditional
block.

.de macro end
Define or redefine macro until end is invoked or called at the start of a control line in the cur-
rent conditional block.

.de1 macro
As .de, but disable compatibility mode during macro expansion.

groff 1.23.0 2 July 2023 167

groff (7) Miscellaneous Information Manual groff (7)

.de1 macro end
As “.de macro end”, but disable compatibility mode during macro expansion.

.defcolor ident scheme color-component . . .
Define a color named ident. scheme identifies a color space and determines the number of re-
quired color-components; it must be one of “rgb” (three components), “cmy” (three), “cmyk”
(four), or “gray” (one). “grey” is accepted as a synonym of “gray”. The color components
can be encoded as a single hexadecimal value starting with # or ##. The former indicates that
each component is in the range 0–255 (0–FF), the latter the range 0–65,535 (0–FFFF). Alter-
natively, each color component can be specified as a decimal fraction in the range 0–1, inter-
preted using a default scaling unit of “f”, which multiplies its value by 65,536 (but clamps it at
65,535). Each output device has a color named “default”, which cannot be redefined. A de-
vice’s default stroke and fill colors are not necessarily the same.

.dei macro
Define macro indirectly. As .de, but use interpolation of string macro as the name of the de-
fined macro.

.dei macro end
Define macro indirectly. As .de, but use interpolations of strings macro and end as the names
of the defined and end macros.

.dei1 macro
As .dei, but disable compatibility mode during macro expansion.

.dei1 macro end
As .dei macro end, but disable compatibility mode during macro expansion.

.device anything
Write anything, read in copy mode, to troff output as a device control command. An initial
neutral double quote is stripped to allow embedding of leading spaces.

.devicem name
Write contents of macro or string name to troff output as a device control command.

.di Stop directing output to current diversion.

.di name
Direct output to diversion name.

.do name . . .
Interpret the string, request, diversion, or macro name (along with any arguments) with com-
patibility mode disabled. Compatibility mode is restored (only if it was active) when the
expansion of name is interpreted.

.ds name
Create empty string name.

.ds name contents
Create a string name containing contents.

.ds1 name

.ds1 name contents
As .ds, but with compatibility mode disabled when contents interpolated.

.dt Clear diversion trap.

.dt vertical-position name
Set the diversion trap to macro name at vertical-position (default scaling unit v).

.ec Recognize \ as the escape character.

.ec o Recognize ordinary character o as the escape character.

.ecr Restore escape character saved with .ecs.

.ecs Save the escape character.

.el anything
Interpret anything as if it were an input line if the conditional expression of the corresponding
.ie request was false.

.em name
Call macro name after the end of input.

groff 1.23.0 2 July 2023 168

groff (7) Miscellaneous Information Manual groff (7)

.eo Disable the escape mechanism in interpretation mode.

.ev Pop environment stack, returning to previous one.

.ev env Push current environment onto stack and switch to env.

.evc env Copy environment env to the current one.

.ex Exit with successful status.

.fam Set default font family to previous value.

.fam name
Set default font family to name.

.fc Disable field mechanism.

.fc a Set field delimiter to a and pad glyph to space.

.fc a b Set field delimiter to a and pad glyph to b.

.fchar c contents
Define fallback character (or glyph) c as contents.

.fcolor Restore previous fill color.

.fcolor c
Set fill color to c.

.fi Enable filling of output lines; a pending output line is broken. Sets \n[.u].

.fl Flush output buffer.

.fp pos id
Mount font with font description file name id at non-negative position n.

.fp pos id font-description-file-name
Mount font with font-description-file-name as name id at non-negative position n.

.fschar f c anything
Define fallback character (or glyph) c for font f as string anything.

.fspecial font
Reset list of special fonts for font to be empty.

.fspecial font s1 s2 . . .
When the current font is font, then the fonts s1, s2, . . . are special.

.ft

.ft P Select previous font mounting position (abstract style or font); same as \f[] or \fP.

.ft font Select typeface font, which can be a mounting position, abstract style, or font name; same as
\f[font] escape sequence. font cannot be P.

.ftr font1 font2
Translate font1 to font2.

.fzoom font

.fzoom font 0
Stop magnifying font.

.fzoom font z
Set zoom factor for font to z (in thousandths; default: 1000).

.gcolor Restore previous stroke color.

.gcolor c
Set stroke color to c.

.hc Reset the hyphenation character to \% (the default).

.hc char Change the hyphenation character to char.

.hcode c1 code1 [c2 code2] . . .
Set the hyphenation code of character c1 to code1, that of c2 to code2, and so on.

.hla lang
Set the hyphenation language to lang.

.hlm n Set the maximum quantity of consecutive hyphenated lines to n.

.hpf pattern-file
Read hyphenation patterns from pattern-file.

.hpfa pattern-file
Append hyphenation patterns from pattern-file.

groff 1.23.0 2 July 2023 169

groff (7) Miscellaneous Information Manual groff (7)

.hpfcode a b [c d] . . .
Define mappings for character codes in hyphenation pattern files read with .hpf and .hpfa.

.hw word . . .
Define hyphenation overrides for each word; a hyphen “-” indicates a hyphenation point.

.hy Set automatic hyphenation mode to 1.

.hy 0 Disable automatic hyphenation; same as .nh.

.hy mode
Set automatic hyphenation mode to mode; see section “Hyphenation” below.

.hym Set the (right) hyphenation margin to 0 (the default).

.hym length
Set the (right) hyphenation margin to length (default scaling unit m).

.hys Set the hyphenation space to 0 (the default).

.hys hyphenation-space
Suppress automatic hyphenation in adjustment modes “b” or “n” if the line can be justified
with the addition of up to hyphenation-space to each inter-word space (default scaling unit m).

.ie cond-expr anything
If cond-expr is true, interpret anything as if it were an input line, otherwise skip to a corre-
sponding .el request.

.if cond-expr anything
If cond-expr is true, then interpret anything as if it were an input line.

.ig Ignore input (except for side effects of \R on auto-incrementing registers) until “..” occurs at
the start of a control line in the current conditional block.

.ig end Ignore input (except for side effects of \R on auto-incrementing registers) until .end is called at
the start of a control line in the current conditional block.

.in Set indentation amount to previous value.

.in ±N Set indentation to ±N (default scaling unit m).

.it Cancel any pending input line trap.

.it npl name
Set (or replace) an input line trap in the environment, calling macro name, after the next npl
productive input lines have been read. Lines interrupted with the \c escape sequence are
counted separately.

.itc Cancel any pending input line trap.

.itc npl name
As .it, except that input lines interrupted with the \c escape sequence are not counted.

.kern Enable pairwise kerning.

.kern n If n is zero, disable pairwise kerning, otherwise enable it.

.lc Unset leader repetition character.

.lc c Set leader repetition character to c (default: “.”).

.length reg anything
Compute the number of characters of anything and store the count in the register reg.

.linetabs
Enable line-tabs mode (calculate tab positions relative to beginning of output line).

.linetabs 0
Disable line-tabs mode.

.lf n Set number of next input line to n.

.lf n file Set number of next input line to n and input file name to file.

.lg m Set ligature mode to m (0 = disable, 1 = enable, 2 = enable for two-letter ligatures only).

.ll Set line length to previous value. Does not affect a pending output line.

.ll ±N Set line length to ±N (default length 6.5i, default scaling unit m). Does not affect a pending
output line.

.lsm Unset the leading space macro (trap). Restore default handling of lines with leading spaces.

.lsm name
Set the leading space macro (trap) to name.

groff 1.23.0 2 July 2023 170

groff (7) Miscellaneous Information Manual groff (7)

.ls Change to the previous value of additional intra-line skip.

.ls n Set additional intra-line skip value to n, i.e., n-1 blank lines are inserted after each text output
line.

.lt Set length of title lines to previous value.

.lt ±N Set length of title lines (default length 6.5i, default scaling unit m).

.mc Cease writing margin character.

.mc c Begin writing margin character c to the right of each output line.

.mc c d Begin writing margin character c on each output line at distance d to the right of the right mar-
gin (default distance 10p, default scaling unit m).

.mk Mark vertical drawing position in an internal register; see .rt.

.mk register
Mark vertical drawing position in register.

.mso file As .so, except that file is sought in the tmac directories.

.msoquiet file
As .mso, but no warning is emitted if file does not exist.

.na Disable output line adjustment.

.ne Break page if distance to next page location trap is less than one vee.

.ne d Break page if distance to next page location trap is less than distance d (default scaling unit v).

.nf Disable filling of output lines; a pending output line is broken. Clears \n[.u].

.nh Disable automatic hyphenation; same as “.hy 0”.

.nm Deactivate output line numbering.

.nm ±N

.nm ±N m

.nm ±N m s

.nm ±N m s i
Activate output line numbering: number the next output line ±N, writing numbers every m
lines, with s numeral widths (\0) between the line number and the output (default 1), and in-
denting the line number by i numeral widths (default 0).

.nn Suppress numbering of the next output line to be numbered with nm.

.nn n Suppress numbering of the next n output lines to be numbered with nm. If n=0, cancel sup-
pression.

.nop anything
Interpret anything as if it were an input line.

.nr reg ±N
Define or update register reg with value N .

.nr reg ±N I
Define or update register reg with value N and auto-increment I .

.nroff Make the conditional expressions n true and t false.

.ns Enable no-space mode, ignoring .sp requests until a glyph or \D primitive is output. See .rs.

.nx Immediately jump to end of current file.

.nx file Stop formatting current file and begin reading file.

.open stream file
Open file for writing and associate the stream named stream with it. Unsafe request; disabled
by default.

.opena stream file
As .open, but append to file. Unsafe request; disabled by default.

.os Output vertical distance that was saved by the .sv request.

.output contents
Emit contents directly to intermediate output, allowing leading whitespace if string starts with
" (which is stripped off).

.pc Reset page number character to ‘%’.

.pc c Page number character.

groff 1.23.0 2 July 2023 171

groff (7) Miscellaneous Information Manual groff (7)

.pev Report the state of the current environment followed by that of all other environments to the
standard error stream.

.pi program
Pipe output to program (nroff only). Unsafe request; disabled by default.

.pl Set page length to default 11i. The current page length is stored in register .p.

.pl ±N Change page length to ±N (default scaling unit v).

.pm Report, to the standard error stream, the names and sizes in bytes of defined macros, strings,
and diversions.

.pn ±N Next page number N .

.pnr Write the names and contents of all defined registers to the standard error stream.

.po Change to previous page offset. The current page offset is available in register .o.

.po ±N Page offset N .

.ps Return to previous type size.

.ps ±N Set/increase/decrease the type size to/by N scaled points (a non-positive resulting type size is
set to 1 u); also see \s[±N].

.psbb file
Retrieve the bounding box of the PostScript image found in file, which must conform to
Adobe’s Document Structuring Conventions (DSC). See registers llx, lly, urx, ury.

.pso command-line
Execute command-line with popen(3) and interpolate its output. Unsafe request; disabled by
default.

.ptr Report names and positions of all page location traps to the standard error stream.

.pvs Change to previous post-vertical line spacing.

.pvs ±N Change post-vertical line spacing according to ±N (default scaling unit p).

.rchar c1 c2 . . .
Remove definition of each ordinary or special character c1, c2, . . . defined by a .char, .fchar,
or .schar request.

.rd prompt
Read insertion.

.return Return from a macro.

.return anything
Return twice, namely from the macro at the current level and from the macro one level higher.

.rfschar f c1 c2 . . .
Remove the font-specific definitions of glyphs c1, c2, . . . for font f .

.rj npl Break, right-align the output of the next productive input line without filling, then break again.

.rj npl Break, right-align the output of the next npl productive input lines without filling, then break
again. If npl ≤ 0, stop right-aligning.

.rm name
Remove request, macro, diversion, or string name.

.rn old new
Rename request, macro, diversion, or string old to new.

.rnn reg1 reg2
Rename register reg1 to reg2.

.rr ident Remove register ident.

.rs Restore spacing; disable no-space mode. See .ns.

.rt Return (upward only) to vertical position marked by .mk on the current page.

.rt N Return (upward only) to vertical position N (default scaling unit v).

.schar c contents
Define global fallback character (or glyph) c as contents.

.shc Reset the soft hyphen character to \[hy].

.shc c Set the soft hyphen character to c.

.shift n
In a macro definition, left-shift arguments by n positions.

groff 1.23.0 2 July 2023 172

groff (7) Miscellaneous Information Manual groff (7)

.sizes s1 s2 . . . sn [0]
Set available type sizes similarly to the sizes directive in a DESC file. Each si is interpreted in
units of scaled points (z).

.so file Replace the request’s control line with the contents of file, “sourcing” it.

.soquiet file
As .so, but no warning is emitted if file does not exist.

.sp Break and move the next text baseline down by one vee, or until springing a page location trap.

.sp dist Break and move the next text baseline down by dist, or until springing a page location trap (de-
fault scaling unit v). A negative dist will not reduce the position of the text baseline below
zero. Prefixing dist with the operator moves to a position relative to the page top for positive
N , and the bottom if N is negative; in all cases, one line height (vee) is added to dist. dist is
ignored inside a diversion.

.special
Reset global list of special fonts to be empty.

.special s1 s2 . . .
Fonts s1, s2, etc. are special and are searched for glyphs not in the current font.

.spreadwarn
Toggle the spread warning on and off (the default) without changing its value.

.spreadwarn N
Emit a break warning if the additional space inserted for each space between words in an ad-
justed output line is greater than or equal to N . A negative N is treated as 0. The default scal-
ing unit is m. At startup, .spreadwarn is inactive and N is 3 m.

.ss n Set minimal inter-word spacing to n 12ths of current font’s space width.

.ss n m As “.ss n”, and set additional inter-sentence space to m 12ths of current font’s space width.

.stringdown stringvar
Replace each byte in the string named stringvar with its lowercase version.

.stringup stringvar
Replace each byte in the string named stringvar with its uppercase version.

.sty n style
Associate abstract style with font position n.

.substring str start [end]
Replace the string named str with its substring bounded by the indices start and end , inclusive.
Negative indices count backwards from the end of the string.

.sv As .ne, but save 1 v for output with .os request.

.sv d As .ne, but save distance d for later output with .os request (default scaling unit v).

.sy command-line
Execute command-line with system(3). Unsafe request; disabled by default.

.ta n1 n2 . . . nn T r1 r2 . . . rn
Set tabs at positions n1, n2, . . ., nn, then set tabs at nn+m×rn+r1 through nn+m×rn+rn, where
m increments from 0, 1, 2, . . . to the output line length. Each n argument can be prefixed with
a “+” to place the tab stop ni at a distance relative to the previous, n(i-1). Each argument
ni or ri can be suffixed with a letter to align text within the tab column bounded by tab stops
i and i+1; “L” for left-aligned (the default), “C” for centered, and “R” for right-aligned.

.tag

.taga Reserved for internal use.

.tc Unset tab repetition character.

.tc c Set tab repetition character to c (default: none).

.ti ±N Temporarily indent next output line (default scaling unit m).

.tkf font s1 n1 s2 n2
Enable track kerning for font.

.tl 'left'center'right'
Format three-part title.

groff 1.23.0 2 July 2023 173

groff (7) Miscellaneous Information Manual groff (7)

.tm message
Write message, followed by a newline, to the standard error stream.

.tm1 message
As .tm, but an initial neutral double quote in message is removed, allowing it to contain lead-
ing spaces.

.tmc message
As .tm1, without emitting a newline.

.tr abcd. . .
Translate ordinary or special characters a to b, c to d , and so on prior to output.

.trf file Transparently output the contents of file. Unlike .cf, invalid input characters in file are re-
jected.

.trin abcd. . .
As .tr, except that .asciify ignores the translation when a diversion is interpolated.

.trnt abcd. . .
As .tr, except that translations are suppressed in the argument to \!.

.troff Make the conditional expressions t true and n false.

.uf font Set underline font used by .ul to font.

.ul Underline (italicize in troff mode) the output of the next productive input line.

.ul npl Underline (italicize in troff mode) the output of the next npl productive input line. If npl=0,
stop underlining.

.unformat diversion
Unformat space characters and tabs in diversion, preserving font information.

.vpt Enable vertical position traps.

.vpt 0 Disable vertical position traps.

.vs Change to previous vertical spacing.

.vs ±N Set vertical spacing to ±N (default scaling unit p).

.warn Enable all warning categories.

.warn 0 Disable all warning categories.

.warn n Enable warnings in categories whose codes sum to n; see troff (1).

.warnscale su
Set scaling unit used in certain warnings to su (one of u, i, c, p, or P; default: i).

.wh vpos Remove visible page location trap at vpos (default scaling unit v).

.wh vpos name
Plant macro name as page location trap at vpos (default scaling unit v), removing any visible
trap already there.

.while cond-expr anything
Repeatedly execute anything unless and until cond-expr evaluates false.

.write stream anything
Write anything to the stream named stream.

.writec stream anything
Similar to .write without emitting a final newline.

.writem stream xx
Write contents of macro or string xx to the stream named stream.

Escape sequence short reference
The escape sequences \", \#, \$, *, \?, \a, \e, \n, \t, \g, \V, and \newline are interpreted even in copy mode.

\" Comment. Everything up to the end of the line is ignored.
\# Comment. Everything up to and including the next newline is ignored.
*s Interpolate string with one-character name s.
*(st Interpolate string with two-character name st.
*[string]

Interpolate string with name string (of arbitrary length).
*[string arg . . .]

Interpolate string with name string (of arbitrary length), taking arg . . . as arguments.

groff 1.23.0 2 July 2023 174

groff (7) Miscellaneous Information Manual groff (7)

\$0 Interpolate name by which currently executing macro was invoked.
\$n Interpolate macro or string parameter numbered n (1 ≤ n ≤ 9).
\$(nn Interpolate macro or string parameter numbered nn (01 ≤ nn ≤ 99).
\$[nnn]

Interpolate macro or string parameter numbered nnn (nnn ≥ 1).
\$* Interpolate concatenation of all macro or string parameters, separated by spaces.
\$@ Interpolate concatenation of all macro or string parameters, with each surrounded by double

quotes and separated by spaces.
\$^ Interpolate concatenation of all macro or string parameters as if they were arguments to the .ds re-

quest.
\' is a synonym for \[aa], the acute accent special character.
\` is a synonym for \[ga], the grave accent special character.
\- is a synonym for \[-], the minus sign special character.
_ is a synonym for \[ul], the underrule special character.
\% Control hyphenation.
\! Transparent line. The remainder of the input line is interpreted (1) when the current diversion is

read; or (2) if in the top-level diversion, by the postprocessor (if any).
\?anything\?

Transparently embed anything, read in copy mode, in a diversion, or unformatted as an output
comparand in a conditional expression.

\space Move right one word space.
\~ Insert an unbreakable, adjustable space.
\0 Move right by the width of a numeral in the current font.
\| Move one-sixth em to the right on typesetters.
\^ Move one-twelfth em to the right on typesetters.
\& Interpolate a dummy character.
\) Interpolate a dummy character that is transparent to end-of-sentence recognition.
\/ Apply italic correction. Use between an immediately adjacent oblique glyph on the left and an up-

right glyph on the right.
\, Apply left italic correction. Use between an immediately adjacent upright glyph on the left and an

oblique glyph on the right.
\: Non-printing break point (similar to \%, but never produces a hyphen glyph).
\newline

Continue current input line on the next.
\{ Begin conditional input.
\} End conditional input.
\(gl Interpolate glyph with two-character name gl.
\[glyph]

Interpolate glyph with name glyph (of arbitrary length).
\[base-char comp . . .]

Interpolate composite glyph constructed from base-char and each component comp.
\[charnnn]

Interpolate glyph of eight-bit encoded character nnn, where 0 ≤ nnn ≤ 255.
\[unnnn[n[n]]]

Interpolate glyph of Unicode character with code point nnnn[n[n]] in uppercase hexadecimal.
\[ubase-char[_combining-component]. . .]

Interpolate composite glyph from Unicode character base-char and combining-components.
\a Interpolate a leader in copy mode.
\A'anything'

Interpolate 1 if anything is a valid identifier, and 0 otherwise.
\b'string'

Build bracket: pile a sequence of glyphs corresponding to each character in string vertically, and
center it vertically on the output line.

groff 1.23.0 2 July 2023 175

groff (7) Miscellaneous Information Manual groff (7)

\B'anything'
Interpolate 1 if anything is a valid numeric expression, and 0 otherwise.

\c Continue output line at next input line.
\C'glyph'

As \[glyph], but compatible with other troff implementations.
\d Move downward ½ em on typesetters.
\D'drawing-command'

See subsection “Drawing commands” below.
\e Interpolate the escape character.
\E As \e, but not interpreted in copy mode.
\fP Select previous font mounting position (abstract style or font); same as “.ft” or “.ft P”.
\fF Select font mounting position, abstract style, or font with one-character name or one-digit posi-

tion F . F cannot be P.
\f(ft Select font mounting position, abstract style, or font with two-character name or two-digit posi-

tion ft.
\f[font]

Select font mounting position, abstract style, or font with arbitrarily long name or position font.
font cannot be P.

\f[] Select previous font mounting position (abstract style or font).
\F f Set default font family to that with one-character name f .
\F(fm Set default font family to that with two-character name fm.
\F[fam]

Set default font family to that with arbitrarily long name fam.
\F[] Set default font family to previous value.
\gr Interpolate format of register with one-character name r.
\g(rg Interpolate format of register with two-character name rg.
\g[reg]

Interpolate format of register with arbitrarily long name reg.
\h'N'

Horizontally move the drawing position by N ems (or specified units); may be used. Positive
motion is rightward.

\H'N'
Set height of current font to N scaled points (or specified units).

\kr Mark horizontal position in one-character register name r.
\k(rg Mark horizontal position in two-character register name rg.
\k[reg]

Mark horizontal position in register with arbitrarily long name reg.
\l'N [c]'

Draw horizontal line of length N with character c (default: \[ru]; default scaling unit m).
\L'N [c]'

Draw vertical line of length N with character c (default: \[br]; default scaling unit v).
\mc Set stroke color to that with one-character name c.
\m(cl Set stroke color to that with two-character name cl.
\m[color]

Set stroke color to that with arbitrarily long name color.
\m[] Restore previous stroke color.
\Mc Set fill color to that with one-character name c.
\M(cl Set fill color to that with two-character name cl.
\M[color]

Set fill color to that with arbitrarily long name color.
\M[] Restore previous fill color.

groff 1.23.0 2 July 2023 176

groff (7) Miscellaneous Information Manual groff (7)

\nr Interpolate contents of register with one-character name r.
\n(rg Interpolate contents of register with two-character name rg.
\n[reg]

Interpolate contents of register with arbitrarily long name reg.
\N'n' Interpolate glyph with index n in the current font.
\o'abc. . .'

Overstrike centered glyphs of characters a, b, c, and so on.
\O0 At the outermost suppression level, disable emission of glyphs and geometric objects to the output

driver.
\O1 At the outermost suppression level, enable emission of glyphs and geometric objects to the output

driver.
\O2 At the outermost suppression level, enable glyph and geometric primitive emission to the output

driver and write to the standard error stream the page number, four bounding box registers enclos-
ing glyphs written since the previous \O escape sequence, the page offset, line length, image file
name (if any), horizontal and vertical device motion quanta, and input file name.

\O3 Begin a nested suppression level.
\O4 End a nested suppression level.
\O[5Pfile]

At the outermost suppression level, write the name file to the standard error stream at position P,
which must be one of l, r, c, or i.

\p Break output line at next word boundary; adjust if applicable.
\r Move “in reverse” (upward) 1 em.
\R'name ±N'

Set, increment, or decrement register name by N .
\s±N Set/increase/decrease the type size to/by N scaled points. N must be a single digit; 0 restores the

previous type size. (In compatibility mode only, a non-zero N must be in the range 4–39.) Other-
wise, as .ps request.

\s(±N
\s±(N

Set/increase/decrease the type size to/by N scaled points; N is a two-digit number ≥1. As .ps re-
quest.

\s[±N]
\s±[N]
\s'±N'
\s±'N'

Set/increase/decrease the type size to/by N scaled points. As .ps request.
\S'N'

Slant output glyphs by N degrees; the direction of text flow is positive.
\t Interpolate a tab in copy mode.
\u Move upward ½ em on typesetters.
\v'N'

Vertically move the drawing position by N vees (or specified units); may be used. Positive mo-
tion is downward.

\Ve Interpolate contents of environment variable with one-character name e.
\V(ev Interpolate contents of environment variable with two-character name ev.
\V[env]

Interpolate contents of environment variable with arbitrarily long name env.
\w'anything'

Interpolate width of anything, formatted in a dummy environment.
\x'N'

Increase vertical spacing of pending output line by N vees (or specified units; negative before,
positive after).

groff 1.23.0 2 July 2023 177

groff (7) Miscellaneous Information Manual groff (7)

\X'anything'
Write anything to troff output as a device control command. Within anything, the escape se-
quences \&, \), \%, and \: are ignored; \space and \~ are converted to single space characters; and
\\ has its escape character stripped. So that the basic Latin subset of the Unicode character set can
be reliably encoded in anything, the special character escape sequences \-, \[aq], \[dq], \[ga],
\[ha], \[rs], and \[ti] are mapped to basic Latin characters; see groff_char(7). For this transforma-
tion, character translations and special character definitions are ignored.

\Yn Write contents of macro or string n to troff output as a device control command.
\Y(nm Write contents of macro or string nm to troff output as a device control command.
\Y[name]

Write contents of macro or string name to troff output as a device control command.
\zc Format character c with zero width—without advancing the drawing position.
\Z'anything'

Save the drawing position, format anything, then restore it.

Drawing commands
Drawing commands direct the output device to render geometrical objects rather than glyphs. Specific de-
vices may support only a subset, or may feature additional ones; consult the man page for the output driver
in use. Terminal devices in particular implement almost none.

Rendering starts at the drawing position; when finished, the drawing position is left at the rightmost point of
the object, even for closed figures, except where noted. GNU troff draws stroked (outlined) objects with
the stroke color, and shades filled ones with the fill color. See section “Colors” above. Coordinates h and v
are horizontal and vertical motions relative to the drawing position or previous point in the command. The
default scaling unit for horizontal measurements (and diameters of circles) is m; for vertical ones, v.

Circles, ellipses, and polygons can be drawn stroked or filled. These are independent properties; if you
want a filled, stroked figure, you must draw the same figure twice using each drawing command. A filled
figure is always smaller than an outlined one because the former is drawn only within its defined area,
whereas strokes have a line thickness (set with \D't').

\D'~ h1 v1 . . . hn vn'
Draw B-spline to each point in sequence, leaving drawing position at (hn, vn).

\D'a hc vc h v'
Draw circular arc centered at (hc, vc) counterclockwise from the drawing position to a point (h, v)
relative to the center. (hc, vc) is adjusted to the point nearest the perpendicular bisector of the
arc’s chord.

\D'c d' Draw circle of diameter d with its leftmost point at the drawing position.
\D'C d'

As \D'C', but the circle is filled.
\D'e h v'

Draw ellipse of width h and height v with its leftmost point at the drawing position.
\D'E h v'

As \D'e', but the ellipse is filled.
\D'l h v'

Draw line from the drawing position to (h, v).
\D'p h1 v1 . . . hn vn'

Draw polygon with vertices at drawing position and each point in sequence. GNU troff closes the
polygon by drawing a line from (hn, vn) back to the initial drawing position. Afterward, the draw-
ing position is left at (hn, vn).

\D'P h1 v1 . . . hn vn'
As \D'p', but the polygon is filled.

\D't n' Set stroke thickness of geometric objects to to n basic units. A zero n selects the minimal sup-
ported thickness. A negative n selects a thickness proportional to the type size; this is the default.

groff 1.23.0 2 July 2023 178

groff (7) Miscellaneous Information Manual groff (7)

Device control commands
The .device and .devicem requests, and \X and \Y escape sequences, enable documents to pass information
directly to a postprocessor. These are useful for exercising device-specific capabilities that the groff lan-
guage does not abstract or generalize; such functions include the embedding of hyperlinks and image files.
Device-specific functions are documented in each output driver’s man page.

Strings
groff supports strings primarily for user convenience. Conventionally, if one would define a macro only to
interpolate a small amount of text, without invoking requests or calling any other macros, one defines a
string instead. Only one string is predefined by the language.

*[.T] Contains the name of the output device (for example, “utf8” or “pdf”).

The .ds request creates a string with a specified name and contents. If the identifier named by .ds already
exists as an alias, the target of the alias is redefined. If .ds is called with only one argument, the named
string becomes empty. Otherwise, troff stores the remainder of the control line in copy mode; see subsec-
tion “Copy mode” below.

The * escape sequence dereferences a string’s name, interpolating its contents. If the name does not exist,
it is defined as empty, nothing is interpolated, and a warning in category “mac” is emitted. See section
“Warnings” in troff (1). The bracketed interpolation form accepts arguments that are handled as macro ar-
guments are; see section “Calling macros” above. In contrast to macro calls, however, if a closing bracket]
occurs in a string argument, that argument must be enclosed in double quotes. * is interpreted even in
copy mode. When defining strings, argument interpolations must be escaped if they are to reference para-
meters from the calling context; see section “Parameters” below.

An initial neutral double quote " in the string contents is stripped to allow embedding of leading spaces.
Any other " is interpreted literally, but it is wise to use the special character escape sequence \[dq] instead
if the string might be interpolated as part of a macro argument; see section “Calling macros” above. Strings
are not limited to a single input line of text. \newline works just as it does elsewhere. The resulting string
is stored without the newlines. Care is therefore required when interpolating strings while filling is dis-
abled. It is not possible to embed a newline in a string that will be interpreted as such when the string is in-
terpolated. To achieve that effect, use * to interpolate a macro instead.

The .as request is similar to .ds but appends to a string instead of redefining it. If .as is called with only one
argument, no operation is performed (beyond dereferencing the string).

Because strings are similar to macros, they too can be defined to suppress AT&T troff compatibility mode
enablement when interpolated; see section “Compatibility mode” below. The .ds1 request defines a string
that suspends compatibility mode when the string is later interpolated. .as1 is likewise similar to .as, with
compatibility mode suspended when the appended portion of the string is later interpolated.

Caution: Unlike other requests, the second argument to these requests consumes the remainder of the input
line, including trailing spaces. Ending string definitions (and appendments) with a comment, even an
empty one, prevents unwanted space from creeping into them during source document maintenance.

Several requests exist to perform rudimentary string operations. Strings can be queried (.length) and modi-
fied (.chop, .substring, .stringup, .stringdown), and their names can be manipulated through renaming,
removal, and aliasing (.rn, .rm, .als).

When a request, macro, string, or diversion is aliased, redefinitions and appendments “write through” alias
names. To replace an alias with a separately defined object, you must use the rm request on its name first.

Registers
In the roff language, numbers can be stored in registers. Many built-in registers exist, supplying anything
from the date to details of formatting parameters. You can also define your own. See section “Identifiers”
above for information on constructing a valid name for a register.

Define registers and update their values with the nr request or the \R escape sequence.

Registers can also be incremented or decremented by a configured amount at the time they are interpolated.
The value of the increment is specified with a third argument to the .nr request, and a special interpolation

groff 1.23.0 2 July 2023 179

groff (7) Miscellaneous Information Manual groff (7)

syntax, \n± is used to alter and then retrieve the register’s value. Together, these features are called auto-in-
crement. (A negative auto-increment can be considered an “auto-decrement”.)

Many predefined registers are available. In the following presentation, the register interpolation syntax
\n[name] is used to refer to a register name to clearly distinguish it from a string or request name. The reg-
ister name space is separate from that used for requests, macros, strings, and diversions. Bear in mind that
the symbols \n[] are not part of the register name.

Read-only registers
Predefined registers whose identifiers start with a dot are read-only. Many are Boolean-valued. Some are
string-valued, meaning that they interpolate text. A register name (without the dot) is often associated with
a request of the same name; exceptions are noted.

\n[.$] Count of arguments passed to currently interpolated macro or string.
\n[.a] Amount of extra post-vertical line space; see \x.
\n[.A] Approximate output is being formatted (Boolean-valued); see troff -a option.
\n[.b] Font emboldening offset; see .bd.
\n[.br] The normal control character was used to call the currently interpolated macro (Boolean-

valued).
\n[.c] Input line number; see .lf and register “c.”.
\n[.C] Compatibility mode is enabled (Boolean-valued); see .cp. Always false when processing

.do; see register .cp.
\n[.cdp] Depth of last glyph formatted in the environment; positive if glyph extends below the

baseline.
\n[.ce] Count of output lines remaining to be centered.
\n[.cht] Height of last glyph formatted in the environment; positive if glyph extends above the

baseline.
\n[.color] Color output is enabled (Boolean-valued).
\n[.cp] Within .do, the saved value of compatibility mode; see register .C.
\n[.csk] Skew of the last glyph formatted in the environment; skew is how far to the right of the

center of a glyph the center of an accent over that glyph should be placed.
\n[.d] Vertical drawing position in diversion.
\n[.ev] Name of environment (string-valued).
\n[.f] Mounting position of selected font; see .ft and \f.
\n[.F] Name of input file (string-valued); see .lf.
\n[.fam] Name of default font family (string-valued).
\n[.fn] Resolved name of selected font (string-valued); see .ft and \f.
\n[.fp] Next non-zero free font mounting position index.
\n[.g] Always true in GNU troff (Boolean-valued).
\n[.h] Text baseline high-water mark on page or in diversion.
\n[.H] Horizontal motion quantum of output device in basic units.
\n[.height] Font height; see \H.
\n[.hla] Hyphenation language in environment (string-valued).
\n[.hlc] Count of immediately preceding consecutive hyphenated lines in environment.
\n[.hlm] Maximum quantity of consecutive hyphenated lines allowed in environment.
\n[.hy] Automatic hyphenation mode in environment.
\n[.hym] Hyphenation margin in environment.
\n[.hys] Hyphenation space adjustment threshold in environment.
\n[.i] Indentation amount; see .in.
\n[.in] Indentation amount applicable to the pending output line; see .ti.
\n[.int] Previous output line was “interrupted” or continued with \c (Boolean-valued).
\n[.j] Adjustment mode encoded as an integer; see .ad and .na. Do not interpret or perform

arithmetic on its value.
\n[.k] Horizontal drawing position relative to indentation.

groff 1.23.0 2 July 2023 180

groff (7) Miscellaneous Information Manual groff (7)

\n[.kern] Pairwise kerning is enabled (Boolean-valued).
\n[.l] Line length; see .ll.
\n[.L] Line spacing; see .ls.
\n[.lg] Ligature mode.
\n[.linetabs] Line-tabs mode is enabled (Boolean-valued).
\n[.ll] Line length applicable to the pending output line.
\n[.lt] Title length.
\n[.m] Stroke color (string-valued); see .gcolor and \m. Empty if the stroke color is the default.
\n[.M] Fill color (string-valued); see .fcolor and \M. Empty if the fill color is the default.
\n[.n] Length of formatted output on previous output line.
\n[.ne] Amount of vertical space required by last .ne that caused a trap to be sprung; also see

register .trunc.
\n[.nm] Output line numbering is enabled (Boolean-valued).
\n[.nn] Count of output lines remaining to have numbering suppressed.
\n[.ns] No-space mode is enabled (Boolean-valued).
\n[.o] Page offset; see .po.
\n[.O] Output suppression nesting level; see \O.
\n[.p] Page length; see .pl.
\n[.P] The page is selected for output (Boolean-valued); see troff -o option.
\n[.pe] Page ejection is in progress (Boolean-valued).
\n[.pn] Number of the next page.
\n[.ps] Type size in scaled points.
\n[.psr] Most recently requested type size in scaled points; see .ps and \s.
\n[.pvs] Post-vertical line spacing.
\n[.R] Count of available unused registers; always 10,000 in GNU troff .
\n[.rj] Count of lines remaining to be right-aligned.
\n[.s] Type size in points as a decimal fraction (string-valued); see .ps and \s.
\n[.slant] Slant of font in degrees; see \S.
\n[.sr] Most recently requested type size in points as a decimal fraction (string-valued); see .ps

and \s.
\n[.ss] Size of minimal inter-word space in twelfths of the space width of the selected font.
\n[.sss] Size of additional inter-sentence space in twelfths of the space width of the selected font.
\n[.sty] Selected abstract style (string-valued); see .ft and \f.
\n[.t] Distance to next vertical position trap; see .wh and .ch.
\n[.T] An output device was explicitly selected (Boolean-valued); see troff -T option.
\n[.tabs] Representation of tab settings suitable for use as argument to .ta (string-valued).
\n[.trunc] Amount of vertical space truncated by the most recently sprung vertical position trap, or,

if the trap was sprung by an .ne, minus the amount of vertical motion produced by .ne;
also see register .ne.

\n[.u] Filling is enabled (Boolean-valued); see .fi and .nf.
\n[.U] Unsafe mode is enabled (Boolean-valued); see troff -U option.
\n[.v] Vertical line spacing; see .vs.
\n[.V] Vertical motion quantum of the output device in basic units.
\n[.vpt] Vertical position traps are enabled (Boolean-valued).
\n[.w] Width of previous glyph formatted in the environment.
\n[.warn] Sum of the numeric codes of enabled warning categories.
\n[.x] Major version number of the running troff formatter.
\n[.y] Minor version number of the running troff formatter.
\n[.Y] Revision number of the running troff formatter.
\n[.z] Name of diversion (string-valued). Empty if output is directed to the top-level diversion.
\n[.zoom] Zoom multiplier of current font (in thousandths; zero if no magnification); see .fzoom.

Writable predefined registers
Several registers are predefined but also modifiable; some are updated upon interpretation of certain re-
quests or escape sequences. Date- and time-related registers are set to the local time as determined by

groff 1.23.0 2 July 2023 181

groff (7) Miscellaneous Information Manual groff (7)

localtime(3) when the formatter launches. This initialization can be overridden by
SOURCE_DATE_EPOCH and TZ ; see section “Environment” of groff (1).

\n[$$] Process ID of troff .
\n[%] Page number.
\n[c.] Input line number.
\n[ct] Union of character types of each glyph rendered into dummy environment by \w.
\n[dl] Width of last closed diversion.
\n[dn] Height of last closed diversion.
\n[dw] Day of the week (1–7; 1 is Sunday).
\n[dy] Day of the month (1–31).
\n[hours] Count of hours elapsed since midnight (0–23).
\n[hp] Horizontal drawing position relative to start of input line.
\n[llx] Lower-left x coordinate (in PostScript units) of PostScript image; see .psbb.
\n[lly] Lower-left y coordinate (in PostScript units) of PostScript image; see .psbb.
\n[ln] Output line number; see .nm.
\n[lsn] Count of leading spaces on input line.
\n[lss] Amount of horizontal space corresponding to leading spaces on input line.
\n[minutes] Count of minutes elapsed in the hour (0–59).
\n[mo] Month of the year (1–12).
\n[nl] Vertical drawing position.
\n[opmaxx]
\n[opmaxy]
\n[opminx]
\n[opminy] These four registers mark the top left- and bottom right-hand corners of a rectangle en-

compassing all formatted output on the page. They are reset to -1 by \O0 or \O1.
\n[rsb] As register sb, adding maximum glyph height to measurement.
\n[rst] As register st, adding maximum glyph depth to measurement.
\n[sb] Maximum displacement of text baseline below its original position after rendering into

dummy environment by \w.
\n[seconds] Count of seconds elapsed in the minute (0–60).
\n[skw] Skew of last glyph rendered into dummy environment by \w.
\n[slimit] The maximum depth of troff ’s internal input stack. If ≤0, there is no limit: recursion can

continue until available memory is exhausted. The default is 1,000.
\n[ssc] Subscript correction of last glyph rendered into dummy environment by \w.
\n[st] Maximum displacement of text baseline above its original position after rendering into

dummy environment by \w.
\n[systat] Return value of system() function; see .sy.
\n[urx] Upper-right x coordinate (in PostScript units) of PostScript image; see .psbb.
\n[ury] Upper-right y coordinate (in PostScript units) of PostScript image; see .psbb.
\n[year] Gregorian year.
\n[yr] Gregorian year minus 1900.

Using fonts
In digital typography, a font is a collection of characters in a specific typeface that a device can render as
glyphs at a desired size. (Terminals and some output devices have fonts that render at only one or two
sizes. As examples of the latter, take the groff lj4 device’s Lineprinter, and lbp’s Courier and Elite faces.)
A roff formatter can change typefaces at any point in the text. The basic faces are a set of styles combining
upright and slanted shapes with normal and heavy stroke weights: “R”, “I”, “B”, and “BI”—these stand for
roman, bold, italic, and bold-italic. For linguistic text, GNU troff groups typefaces into families contain-
ing each of these styles. (Font designers prepare families such that the styles share esthetic properties.) A
text font is thus often a family combined with a style, but it need not be: consider the ps and pdf devices’
ZCMI (Zapf Chancery Medium italic)—often, no other style of Zapf Chancery Medium is provided. On
typesetting devices, at least one special font is available, comprising unstyled glyphs for mathematical op-
erators and other purposes.

groff 1.23.0 2 July 2023 182

groff (7) Miscellaneous Information Manual groff (7)

Like AT&T troff, GNU troff does not itself load or manipulate a digital font file; instead it works with a
font description file that characterizes it, including its glyph repertoire and the metrics (dimensions) of
each glyph. This information permits the formatter to accurately place glyphs with respect to each other.
Before using a font description, the formatter associates it with a mounting position, a place in an ordered
list of available typefaces. So that a document need not be strongly coupled to a specific font family, in
GNU troff an output device can associate a style in the abstract sense with a mounting position. Thus the
default family can be combined with a style dynamically, producing a resolved font name.

Fonts often have trademarked names, and even Free Software fonts can require renaming upon modifica-
tion. groff maintains a convention that a device’s serif font family is given the name T (“Times”), its sans-
serif family H (“Helvetica”), and its monospaced family C (“Courier”). Historical inertia has driven
groff ’s font identifiers to short uppercase abbreviations of font names, as with TR, TB, TI, TBI, and a spe-
cial font S.

The default family used with abstract styles can be changed at any time; initially, it is T. Typically, abstract
styles are arranged in the first four mounting positions in the order shown above. The default mounting po-
sition, and therefore style, is always 1 (R). By issuing appropriate formatter instructions, you can override
these defaults before your document writes its first glyph.

Terminal output devices cannot change font families and lack special fonts. They support style changes by
overstriking, or by altering ISO 6429/ECMA-48 graphic renditions (character cell attributes).

Hyphenation
When filling, groff hyphenates words as needed at user-specified and automatically determined hyphen-
ation points. Explicitly hyphenated words such as “mother-in-law” are always eligible for breaking after
each of their hyphens. The hyphenation character \% and non-printing break point \: escape sequences
may be used to control the hyphenation and breaking of individual words. The .hw request sets user-de-
fined hyphenation points for specified words at any subsequent occurrence. Otherwise, groff determines
hyphenation points automatically by default.

Several requests influence automatic hyphenation. Because conventions vary, a variety of hyphenation
modes is available to the .hy request; these determine whether hyphenation will apply to a word prior to
breaking a line at the end of a page (more or less; see below for details), and at which positions within that
word automatically determined hyphenation points are permissible. The default is “1” for historical rea-
sons, but this is not an appropriate value for the English hyphenation patterns used by groff ; localization
macro files loaded by troffrc and macro packages often override it.

0 disables hyphenation.

1 enables hyphenation except after the first and before the last character of a word.

The remaining values “imply” 1; that is, they enable hyphenation under the same conditions as “.hy 1”, and
then apply or lift restrictions relative to that basis.

2 disables hyphenation of the last word on a page. (Hyphenation is prevented if the next page loca-
tion trap is closer to the vertical drawing position than the next text baseline would be. See section
“Traps” below.)

4 disables hyphenation before the last two characters of a word.

8 disables hyphenation after the first two characters of a word.

16 enables hyphenation before the last character of a word.

32 enables hyphenation after the first character of a word.

Apart from value 2, restrictions imposed by the hyphenation mode are not respected for words whose hy-
phenations have been specified with the hyphenation character (“ \%” by default) or the .hw request.

Nonzero values are additive. For example, mode 12 causes groff to hyphenate neither the last two nor the
first two characters of a word. Some values cannot be used together because they contradict; for instance,
values 4 and 16, and values 8 and 32. As noted, it is superfluous to add 1 to any non-zero even mode.

groff 1.23.0 2 July 2023 183

groff (7) Miscellaneous Information Manual groff (7)

The places within a word that are eligible for hyphenation are determined by language-specific data (.hla,
.hpf, and .hpfa) and lettercase relationships (.hcode and .hpfcode). Furthermore, hyphenation of a word
might be suppressed due to a limit on consecutive hyphenated lines (.hlm), a minimum line length thresh-
old (.hym), or because the line can instead be adjusted with additional inter-word space (.hys).

Localization
The set of hyphenation patterns is associated with the hyphenation language set by the .hla request. The
.hpf request is usually invoked by a localization file loaded by the troffrc file. groff provides localization
files for several languages; see groff_tmac(5).

Writing macros
The .de request defines a macro named for its argument. If that name already exists as an alias, the target
of the alias is redefined; see section “Strings” above. troff enters “copy mode” (see below), storing subse-
quent input lines as the definition. If the optional second argument is not specified, the definition ends with
the control line “..” (two dots). Alternatively, a second argument names a macro whose call syntax ends the
definition; this “end macro” is then called normally. Spaces or tabs are permitted after the first control
character in the line containing this ending token, but a tab immediately after the token prevents its recogni-
tion as the end of a macro definition. Macro definitions can be nested if they use distinct end macros or if
their ending tokens are sufficiently escaped. An end macro need not be defined until it is called. This fact
enables a nested macro definition to begin inside one macro and end inside another.

Variants of .de disable compatibility mode and/or indirect the names of the macros specified for definition
or termination: these are .de1, .dei, and .dei1. Append to macro definitions with .am, .am1, .ami, and
.ami1. The .als, .rm, and .rn requests create an alias of, remove, and rename a macro, respectively. .re-
turn stops the execution of a macro immediately, returning to the enclosing context.

Parameters
Macro call and string interpolation parameters can be accessed using escape sequences starting with “ \$”.
The \n[.$] read-only register stores the count of parameters available to a macro or string; its value can be
changed by the .shift request, which dequeues parameters from the current list. The \$0 escape sequence
interpolates the name by which a macro was called. Applying string interpolation to a macro does not
change this name.

Copy mode
When troff processes certain requests, most importantly those which define or append to a macro or string,
it does so in copy mode: it copies the characters of the definition into a dedicated storage region, interpolat-
ing the escape sequences \n, \g, \$, *, \V, and \? normally; interpreting \newline immediately; discarding
comments \" and \#; interpolating the current leader, escape, or tab character with \a, \e, and \t, respec-
tively; and storing all other escape sequences in an encoded form. The complement of copy mode—a roff
formatter’s behavior when not defining or appending to a macro, string, or diversion—where all macros are
interpolated, requests invoked, and valid escape sequences processed immediately upon recognition, can be
termed interpretation mode.

The escape character, \ by default, can escape itself. This enables you to control whether a given \n, \g, \$,
*, \V, or \? escape sequence is interpreted at the time the macro containing it is defined, or later when the
macro is called.

You can think of \\ as a “delayed” backslash; it is the escape character followed by a backslash from which
the escape character has removed its special meaning. Consequently, \\ is not an escape sequence in the
usual sense. In any escape sequence \X that troff does not recognize, the escape character is ignored and
X is output. An unrecognized escape sequence causes a warning in category “escape”, with two excep-
tions, \\ being one. The other is \., which escapes the control character. It is used to permit nested macro
definitions to end without a named macro call to conclude them. Without a syntax for escaping the control
character, this would not be possible. roff documents should not use the \\ or \. character sequences outside
of copy mode; they serve only to obfuscate the input. Use \e to represent the escape character, \[rs] to ob-
tain a backslash glyph, and \& before . and ' where troff expects them as control characters if you mean to
use them literally.

groff 1.23.0 2 July 2023 184

groff (7) Miscellaneous Information Manual groff (7)

Macro definitions can be nested to arbitrary depth. In “ \\”, each escape character is interpreted twice—
once in copy mode, when the macro is defined, and once in interpretation mode, when the macro is called.
This fact leads to exponential growth in the quantity of escape characters required to delay interpolation of
\n, \g, \$, *, \V, and \? at each nesting level. An alternative is to use \E, which represents an escape charac-
ter that is not interpreted in copy mode. Because \. is not a true escape sequence, we can’t use \E to keep
“..” from ending a macro definition prematurely. If the multiplicity of backslashes complicates mainte-
nance, use end macros.

Traps
Traps are locations in the output, or conditions on the input that, when reached or fulfilled, call a specified
macro. A vertical position trap calls a macro when the formatter’s vertical drawing position reaches or
passes, in the downward direction, a certain location on the output page or in a diversion. Its applications
include setting page headers and footers, body text in multiple columns, and footnotes. These traps can oc-
cur at a given location on the page (.wh, .ch); at a given location in the current diversion (.dt)—together,
these are known as vertical position traps, which can be disabled and re-enabled (.vpt).

A diversion is not formatted in the context of a page, so it lacks page location traps; instead it can have a di-
version trap. There can exist at most one such vertical position trap per diversion.

Other kinds of trap can be planted at a blank line (.blm); at a line with leading space characters (.lsm); after
a certain number of productive input lines (.it, .itc); or at the end of input (.em). Macros called by traps are
passed no arguments. Setting a trap is also called planting one. It is said that a trap is sprung if its condi-
tion is fulfilled.

Registers associated with trap management include vertical position trap enablement status (\n[.vpt]), dis-
tance to the next trap (\n[.t]), amount of needed (.ne-requested) space that caused the most recent vertical
position trap to be sprung (\n[.ne]), amount of needed space truncated from the amount requested
(\n[.trunc]), page ejection status (\n[.pe]), and leading space count (\n[.lsn]) with its corresponding amount
of motion (\n[.lss]).

Page location traps
A page location trap is a vertical position trap that applies to the page; that is, to undiverted output. Many
can be present; manage them with the wh and ch requests. Non-negative page locations given to these re-
quests set the trap relative to the top of the page; negative values set the trap relative to the bottom of the
page. It is not possible to plant a trap less than one basic unit from the page bottom: a location of “-0” is
interpreted as “0”, the top of the page. An existing visible trap (see below) at the same location is removed;
this is .wh’s sole function if its second argument is missing.

A trap is sprung only if it is visible, meaning that its location is reachable on the page and it is not hidden
by another trap at the same location already planted there. (A trap planted at “20i” or “-30i” will not be
sprung on a page of length “11i”.)

A trap above the top or at or below the bottom of the page can be made visible by either moving it into the
page area or increasing the page length so that the trap is on the page. Negative trap values always use the
current page length; they are not converted to an absolute vertical position. Use .ptr to dump page location
traps to the standard error stream; their positions are reported in basic units.

The implicit page trap
An implicit page trap always exists in the top-level diversion; it works like a trap in some ways but not oth-
ers. Its purpose is to eject the current page and start the next one. It has no name, so it cannot be moved or
deleted with wh or ch requests. You cannot hide it by placing another trap at its location, and can move it
only by redefining the page length with .pl. Its operation is suppressed when vertical page traps are dis-
abled with the vpt request.

Diversions
In roff systems it is possible to format text as if for output, but instead of writing it immediately, one can
divert the formatted text into a named storage area. It is retrieved later by specifying its name after a con-
trol character. The same name space is used for such diversions as for strings and macros; see section
“Identifiers” above. Such text is sometimes said to be “stored in a macro”, but this coinage obscures the
important distinction between macros and strings on one hand and diversions on the other; the former store

groff 1.23.0 2 July 2023 185

groff (7) Miscellaneous Information Manual groff (7)

unformatted input text, and the latter capture formatted output. Diversions also do not interpret arguments.
Applications of diversions include “keeps” (preventing a page break from occurring at an inconvenient
place by forcing a set of output lines to be set as a group), footnotes, tables of contents, and indices. For or-
thogonality it is said that GNU troff is in the top-level diversion if no diversion is active (that is, formatted
output is being “diverted” immediately to the output device.

Dereferencing an undefined diversion will create an empty one of that name and cause a warning in cate-
gory mac to be emitted. (see section “Warnings” in troff (1)). A diversion does not exist for the purpose of
testing with the d conditional operator until its initial definition ends (see subsection “Conditional expres-
sions” above).

The di request creates a diversion, including any partially collected line. da appends to a diversion, creat-
ing one if it does not already exist. If the diversion’s name already exists as an alias, the target of the alias
is replaced or appended to; see section “Strings” above. box and boxa works similarly, but ignore partially
collected lines. Call any of these macros again without an argument to end the diversion.

Diversions can be nested. The registers .d, .z, dn, and dl report information about the current (or last
closed) diversion. .h is meaningful in diversions, including the top level.

The \! and \? escape sequences and output request escape from a diversion, the first two to the enclosing
level and the last to the top level. This facility is termed transparent embedding.

The asciify and unformat requests reprocess diversions.

Punning names
Macros, strings, and diversions share a name space; see section “Identifiers” above. Internally, the same
mechanism is used to store them. You can thus call a macro with string interpolation syntax and vice versa.
Interpolating a string does not hide existing macro arguments. The sequence \\ can be placed at the end of a
line in a macro definition or, within a macro definition, immediately after the interpolation of a macro as a
string to suppress the effect of a newline.

Environments
Environments store most of the parameters that control text processing. A default environment named “0”
exists when troff starts up; it is modified by formatting-related requests and escape sequences.

You can create new environments and switch among them. Only one is current at any given time. Active
environments are managed using a stack, a data structure supporting “push” and “pop” operations. The
current environment is at the top of the stack. The same environment name can be pushed onto the stack
multiple times, possibly interleaved with others. Popping the environment stack does not destroy the cur-
rent environment; it remains accessible by name and can be made current again by pushing it at any time.
Environments cannot be renamed or deleted, and can only be modified when current. To inspect the envi-
ronment stack, use the pev request; see section “Debugging” below.

Environments store the following information.

• a partially collected line, if any

• data about the most recently output glyph and line (registers .cdp, .cht, .csk, .n, .w)

• typeface parameters (size, family, style, height and slant, inter-word and inter-sentence space sizes)

• page parameters (line length, title length, vertical spacing, line spacing, indentation, line numbering, cen-
tering, right-alignment, underlining, hyphenation parameters)

• filling enablement; adjustment enablement and mode

• tab stops; tab, leader, escape, control, no-break control, hyphenation, and margin characters

• input line traps

• stroke and fill colors

The ev request pushes to and pops from the environment stack, while evc copies a named environment’s
contents to the current one.

groff 1.23.0 2 July 2023 186

groff (7) Miscellaneous Information Manual groff (7)

Underlining
In RUNOFF (see roff (7)), underlining, even of lengthy passages, was straightforward because only fixed-
pitch printing devices were targeted. Typesetter output posed a greater challenge. There exists a groff re-
quest .ul (see above) that underlines subsequent source lines on terminal devices, but on typesetters, it se-
lects an italic font style instead. The ms macro package (see groff_ms(7)) offers a macro .UL, but it too
produces the desired effect only on typesetters, and has other limitations.

One could adapt ms’s approach to the construction of a macro as follows.
.de UNDERLINE
. ie n \\$1\f[I]\\$2\f[P]\\$3
. el \\$1\Z'\\$2'\v'.25m'\D'l \w'\\$2'u 0'\v'-.25m'\\$3
..

If doclifter(1) makes trouble, change the macro name UNDERLINE into some 2-letter word, like Ul.
Moreover, change the form of the font selection escape sequence from \f[P] to \fP.

Underlining without macro definitions
If one does not want to use macro definitions, e.g., when doclifter gets lost, use the following.

.ds u1 before

.ds u2 in

.ds u3 after

.ie n *[u1]\f[I]*[u2]\f[P]*[u3]

.el *[u1]\Z'*[u2]'\v'.25m'\D'l \w'*[u2]'u 0'\v'-.25m'*[u3]
When using doclifter, it might be necessary to change syntax forms such as \[xy] and *[xy] to those sup-
ported by AT&T troff : *(xy and \(xy, and so on.

Then these lines could look like
.ds u1 before
.ds u2 in
.ds u3 after
.ie n *[u1]\fI*(u2\fP*(u3
.el *(u1\Z'*(u2'\v'.25m'\D'l \w'*(u2'u 0'\v'-.25m'*(u3

The result looks like
before in after

Underlining by overstriking with \(ul
The \z escape sequence writes a glyph without advancing the drawing position, enabling overstriking.
Thus, \zc\(ul formats c with an underrule glyph on top of it. Video terminals implement the underrule by
setting a character cell’s underline attribute, so this technique works in both nroff and troff modes.

Long words may then look intimidating in the input; a clarifying approach might be to use the input line
continuation escape sequence \newline to place each underlined character on its own input line. Thus,

.nf
\&\fB: ${\fIvar\fR\c
\zo\(ul\
\zp\(ul\c
\&\fIvalue\fB}
.fi

produces
: ${varopvalue}

as output.

Compatibility mode
The differences between the roff language recognized by GNU troff and that of AT&T troff , as well as the
device, font, and device-independent intermediate output formats described by CSTR #54 are documented
in groff_diff (7). groff provides an AT&T compatibility mode. The .cp request and registers .C and .cp set
and test the enablement of this mode.

groff 1.23.0 2 July 2023 187

groff (7) Miscellaneous Information Manual groff (7)

Debugging
Preprocessors use the .lf request to preserve the identities of line numbers and names of input files. groff
emits a variety of error diagnostics and supports several categories of warning; the output of these can be
selectively suppressed with .warn (and see the -E, -w, and -W options of troff (1)). A trace of the format-
ter’s input processing stack can be emitted when errors or warnings occur by means of troff (1)’s -b option,
or produced on demand with the .backtrace request. .tm, .tmc, and .tm1 can be used to emit customized
diagnostic messages or for instrumentation while troubleshooting. .ex and .ab cause early termination with
successful and error exit codes respectively, to halt further processing when continuing would be fruitless.
Examine the state of the formatter with requests that write lists of defined names—macros, strings, and di-
versions—(.pm); environments (.pev), registers (.pnr), and page location traps (.ptr) to the standard error
stream.

Authors
This document was written by by Trent A. Fisher, Werner Lemberg, and G. Branden Robinson 〈g.branden
.robinson@gmail.com〉. Section “Underlining” was primarily written by Bernd Warken 〈groff-bernd
.warken-72@web.de〉.

See also
Groff: The GNU Implementation of troff , by Trent A. Fisher and Werner Lemberg, is the primary groff
manual. You can browse it interactively with “info groff”.

“Troff User’s Manual” by Joseph F. Ossanna, 1976 (revised by Brian W. Kernighan, 1992), AT&T Bell
Laboratories Computing Science Technical Report No. 54, widely called simply “CSTR #54”, documents
the language, device and font description file formats, and device-independent output format referred to
collectively in groff documentation as “AT&T troff ”.

“A Typesetter-independent TROFF” by Brian W. Kernighan, 1982, AT&T Bell Laboratories Computing
Science Technical Report No. 97 (CSTR #97), provides additional insights into the device and font descrip-
tion file formats and device-independent output format.

groff (1)
is the preferred interface to the groff system; it manages the pipeline that carries a source docu-
ment through preprocessors, the troff formatter, and an output driver to viewable or printable form.
It also exhaustively lists the man pages provided with the GNU roff system.

groff_char(7)
discusses character encoding issues, escape sequences that produce glyphs, and enumerates groff ’s
predefined special character escape sequences.

groff_diff (7)
covers differences between the GNU troff formatter, its device and font description file formats, its
device-independent output format, and those of AT&T troff , whose design it reimplements.

groff_font(5)
describes the formats of the files that describe devices (DESC) and fonts.

groff_tmac(5)
surveys macro packages provided with groff , describes how documents can take advantage of
them, offers guidance on writing macro packages and using diversions, and includes historical in-
formation on macro package naming conventions.

roff (7) presents a detailed history of roff systems and summarizes concepts common to them.

groff 1.23.0 2 July 2023 188

groff_char(7) Miscellaneous Information Manual groff_char(7)

Name
groff_char - GNU roff special character and glyph repertoire

Description
The GNU roff typesetting system has a large glyph repertoire suitable for production of varied literary, pro-
fessional, technical, and mathematical documents. groff works with characters; an output device renders
glyphs. groff ’s input character set is restricted to that defined by the standards ISO Latin-1 (ISO 8859-1)
and CCSID “code page” 1047 (an EBCDIC arrangement of Latin-1). For ease of document maintenance in
UTF-8 environments, it is advisable to use only the Unicode basic Latin code points, a subset of all of the
foregoing historically referred to as US-ASCII, which has only 94 visible, printable code points. In groff,
these are termed ordinary characters. Often, many more are desired in output.

AT&T troff in the 1970s faced a similar problem: the available typesetter’s glyph repertoire differed from
that of the computers that controlled it. troff ’s solution was a form of escape sequence known as a special
character to access several dozen additional glyphs available in the fonts prepared for mounting in the pho-
totypesetter. These glyphs were mapped onto a two-character name space for a degree of mnemonic conve-
nience; for example, the escape sequence \(aa encoded an acute accent and \(sc a section sign.

groff has lifted historical roff limitations on special character name lengths, but recognizes and retains
compatibility with the historical names. groff expands the lexicon of glyphs available by name and permits
users to define their own special character escape sequences with the char request. Special character
names are groff identifiers; see section “Identifiers” in groff (7). Our discussion uses the terms “glyph
name” and “special character name” interchangeably; we assume no character translations or redefinitions.

This document lists all of the glyph names predefined by groff ’s font description files and presents the sys-
tematic notation by which it enables access to arbitrary Unicode code points and construction of composite
glyphs. Glyphs listed may be unavailable, or may vary in appearance, depending on the output device and
font chosen when the page was formatted. This page was rendered for device pdf using font TR.

A few escape sequences that are not groff special characters also produce glyphs; these exist for syntactical
or historical reasons. \', \`, \-, and _ are translated on input to the special character escape sequences \[aa],
\[ga], \[-], and \[ul], respectively. Others include \\, \. (backslash-dot), and \e; see groff (7). A small num-
ber of special characters represent glyphs that are not encoded in Unicode; examples include the baseline
rule \[ru] and the Bell System logo \[bs].

In groff , you can test output device support for any character (ordinary or special) with the conditional ex-
pression operator “c”.

.ie c \[bs] \{Welcome to the \[bs] Bell System;
did you get the Wehrmacht helmet or the Death Star?\}
.el No Bell System logo.

For brevity in the remainder of this document, we shall refer to systems conforming to the ISO 646:1991
IRV, ISO 8859, or ISO 10646 (“Unicode”) character encoding standards as “ISO” systems, and those em-
ploying IBM code page 1047 as “EBCDIC” systems. That said, EBCDIC systems that support groff are
known to also support UTF-8.

While groff accepts eight-bit encoded input, not all such code points are valid as input. On ISO platforms,
character codes 0, 11, 13–31, and 128–159 are invalid. (This is all C0 and C1 controls except for SOH
through LF [Control+A to Control+J], and FF [Control+L].) On EBCDIC platforms, 0, 8–9, 11, 13–20,
23–31, and 48–63 are invalid. Some of these code points are used by groff for internal purposes, which is
one reason it does not support UTF-8 natively.

Fundamental character set
The ordinary characters catalogued above, plus the space, tab, newline, and leader (Control+A), form the
fundamental character set for groff input; anything in the language, even over one million code points in
Unicode, can be expressed using it. On ISO systems, code points in the range 33–126 comprise a common
set of printable glyphs in all of the aforementioned ISO character encoding standards. It is this character
set and (with some noteworthy exceptions) the corresponding glyph repertoire for which AT&T troff was
implemented. On EBCDIC systems, printable characters are in the range 66–201 and 203–254; those with-
out counterparts in the ISO range 33–126 are discussed in the next subsection.

groff 1.23.0 2 July 2023 189

groff_char(7) Miscellaneous Information Manual groff_char(7)

All of the following characters map to glyphs as you would expect.

! # $ % & () * + , . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [] _
a b c d e f g h i j k l m n o p q r s t u v w x y z { | }

The remaining ordinary characters surprise computing professionals and others intimately familiar with the
ISO character encodings. The developers of AT&T troff chose mappings for them that would be useful for
typesetting technical literature in a broad range of scientific disciplines: Bell Labs used the system for
preparation of AT&T’s patent filings with the U.S. government. Further, the prevailing character encoding
standard in the 1970s, USAS X3.4-1968 (“ASCII”), deliberately supported semantic ambiguity at some
code points, and outright substitution at several others, to suit the localization demands of various national
standards bodies.

The table below presents the seven exceptional code points with their typical keycap engravings, their
glyph mappings and semantics in roff systems, and the escape sequences producing the Unicode basic
Latin character they replace. The first, the neutral double quote, is a partial exception because it does repre-
sent itself, but since the roff language also uses it to quote macro arguments, groff supports a special char-
acter escape sequence as an alternative form so that the glyph can be easily included in macro arguments
without requiring the user to master the quoting rules that AT&T troff required in that context. (Some re-
quests, like ds, also treat " non-literally.) Furthermore, not all of the special character escape sequences are
portable to AT&T troff and all of its descendants; these groff extensions are presented using its special
character form \[], whereas portable special character escape sequences are shown in the traditional \(form.
\- and \e are portable to all known troff s. \e means “the glyph of the current escape character”; it therefore
can produce unexpected output if the ec request is used. On devices with a limited glyph repertoire, glyphs
in the “keycap” and “appearance” columns on the same row of the table may look identical; except for the
neutral double quote, this will not be the case on more-capable devices. Review your document using as
many different output devices as possible.

Keycap Appearance and meaning Special character and meaning

" " neutral double quote \[dq] neutral double quote
' ’ closing single quote \[aq] neutral apostrophe
- - hyphen \- or \[-] minus sign/Unix dash
\ (escape character) \e or \[rs] reverse solidus
^ ˆ modifier circumflex \(ha circumflex/caret/“hat”
` ‘ opening single quote \(ga grave accent
~ ˜ modifier tilde \(ti tilde

The hyphen-minus is a particularly unfortunate case of overloading. Its awkward name in ISO 8859 and
later standards reflects the many distinguishable purposes to which it had already been put by the 1980s, in-
cluding a hyphen, a minus sign, and (alone or in repetition) dashes of varying widths. For best results in
roff systems, use the “-” character in input outside an escape sequence only to mean a hyphen, as in the
phrase “long-term”. For a minus sign in running text or a Unix command-line option dash, use \- (or \[-]
in groff if you find it helps the clarity of the source document). (Another minus sign, for use in mathemati-
cal equations, is available as \[mi]). AT&T troff supported em-dashes as \(em, as does groff .

The special character escape sequence for the apostrophe as a neutral single quote is typically needed only
in technical content; typing words like “can’t” and “Anne’s” in a natural way will render correctly, because
in ordinary prose an apostrophe is typeset either as a closing single quotation mark or as a neutral single
quote, depending on the capabilities of the output device. By contrast, special character escape sequences
should be used for quotation marks unless portability to limited or historical troff implementations is neces-
sary; on those systems, the input convention is to pair the grave accent with the apostrophe for single
quotes, and to double both characters for double quotes. AT&T troff defined no special characters for quo-
tation marks or the apostrophe. Repeated single quotes (‘‘thus’’) will be visually distinguishable from dou-
ble quotes (“thus”) on terminal devices, and perhaps on others (depending on the font selected).

groff 1.23.0 2 July 2023 190

groff_char(7) Miscellaneous Information Manual groff_char(7)

AT&T troff input recommended groff input

A Winter's Tale A Winter's Tale
`U.K. outer quotes' \[oq]U.K. outer quotes\[cq]
`U.K. ``inner'' quotes' \[oq]U.K. \[lq]inner\[rq] quotes\[cq]
``U.S. outer quotes'' \[lq]U.S. outer quotes\[rq]
``U.S. `inner' quotes'' \[lq]U.S. \[oq]inner\[cq] quotes\[rq]

If you frequently require quotation marks in your document, see if the macro package you’re using supplies
strings or macros to facilitate quotation, or define them yourself (except in man pages).

Using Unicode basic Latin characters to compose boxes and lines is ill-advised. roff systems have special
characters for drawing horizontal and vertical lines; see subsection “Rules and lines” below. Preprocessors
like tbl(1) and pic(1) draw boxes and will produce the best possible output for the device, falling back to
basic Latin glyphs only when necessary.

Eight-bit encodings and Latin-1 supplement
ISO 646 is a seven-bit code encoding 128 code points; eight-bit codes are twice the size. ISO 8859-1 and
code page 1047 allocated the additional space to what Unicode calls “C1 controls” (control characters) and
the “Latin-1 supplement”. The C1 controls are neither printable nor usable as groff input.

Two Latin-1 supplement characters are handled specially on input. troff never produces them as output.

NBSP encodes a no-break space; it is mapped to \~, the adjustable non-breaking space escape sequence.

SHY encodes a soft hyphen; it is mapped to \%, the hyphenation control escape sequence.

The remaining characters in the Latin-1 supplement represent themselves. Although they can be specified
directly with the keyboard on systems configured to use Latin-1 as the character encoding, it is more
portable, both to other roff systems and to UTF-8 environments, to use their special character escape se-
quences, shown below. The glyph descriptions we use are non-standard in some cases, for brevity.

¡ \[r!] inverted exclamation mark Ñ \[~N] N tilde
¢ \[ct] cent sign Ò \[`O] O grave
£ \[Po] pound sign Ó \['O] O acute
¤ \[Cs] currency sign Ô \[^O] O circumflex
¥ \[Ye] yen sign Õ \[~O] O tilde
¦ \[bb] broken bar Ö \[:O] O dieresis
§ \[sc] section sign × \[mu] multiplication sign
¨ \[ad] dieresis accent Ø \[/O] O slash
© \[co] copyright sign Ù \[`U] U grave
ª \[Of] feminine ordinal indicator Ú \['U] U acute
« \[Fo] left double chevron Û \[^U] U circumflex
¬ \[no] logical not Ü \[:U] U dieresis
® \[rg] registered sign Ý \['Y] Y acute
¯ \[a-] macron accent Þ \[TP] uppercase thorn
° \[de] degree sign ß \[ss] lowercase sharp s
± \[+-] plus-minus à \[`a] a grave
² \[S2] superscript two á \['a] a acute
³ \[S3] superscript three â \[^a] a circumflex
´ \[aa] acute accent ã \[~a] a tilde
µ \[mc] micro sign ä \[:a] a dieresis
¶ \[ps] pilcrow sign å \[oa] a ring
· \[pc] centered period æ \[ae] ae ligature
¸ \[ac] cedilla accent ç \[,c] c cedilla
¹ \[S1] superscript one è \[`e] e grave
º \[Om] masculine ordinal indicator é \['e] e acute
» \[Fc] right double chevron ê \[^e] e circumflex
¼ \[14] one quarter symbol ë \[:e] e dieresis

groff 1.23.0 2 July 2023 191

groff_char(7) Miscellaneous Information Manual groff_char(7)

½ \[12] one half symbol ì \[`i] i grave
¾ \[34] three quarters symbol í \['i] e acute
¿ \[r?] inverted question mark î \[^i] i circumflex
À \[`A] A grave ï \[:i] i dieresis
Á \['A] A acute ð \[Sd] lowercase eth
Â \[^A] A circumflex ñ \[~n] n tilde
Ã \[~A] A tilde ò \[`o] o grave
Ä \[:A] A dieresis ó \['o] o acute
Å \[oA] A ring ô \[^o] o circumflex
Æ \[AE] AE ligature õ \[~o] o tilde
Ç \[,C] C cedilla ö \[:o] o dieresis
È \[`E] E grave ÷ \[di] division sign
É \['E] E acute ø \[/o] o slash
Ê \[^E] E circumflex ù \[`u] u grave
Ë \[:E] E dieresis ú \['u] u acute
Ì \[`I] I grave û \[^u] u circumflex
Í \['I] I acute ü \[:u] u dieresis
Î \[^I] I circumflex ý \['y] y acute
Ï \[:I] I dieresis þ \[Tp] lowercase thorn
Ð \[-D] uppercase eth ÿ \[:y] y dieresis

Special character escape forms
Glyphs that lack a character code in the basic Latin repertoire to directly represent them are entered by one
of several special character escape forms. Such glyphs can be simple or composite, and accessed either by
name or numerically by code point. Code points and combining properties are determined by character en-
coding standards, whereas glyph names as used here originated in AT&T troff special character escape se-
quences. Predefined glyph names use only characters in the basic Latin repertoire.

\(gl is a special character escape sequence for the glyph with the two-character name gl. This is the
original syntax form supported by AT&T troff . The acute accent, \(aa, is an example.

\C'glyph-name'
is a special character escape sequence for glyph-name, which can be of arbitrary length. The de-
limiter, shown here as a neutral apostrophe, can be any character not occurring in glyph-name.
This syntax form was introduced in later versions of AT&T device-independent troff . The forego-
ing acute accent example can be expressed as \C'aa'.

\[glyph-name]
is a special character escape sequence for glyph-name, which can be of arbitrary length but must
not contain a closing square bracket “]”. (No glyph names predefined by groff employ “]”.) The
foregoing acute accent example can be expressed in groff as \[aa].

\C'c' and \[c] are not synonyms for the ordinary character “c”, but request the special character named “\c”.
For example, “\[a]” is not “a”, but rather a special character with the internal glyph name (used in font de-
scription files and diagnostic messages) \a, which is typically undefined. The only such glyph name groff
predefines is the minus sign, which can therefore be accessed as \C'-' or \[-].

\[base-char composite-1 composite-2 . . . composite-n]
is a composite glyph. Glyphs like a lowercase “e” with an acute accent, as in the word “café”, can
be expressed as \[e aa]. See subsection “Accents” below for a table of combining glyph names.

Unicode encodes far more characters than groff has glyph names for; special character escape forms based
on numerical code points enable access to any of them. Frequently used glyphs or glyph combinations can
be stored in strings, and new glyph names can be created ad hoc with the char request; see groff (7).

\[unnnn[n[n]]]
is a Unicode numeric special character escape sequence. Any Unicode code point can be accessed
with four to six hexadecimal digits, with hexadecimal letters accepted in uppercase form only.
Thus, \[u02DA] accesses the (spacing) ring accent, producing “˚”.

groff 1.23.0 2 July 2023 192

groff_char(7) Miscellaneous Information Manual groff_char(7)

Unicode code points can be composed as well; when they are, GNU troff requires NFD (Normalization
Form D), where all Unicode glyphs are maximally decomposed. (Exception: precomposed characters in
the Latin-1 supplement described above are also accepted. Do not count on this exception remaining in a
future GNU troff that accepts UTF-8 input directly.) Thus, GNU troff accepts “caf\['e]”, “caf\[e aa]”, and
“caf\[u0065_0301]”, as ways to input “café”. (Due to its legacy 8-bit encoding compatibility, at present it
also accepts “caf\[u00E9]” on ISO Latin-1 systems.)

\[ubase-char[_combining-component]. . .]
constructs a composite glyph from Unicode numeric special character escape sequences. The code
points of the base glyph and the combining components are each expressed in hexadecimal, with
an underscore (_) separating each component. Thus, \[u006E_0303] produces “ñ”.

\[charnnn]
expresses an eight-bit code point where nnn is the code point of the character, a decimal number
between 0 and 255 without leading zeroes. This legacy numeric special character escape sequence
is used to map characters onto glyphs via the trin request in macro files loaded by grotty(1).

Glyph tables
In this section, groff ’s glyph name repertoire is presented in tabular form. The meanings of the columns
are as follows.

Output shows the glyph as it appears on the device used to render this document; although it can have a
notably different shape on other devices (and is subject to user-directed translation and replace-
ment), groff attempts reasonable equivalency on all output devices.

Input shows the groff character (ordinary or special) that normally produces the glyph. Some code
points have multiple glyph names.

Unicode is the code point notation for the glyph or combining glyph sequence as described in subsection
“Special character escape forms” above. It corresponds to the standard notation for Unicode
short identifiers such that groff ’s unnnn is equivalent to Unicode’s U+nnnn.

Notes describes the glyph, elucidating the mnemonic value of the glyph name where possible.

A plus sign “+” indicates that the glyph name appears in the AT&T troff user’s manual,
CSTR #54 (1992 revision). When using the AT&T special character syntax \(xx, widespread
portability can be expected from such names.

Entries marked with “***” denote glyphs used for mathematical purposes. On typesetting de-
vices, such glyphs are typically drawn from a special font (see groff_font(5)). Often, such glyphs
lack bold or italic style forms or have metrics that look incongruous in ordinary prose. A few
which are not uncommon in running text have “text variants”, which should work better in that
context. Conversely, a handful of glyphs that are normally drawn from a text font may be re-
quired in mathematical equations. Both sets of exceptions are noted in the tables where they ap-
pear (“Logical symbols” and “Mathematical symbols”).

Basic Latin
Apart from basic Latin characters with special mappings, described in subsection “Fundamental character
set” above, a few others in that range have special character glyph names. These were defined for ease of
input on non-U.S. keyboards lacking keycaps for them, or for symmetry with other special character glyph
names serving a similar purpose.

The vertical bar is overloaded; the \[ba] and \[or] escape sequences may render differently. See subsection
“Mathematical symbols” below for special variants of the plus, minus, and equals signs normally drawn
from this range.

Output Input Unicode Notes

" \[dq] u0022 neutral double quote
\[sh] u0023 number sign
$ \[Do] u0024 dollar sign
' \[aq] u0027 apostrophe, neutral single quote

groff 1.23.0 2 July 2023 193

groff_char(7) Miscellaneous Information Manual groff_char(7)

/ \[sl] u002F slash, solidus +
@ \[at] u0040 at sign
[\[lB] u005B left square bracket
\ \[rs] u005C reverse solidus
] \[rB] u005D right square bracket
^ \[ha] u005E circumflex, caret, “hat”
{ \[lC] u007B left brace
| | u007C bar
| \[ba] u007C bar

\[or] u007C bitwise or +
} \[rC] u007D right brace
~ \[ti] u007E tilde

Supplementary Latin letters
Historically, \[ss] could be considered a ligature of “sz”. An uppercase form is available as \[u1E9E], but
in the German language it is of specialized use; ß does not normally uppercase-transform to it, but rather to
“SS”. “Lowercase f with hook” is also used as a function symbol; see subsection “Mathematical symbols”
below.

Output Input Unicode Notes

Ð \[-D] u00D0 uppercase eth
ð \[Sd] u00F0 lowercase eth
Þ \[TP] u00DE uppercase thorn
þ \[Tp] u00FE lowercase thorn
ß \[ss] u00DF lowercase sharp s
ı \[.i] u0131 i without tittle

\[.j] u0237 j without tittle
ƒ \[Fn] u0192 lowercase f with hook, function
Ł \[/L] u0141 L with stroke
ł \[/l] u0142 l with stroke
Ø \[/O] u00D8 O with stroke
ø \[/o] u00F8 o with stroke

Ligatures and digraphs
Output Input Unicode Notes

ff \[ff] u0066_0066 ff ligature +
fi \[fi] u0066_0069 fi ligature +
fl \[fl] u0066_006C fl ligature +
ffi \[Fi] u0066_0066_0069 ffi ligature +
ffl \[Fl] u0066_0066_006C ffl ligature +
Æ \[AE] u00C6 AE ligature
æ \[ae] u00E6 ae ligature
Œ \[OE] u0152 OE ligature
œ \[oe] u0153 oe ligature
IJ \[IJ] u0132 IJ digraph
ij \[ij] u0133 ij digraph

Accents
Normally, the formatting of a special character advances the drawing position as an ordinary character does.
groff ’s composite request designates a special character as combining. The composite.tmac macro file,
loaded automatically by the default troffrc, maps the following special characters to the combining charac-
ters shown below. The non-combining code point in parentheses is used when the special character occurs
in isolation (compare “caf\[e aa]” and “caf\[aa]e”).

groff 1.23.0 2 July 2023 194

groff_char(7) Miscellaneous Information Manual groff_char(7)

Output Input Unicode Notes

˝ \[a"] u030B (u02DD) double acute accent
¯ \[a-] u0304 (u00AF) macron accent
˙ \[a.] u0307 (u02D9) dot accent
ˆ \[a^] u0302 (u005E) circumflex accent
´ \[aa] u0301 (u00B4) acute accent +
` \[ga] u0300 (u0060) grave accent +
˘ \[ab] u0306 (u02D8) breve accent
¸ \[ac] u0327 (u00B8) cedilla accent
¨ \[ad] u0308 (u00A8) dieresis accent
ˇ \[ah] u030C (u02C7) caron accent
˚ \[ao] u030A (u02DA) ring accent
˜ \[a~] u0303 (u007E) tilde accent
˛ \[ho] u0328 (u02DB) hook accent

Accented characters
All of these glyphs can be composed using combining glyph names as described in subsection “Special
character escape forms” above; the names below are short aliases for convenience.

Output Input Unicode Notes

Á \['A] u0041_0301 A acute
Ć \['C] u0043_0301 C acute
É \['E] u0045_0301 E acute
Í \['I] u0049_0301 I acute
Ó \['O] u004F_0301 O acute
Ú \['U] u0055_0301 U acute
Ý \['Y] u0059_0301 Y acute
á \['a] u0061_0301 a acute
ć \['c] u0063_0301 c acute
é \['e] u0065_0301 e acute
í \['i] u0069_0301 i acute
ó \['o] u006F_0301 o acute
ú \['u] u0075_0301 u acute
ý \['y] u0079_0301 y acute

Ä \[:A] u0041_0308 A dieresis
Ë \[:E] u0045_0308 E dieresis
Ï \[:I] u0049_0308 I dieresis
Ö \[:O] u004F_0308 O dieresis
Ü \[:U] u0055_0308 U dieresis
Ÿ \[:Y] u0059_0308 Y dieresis
ä \[:a] u0061_0308 a dieresis
ë \[:e] u0065_0308 e dieresis
ï \[:i] u0069_0308 i dieresis
ö \[:o] u006F_0308 o dieresis
ü \[:u] u0075_0308 u dieresis
ÿ \[:y] u0079_0308 y dieresis

Â \[^A] u0041_0302 A circumflex
Ê \[^E] u0045_0302 E circumflex
Î \[^I] u0049_0302 I circumflex
Ô \[^O] u004F_0302 O circumflex
Û \[^U] u0055_0302 U circumflex
â \[^a] u0061_0302 a circumflex

groff 1.23.0 2 July 2023 195

groff_char(7) Miscellaneous Information Manual groff_char(7)

ê \[^e] u0065_0302 e circumflex
î \[^i] u0069_0302 i circumflex
ô \[^o] u006F_0302 o circumflex
û \[^u] u0075_0302 u circumflex

À \[`A] u0041_0300 A grave
È \[`E] u0045_0300 E grave
Ì \[`I] u0049_0300 I grave
Ò \[`O] u004F_0300 O grave
Ù \[`U] u0055_0300 U grave
à \[`a] u0061_0300 a grave
è \[`e] u0065_0300 e grave
ì \[`i] u0069_0300 i grave
ò \[`o] u006F_0300 o grave
ù \[`u] u0075_0300 u grave

Ã \[~A] u0041_0303 A tilde
Ñ \[~N] u004E_0303 N tilde
Õ \[~O] u004F_0303 O tilde
ã \[~a] u0061_0303 a tilde
ñ \[~n] u006E_0303 n tilde
õ \[~o] u006F_0303 o tilde

Š \[vS] u0053_030C S caron
š \[vs] u0073_030C s caron
Ž \[vZ] u005A_030C Z caron
ž \[vz] u007A_030C z caron

Ç \[,C] u0043_0327 C cedilla
ç \[,c] u0063_0327 c cedilla

Å \[oA] u0041_030A A ring
å \[oa] u0061_030A a ring

Quotation marks
The neutral double quote, often useful when documenting programming languages, is also available as a
special character for convenient embedding in macro arguments; see subsection “Fundamental character
set” above.

Output Input Unicode Notes

„ \[Bq] u201E low double comma quote
‚ \[bq] u201A low single comma quote
“ \[lq] u201C left double quote
” \[rq] u201D right double quote
‘ \[oq] u2018 single opening (left) quote
’ \[cq] u2019 single closing (right) quote
' \[aq] u0027 apostrophe, neutral single quote
" " u0022 neutral double quote
" \[dq] u0022 neutral double quote
« \[Fo] u00AB left double chevron
» \[Fc] u00BB right double chevron
‹ \[fo] u2039 left single chevron
› \[fc] u203A right single chevron

groff 1.23.0 2 July 2023 196

groff_char(7) Miscellaneous Information Manual groff_char(7)

Punctuation
The Unicode name for U+00B7 is “middle dot”, which is unfortunately confusable with the groff
mnemonic for the visually similar but semantically distinct multiplication dot; see subsection “Mathemati-
cal symbols” below.

Output Input Unicode Notes

¡ \[r!] u00A1 inverted exclamation mark
¿ \[r?] u00BF inverted question mark
· \[pc] u00B7 centered period
— \[em] u2014 em-dash +
– \[en] u2013 en-dash
- \[hy] u2010 hyphen +

Brackets
On typesetting devices, the bracket extensions are font-invariant glyphs; that is, they are rendered the same
way regardless of font (with a drawing escape sequence). On terminals, they are not font-invariant; groff
maps them rather arbitrarily to U+23AA (“curly bracket extension”). In AT&T troff , only one glyph was
available to vertically extend brackets, braces, and parentheses: \(bv.

Not all devices supply bracket pieces that can be piled up with \b due to the restrictions of the escape’s pil-
ing algorithm. A general solution to build brackets out of pieces is the following macro:

.\" Make a pile centered vertically 0.5em above the baseline.

.\" The first argument is placed at the top.

.\" The pile is returned in string 'pile'.

.eo

.de pile-make

. nr pile-wd 0

. nr pile-ht 0

. ds pile-args

.

. nr pile-# \n[.$]

. while \n[pile-#] \{\

. nr pile-wd (\n[pile-wd] >? \w'\$[\n[pile-#]]')

. nr pile-ht +(\n[rst] - \n[rsb])

. as pile-args \v'\n[rsb]u'\"

. as pile-args \Z'\$[\n[pile-#]]'\"

. as pile-args \v'-\n[rst]u'\"

. nr pile-# -1

. \}

.

. ds pile \v'(-0.5m + (\n[pile-ht]u / 2u))'\"

. as pile *[pile-args]\"

. as pile \v'((\n[pile-ht]u / 2u) + 0.5m)'\"

. as pile \h'\n[pile-wd]u'\"

..

.ec

Another complication is the fact that some glyphs which represent bracket pieces in AT&T troff can be
used for other mathematical symbols as well, for example \(lf and \(rf, which provide the floor operator.
Some output devices, such as dvi, don’t unify such glyphs. For this reason, the glyphs \[lf], \[rf], \[lc], and
\[rc] are not unified with similar-looking bracket pieces. In groff , only glyphs with long names are guaran-
teed to pile up correctly for all devices—provided those glyphs are available.

Output Input Unicode Notes

[[u005B left square bracket
[\[lB] u005B left square bracket

groff 1.23.0 2 July 2023 197

groff_char(7) Miscellaneous Information Manual groff_char(7)

]] u005D right square bracket
] \[rB] u005D right square bracket
{ { u007B left brace
{ \[lC] u007B left brace
} } u007D right brace
} \[rC] u007D right brace
〈 \[la] u27E8 left angle bracket
〉 \[ra] u27E9 right angle bracket
 \[bv] u23AA brace vertical extension + ***
 \[braceex] u23AA brace vertical extension

 \[bracketlefttp] u23A1 left square bracket top
 \[bracketleftex] u23A2 left square bracket extension
 \[bracketleftbt] u23A3 left square bracket bottom

 \[bracketrighttp] u23A4 right square bracket top
 \[bracketrightex] u23A5 right square bracket extension
 \[bracketrightbt] u23A6 right square bracket bottom

 \[lt] u23A7 left brace top +
 \[lk] u23A8 left brace middle +
 \[lb] u23A9 left brace bottom +
 \[bracelefttp] u23A7 left brace top
 \[braceleftmid] u23A8 left brace middle
 \[braceleftbt] u23A9 left brace bottom
 \[braceleftex] u23AA left brace extension

 \[rt] u23AB right brace top +
 \[rk] u23AC right brace middle +
 \[rb] u23AD right brace bottom +
 \[bracerighttp] u23AB right brace top
 \[bracerightmid] u23AC right brace middle
 \[bracerightbt] u23AD right brace bottom
 \[bracerightex] u23AA right brace extension

 \[parenlefttp] u239B left parenthesis top
 \[parenleftex] u239C left parenthesis extension
 \[parenleftbt] u239D left parenthesis bottom
 \[parenrighttp] u239E right parenthesis top
 \[parenrightex] u239F right parenthesis extension
 \[parenrightbt] u23A0 right parenthesis bottom

Arrows
Output Input Unicode Notes

← \[<-] u2190 horizontal arrow left +
→ \[->] u2192 horizontal arrow right +
↔ \[<>] u2194 bidirectional horizontal arrow
↓ \[da] u2193 vertical arrow down +
↑ \[ua] u2191 vertical arrow up +
↑↓ \[va] u2195 bidirectional vertical arrow
⇐ \[lA] u21D0 horizontal double arrow left
⇒ \[rA] u21D2 horizontal double arrow right
⇔ \[hA] u21D4 bidirectional horizontal double arrow
⇓ \[dA] u21D3 vertical double arrow down

groff 1.23.0 2 July 2023 198

groff_char(7) Miscellaneous Information Manual groff_char(7)

⇑ \[uA] u21D1 vertical double arrow up
\[vA] u21D5 bidirectional vertical double arrow

 \[an] u23AF horizontal arrow extension

Rules and lines
On typesetting devices, the font-invariant glyphs (see subsection “Brackets” above) \[br], \[ul], and \[rn]
form corners when adjacent; they can be used to build boxes. On terminal devices, they are mapped as
shown in the table. The Unicode-derived names of these three glyphs are approximations.

The input character _ always accesses the underscore glyph in a font; \[ul], by contrast, may be font-invari-
ant on typesetting devices.

The baseline rule \[ru] is a font-invariant glyph, namely a rule of one-half em.

In AT&T troff , \[rn] also served as a one en extension of the square root symbol. groff favors \[radicalex]
for this purpose; see subsection “Mathematical symbols” below.

Output Input Unicode Notes

| | u007C bar
| \[ba] u007C bar

\[br] u2502 box rule +
_ _ u005F underscore, low line +

\[ul] --- underrule +
\[rn] u203E overline +
\[ru] --- baseline rule +

¦ \[bb] u00A6 broken bar
/ / u002F slash, solidus +
/ \[sl] u002F slash, solidus +
\ \[rs] u005C reverse solidus

Text markers
Output Input Unicode Notes

\[ci] u25CB circle +
• \[bu] u2022 bullet +
† \[dg] u2020 dagger +
‡ \[dd] u2021 double dagger +
◊ \[lz] u25CA lozenge, diamond

\[sq] u25A1 square +
¶ \[ps] u00B6 pilcrow sign
§ \[sc] u00A7 section sign +

☞ \[lh] u261C hand pointing left +
☞ \[rh] u261E hand pointing right +
@ @ u0040 at sign
@ \[at] u0040 at sign
u0023 number sign
\[sh] u0023 number sign
↵ \[CR] u21B5 carriage return
✓ \[OK] u2713 check mark

Legal symbols
The Bell System logo is not supported in groff .

Output Input Unicode Notes

© \[co] u00A9 copyright sign +
® \[rg] u00AE registered sign +
™ \[tm] u2122 trade mark sign

\[bs] --- Bell System logo +

groff 1.23.0 2 July 2023 199

groff_char(7) Miscellaneous Information Manual groff_char(7)

Currency symbols
Output Input Unicode Notes

$ $ u0024 dollar sign
$ \[Do] u0024 dollar sign
¢ \[ct] u00A2 cent sign +
€ \[eu] u20AC Euro sign
€ \[Eu] u20AC variant Euro sign
¥ \[Ye] u00A5 yen sign
£ \[Po] u00A3 pound sign
¤ \[Cs] u00A4 currency sign

Units
Output Input Unicode Notes

° \[de] u00B0 degree sign +
‰ \[%0] u2030 per thousand, per mille sign
′ \[fm] u2032 arc minute sign, foot mark +
″ \[sd] u2033 arc second sign
µ \[mc] u00B5 micro sign
ª \[Of] u00AA feminine ordinal indicator
º \[Om] u00BA masculine ordinal indicator

Logical symbols
The variants of the not sign may differ in appearance or spacing depending on the device and font selected.
Unicode does not encode a discrete “bitwise or” sign: on typesetting devices, it is drawn shorter than the
bar, about the same height as a capital letter. Terminal devices unify \[ba] and \[or].

Output Input Unicode Notes

∧ \[AN] u2227 logical and
∨ \[OR] u2228 logical or
¬ \[no] u00AC logical not + ***
¬ \[tno] u00AC text variant of \[no]
∃ \[te] u2203 there exists
∀ \[fa] u2200 for all
∋ \[st] u220B such that
∴ \[3d] u2234 therefore
∴ \[tf] u2234 therefore
| | u007C bar

\[or] u007C bitwise or +

Mathematical symbols
\[Fn] also appears in subsection “Supplementary Latin letters” above. Observe the two varieties of the
plus-minus, multiplication, and division signs; \[+-], \[mu], and \[di] are normally drawn from the special
font, but have text font variants. Also be aware of three glyphs available in special font variants that are
normally drawn from text fonts: the plus, minus, and equals signs. These variants may differ in appearance
or spacing depending on the device and font selected.

In AT&T troff , \(rn (“root en extender”) served as the horizontal extension of the radical (square root) sign,
\(sr, and was drawn at the maximum height of the typeface’s bounding box; this enabled the special charac-
ter to double as an overline (see subsection “Rules and lines” above). A contemporary font’s radical sign
might not ascend to such an extreme. In groff , you can instead use \[radicalex] to continue the radical sign
\[sr]; these special characters are intended for use with text fonts. \[sqrt] and \[sqrtex] are their counter-
parts with mathematical spacing.

Output Input Unicode Notes

½ \[12] u00BD one half symbol +
¼ \[14] u00BC one quarter symbol +

groff 1.23.0 2 July 2023 200

groff_char(7) Miscellaneous Information Manual groff_char(7)

¾ \[34] u00BE three quarters symbol +
1⁄8 \[18] u215B one eighth symbol
3⁄8 \[38] u215C three eighths symbol
5⁄8 \[58] u215D five eighths symbol
7⁄8 \[78] u215E seven eighths symbol
¹ \[S1] u00B9 superscript one
² \[S2] u00B2 superscript two
³ \[S3] u00B3 superscript three

+ + u002B plus
+ \[pl] u002B special variant of plus + ***
- \[-] u002D minus
− \[mi] u2212 special variant of minus + ***

\[-+] u2213 minus-plus
± \[+-] u00B1 plus-minus + ***
± \[t+-] u00B1 text variant of \[+-]
⋅ \[md] u22C5 multiplication dot
× \[mu] u00D7 multiplication sign + ***
× \[tmu] u00D7 text variant of \[mu]
⊗ \[c*] u2297 circled times
⊕ \[c+] u2295 circled plus
÷ \[di] u00F7 division sign + ***
÷ \[tdi] u00F7 text variant of \[di]
⁄ \[f/] u2044 fraction slash
* * u002A asterisk
∗ \[**] u2217 mathematical asterisk +

≤ \[<=] u2264 less than or equal to +
≥ \[>=] u2265 greater than or equal to +
<< \[<<] u226A much less than
>> \[>>] u226B much greater than
= = u003D equals
= \[eq] u003D special variant of equals + ***
≠ \[!=] u003D_0338 not equals +
≡ \[==] u2261 equivalent +
/≡ \[ne] u2261_0338 not equivalent
≅ \[=~] u2245 approximately equal to
−∼ \[|=] u2243 asymptotically equal to +
~ \[ti] u007E tilde +
∼ \[ap] u223C similar to, tilde operator +
≈ \[~~] u2248 almost equal to
≈ \[~=] u2248 almost equal to
∝ \[pt] u221D proportional to +

∅ \[es] u2205 empty set +
∈ \[mo] u2208 element of a set +
∉ \[nm] u2208_0338 not element of set
⊂ \[sb] u2282 proper subset +
⊄ \[nb] u2282_0338 not subset
⊃ \[sp] u2283 proper superset +
/⊃ \[nc] u2283_0338 not superset
⊆ \[ib] u2286 subset or equal +
⊇ \[ip] u2287 superset or equal +

groff 1.23.0 2 July 2023 201

groff_char(7) Miscellaneous Information Manual groff_char(7)

∩ \[ca] u2229 intersection, cap +
∪ \[cu] u222A union, cup +

∠ \[/_] u2220 angle
⊥ \[pp] u22A5 perpendicular
∫ \[is] u222B integral +
∫ \[integral] u222B integral ***
∑ \[sum] u2211 summation ***
∏ \[product] u220F product ***

\[coproduct] u2210 coproduct ***
∇ \[gr] u2207 gradient +
√ \[sr] u221A radical sign, square root +

\[rn] u203E overline +
 \[radicalex] --- radical extension

√ \[sqrt] u221A radical sign, square root ***
 \[sqrtex] --- radical extension ***

 \[lc] u2308 left ceiling +
 \[rc] u2309 right ceiling +
 \[lf] u230A left floor +
 \[rf] u230B right floor +

∞ \[if] u221E infinity +
ℵ \[Ah] u2135 aleph symbol
ƒ \[Fn] u0192 lowercase f with hook, function
ℑ \[Im] u2111 blackletter I, imaginary part
ℜ \[Re] u211C blackletter R, real part
℘ \[wp] u2118 Weierstrass p
∂ \[pd] u2202 partial differential
h \[-h] u210F h bar
h \[hbar] u210F h bar

Greek glyphs
These glyphs are intended for technical use, not for typesetting Greek language text; normally, the upper-
case letters have upright shape, and the lowercase ones are slanted.

Output Input Unicode Notes

Α \[*A] u0391 uppercase alpha +
Β \[*B] u0392 uppercase beta +
Γ \[*G] u0393 uppercase gamma +
∆ \[*D] u0394 uppercase delta +
Ε \[*E] u0395 uppercase epsilon +
Ζ \[*Z] u0396 uppercase zeta +
Η \[*Y] u0397 uppercase eta +
Θ \[*H] u0398 uppercase theta +
Ι \[*I] u0399 uppercase iota +
Κ \[*K] u039A uppercase kappa +
Λ \[*L] u039B uppercase lambda +
Μ \[*M] u039C uppercase mu +
Ν \[*N] u039D uppercase nu +
Ξ \[*C] u039E uppercase xi +
Ο \[*O] u039F uppercase omicron +
Π \[*P] u03A0 uppercase pi +
Ρ \[*R] u03A1 uppercase rho +
Σ \[*S] u03A3 uppercase sigma +

groff 1.23.0 2 July 2023 202

groff_char(7) Miscellaneous Information Manual groff_char(7)

Τ \[*T] u03A4 uppercase tau +
ϒ \[*U] u03A5 uppercase upsilon +
Φ \[*F] u03A6 uppercase phi +
Χ \[*X] u03A7 uppercase chi +
Ψ \[*Q] u03A8 uppercase psi +
Ω \[*W] u03A9 uppercase omega +

α \[*a] u03B1 lowercase alpha +
β \[*b] u03B2 lowercase beta +
γ \[*g] u03B3 lowercase gamma +
δ \[*d] u03B4 lowercase delta +
ε \[*e] u03B5 lowercase epsilon +
ζ \[*z] u03B6 lowercase zeta +
η \[*y] u03B7 lowercase eta +
θ \[*h] u03B8 lowercase theta +
ι \[*i] u03B9 lowercase iota +
κ \[*k] u03BA lowercase kappa +
λ \[*l] u03BB lowercase lambda +
µ \[*m] u03BC lowercase mu +
ν \[*n] u03BD lowercase nu +
ξ \[*c] u03BE lowercase xi +
ο \[*o] u03BF lowercase omicron +
π \[*p] u03C0 lowercase pi +
ρ \[*r] u03C1 lowercase rho +
σ \[*s] u03C3 lowercase sigma +
τ \[*t] u03C4 lowercase tau +
υ \[*u] u03C5 lowercase upsilon +
φ \[*f] u03D5 lowercase phi +
χ \[*x] u03C7 lowercase chi +
ψ \[*q] u03C8 lowercase psi +
ω \[*w] u03C9 lowercase omega +

\[+e] u03F5 variant epsilon (lunate)
ϑ \[+h] u03D1 variant theta (cursive form)
ϖ \[+p] u03D6 variant pi (similar to omega)
ϕ \[+f] u03C6 variant phi (curly shape)
ς \[ts] u03C2 terminal lowercase sigma +

Playing card symbols
Output Input Unicode Notes

♣ \[CL] u2663 solid club suit
♠ \[SP] u2660 solid spade suit
♥ \[HE] u2665 solid heart suit
♦ \[DI] u2666 solid diamond suit

History
A consideration of the typefaces originally available to AT&T nroff and troff illuminates many conventions
that one might regard as idiosyncratic fifty years afterward. (See section “History” of roff (7) for more con-
text.) The face used by the Teletype Model 37 terminals of the Murray Hill Unix Room was based on
ASCII, but assigned multiple meanings to several code points, as suggested by that standard. Decimal 34
(") served as a dieresis accent and neutral double quotation mark; decimal 39 (') as an acute accent, apos-
trophe, and closing (right) single quotation mark; decimal 45 (-) as a hyphen and a minus sign; decimal 94
(^) as a circumflex accent and caret; decimal 96 (`) as a grave accent and opening (left) single quotation
mark; and decimal 126 (~) as a tilde accent and (with a half-line motion) swung dash. The Model 37 bore
an optional extended character set offering upright Greek letters and several mathematical symbols; these
were documented as early as the kbd(VII) man page of the (First Edition) Unix Programmer’s Manual.

groff 1.23.0 2 July 2023 203

groff_char(7) Miscellaneous Information Manual groff_char(7)

At the time Graphic Systems delivered the C/A/T phototypesetter to AT&T, the ASCII character set was not
considered a standard basis for a glyph repertoire by traditional typographers. In the stock Times roman,
italic, and bold styles available, several ASCII characters were not present at all, nor was most of the Tele-
type’s extended character set. AT&T commissioned a “special” font to ensure no loss of repertoire.

A representation of the coverage of the C/A/T’s text fonts follows. The glyph resembling an underscore is
a baseline rule, and that resembling a vertical line is a box rule. In italics, the box rule was not slanted. We
also observe that the hyphen and minus sign were already “de-unified” by the fonts provided; a decision
whither to map an input “-” therefore had to be taken.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 fi fl ffi ffl
! $ % & () ‘ ’ * + - . , / : ; = ? []
• — - ¼ ½ ¾ ° † ′ ¢ ® ©

The special font supplied the missing ASCII and Teletype extended glyphs, among several others. The
plus, minus, and equals signs appeared in the special font despite availability in text fonts “to insulate the
appearance of equations from the choice of standard [read: text] fonts”—a priority since troff was turned to
the task of mathematical typesetting as soon as it was developed.

We note that AT&T took the opportunity to de-unify the apostrophe/right single quotation mark from the
acute accent (a choice ISO later duplicated in its 8859 series of standards). A slash intended to be mirror-
symmetric with the backslash was also included, as was the Bell System logo; we do not attempt to depict
the latter.

α β γ δ ε ζ η θ ι κ λ µ ν ξ ο π ρ σ ς τ υ φ χ ψ ω
Γ ∆ Θ Λ Ξ Π Σ ϒ Φ Ψ Ω
" ´ \ ^ ` ~ / < > { } # @ + − = ∗
≥ ≤ ≡ ≈ ∼ ≠ ↑ ↓ ← → × ÷ ± ∞ ∂ ∇ ¬ ∫ ∝ √ ∪ ∩ ⊂ ⊃ ⊆ ⊇ ∅ ∈
§ ‡ ☞☞           

One ASCII character as rendered by the Model 37 was apparently abandoned. That device printed decimal
124 () as a broken vertical line, like Unicode U+00A6 (¦). No equivalent was available on the C/A/T; the
box rule \[br], brace vertical extension \[bv], and “or” operator \[or] were used as contextually appropriate.

Devices supported by AT&T device-independent troff exhibited some differences in glyph detail. For ex-
ample, on the Autologic APS-5 phototypesetter, the square \(sq became filled in the Times bold face.

Files
The files below are loaded automatically by the default troffrc.

/usr/share/groff/1.23.0/tmac/composite.tmac
assigns alternate mappings for identifiers after the first in a composite special character escape se-
quence. See subsection “Accents” above.

/usr/share/groff/1.23.0/tmac/fallbacks.tmac
defines fallback mappings for Unicode code points such as the increment sign (U+2206) and
upper- and lowercase Roman numerals.

Authors
This document was written by James Clark 〈jjc@jclark.com〉, with additions by Werner Lemberg 〈wl@gnu
.org〉 and Bernd Warken 〈groff-bernd.warken-72@web.de〉, revised to use tbl(1) by Eric S. Raymond
〈esr@thyrsus.com〉, and largely rewritten by G. Branden Robinson 〈g.branden.robinson@gmail.com〉.

See also
Groff: The GNU Implementation of troff , by Trent A. Fisher and Werner Lemberg, is the primary groff
manual. Section “Using Symbols” may be of particular note. You can browse it interactively with “info
'(groff) Using Symbols'”.

“An extension to the troff character set for Europe”, E.G. Keizer, K.J. Simonsen, J. Akkerhuis; EUUG
Newsletter, Volume 9, No. 2, Summer 1989

groff 1.23.0 2 July 2023 204

groff_char(7) Miscellaneous Information Manual groff_char(7)

The Unicode Standard 〈http://www.unicode.org〉

“7-bit Character Sets” 〈https://www.aivosto.com/articles/charsets-7bit.html〉 by Tuomas Salste documents
the inherent ambiguity and configurable code points of the ASCII encoding standard.

“Nroff/Troff User’s Manual” by Joseph F. Ossanna, 1976, AT&T Bell Laboratories Computing Science
Technical Report No. 54, features two tables that throw light on the glyph repertoire available to “typesetter
roff ” when it was first written. Be careful of re-typeset versions of this document that can be found on the
Internet. Some do not accurately represent the original document: several glyphs are obviously missing.
More subtly, lowercase Greek letters are rendered upright, not slanted as they appeared in the C/A/T’s spe-
cial font and as expected by troff users.

groff_rfc1345(7) describes an alternative set of special character glyph names, which extends and in some
cases overrides the definitions listed above.

groff (1), troff (1), groff (7)

groff 1.23.0 2 July 2023 205

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

Name
groff_diff - differences between GNU roff and AT&T troff

Description
The GNU roff text processing system, groff , is an extension of AT&T troff , the typesetting system origi-
nating in Unix systems of the 1970s. groff removes many arbitrary limitations and adds features, both to
the input language and to the page description language output by the troff formatter. Differences arising
from groff ’s implementation of AT&T troff features are also noted. See roff (7) for background.

Language
GNU troff features identifiers of arbitrary length; supports color output, non-integral type sizes, and user-
defined characters; adds more conditional expression operators; recognizes additional scaling units and nu-
meric operators; enables general file I/O (in “unsafe mode” only); and exposes more formatter state.

Long names
GNU troff introduces many new requests; with three exceptions (cp, do, rj), they have names longer than
two characters. The names of registers, fonts, strings/macros/diversions, environments, special characters,
streams, and colors can be of any length. Anywhere AT&T troff supports a parameterized escape sequence
that uses an opening parenthesis “(” to introduce a two-character argument, groff supports a square-brack-
eted form “[]” where the argument within can be of arbitrary length.

Font families, abstract styles, and translation
GNU troff can group text typefaces into families containing each of the styles “R”, “I”, “B”, and “BI”. So
that a document need not be coupled to a specific font family, an output device can associate a style in the
abstract sense with a mounting position. Thus the default family can be combined with a style dynamically,
producing a resolved font name. A document can translate, or remap, fonts with the ftr request.

Applying the requests cs, bd, tkf, uf, or fspecial to an abstract style affects the member of the default fam-
ily corresponding to that style. The default family can be set with the fam request or -f command-line op-
tion. The styles directive in the output device’s DESC file controls which mounting positions (if any) are
initially associated with abstract styles rather than fonts, and the sty request can update this association.

Colors
groff supports color output with a variety of color spaces and up to 16 bits per channel. Some devices, par-
ticularly terminals, may be more limited. When color support is enabled, two colors are current at any
given time: the stroke color, with which glyphs, rules (lines), and geometric figures are drawn, and the fill
color, which paints the interior of filled geometric figures. The color, defcolor, gcolor, and fcolor re-
quests; \m and \M escape sequences; and .color, .m, and .M registers exercise color support.

Fractional type sizes and new scaling units
AT&T troff interpreted all type size measurements in points. Combined with integer arithmetic, this design
choice made it impossible to support, for instance, ten and a half-point type. In GNU troff , an output de-
vice can select a scaling factor that subdivides a point into “scaled points”. A type size expressed in scaled
points can thus represent a non-integral type size.

A scaled point is equal to 1/sizescale points, where sizescale is specified in the device description file,
DESC, and defaults to 1; see groff_font(5). Requests and escape sequences in GNU troff interpret argu-
ments that represent a type size in points, which the formatter multiplies by sizescale and converts to an in-
teger. Arguments treated in this way comprise those to the escape sequences \H and \s, to the request ps,
the third argument to the cs request, and the second and fourth arguments to the tkf request. Scaled points
may be specified explicitly with the z scaling unit. In GNU troff , the register \n[.s] can interpolate a non-
integral type size. The register \n[.ps] interpolates the type size in scaled points.

For example, if sizescale is 1000, then a scaled point is one thousandth of a point. Consequently, “.ps
10.5” is synonymous with “.ps 10.5z”; both set the type size to 10,500 scaled points, or 10.5 points.

It makes no sense to use the “z” scaling unit in a numeric expression whose default scaling unit is neither
“u” nor “z”, so GNU troff disallows this. Similarly, it is nonsensical to use a scaling unit other than “z”
or “u” in a numeric expression whose default scaling unit is “z”, so GNU troff disallows this as well.

groff 1.23.0 2 July 2023 206

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

Another new scaling unit, “s”, multiplies by the number of basic units in a scaled point. Thus, “\n[.ps]s” is
equal to “1m” by definition. Do not confuse the “s” and “z” scaling units.

Output devices may be limited in the type sizes they can employ. The .s and .ps registers represent the type
size as selected by the output driver as it understands a device’s capability. The last requested type size is
interpolated in scaled points by the read-only register .psr and in points as a decimal fraction by the read-
only string-valued register .sr. Both are associated with the environment. For example, if a type size of
10.95 points is requested, and the nearest size permitted by a sizes request (or by the sizes or sizescale di-
rectives in the device’s DESC file) is 11 points, the output driver uses the latter value.

A further two new measurement units available in groff are “M”, which indicates hundredths of an em, and
“f”, which multiplies by 65,536. The latter provides convenient fractions for color definitions with the
defcolor request. For example, 0.5f equals 32768u.

Numeric expressions
GNU troff permits spaces in a numeric expression within parentheses, and offers three new operators.

e1>?e2 Interpolate the greater of e1 and e2.

e1<?e2 Interpolate the lesser of e1 and e2.

(c;e) Evaluate e using c as the default scaling unit, ignoring scaling units in e if c is empty.

Conditional expressions
More conditions can be tested with the “ if ” and ie requests, as well as the new “while” request.

c chr True if a character chr is available, where chr is an ordinary character (Unicode basic Latin ex-
cluding control characters and the space), a special character, or \N'index'.

d nam True if a string, macro, diversion, or request nam is defined.

F fnt True if a font fnt is available; fnt can be an abstract style or a font name. fnt is handled as if it
were accessed with the ft request (that is, abstract styles and font translation are applied), but fnt
cannot be a mounting position, and no font is mounted.

m col True if a color col is defined.

r reg True if a register reg is defined.

S sty True if a style sty is registered. Font translation applies.

v Always false. This condition is for compatibility with certain other troff implementations only.
(This refers to vtroff , a translator that would convert the C/A/T output from early-vintage AT&T
troff to a form suitable for Versatec and Benson-Varian plotters.)

Drawing commands
GNU troff offers drawing commands to create filled circles and ellipses, and polygons. Stroked (outlined)
objects are drawn with the stroke color and filled (solid) ones shaded with the fill color. These are indepen-
dent properties; if you want a filled, stroked figure, you must draw the same figure twice using each draw-
ing command. A filled figure is always smaller than a stroked one because the former is drawn only within
its defined area, whereas strokes have a line thickness (set with another new drawing command, \D't').

Escape sequences
groff introduces several new escape sequences and extends the syntax of a few AT&T troff escape se-
quences (namely, \D, \f, \k, \n, \s, \$, and *). In the following list, escape sequences are collated alphabeti-
cally at first, and then by symbol roughly in Unicode code point order.

\A'anything'
Interpolate 1 if anything is a valid identifier, and 0 otherwise. Because invalid input characters are
removed, invalid identifiers are empty or contain spaces, tabs, or newlines. You can employ \A to
validate a macro argument before using it to construct another escape sequence or identifier.

\B'anything'
Interpolate 1 if anything is a valid numeric expression, and 0 otherwise. You might use \B along
with the “ if ” request to filter out invalid macro arguments.

groff 1.23.0 2 July 2023 207

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

\D'C d' Draw filled circle of diameter d with its leftmost point at the drawing position.

\D'E h v'
Draw filled ellipse with h and v as the axes and the leftmost point at the drawing position.

\D'p h1 v1 . . . hn vn'
Draw polygon with vertices at drawing position and each point in sequence. GNU troff closes the
polygon by drawing a line from (hn, vn) back to the initial drawing position; DWB and Heirloom
troff s do not. Afterward, the drawing position is left at (hn, vn).

\D'P h1 v1 . . . hn vn'
As \D'p', but the polygon is filled.

\D't n' Set line thickness of geometric objects to to n basic units. A zero n selects the minimal supported
thickness. A negative n selects a thickness proportional to the type size; this is the default.

\E Embed an escape character that is not interpreted in copy mode (compare with \a and \t). You can
use it to ease the writing of nested macro definitions. It is also convenient to define strings con-
taining escape sequences that need to work when used in copy mode (for example, as macro argu-
ments), or which will be interpolated at varying macro nesting depths.

\f[font] Select font, which may be a mounting position, abstract style, or font name, to choose the type-
face. \f[] and \fP are synonyms; we recommend the former.

\F f
\F(fm
\F[family]

Select default font family. \F[] makes the previous font family the default. \FP is unlike \fP; it se-
lects font family “P” as the default. See the fam request below.

\k(rg
\k[reg] Mark horizontal drawing position in two-character register name rg or arbitrary register name reg.

\mc
\m(cl
\m[col] Set the stroke color. \m[] restores the previous stroke color, or the default if there is none.

\Mc
\M(cl
\M[col] Set the fill color. \M[] restores the previous fill color, or the default if there is none.

\n[reg] Interpolate register reg.

\On
\O[n] Suppress troff output of glyphs and geometric objects. The sequences \O2, \O3, \O4, and \O5 are

intended for internal use by grohtml(1).

\O0
\O1 Disable and enable, respectively, the emission of glyphs and geometric objects to the out-

put driver, provided that this sequence occurs at the outermost suppression level (see \O3
and \O4). Horizontal motions corresponding to non-overstruck glyph widths still occur.
These sequences also reset the registers opminx, opminy, opmaxx, and opmaxy to -1.
These four registers mark the top left and bottom right hand corners of a box encompass-
ing all written or drawn output.

\O2 At the outermost suppression level, enable emission of glyphs and geometric objects, and
write to the standard error stream the page number and values of the four aforementioned
registers encompassing glyphs written since the last interpolation of a \O sequence, as
well as the page offset, line length, image file name (if any), horizontal and vertical de-
vice motion quanta, and input file name. Numeric values are in basic units.

groff 1.23.0 2 July 2023 208

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

\O3
\O4 Begin and end a nested suppression level, respectively. grohtml uses this mechanism to

create images of output preprocessed with pic, eqn, and tbl. At startup, troff is at the
outermost suppression level. pre-grohtml generates these sequences when processing
the document, using troff with the ps output device, Ghostscript, and the PNM tools to
produce images in PNG format. These sequences start a new page if the device is not
html or xhtml, to reduce the number of images crossing a page boundary.

\O5[Pfile]
At the outermost suppression level, write the name file to the standard error stream at po-
sition P, which must be one of l, r, c, or i, corresponding to left, right, centered, and in-
line alignments within the document, respectively. file is is a name associated with the
production of the next image.

\R'name ±n'
Synonymous with “.nr name ±n”.

\s[±n]
\s±[n]
\s'±n'
\s±'n' Set the type size to, or increment or decrement it by, n scaled points.

\Ve
\V(ev
\V[env] Interpolate contents of the environment variable env, as returned by getenv(3). \V is interpreted

even in copy mode.

\X'anything'
Within \X arguments, the escape sequences \&, \), \%, and \: are ignored; \space and \~ are con-
verted to single space characters; and \\ is reduced to \. So that the basic Latin subset of the Uni-
code character set (that is, ISO 646:1991-IRV or, popularly, “US-ASCII”) can be reliably encoded
in anything, the special character escape sequences \-, \[aq], \[dq], \[ga], \[ha], \[rs], and \[ti] are
mapped to basic Latin characters; see groff_char(7). For this transformation, character transla-
tions and definitions are ignored. Other escape sequences are not supported.

If the use_charnames_in_special directive appears in the output device’s DESC file, the use of
special character escape sequences is not an error; they are simply output verbatim (with the ex-
ception of the seven mapped to Unicode basic Latin characters, discussed above).
use_charnames_in_special is currently employed only by grohtml(1).

\Ym
\Y(ma
\Y[mac]

Interpolate a macro as a device control command. This is similar to \X'*[mac]', except the con-
tents of mac are not interpreted, and mac can be a macro and thus contain newlines, whereas the
argument to \X cannot. This inclusion of newlines requires an extension to the AT&T troff output
format, and will confuse postprocessors that do not know about it.

\Z'anything'
Save the drawing position, format anything, then restore it. Tabs and leaders in the argument are
ignored with an error diagnostic.

\# Everything up to and including the next newline is ignored. This escape sequence is interpreted
even in copy mode. \# is like \", except that \" does not ignore a newline; the latter therefore can-
not be used by itself for a whole-line comment—it leaves a blank line on the input stream.

\$0 Interpolate the name by which the macro being interpreted was called. In GNU troff this name
can vary; see the als request.

groff 1.23.0 2 July 2023 209

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

\$(nn
\$[nnn] In a macro or string definition, interpolate the nnth or nnnth argument. Macros and strings can

have an unlimited number of arguments.

\$* In a macro or string definition, interpolate the catenation of all arguments, separated by spaces.

\$@ In a macro or string definition, interpolate the catenation of all arguments, with each surrounded
by double quotes and separated by spaces.

\$^ In a macro or string definition, interpolate the catenation of all arguments constructed in a form
suitable for passage to the ds request.

\) Interpolate a transparent dummy character—one that is ignored by end-of-sentence detection. It
behaves as \&, except that \& is treated as letters and numerals normally are after “.”, “?”, and “!”;
\& cancels end-of-sentence detection, and \) does not.

*[string [arg . . .]]
Interpolate string, passing it arg . . . as arguments.

\/ Apply an italic correction: modify the spacing of the preceding glyph so that the distance between
it and the following glyph is correct if the latter is of upright shape. For example, if an italic “f” is
followed immediately by a roman right parenthesis, then in many fonts the top right portion of
the “f” overlaps the top left of the right parenthesis, producing f), which is ugly. Inserting \/ be-
tween them produces f) and avoids this problem. Use this escape sequence whenever an oblique
glyph is immediately followed by an upright glyph without any intervening space.

\, Apply a left italic correction: modify the spacing of the following glyph so that the distance be-
tween it and the preceding glyph is correct if the latter is of upright shape. For example, if a ro-
man left parenthesis is immediately followed by an italic “f”, then in many fonts the bottom left
portion of the “f” overlaps the bottom of the left parenthesis, producing (f, which is ugly. Insert-
ing \, between them produces (f and avoids this problem. Use this escape sequence whenever an
upright glyph is followed immediately by an oblique glyph without any intervening space.

\: Insert a non-printing break point. That is, a word can break there, but the soft hyphen character
does not mark the break point if it does (in contrast to “\%”). This escape sequence is an input
word boundary, so the remainder of the word is subject to hyphenation as normal.

\?anything\?
When used in a diversion, this transparently embeds anything in the diversion. anything is read in
copy mode. When the diversion is reread, anything is interpreted. anything may not contain new-
lines; use \! if you want to embed newlines in a diversion. The escape sequence \? is also recog-
nized in copy mode and becomes an internal code; it is this code that terminates anything. Thus

.nr x 1

.nf

.di d
\?\\?\\\\?\\\\\\\\nx\\\\?\\?\?
.di
.nr x 2
.di e
.d
.di
.nr x 3
.di f
.e
.di
.nr x 4
.f

prints 4.

groff 1.23.0 2 July 2023 210

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

\[char] Typeset the special character char.

\[base-char combining-component . . .]
Typeset a composite glyph consisting of base-char overlaid with one or more combining-compo-
nents. For example, “ \[A ho]” is a capital letter “A” with a “hook accent” (ogonek). See the
composite request below; Groff: The GNU Implementation of troff , the groff Texinfo manual, for
details of composite glyph name construction; and groff_char(7) for a list of components used in
composite glyph names.

\~ Insert an unbreakable space that is adjustable like an ordinary space. It is discarded from the end
of an output line if a break is forced.

Restricted requests
To mitigate risks from untrusted input documents, the pi and sy requests are disabled by default. troff (1)’s
-U option enables the formatter’s “unsafe mode”, restoring their function (and enabling additional groff
extension requests, open, opena, and pso).

New requests
.aln new old

Create alias new for existing register named old , causing the names to refer to the same stored
value. If old is undefined, a warning in category “reg” is generated and the request is ignored. To
remove a register alias, invoke rr on its name. A register’s contents do not become inaccessible
until it has no more names.

.als new old
Create alias new for existing request, string, macro, or diversion named old , causing the names to
refer to the same stored object. If old is undefined, a warning in category “mac” is produced, and
the request is ignored. The “am”, “as”, da, de, di, and ds requests (together with their variants)
create a new object only if the name of the macro, diversion, or string is currently undefined or if it
is defined as a request; normally, they modify the value of an existing object. To remove an alias,
invoke rm on its name. The object itself is not destroyed until it has no more names.

When a request, macro, string, or diversion is aliased, redefinitions and appendments “write
through” alias names. To replace an alias with a separately defined object, you must use the rm
request on its name first.

.am1 name [end-name]
As “am”, but compatibility mode is disabled while the appendment to name is interpreted: a
“compatibility save” token is inserted at its beginning, and a “compatibility restore” token at its
end. As a consequence, the requests “am”, am1, de, and de1 can be intermixed freely since the
compatibility save/restore tokens affect only the parts of the macro populated by am1 and de1.

.ami name [end-name]
Append to macro indirectly. See dei below.

.ami1 name [end-name]
As ami, but compatibility mode is disabled during interpretation of the appendment.

.as1 name [contents]
As “as”, but compatibility mode is disabled while the appendment to name is interpreted: a “com-
patibility save” token is inserted at the beginning of contents, and a “compatibility restore” token
after it. As a consequence, the requests “as”, as1, ds, and ds1 can be intermixed freely since the
compatibility save/restore tokens affect only the portions of the strings populated by as1 and ds1.

.asciify div
Unformat the diversion div in a way such that Unicode basic Latin (ASCII) characters, characters
translated with the trin request, space characters, and some escape sequences, that were formatted
in the diversion div are treated like ordinary input characters when div is reread. Doing so can be
useful in conjunction with the writem request. asciify can be also used for gross hacks; for exam-
ple, the following sets register n to 1.

groff 1.23.0 2 July 2023 211

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

.tr @.

.di x
@nr n 1
.br
.di
.tr @@
.asciify x
.x

asciify cannot return all items in a diversion to their source equivalent: nodes such as those pro-
duced by \N[. . .] will remain nodes, so the result cannot be guaranteed to be a pure string. See
section “Copy mode” in groff (7). Glyph parameters such as the type face and size are not pre-
served; use unformat to achieve that.

.backtrace
Write backtrace of input stack to the standard error stream. See the -b option of troff (1).

.blm [name]
Set a blank line macro (trap). If a blank line macro is thus defined, groff executes macro when a
blank line is encountered in the input file, instead of the usual behavior. A line consisting only of
spaces is also treated as blank and subject to this trap. If no argument is supplied, the default
blank line behavior is (re-)established.

.box [name]

.boxa [name]
Divert (or append) output to name, similarly to the di and da requests, respectively. Any pending
output line is not included in the diversion. Without an argument, stop diverting output; any pend-
ing output line inside the diversion is discarded.

.break Exit a “while” loop. Do not confuse this request with a typographical break or the br request. See
“continue”.

.brp Break and adjust line; this is the AT&T troff escape sequence \p in request form.

.cflags n c1 c2 . . .
Assign properties encoded by the number n to characters c1, c2, and so on. Ordinary and special
characters have certain associated properties. (Glyphs don’t: to GNU troff , like AT&T device-in-
dependent troff , a glyph is an identifier corresponding to a rectangle with some metrics; see
groff_font(5).) The first argument is the sum of the desired flags and the remaining arguments are
the characters to be assigned those properties. Spaces between the cn arguments are optional.
Any argument cn can be a character class defined with the class request rather than an individual
character.

The non-negative integer n is the sum of any of the following. Some combinations are nonsensi-
cal, such as “33” (1 + 32).

1 Recognize the character as ending a sentence if followed by a newline or two spaces. Ini-
tially, characters “.?!” have this property.

2 Enable breaks before the character. A line is not broken at a character with this property
unless the characters on each side both have non-zero hyphenation codes. This exception
can be overridden by adding 64. Initially, no characters have this property.

4 Enable breaks after the character. A line is not broken at a character with this property
unless the characters on each side both have non-zero hyphenation codes. This exception
can be overridden by adding 64. Initially, characters “-\[hy]\[em]” have this property.

8 Mark the glyph associated with this character as overlapping other instances of itself hori-
zontally. Initially, characters “\[ul]\[rn]\[ru]\[radicalex]\[sqrtex]” have this property.

groff 1.23.0 2 July 2023 212

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

16 Mark the glyph associated with this character as overlapping other instances of itself ver-
tically. Initially, the character “\[br]” has this property.

32 Mark the character as transparent for the purpose of end-of-sentence recognition. In
other words, an end-of-sentence character followed by any number of characters with this
property is treated as the end of a sentence if followed by a newline or two spaces. This
is the same as having a zero space factor in TEX. Initially, characters
“ ' ")]*\[dg]\[dd]\[rq]\[cq] ” have this property.

64 Ignore hyphenation codes of the surrounding characters. Use this value in combination
with values 2 and 4. Initially, no characters have this property.

For example, if you need an automatic break point after the en-dash in numeric ranges
like “3000–5000”, insert

.cflags 68 \[en]
into your document. However, this can lead to bad layout if done without thinking; in
most situations, a better solution than changing the cflags value is inserting “\:” right after
the hyphen at the places that really need a break point.

The remaining values were implemented for East Asian language support; those who use alpha-
betic scripts exclusively can disregard them.

128 Prohibit a break before the character, but allow a break after the character. This works
only in combination with values 256 and 512 and has no effect otherwise. Initially, no
characters have this property.

256 Prohibit a break after the character, but allow a break before the character. This works
only in combination with values 128 and 512 and has no effect otherwise. Initially, no
characters have this property.

512 Allow a break before or after the character. This works only in combination with values
128 and 256 and has no effect otherwise. Initially, no characters have this property.

In contrast to values 2 and 4, the values 128, 256, and 512 work pairwise. If, for example, the left
character has value 512, and the right character 128, no break will be automatically inserted be-
tween them. If we use value 6 instead for the left character, a break after the character can’t be
suppressed since the neighboring character on the right doesn’t get examined.

.char c contents
Define the ordinary or special character c as contents, which can be empty. More precisely, char
defines a groff object (or redefines an existing one) that is accessed with the name c on input, and
produces contents on output. Every time c is to be formatted, contents is processed in a temporary
environment and the result is wrapped up into a single object. Compatibility mode is turned off
and the escape character is set to \ while contents is processed. Any emboldening, constant spac-
ing, or track kerning is applied to this object as a whole, not to each character in contents.

An object defined by this request can be used just like a glyph provided by the output device. In
particular, other characters can be translated to it with the tr request; it can be made the tab or
leader fill character with the tc and lc requests; sequences of it can be drawn with the \l and \L es-
cape sequences; and, if the hcode request is used on c, it is subject to automatic hyphenation.

To prevent infinite recursion, occurrences of c within its own definition are treated normally (as if
it were not being defined with char). The tr and trin requests take precedence if char both apply
to c. A character definition can be removed with the rchar request.

.chop object
Remove the last character from the macro, string, or diversion object. This is useful for removing
the newline from the end of a diversion that is to be interpolated as a string. This request can be
used repeatedly on the same object; see section “gtroff Internals” in Groff: The GNU Implementa-
tion of troff , the groff Texinfo manual, for discussion of nodes inserted by groff .

groff 1.23.0 2 July 2023 213

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

.class name c1 c2 . . .
Define a character class (or simply “class”) name comprising the characters or range expressions
c1, c2, and so on.

A class thus defined can then be referred to in lieu of listing all the characters within it. Currently,
only the cflags request can handle references to character classes.

In the request’s simplest form, each cn is a character (or special character).
.class [quotes] ' \[aq] \[dq] \[oq] \[cq] \[lq] \[rq]

Since class and special character names share the same name space, we recommend starting and
ending the class name with “[” and “]”, respectively, to avoid collisions with existing character
names defined by groff or the user (with char and related requests). This practice applies the
presence of “]” in the class name to prevent the usage of the special character escape form “\[. . .]”,
thus you must use the \C escape to access a class with such a name.

You can also use a character range expression consisting of a start character followed by “-” and
then an end character. Internally, GNU troff converts these two character names to Unicode code
points (according to the groff glyph list [GGL]), which determine the start and end values of the
range. If that fails, the class definition is skipped. Furthermore, classes can be nested.

.class [prepunct] , : ; > }

.class [prepunctx] \C'[prepunct]' \[u2013]-\[u2016]
The class “[prepunctx]” thus contains the contents of the class “[prepunct]” and characters in the
range U+2013–U+2016.

If you want to include “-” in a class, it must be the first character value in the argument list, other-
wise it gets misinterpreted as part of the range syntax.

It is not possible to use class names as end points of range definitions.

A typical use of the class request is to control line-breaking and hyphenation rules as defined by
the cflags request. For example, to inhibit line breaks before the characters belonging to the
“[prepunctx]” class defined in the previous example, you can write the following.

.cflags 2 \C'[prepunctx]'

.close stream
Close the stream named stream, invalidating it as an argument to the write request. See open.

.composite c1 c2
Map character name c1 to character name c2 when c1 is a combining component in a composite
glyph. Typically, this remaps a spacing glyph to a combining one.

.continue
Skip the remainder of a “while” loop’s body, immediately starting the next iteration. See break.

.color n
If n is non-zero or missing, enable colors (the default), otherwise disable them.

.cp n If n is non-zero or missing, enable compatibility mode, otherwise disable it. In compatibility
mode, long names are not recognized, and the incompatibilities they cause do not arise.

.defcolor ident scheme color-component . . .
Define a color named ident. scheme identifies a color space and determines the number of re-
quired color-components; it must be one of “rgb” (three components), “cmy” (three components),
“cmyk” (four components), or “gray” (one component). “grey” is accepted as a synonym of
“gray”. The color components can be encoded as a hexadecimal value starting with # or ##. The
former indicates that each component is in the range 0–255 (0–FF), the latter the range 0–65535
(0–FFFF). Alternatively, each color component can be specified as a decimal fraction in the range
0–1, interpreted using a default scaling unit of “f”, which multiplies its value by 65,536 (but
clamps it at 65,535).

Each output device has a color named “default”, which cannot be redefined. A device’s default
stroke and fill colors are not necessarily the same.

groff 1.23.0 2 July 2023 214

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

.de1 name [end-name]
Define a macro to be interpreted with compatibility mode disabled. When name is called, compat-
ibility mode enablement status is saved; it is restored when the call completes.

.dei name [end-name]
Define macro indirectly, with the name of the macro to be defined in string name and the name of
the end macro terminating its definition in string end-name.

.dei1 name [end-name]
As dei, but compatibility mode is disabled while the definition of the macro named in string name
is interpreted.

.device anything
Write anything, read in copy mode, to troff output as a device control command. An initial neu-
tral double quote is stripped to allow the embedding of leading spaces.

.devicem name
Write contents of macro or string name to troff output as a device control command.

.do name [arg . . .]
Interpret the string, request, diversion, or macro name (along with any arguments) with compati-
bility mode disabled. Compatibility mode is restored (only if it was active) when the expansion of
name is interpreted; that is, the restored compatibility state applies to the contents of the macro,
string, or diversion name as well as data read from files or pipes if name is any of the so, soquiet,
mso, msoquiet, or pso requests.

For example,
.de mac1
FOO
..
.de1 mac2
groff
.mac1
..
.de mac3
compatibility
.mac1
..
.de ma
\\$1
..
.cp 1
.do mac1
.do mac2 \" mac2, defined with .de1, calls "mac1"
.do mac3 \" mac3 calls "ma" with argument "c1"
.do mac3 \[ti] \" groff syntax accepted in .do arguments

results in
FOO groff FOO compatibility c1 ~

as output.

.ds1 name contents
As ds, but compatibility mode is disabled while name is interpreted: a “compatibility save” token
is inserted at the beginning of contents, and a “compatibility restore” token after it.

.ecr Restore the escape character saved with ecs, or set escape character to “ \” if none has been saved.

.ecs Save the current escape character.

groff 1.23.0 2 July 2023 215

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

.evc env
Copy the properties of environment env to the current environment, except for the following data.

• a partially collected line, if present;

• the interruption status of the previous input line (due to use of the \c escape sequence);

• the count of remaining lines to center, to right-justify, or to underline (with or without under-
lined spaces)—these are set to zero;

• the activation status of temporary indentation;

• input traps and their associated data;

• the activation status of line numbering (which can be reactivated with “.nm +0”); and

• the count of consecutive hyphenated lines (set to zero).

.fam [family]
Set default font family to family. If no argument is given, the previous font family is selected, or
the formatter’s default family if there is none. The formatter’s default font family is “T” (Times),
but it can be overridden by the output device—see groff_font(5). The default font family is associ-
ated with the environment. See \F.

.fchar c contents
Define fallback character c as contents. The syntax of this request is the same as the char request;
the difference is that a character defined with char hides a glyph with the same name in the se-
lected font, whereas characters defined with fchar are checked only if c isn’t found in the selected
font. This test happens before special fonts are searched.

.fcolor color
Set the fill color to color. Without an argument, the previous fill color is selected.

.fschar f c contents
Define fallback special character c for font f as contents. A character defined by fschar is located
after the list of fonts declared with fspecial is searched but before those declared with the
“special” request.

.fspecial f s1 s2 . . .
When font f is selected, fonts s1, s2, . . . are treated as special; that is, they are searched for glyphs
not found in f . Any fonts specified in the “special” request are searched after s1, s2, and so on.
Without s arguments, fspecial clears the list of fonts treated as special when f is selected.

.ftr f g Translate font f to g. Whenever a font named f is referred to in an \f escape sequence, in the F
and S conditional expression operators, or in the ft, ul, bd, cs, tkf, special, fspecial, fp, or sty re-
quests, font g is used. If g is missing or identical to f , then font f is not translated.

.fzoom f zoom
Set zoom factor zoom for font f . zoom must a non-negative integer multiple of 1/1000th. If it is
missing or is equal to zero, it means the same as 1000, namely no magnification. f must be a re-
solved font name, not an abstract style.

.gcolor color
Set the stroke color to color. Without an argument, the previous stroke color is selected.

.hcode c1 code1 [c2 code2] . . .
Set the hyphenation code of character c1 to code1, that of c2 to code2, and so on. A hyphenation
code must be an ordinary character (not a special character escape sequence) other than a digit.
The request is ignored if given no arguments.

For hyphenation to work, hyphenation codes must be set up. At startup, groff assigns hyphenation
codes to the letters “a–z” (mapped to themselves), to the letters “A–Z” (mapped to “a–z”), and
zero to all other characters. Normally, hyphenation patterns contain only lowercase letters which
should be applied regardless of case. In other words, they assume that the words “ABBOT” and
“Abbot” should be hyphenated exactly as “abbot” is. hcode extends this principle to letters

groff 1.23.0 2 July 2023 216

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

outside the Unicode basic Latin alphabet; without it, words containing such letters won’t be hy-
phenated properly even if the corresponding hyphenation patterns contain them.

.hla lang
Set the hyphenation language to lang. Hyphenation exceptions specified with the hw request and
hyphenation patterns and exceptions specified with the hpf and hpfa requests are associated with
the hyphenation language. The hla request is usually invoked by a localization file, which is in
turn loaded by the troffrc or troffrc-end file; see the hpf request below. The hyphenation language
is associated with the environment.

.hlm [n]
Set the maximum number of consecutive hyphenated lines to n. If n is negative, there is no maxi-
mum. If omitted, n is -1. This value is associated with the environment. Only lines output from
a given environment count towards the maximum associated with that environment. Hyphens re-
sulting from \% are counted; explicit hyphens are not.

.hpf pattern-file
Read hyphenation patterns from pattern-file. This file is sought in the same way that macro files
are with the mso request or the -mname command-line option to groff (1) and troff (1).

The pattern-file should have the same format as (simple) TEX pattern files. The following scan-
ning rules are implemented.

• A percent sign starts a comment (up to the end of the line) even if preceded by a backslash.

• “Digraphs” like \$ are not supported.

• “^^xx” (where each x is 0–9 or a–f) and ^^c (character c in the code point range 0–127 deci-
mal) are recognized; other uses of ^ cause an error.

• No macro expansion is performed.

• hpf checks for the expression \patterns{. . .} (possibly with whitespace before or after the
braces). Everything between the braces is taken as hyphenation patterns. Consequently, “{” and
“}” are not allowed in patterns.

• Similarly, \hyphenation{. . .} gives a list of hyphenation exceptions.

• \endinput is recognized also.

• For backwards compatibility, if \patterns is missing, the whole file is treated as a list of hyphen-
ation patterns (but the “%” character is still recognized as the start of a comment).

Use the hpfcode request (see below) to map the encoding used in hyphenation pattern files to
groff ’s input encoding.

The set of hyphenation patterns is associated with the hyphenation language set by the hla request.
The hpf request is usually invoked by a localization file loaded by the troffrc file. By default, trof-
frc loads the localization file for English. (As of groff 1.23.0, localization files for Czech (cs),
German (de), English (en), French (fr), Japanese (ja), Swedish (sv), and Chinese (zh) exist.) For
Western languages, the localization file sets the hyphenation mode and loads hyphenation patterns
and exceptions.

A second call to hpf (for the same language) replaces the old patterns with the new ones.

Invoking hpf causes an error if there is no hyphenation language.

If no hpf request is specified (either in the document, in a file loaded at startup, or in a macro
package), GNU troff won’t automatically hyphenate at all.

.hpfa pattern-file
As hpf, except that the hyphenation patterns and exceptions from pattern-file are appended to the
patterns already applied to the hyphenation language of the environment.

groff 1.23.0 2 July 2023 217

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

.hpfcode a b [c d] . . .
Define mapping values for character codes in pattern files. This is an older mechanism no longer
used by groff ’s own macro files; for its successor, see hcode above. hpf or hpfa apply the map-
ping after reading or appending to the active list of patterns. Its arguments are pairs of character
codes—integers from 0 to 255. The request maps character code a to code b, code c to code d ,
and so on. Character codes that would otherwise be invalid in groff can be used. By default,
every code maps to itself except those for letters “A” to “Z”, which map to those for “a” to “z”.

.hym [length]
Set the (right) hyphenation margin to length. If the adjustment mode is not “b” or “n”, the line is
not hyphenated if it is shorter than length. Without an argument, the default hyphenation margin
is reset to its default value, 0. The default scaling unit is “m”. The hyphenation margin is associ-
ated with the environment. A negative argument resets the hyphenation margin to zero, emitting a
warning in category “range”.

.hys [hyphenation-space]
Suppress hyphenation of the line in adjustment modes “b” or “n”, if it can be justified by adding
no more than hyphenation-space extra space to each inter-word space. Without an argument, the
hyphenation space adjustment threshold is set to its default value, 0. The default scaling unit
is “m”. The hyphenation space adjustment threshold is associated with the current environment.
A negative argument resets the hyphenation space adjustment threshold to zero, emitting a warn-
ing in category “range”.

.itc n name
As “it”, but lines interrupted with the \c escape sequence are not applied to the line count.

.kern n If n is non-zero or missing, enable pairwise kerning (the default), otherwise disable it.

.length reg anything
Compute the number of characters in anything and return the count in the register reg. If reg
doesn’t exist, it is created. anything is read in copy mode.

.ds xxx abcd\h'3i'efgh

.length yyy *[xxx]
\n[yyy]
14

.linetabs n
If n is non-zero or missing, enable line-tabs mode, otherwise disable it (the default). In this mode,
tab stops are computed relative to the start of the pending output line, instead of the drawing posi-
tion corresponding to the start of the input line. Line-tabs mode is a property of the environment.

For example, the following

.ds x a\t\c

.ds y b\t\c

.ds z c

.ta 1i 3i
*x
*y
*z

yields
a b c

whereas in line-tabs mode, the same input gives
a b c

instead.

.lsm [name]
Set the leading space macro (trap) to name. If there are leading space characters on an input line,
name is invoked in lieu of the usual roff behavior; the leading spaces are removed. The count of

groff 1.23.0 2 July 2023 218

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

leading spaces on an input line is stored in \n[lsn], and the amount of corresponding horizontal
motion in \n[lss], irrespective of whether a leading space trap is set. When it is, the leading spaces
are removed from the input line, and no motion is produced before calling name. If no argument
is supplied, the default leading space behavior is (re-)established.

.mso file
As “so”, except that file is sought in the same directories as arguments to the groff (1) and troff (1)
-m command-line option are (the “tmac path”). If the file name to be interpolated has the form
name.tmac and it isn’t found, mso tries to include tmac.name instead and vice versa. If file does
not exist, a warning in category “file” is emitted and the request has no other effect.

.msoquiet file
As mso, but no warning is emitted if file does not exist.

.nop anything
Interpret anything as if it were an input line. nop resembles “.if 1”; it puts a break on the output if
anything is empty. Unlike “ if ”, it cannot govern conditional blocks. Its application is to maintain
consistent indentation within macro definitions even when producing text lines.

.nroff Make the n conditional expression evaluate true and t false. See troff.

.open stream file
Open file for writing and associate stream with it. See write and close.

.opena stream file
As open, but if file exists, append to it instead of truncating it.

.output contents
Emit contents, which are read in copy mode, to the formatter output; this is similar to \! used in the
top-level diversion. An initial neutral double quote in contents is stripped to allow the embedding
of leading spaces.

.pev Report the state of the current environment followed by that of all other environments to the stan-
dard error stream.

.pnr Write the names and values of all currently defined registers to the standard error stream.

.psbb file
Get the bounding box of a PostScript image file. This file must conform to Adobe’s Document
Structuring Conventions; the request attempts to extract the bounding box values from a
%%BoundingBox comment. After invocation, the x and y coordinates (in PostScript units) of
the lower left and upper right corners can be found in the registers \n[llx], \n[lly], \n[urx], and
\n[ury], respectively. If an error occurs, these four registers are set to zero.

.pso command
As “so”, except that input comes from the standard output stream of command .

.ptr Report the names and vertical positions of all page location traps to the standard error stream.
Empty slots in the list are shown as well, because they can affect the visibility of subsequently
planted traps.

.pvs ±n Set the post-vertical line spacing to n; default scaling unit is “p”. With no argument, the post-ver-
tical line space is set to its previous value.

In GNU troff , the distance between text baselines consists of the extra pre-vertical line spacing set
by the most negative \x argument on the pending output line, the vertical spacing (vs), the extra
post-vertical line spacing set by the most positive \x argument on the pending output line, and the
post-vertical line spacing set by this request.

.rchar c . . .
Remove definition of each ordinary or special character c, undoing the effect of a char, fchar, or
schar request. Glyphs, which are defined by font description files, cannot be removed. Spaces
and tabs may separate c arguments.

groff 1.23.0 2 July 2023 219

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

.return Within a macro, return immediately. If called with an argument, return twice, namely from the
current macro and from the macro one level higher. No effect otherwise.

.rfschar f c . . .
Remove each fallback special character c for font f . Spaces and tabs may separate c arguments.
See fschar.

.rj [n] Right-align the next n input lines. Without an argument, right-align the next input line. rj implies
“.ce 0”, and ce implies “.rj 0”.

.rnn r1 r2
Rename register r1 to r2. If r1 doesn’t exist, the request is ignored.

.schar c contents
Define global fallback character c as contents. See char; the distinction is that a character defined
with schar is located after the list of fonts declared with the special request but before any
mounted special fonts.

.shc [c] Set the soft hyphen character, inserted when a word is hyphenated automatically or at a hyphen-
ation character, to c. If c is omitted, the soft hyphen character is set to the default, \[hy]. If the se-
lected glyph does not exist in the font in use at a potential hyphenation point, then the line is not
broken at that point. Neither character definitions (char and similar) nor translations (tr and simi-
lar) are considered when assigning the soft hyphen character.

.shift n In a macro, shift the arguments by n positions: argument i becomes argument i - n; arguments 1
to n are no longer available. If n is missing, arguments are shifted by 1. No effect otherwise.

.sizes s1 s2 . . . sn [0]
Set the available type sizes to s1, s2, . . . sn scaled points. The list of sizes can be terminated by an
optional “0”. Each si can also be a range m–n. In contrast to the device description file directive
of the same name (see groff_font(5)), the argument list can’t extend over more than one line.

.soquiet file
As “so”, but no warning is emitted if file does not exist.

.special f . . .
Declare each font f as special, searching it for glyphs not found in the selected font. Without ar-
guments, this list of special fonts is made empty.

.spreadwarn [limit]
Emit a break warning if the additional space inserted for each space between words in an output
line adjusted to both margins with “.ad b” is larger than or equal to limit. A negative value is
treated as zero; an absent argument toggles the warning on and off without changing limit. The
default scaling unit is m. At startup, spreadwarn is inactive and limit is 3 m.

For example, “.spreadwarn 0.2m” causes a warning if break warnings are not suppressed and
troff must add 0.2 m or more for each inter-word space in a line.

.stringdown str

.stringup str
Alter the string named str by replacing each of its bytes with its lowercase (down) or uppercase
(up) version (if one exists). Special characters (see groff_char(7)) will often transform in the ex-
pected way due to the regular naming convention for accented characters. When they do not, use
substrings and/or catenation.

.ds resume R\['e]sum\['e]\"
*[resume]
.stringdown resume
*[resume]
.stringup resume
*[resume]
Résumé résumé RÉSUMÉ

groff 1.23.0 2 July 2023 220

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

.sty n s Associate abstract style s with font mounting position n.

.substring string start [end]
Replace the string named string with its substring bounded by the indices start and end , inclu-
sively. The first character in the string has index 0. If end is omitted, it is implicitly set to the
largest valid value (the string length minus one). Negative indices count backwards from the end
of the string: the last character has index -1, the character before the last has index -2, and so on.

.ds xxx abcdefgh

.substring xxx 1 -4
*[xxx]
bcde
.substring xxx 2
*[xxx]
de

.tkf f s1 n1 s2 n2
Enable track kerning for font f . When the current font is f the width of every glyph is increased
by an amount between n1 and n2; when the current type size is less than or equal to s1 the width is
increased by n1; when it is greater than or equal to s2 the width is increased by n2; when the type
size is greater than or equal to s1 and less than or equal to s2 the increase in width is a linear func-
tion of the type size.

.tm1 message
As tm request, but strips a leading neutral double quote from message to allow the embedding of
leading spaces.

.tmc message
As tm1 request, but does not append a newline.

.trf file Transparently output the contents of file file. Each line is output as if preceded by \!; however, the
lines are not subject to copy-mode interpretation. If the file does not end with a newline, then a
newline is added. Unlike cf, file cannot contain characters that are invalid as input to GNU troff .

For example, you can define a macro x containing the contents of file f , using

.di x

.trf f

.di

.trin abcd
This is the same as the tr request except that the asciify request uses the character code (if any) be-
fore the character translation. Example:

.trin ax

.di xxx
a
.br
.di
.xxx
.trin aa
.asciify xxx
.xxx

The result is “x a”. Using tr, the result would be “x x”.

.trnt abcd
This is the same as the tr request except that the translations do not apply to text that is transpar-
ently throughput into a diversion with \!. For example,

.tr ab

.di x

groff 1.23.0 2 July 2023 221

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

\!.tm a
.di
.x

prints b; if trnt is used instead of tr it prints a.

.troff Make the t conditional expression evaluate true and n false. See nroff.

.unformat div
Unformat the diversion div. Unlike asciify, unformat handles only tabs and spaces between
words, the latter usually arising from spaces or newlines in the input. Tabs are treated as input to-
kens, and spaces become adjustable again. The vertical sizes of lines are not preserved, but glyph
information (font, type size, space width, and so on) is retained.

.vpt n If n is non-zero or missing, enable vertical position traps (the default), otherwise disable them.
Vertical position traps are those set by the ch, wh, and dt requests.

.warn [n]
Select the categories, or “types”, of reported warnings. n is the sum of the numeric codes associ-
ated with each warning category that is to be enabled; all other categories are disabled. The cate-
gories and their associated codes are listed in section “Warnings” of troff (1). For example, “.warn
0” disables all warnings, and “.warn 1” disables all warnings except those about missing glyphs.
If no argument is given, all warning categories are enabled.

.warnscale si
Set the scaling unit used in warnings to si. Valid values for si are u, i (the default), c, p, and P.

.while cond-expr anything
Evaluate the conditional expression cond-expr, and repeatedly execute anything unless and until
cond-expr evaluates false. anything, which is often a conditional block, is referred to as the while
request’s body.

troff treats the body of a while request similarly to that of a de request (albeit one not read in copy
mode), but stores it under an internal name and deletes it when the loop finishes. The operation of
a macro containing a while request can slow significantly if the while body is large. Each time the
macro is executed, the while body is parsed and stored again. An often better solution—and one
that is more portable, since AT&T troff lacked the while request—is to instead write a recursive
macro. It will be parsed only once (unless you redefine it). To prevent infinite loops, the default
number of available recursion levels is 1,000 or somewhat less (because things other than macro
calls can be on the input stack). You can disable this protective measure, or raise the limit, by set-
ting the slimit register. See section “Debugging” below.

If a while body begins with a conditional block, its closing brace must end an input line.

The break and continue requests alter a while loop’s flow of control.

.write stream anything
Write anything to stream, which must previously have been the subject of an open request, fol-
lowed by a newline. anything is read in copy mode. An initial neutral double quote in anything is
stripped to allow the embedding of leading spaces.

.writec stream anything
As write, but without a trailing newline.

.writem stream name
Write the contents of the macro or string name to stream, which must previously have been the
subject of an open request. name is read in copy mode.

groff 1.23.0 2 July 2023 222

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

Extended requests
.cf file In a diversion, embed an object which, when reread, will cause the contents of file to be copied

verbatim to the output. In AT&T troff , the contents of file are immediately copied to the output
regardless of whether a diversion is being written to; this behavior is so anomalous that it must be
considered a bug.

.de name [end-name]

.am name [end-name]

.ds name [contents]

.as name [contents]
In compatibility mode, these requests behave similarly to de1, am1, ds1, and as1, respectively: a
“compatibility save” token is inserted at the beginning, and a “compatibility restore” token at the
end, with compatibility mode switched on during execution.

.hy n New values 16 and 32 are available; the former enables hyphenation before the last character in a
word, and the latter enables hyphenation after the first character in a word.

.ss word-space-size [additional-sentence-space-size]
A second argument sets the amount of additional space separating sentences on the same output
line. If omitted, this amount is set to word-space-size. Both arguments are in twelfths of current
font’s space width (typically one-fourth to one-third em for Western scripts; see groff_font(5)).
The default for both parameters is 12. Negative values are erroneous.

.ta [[n1 n2 . . . nn]T r1 r2 . . . rn]
groff supports an extended syntax to specify repeating tab stops after the “T” mark. These values
are always taken as relative distances from the previous tab stop. This is the idiomatic way to
specify tab stops at equal intervals in groff .

The syntax summary above instructs groff to set tabs at positions n1, n2, . . . , nn, then at nn + r1,
nn + r2, . . . , nn + rn, then at nn + rn + r1, nn + rn + r2, . . . , nn + rn + rn, and so on.

New registers
GNU troff exposes more formatter state via many new read-only registers. Their names often correspond
to the requests that affect them.

\n[.br] Within a macro call, interpolate 1 if the macro is called with the “normal” control character
(“.” by default), and 0 otherwise. This facility allows the reliable modification of requests.
Using this register outside of a macro definition makes no sense.

.als bp*orig bp

.de bp

.tm before bp

.ie \\n[.br] .bp*orig

.el 'bp*orig

.tm after bp

..

\n[.C] Interpolate 1 if compatibility mode is in effect, 0 otherwise. See cp.

\n[.cdp] Interpolate depth of last glyph added to the environment. It is positive if the glyph extends
below the baseline.

\n[.ce] Interpolate number of input lines remaining to be centered.

\n[.cht] Interpolate height of last glyph added to the environment. It is positive if the glyph extends
above the baseline.

\n[.color] Interpolate 1 if colors are enabled, 0 otherwise.

\n[.cp] Within a “do” request, interpolate the saved value of compatibility mode (see \n[.C] above).

groff 1.23.0 2 July 2023 223

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

\n[.csk] Interpolate skew of last glyph added to the environment. The skew of a glyph is how far to
the right of the center of a glyph the center of an accent over that glyph should be placed.

\n[.ev] Interpolate name of current environment. This is a string-valued register.

\n[.fam] Interpolate name of default font family. This is a string-valued register.

\n[.fn] Interpolate resolved name of the selected font. This is a string-valued register.

\n[.fp] Interpolate next free font mounting position.

\n[.g] Interpolate 1. Test with “ if ” or ie to check whether GNU troff is the formatter.

\n[.height] Interpolate font height. See \H.

\n[.hla] Interpolate hyphenation language of the environment. This is a string-valued register.

\n[.hlc] Interpolate count of immediately preceding consecutive hyphenated lines in the environ-
ment.

\n[.hlm] Interpolate maximum number of consecutive hyphenated lines allowed in the environment.

\n[.hy] Interpolate hyphenation mode of the environment.

\n[.hym] Inteprolate hyphenation margin of the environment.

\n[.hys] Interpolate hyphenation space adjustment threshold of the environment.

\n[.in] Interpolate indentation amount applicable to the pending output line.

\n[.int] Interpolate 1 if the previous output line was interrupted (ended with \c), 0 otherwise.

\n[.kern] Interpolate 1 if pairwise kerning is enabled, 0 otherwise.

\n[.lg] Interpolate ligature mode.

\n[.linetabs] Interpolate 1 if line-tabs mode is enabled, 0 otherwise.

\n[.ll] Interpolate line length applicable to the pending output line.

\n[.lt] Interpolate title line length.

\n[.m] Interpolate name of the selected stroke color. This is a string-valued register.

\n[.M] Interpolate name of the selected fill color. This is a string-valued register.

\n[.ne] Interpolate amount of space demanded by the most recent ne request that caused a page lo-
cation trap to be sprung. See \n[.trunc].

\n[.nm] Interpolate 1 if output line numbering is enabled (even if temporarily suppressed), 0 other-
wise.

\n[.ns] Interpolate 1 if no-space mode is enabled, 0 otherwise.

\n[.O] Interpolate output suppression level. See \O.

\n[.P] Interpolate 1 if the current page is selected for output. See -o command-line option to
troff (1).

\n[.pe] Interpolate 1 during page ejection, 0 otherwise.

\n[.pn] Interpolate next page number (either that set by pn, or that of the current page plus 1).

\n[.ps] Interpolate type size in scaled points.

\n[.psr] Interpolate most recently requested type size in scaled points.

\n[.pvs] Interpolate post-vertical line spacing amount.

\n[.rj] Interpolate number of input lines remaining to be right-aligned.

\n[.slant] Interpolate font slant. See \S.

groff 1.23.0 2 July 2023 224

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

\n[.sr] Interpolate most recently requested type size in points as a decimal fraction. This is a string-
valued register.

\n[.ss]
\n[.sss] Interpolate values of minimal inter-word space and additional inter-sentence space, respec-

tively, in twelfths of the space width of the selected font.

\n[.sty] Interpolate selected abstract font style, if any. This is a string-valued register.

\n[.tabs] Interpolate representation of the tab stop settings in a form suitable for passage to the ta re-
quest.

\n[.trunc] Interpolate amount of vertical space truncated by the most recently sprung page location
trap, or, if the trap was sprung by an ne request, minus the amount of vertical motion pro-
duced by the ne request. In other words, at the point a trap is sprung, \n[.trunc] represents
the difference of what the vertical position would have been but for the trap, and what the
vertical position actually is. See \n[.ne].

\n[.U] Interpolate 1 if in unsafe mode, 0 otherwise. See -U command-line option to troff (1).

\n[.vpt] Interpolate 1 if vertical position traps are enabled, 0 otherwise.

\n[.warn] Interpolate warning mode. See section “Warnings” of troff (1).

\n[.x] Interpolate major version number of the running troff formatter. For example, if the version
number is 1.23.0, then \n[.x] contains 1.

\n[.y] Interpolate minor version number of the running troff formatter. For example, if the version
number is 1.23.0, then \n[.y] contains 23.

\n[.Y] Interpolate revision number of the running troff formatter. For example, if the version num-
ber is 1.23.0, then \n[.Y] contains 0.

\n[.zoom] Interpolate magnification of font, in thousandths, or 0 if magnification unused. See fzoom.

The following (writable) registers are set by the psbb request.

\n[llx]
\n[lly]
\n[urx]
\n[ury] Interpolate the (upper, lower, left, right) bounding box values (in PostScript units) of the most re-

cently processed PostScript image.

The following (writable) registers are set by the \w escape sequence.

\n[rst]
\n[rsb] Like \n[st] and \n[sb], but taking account of the heights and depths of glyphs. In other words,

these registers store the highest and lowest vertical positions attained by the argument formatted
by the \w escape sequence, doing what AT&T troff documented \n[st] and \n[sb] as doing.

\n[ssc] The amount of horizontal space (possibly negative) that should be added to the last glyph before a
subscript.

\n[skw] How far to right of the center of the last glyph in the \w argument, the center of an accent from a
roman font should be placed over that glyph.

Other writable registers are as follows. Those relating to date and time are initialized using localtime(3) at
formatter startup.

\n[c.] Interpolate input line number. \n[.c] is a read-only alias of this register.

\n[hours] Interpolate number of hours elapsed since midnight.

\n[hp] Interpolate horizontal position relative to that at the start of the input line.

groff 1.23.0 2 July 2023 225

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

\n[lsn]
\n[lss] Interpolate count of leading spaces on input line and amount of corresponding horizontal

motion, respectively.

\n[minutes] Interpolate number of minutes elapsed in the hour.

\n[seconds] Interpolate number of seconds elapsed in the minute.

\n[systat] Interpolate return value of system(3) function executed by most recent sy request.

\n[slimit] Interpolates maximum quantity of objects on troff ’s internal input stack (default: 1000). If
non-positive, there is no limit: recursion can continue until program memory is exhausted.

\n[year] Interpolate Gregorian year. AT&T troff ’s \[yr] interpolates the Gregorian year minus 1900.

Miscellaneous
GNU troff predefines one string, .T, containing the argument given to the -T command-line option, namely
the output device (for example, pdf or utf8). The (read-only) register .T interpolates 1 if GNU troff is run
with the -T command-line option, and 0 otherwise.

A font not listed in the output device’s DESC file’s fonts directive is automatically mounted at the next
available font position when it is selected. If you mount a font explicitly with the fp request, you should do
so on the first unused position, which can be found in the .fp register.

Unparameterized string interpolation does not conceal the arguments to a macro being interpreted. Thus, in
a macro definition, the call of another macro with the existing argument list,

.xx \\$@
is more efficiently done with

*[xx]\\
(that is, with string interpolation). The trailing backslashes prevent the final newline in the macro definition
from being interpolated, potentially putting an unwanted blank line on the output. See section “Punning
Names” in groff (7).

If a font description file contains pairwise kerning information, glyphs from that font are kerned. Kerning
between two glyphs can be inhibited by placing a dummy character \& between them.

GNU troff keeps track of the nesting depth of escape sequence interpolations and other uses of delimiters,
as in the tl request and the output comparison operator (that is, input like 'foo'bar' as a conditional expres-
sion), so the only characters you need to avoid using as delimiters are those that appear in the arguments
you input, not any that result from interpolation. Typically, ' works fine. Use visible characters as delim-
iters in GNU troff , not “ASCII” controls like BEL (Control+G). The implementation of \$@ ensures that
the double quotes surrounding an argument appear at an interpolation depth different from that of the argu-
ments themselves. Similarly, in bracket-form escape sequences like \f[ZCMI], a right bracket] does not
end the sequence unless it occurs at the same interpolation depth as the opening [, so input like

\f[*[my-family]*[my-style]]
works as desired. In compatibility mode, no attention is paid to the interpolation depth.

In GNU troff , the tr request can map characters to the unbreakable space escape sequence \~ as a special
case (tr normally operates only on characters). This feature replaces the odd-parity tr mapping trick used
in AT&T troff documents, where a character, often ~, was “sacrificed” by mapping it to “nothing”, drafting
it into use as an unadjustable, unbreakable space. (This feature was gratuitous even in early AT&T troff,
which supported the \space escape sequence by 1976.) Often, it makes more sense to use GNU troff ’s \~
escape sequence instead, which has been adopted by every other active troff implementation except that of
Illumos, as well as by the non-troff mandoc. Translation of a character to \~ is unnecessary.

GNU troff permits tabs and spaces after the first dot on a control line that ends a macro definition.
.if t \{\
. de bar
. nop Hello, I'm 'bar'.
. .
.\}

groff 1.23.0 2 July 2023 226

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

Formatter output
The page description language output by GNU troff is modeled after that used by AT&T troff once the lat-
ter adopted a device-independent approach in the early 1980s. Only the differences are documented here.
For a fuller discussion, see groff_out(5).

Glyph and font names can be of arbitrary length; postprocessors should not assume that they are at most
two characters. A glyph to be formatted is always drawn from the current font; in contrast to AT&T device-
independent troff , drivers need not search special fonts to find a glyph.

Units
The argument to the s command is in scaled points (units of points/n, where n is the argument to the
sizescale command in the DESC file). The argument to the “x H” command is also in scaled points.

Simple commands
If the tcommand directive is present in the output device’s DESC file, GNU troff employs the following
two commands.

t xyz. . . Typeset word xyz; that is, set a sequence of ordinary glyphs named x, y, z, . . . , terminated by a
space or newline; an optional second integer argument is ignored (this allows the formatter to gen-
erate an even number of arguments). Each glyph is set at the current drawing position, and the po-
sition is then advanced horizontally by the glyph’s width. A glyph’s width is read from its metrics
in the font description file, scaled to the current type size, and rounded to a multiple of the hori-
zontal motion quantum. Use the C command to emplace glyphs of special characters.

u n xyz. . .
Typeset word xyz with track kerning. As t, but after placing each glyph, the drawing position is
further advanced horizontally by n basic units.

New commands implement color support.

mc cyan magenta yellow
md
mg gray
mk cyan magenta yellow black
mr red green blue

Set the components of the stroke color with respect to various color spaces. md resets the stroke
color to the default value. The arguments are integers in the range 0 to 65535.

A new device control subcommand is available.

x u n If n is 1, start underlining of spaces. If n is 0, stop underlining of spaces. This facility is needed
for the cu request in nroff mode and is ignored otherwise.

Extended drawing commands
GNU pic does not produce troff escape sequences employing these extensions if its -n option is given.

Df n Set the shade of gray used to fill geometric objects to n, which must be an integer. 0 corresponds
to white and 1000 to black. A grayscale ramp spans the two. A value outside this range uses the
stroke color as the fill color. The fill color is opaque. Normally the default is black, but some dri-
vers may provide a way of changing this. Df is obsolete since 2002, superseded by DFg below.

The corresponding \D'f' escape sequence should not be used: its argument is rounded to an integer
multiple of the horizontal motion quantum, which can limit the precision of n.

DC d Draw a filled circle of diameter d with its leftmost point at the drawing position.

DE h v Draw a filled ellipse, of horizontal axis h and vertical axis v, with its leftmost point at the drawing
position.

Dp dx1 dy1 . . . dxn dyn

Draw a polygon with, for i = 1, . . . , n + 1, its ith vertex at the drawing position +
i−1

j=1
Σ(dx j , dy j).

groff output drivers automatically close polygons, drawing a line from (dxn, dyn) back to

groff 1.23.0 2 July 2023 227

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

(dx1, dy1). The drawing position is left at the last specified vertex, but this may change in a future
version of GNU troff . Heirloom Doctools troff , like DWB troff , by default does not close the
polygon. In its groff compatibility mode, Heirloom closes the polygon but leaves the drawing po-
sition unchanged—that is, at the polygon’s initial drawing position.

At the moment, GNU pic uses this command only to generate triangles and rectangles.

DP dx1 dy1 . . . dxn dyn

As Dp, but draw a filled rather than a stroked polygon.

Dt n Set the line thickness to n basic units. AT&T troff output drivers use a thickness proportional to
the type size; this is the GNU troff default. A negative n requests this explicitly. An n of zero se-
lects the smallest available line thickness.

A difficulty arises in how the drawing position should be changed after the execution of these commands.
This has little importance to most users, since the output of GNU grn and pic does not depend on it. Given
a drawing command of the form Dz x1 y1 . . . xn yn, where z is not c or e, AT&T troff treats each xi as a
horizontal motion, each yi as a vertical one, and therefore assumes that the width of the drawn object is
n

i=1
Σ xi , and its height is

n

i=1
Σ yi . (Verify its assumption about height by examining the st and sb registers after

using such a drawing command in a \w escape sequence). For the sake of compatibility, GNU troff also
follows this rule, even though it frustrates extensions to the D command that set drawing parameters rather
than rendering objects, producing ugly results in the case of Dt and Df, or otherwise don’t parameterize ob-
jects as a series of vertices, as with GNU troff ’s filled ellipse, DE. Thus after executing a D command of

the form Dz x1 y1 . . . xn yn, the drawing position should be increased by (
n

i=1
Σ xi ,

n

i=1
Σ yi). In a future release,

GNU troff and its output drivers may abandon the application of this assumption to drawing commands not
explicitly specified in the AT&T “Troff User’s Manual”.

Fill color selection is implemented with another set of extensions.

DFc cyan magenta yellow
DFd
DFg gray
DFk cyan magenta yellow black
DFr red green blue

Set the components of the fill color as described under the \M escape sequence above. DFd re-
stores the device’s default fill color. The drawing position is not updated, in contrast to Df.

Device control syntax extension
GNU troff introduces a line continuation convention, permitting the argument to the x X command to con-
tain newlines. A newline in the input is transformed to the sequence “newline+”. When interpreting an x X
command, a postprocessor should therefore be prepared for a plus sign after a newline; if it occurs, preserve
the newline, discard the plus sign, and continue to collect the input into the argument of the x X command.
A newline not followed by a plus sign terminates the x X command. An application of this feature is the
embedding of PostScript or PDF language command streams into troff output.

GNU troff guarantees that the first three output commands it emits are as follows.

x T device
x res n h v
x init

Debugging
In addition to AT&T troff ’s debugging features, GNU troff emits more error diagnostics when syntactical
or semantic nonsense is encountered and supports several warning categories; the output of these can be se-
lected with warn. Also see the -E, -w, and -W options of troff (1). Backtraces can be automatically pro-
duced when errors or warnings occur (the -b option of troff (1)) or generated on demand (backtrace).

groff also adds more flexible diagnostic output requests (tmc and tm1). More aspects of formatter state
can be examined with requests that write lists of defined registers (pnr), environments (pev), and page

groff 1.23.0 2 July 2023 228

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

location traps (ptr) to the standard error stream.

Implementation differences
GNU troff ’s features sometimes cause incompatibilities with documents written assuming old implementa-
tions of troff . Some GNU extensions to troff are supported by other implementations.

When adjusting to both margins, AT&T troff at first adjusts spaces starting from the right; GNU troff be-
gins from the left. Both implementations adjust spaces from opposite ends on alternating output lines to
prevent “rivers” in the text.

GNU troff does not always hyphenate words as AT&T troff does. The AT&T implementation uses a set of
hard-coded rules specific to U.S. English, while GNU troff uses language-specific hyphenation pattern files
derived from TEX. In some versions of troff there was limited space to store hyphenation exceptions (argu-
ments to the hw request); GNU troff has no such restriction.

Long names may be GNU troff ’s most obvious innovation. AT&T troff interprets “.dsabcd” as defining a
string “ab” with contents “cd”. Normally, GNU troff interprets this as a call of a macro named “dsabcd”.
AT&T troff also interprets *[and \n[as an interpolation of a string or register, respectively, called “[”. In
GNU troff , however, the “[” is normally interpreted as beginning the enclosure of a long identifier. In com-
patibility mode, GNU troff interprets names in the traditional way, which means that they are limited to one
or two characters. See the -C option in troff (1) and, above, the .C and .cp registers, and cp and “do” re-
quests, for more on compatibility mode.

The register \n[.cp] is specialized and may require a statement of rationale. When writing macro packages
or documents that use GNU troff features and which may be mixed with other packages or documents that
do not—common scenarios include serial processing of man pages or use of the “so” or mso requests—you
may desire correct operation regardless of compatibility mode enablement in the surrounding context. It
may occur to you to save the existing value of \n(.C into a register, say, _C, at the beginning of your file,
turn compatibility mode off with “.cp 0”, then restore it from that register at the end with “.cp \n(_C”. At
the same time, a modular design of a document or macro package may lead you to multiple layers of inclu-
sion. You cannot use the same register name everywhere lest you “clobber” the value from a preceding or
enclosing context. The two-character register name space of AT&T troff is confining and mnemonically
challenging; you may wish to use GNU troff ’s more capacious name space. However, attempting “.nr
_my_saved_C \n(.C” will not work in compatibility mode; the register name is too long. “This is exactly
what .do is for,” you think, “.do nr _my_saved_C \n(.C”. The foregoing will always save zero to your reg-
ister, because “do” turns compatibility mode off while it interprets its argument list. What you need is:

.do nr _my_saved_C \n[.cp]

.cp 0
at the beginning of your file, followed by

.cp \n[_my_saved_C]

.do rr _my_saved_C
at the end. As in the C language, we all have to share one big name space, so choose a register name that is
unlikely to collide with other uses.

The existence of the .T string is a common feature of post-CSTR #54 troff s—DWB 3.3, Solaris, Heirloom
Doctools, and Plan 9 troff all support it—but valid values are specific to each implementation. The behav-
ior of the .T register in GNU troff differs from AT&T troff , which interpolated 1 only if nroff was the for-
matter and was called with -T.

The lf request sets the number of the current input line in AT&T troff , and the next in GNU troff .

AT&T troff had only environments named “0”, “1”, and “2”. In GNU troff , any number of environments
may exist, using any valid identifiers for their names.

GNU troff normally tracks the interpolation depth of escape sequence parameters and other delimited struc-
tures, but not in compatibility mode. See section “Miscellaneous” above.

In compatibility mode, the escape sequences \f, \H, \m, \M, \R, \s, and \S are transparent at the beginning
of an input line for the purpose of recognizing a control character, because they modify formatter state (\R)
or properties of the environment (the rest) and therefore do not create output nodes. For example, this code

groff 1.23.0 2 July 2023 229

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

produces bold output in both cases, but the text differs,
.de xx '
Hello!
..
\fB.xx\fP

formatting “.xx” normally and “Hello!” in compatibility mode.

GNU troff request names unrecognized by other troff implementations will likely be ignored; escape se-
quences that are GNU troff extensions are liable to format their function selector character. For example,
the adjustable, non-breaking space escape sequence \~ is also supported by Heirloom Doctools troff
050915 (September 2005), mandoc 1.9.5 (2009-09-21), neatroff (commit 1c6ab0f6e, 2016-09-13), and
Plan 9 from User Space troff (commit 93f8143600, 2022-08-12), but not by Solaris/Illumos troff s, which
will render it as ~.

GNU troff does not allow the use of the escape sequences \|, \^, \&, \{, \}, \space, \', \`, \-, _, \!, \%, or \c
in identifiers; AT&T troff does. The \A escape sequence (see subsection “Escape sequences” above) may
be helpful in avoiding their use.

Normally, the syntax form \sn accepts only a single character (a digit) for n, consistently with other forms
that originated in AT&T troff , like *, \$, \f, \g, \k, \n, and \z. In compatibility mode only, a non-zero n
must be in the range 4–39. Legacy documents relying upon this quirk of parsing should be migrated to an-
other \s form. [Background: The Graphic Systems C/A/T phototypesetter (the original device target for
AT&T troff) supported only a few discrete type sizes in the range 6–36 points, so Ossanna contrived a spe-
cial case in the parser to do what the user must have meant. Kernighan warned of this in the 1992 revision
of CSTR #54 (§2.3), and more recently, McIlroy referred to it as a “living fossil”.]

Fractional type sizes cause one noteworthy incompatibility. In AT&T troff the ps request ignores scaling
units and thus “.ps 10u” sets the type size to 10 points, whereas in GNU troff it sets the type size to
10 scaled points, which may be a much smaller measurement. See subsection “Fractional type sizes and
new scaling units” above.

The ab request differs from AT&T troff : GNU troff writes no message to the standard error stream if no ar-
guments are given, and it exits with a failure status instead of a successful one.

The bp request differs from AT&T troff : GNU troff does not accept a scaling unit on the argument, a page
number; the former (somewhat uselessly) does.

In AT&T troff the pm request reports macro, string, and diversion sizes in units of 128-byte blocks, and an
argument reduces the report to a sum of the above in the same units. GNU troff ignores any arguments and
reports the sizes in bytes.

Unlike AT&T troff , GNU troff does not ignore the ss request if the output is a terminal device; instead, the
values of minimum inter-word and additional inter-sentence space are each rounded down to the nearest
multiple of 12.

In GNU troff there is a fundamental difference between (unformatted) characters and (formatted) glyphs.
Everything that affects how a glyph is output is stored with the glyph node; once a glyph node has been
constructed, it is unaffected by any subsequent requests that are executed, including bd, cs, tkf, tr, or fp re-
quests. Normally, glyphs are constructed from characters immediately before the glyph is added to an out-
put line. Macros, diversions, and strings are all, in fact, the same type of object; they contain a sequence of
intermixed character and glyph nodes. Special characters transform from one to the other: before being
added to the output, they behave as characters; afterward, they are glyphs. A glyph node does not behave
like a character node when it is processed by a macro: it does not inherit any of the special properties that
the character from which it was constructed might have had. For example, the input

.di x
\\\\
.br
.di
.x

produces “\\” in GNU troff . Each pair of backslashes becomes one backslash glyph; the resulting

groff 1.23.0 2 July 2023 230

groff_diff (7) Miscellaneous Information Manual groff_diff (7)

backslashes are thus not interpreted as escape characters when they are reread as the diversion is output.
AT&T troff would interpret them as escape characters when rereading them and end up printing one “\”.

One way to format a backslash in most documents is with the \e escape sequence; this formats the glyph of
the current escape character, regardless of whether it is used in a diversion; it also works in both GNU troff
and AT&T troff . (Naturally, if you’ve changed the escape character, you need to prefix the “e” with what-
ever it is—and you’ll likely get something other than a backslash in the output.)

The other correct way, appropriate in contexts independent of the backslash’s common use as a roff escape
character—perhaps in discussion of character sets or other programming languages—is the character es-
cape \(rs or \[rs], for “reverse solidus”, from its name in the ECMA-6 (ISO/IEC 646) standard. [This es-
cape sequence is not portable to AT&T troff , but is to its lineal descendant, Heirloom Doctools troff , as of
its 060716 release (July 2006).]

To store an escape sequence in a diversion that is interpreted when the diversion is reread, either use the tra-
ditional \! transparent output facility, or, if this is unsuitable, the new \? escape sequence. See subsection
“Escape sequences” above and sections “Diversions” and “gtroff Internals” in Groff: The GNU Implementa-
tion of troff , the groff Texinfo manual.

In the somewhat pathological case where a diversion exists containing a partially collected line and a par-
tially collected line at the top-level diversion has never existed, AT&T troff will output the partially col-
lected line at the end of input; GNU troff will not.

Formatter output incompatibilities
Its extensions notwithstanding, the groff intermediate output format has some incompatibilities with that of
AT&T troff , but better compatibility is sought; problem reports and patches are welcome. The following
incompatibilities are known.

• The drawing position after rendering polygons is inconsistent with AT&T troff practice. Other imple-
mentations have diverged on this point as well.

• The output cannot be easily rescaled to other devices as AT&T troff ’s could.

Authors
This document was written by James Clark 〈jjc@jclark.com〉, Werner Lemberg 〈wl@gnu.org〉, Bernd
Warken 〈groff-bernd.warken-72@web.de〉, and G. Branden Robinson 〈g.branden.robinson@gmail.com〉.

See also
Groff: The GNU Implementation of troff , by Trent A. Fisher and Werner Lemberg, is the primary groff
manual. You can browse it interactively with “info groff”.

“Troff User’s Manual” by Joseph F. Ossanna, 1976 (revised by Brian W. Kernighan, 1992), AT&T Bell
Laboratories Computing Science Technical Report No. 54, widely called simply “CSTR #54”, documents
the language, device and font description file formats, and output format referred to collectively in groff
documentation as AT&T troff .

“A Typesetter-independent TROFF” by Brian W. Kernighan, 1982, AT&T Bell Laboratories Computing
Science Technical Report No. 97, provides additional insights into the device and font description file for-
mats and output format.

groff (1), groff (7), roff (7)

groff 1.23.0 2 July 2023 231

groff_hdtbl(7) Miscellaneous Information Manual groff_hdtbl(7)

Name
groff_hdtbl - Heidelberger table macros for GNU roff

Description
The hdtbl macros consist of four base and three optional macros, controlled by about twenty arguments.
The syntax is simple and similar to the HTML table model and nearly as flexible: you can write sequences
of tokens (macro calls with their arguments and content data), separated by blanks and beginning with a
macro call, into the same line to get compact and cleanly arrranged input. An advantage of hdtbl is that the
tables are constructed without calling a preprocessor; this means that groff (7)’s full macro capabilities are
available. On the other hand, table processing with hdtbl is much slower than using the tbl(1) preprocessor.
A further advantage is that the HTML-like syntax of hdtbl will be easily converted to HTML; this is not
implemented yet.

Usage
In this and the next section, we present examples to help users understand the basic workflow of hdtbl.
First of all, you must load the hdtbl.tmac file. As with nearly all other groff macro packages, there are two
possibilities to do so: Either add the line

.mso hdtbl.tmac

to your roff file before using any macros of the hdtbl package, or add the option

-m hdtbl

to the command line of groff (before the document file which contains hdtbl macros). Then you can in-
clude on or more tables in your document, where each one must be started and ended with the .TBL and
.ETB macros, respectively.

In this man page, we approximate the result of each example as terminal output to be as generic as possible
since hdtbl currently only supports the ps and pdf output drivers.

The simplest well-formed table consists of just single calls to the four base table macros in the right order.
Here we construct a table with only one cell.

.TBL

.TR

.TD
contents of the table cell
.ETB

A terminal representation is

+--+
| contents-of-the-table-cell |
+--+

Equivalent to the above is the following notation.

.TBL .TR .TD "contents of the table cell" .ETB

By default, the formatted table is inserted into the surrounding text at the place of its definition. If the verti-
cal space isn’t sufficient, it is placed at the top of the next page. Tables can also be stored for later inser-
tion.

Using ‘row-number*column-number’ as the data for the table cells, a table with two rows and two
columns can be written as

.TBL cols=2

. TR .TD 1*1 .TD 1*2

. TR .TD 2*1 .TD 2*2

.ETB

A terminal representation is

groff 1.23.0 2 July 2023 232

groff_hdtbl(7) Miscellaneous Information Manual groff_hdtbl(7)

+--------------------------+---------------------------+
| 1*1 | 1*2 |
+--------------------------+---------------------------+
| 2*1 | 2*2 |
+--------------------------+---------------------------+

Here we see a difference from HTML tables: The number of columns must be explicitly specified using the
‘cols=m’ argument (or indirectly via the ‘width’ argument, see below).

The contents of a table cell is arbitrary; for example, it can be another table, without restriction to the nest-
ing depth. A given table layout can be either constructed with suitably nested tables or with proper argu-
ments to .TD and .TH, controlling column and row spanning. Note, however, that this table

.TBL

. TR

. TD

. nop 1*1 1*2

. TR

. TD

. TBL cols=2 border=

. TR

. TD

. nop 2*1

. TD

. nop 2*2

. ETB

.ETB

and this table

.TBL cols=2

. TR

. TD colspan=2

. nop 1*1 1*2

. TR

. TD

. nop 2*1

. TD

. nop 2*2

.ETB

are similar but not identical (the use of .nop is purely cosmetic to get proper indentation).

The first table looks like

+--+
| 1*1 1*2 |
+--+
| |
| 2*1 2*2 |
| |
+--+

and the second one like

+--+
| 1*1 1*2 |
+---------------------------+--------------------------+
| 2*1 | 2*2 |
+---------------------------+--------------------------+

groff 1.23.0 2 July 2023 233

groff_hdtbl(7) Miscellaneous Information Manual groff_hdtbl(7)

Here is the latter table in a more compact form.

.TBL cols=2 .TR ".TD colspan=2" 1*1 1*2

. TR .TD 2*1 .TD 2*2 .ETB

If a macro has one or more arguments (see below), and it is not starting a line, everything belonging to this
macro including the macro itself must be enclosed in double quotes.

Macros and arguments
The order of macro calls and other tokens follows the HTML model. In the following list, valid predeces-
sors and successors of all hdtbl macros are given, together with the possible arguments.

Macro arguments are separated by blanks. The order of arguments is arbitrary; they are of the form

key=value

or

key='value1 [value2 [. . .]]'

with the only exception of the optional argument of the macro .ETB, which is the string ‘hold’. Another
possible form is

"key=value1 [value2 [. . .]]"

However, this is limited to the case where the macro is the first one in the line and not already enclosed in
double quotes.

Argument values specified below as c are colors predefined by groff or colors defined by the user with the
.defcolor request. Argument values d are decimal numbers with or without decimal point. Argument
values m are natural numbers. Argument values n are numerical values with the usual groff scaling indica-
tors. Some of the arguments are specific to one or two macros, but most of them can be specified with
.TBL, .TR, .TD, and .TH. These common arguments are explained in the next subsection.

Most of the argument default values can be changed by the user by setting corresponding default registers
or strings, as listed below.

.TBL [args]
Begin a new table.

predecessor: .TD, .TH, .ETB, cell contents
successor: .CPTN, .TR
arguments:

border=[n]
Thickness of the surrounding box border. ‘border=’ (no value) means neither
a surrounding box border nor any horizontal or vertical separator lines between
the table rows and cells. ‘border=0’ suppresses the surrounding box border,
but still allows separator lines between cells and rows.
Default: ‘border=.1n’ (register ‘t*b’).

bc=c Border color.
Default: ‘bc=red4’ (string ‘t*bc’).

cols=m
Number of table columns. This argument is necessary if more than one column
is in the table and no ‘width’ arguments are present.
Default: ‘cols=1’ (register ‘t*cols’).

cpd=n Cell padding, i.e., the extra space between the cell space border and the cell con-
tents.
Default: ‘cpd=.5n’ (register ‘t*cpd’).

csp=n Cell spacing, i.e., the extra space between the table border or vertical or horizon-
tal lines between cells and the cellspace.
Default: ‘csp=.5n’ (register ‘t*csp’).

groff 1.23.0 2 July 2023 234

groff_hdtbl(7) Miscellaneous Information Manual groff_hdtbl(7)

tal=l |c |r
Horizontal alignment of the table, if it is smaller than the line width. ‘tal=l’:
left alignment. ‘tal=c’: centered alignment. ‘tal=r’: right alignment.
Default: ‘tal=l’ (register ‘t*tal’).

width='w1 [w2 [. . .]]'
Widths of table cells. w1, w2, . . . are either numbers of type n or natural num-
bers with the pseudo-scaling indicator ‘%’, with the meaning “percent of the ac-
tual line length (or column length for inner tables, respectively)”. If there are
less width values than table columns, the last width value is used for the remain-
ing cells. The argument

width='1.5i 10%'

for example indicates that the first column is 1.5 inches wide; the remaining
columns take 1/10 of the column length each.
Default: The table width equals the outer line length or column length; the
columns have equal widths.

height=n
Height of the table. If the table with its contents is lower than n, the last row is
stretched to this value.

.CPTN [args]
Text of caption.

The (optionally numbered) table caption. .CPTN is optional.

predecessor: .TBL
successor: .TR
arguments:

val=t |b
Vertical alignment of the table caption. ‘val=t’: The caption is placed above
the table. ‘val=b’: The caption is placed below the table.
Default: ‘val=t’ (string ‘t*cptn’).

.TR [args]
Begin a new table row.

predecessor: .TBL, .CPTN, .TD, .TH, .ETB, cell contents
successor: .TD, .TH
arguments:

height=n
The height of the row. If a cell in the row is higher than n, this value is ignored;
otherwise the row height is stretched to n.

.TD [args [cell contents]]
Begin a table data cell.

.TH [args [cell contents]]
Begin a table header cell.

Arguments and cell contents can be mixed. The macro .TH is not really necessary and differs
from .TD only in three default settings, similar to the <TH> and <TD> HTML tags: The contents
of .TH is horizontally and vertically centered and typeset in boldface.

predecessor: .TR, .TD, .TH, .ETB, cell contents
successor: .TD, .TH, .TR, .ETB, cell contents
arguments:

colspan=m
The width of this cell is the sum of the widths of the m cells above and below
this row.

groff 1.23.0 2 July 2023 235

groff_hdtbl(7) Miscellaneous Information Manual groff_hdtbl(7)

rowspan=m
The height of this cell is the sum of the heights of the m cells left and right of
this column.

Remark: Overlapping of column and row spanning, as in the following table
fragment (the overlapping happens in the second cell in the second row), is in-
valid and causes incorrect results.

.TR .TD 1*1 ".TD 1*2 rowspan=2" .TD 1*3

.TR ".TD 2*1 colspan=2" .TD 2*3

A working example for headers and cells with colspan is

.TBL cols=3

. TR ".TH colspan=2" header1+2 .TH header3

. TR .TD 1*1 .TD 1*2 .TD 1*3

. TR .TD 2*1 ".TD colspan=2" 2*2+3

.ETB

This looks like

+------------------------------+---------------+
| header1+2 | header3 |
+--------------+---------------+---------------+
| 1*1 | 1*2 | 1*3 |
+--------------+---------------+---------------+
| 2*1 | 2*2+3 |
+--------------+-------------------------------+

A working example with rowspan is

.TBL cols=3

. TR

. TD 1*1

. TD rowspan=2 1+2*2

. TD 1*3

.

. TR

. TD 2*1

. TD 2*3

.ETB

which looks like

+--------------+---------------+---------------+
| 1*1 | 1+2*2 | 1*3 |
+--------------+ +---------------+
| 2*1 | | 2*3 |
+--------------+---------------+---------------+

.ETB [hold]
End of the table.

This macro finishes a table. It causes one of the following actions.

• If the argument ‘hold’ is given, the table is held until it is freed by calling the macro
.t*free, which in turn prints the table immediately, either at the current position or at the
top of the next page if its height is larger than the remaining space on the page.

• Otherwise, if the table is higher than the remaining space on the page, it is printed at the top of
the next page.

groff 1.23.0 2 July 2023 236

groff_hdtbl(7) Miscellaneous Information Manual groff_hdtbl(7)

• If neither of the two above constraints hold, the table is printed immediately at the place of its
definition.

predecessor: .TD, .TH, .ETB, cell contents
successor: .TBL, .TR, .TD, .TH, .ETB, cell contents
arguments:

hold Prevent the table from being printed until it is freed by calling the macro
.t*free. This argument is ignored for inner (nested) tables.

.t*free [n]
Free the next held table or n held tables. Call this utility macro to print tables which are held by
using the ‘hold’ argument of the .ETB macro.

Arguments common to .TBL, .TR, .TD, and .TH
The arguments described in this section can be specified with the .TBL and .TR macros, but they are even-
tually passed on to the table cells. If omitted, the defaults take place, which the user can change by setting
the corresponding default registers or strings, as documented below. Setting an argument with the .TBL
macro has the same effect as setting it for all rows in the table. Setting an argument with a .TR macro has
the same effect as setting it for all the .TH or .TD macro in this row.

bgc=[c]
The background color of the table cells. This includes the area specified with the ‘csp’ argument.
The argument ‘bgc=’ (no value) suppresses a background color; this makes the background trans-
parent.
Default: ‘bgc=bisque’ (string ‘t*bgc’).

fgc=c The foreground color of the cell contents.
Default: ‘fgc=red4’ (string ‘t*fgc’).

ff=name
The font family for the table. name is a groff font family identifier, such as A for Avant Garde or
HN for Helvetica Narrow.
Default: The font family found before the table (string ‘t*ff’).

fst=style
The font style for the table. One of R, B, I, or BI for roman, bold, italic, or bold italic, respec-
tively. As with roff ’s .ft request, the ‘fst’ argument can be used to specify the font family and
font style together, for example ‘fst=HNBI’ instead of ‘ff=HN’ and ‘fst=BI’.
Default: The font style in use right before the table (string ‘t*fst’).

fsz='d1 [d2]'
A decimal or fractional factor d1, by which the point size for the table is changed, and d2, by
which the vertical line spacing is changed. If d2 is omitted, value d1 is taken for both.
Default: ‘fsz='1.0 1.0'’ (string ‘t*fsz’).

hal=l |c |b |r
Horizontal alignment of the cell contents in the table. ‘hal=l’: left alignment. ‘hal=c’: cen-
tered alignment. ‘hal=b’: both (left and right) alignment. ‘hal=r’: right alignment.
Default: ‘hal=b’ (string ‘t*hal’).

val=t |m |b
Vertical alignment of the cell contents in the table for cells lower than the current row. ‘val=t’:
alignment below the top of the cell. ‘val=m’: alignment in the middle of the cell. ‘val=b’:
alignment above the cell bottom.
Default: ‘val=t’ (string ‘t*val’).

hl=[s |d]
Horizontal line between the rows. If specified with .TD or .TH this is a separator line to the cell
below. ‘hl=’ (no value): no separator line. ‘hl=s’: a single separator line between the rows.
‘hl=d’: a double separator line.

The thickness of the separator lines is the half of the border thickness, but at least 0.1 inches. The
distance between the double lines is equal to the line thickness.

groff 1.23.0 2 July 2023 237

groff_hdtbl(7) Miscellaneous Information Manual groff_hdtbl(7)

Remark: Together with ‘border=0’ for proper formatting the value of ‘csp’ must be at least
.05 inches for single separator lines and .15 inches for double separator lines.
Default: ‘hl=s’ (string ‘t*hl’).

vl=[s |d]
Vertical separator line between the cells. If specified with .TD or .TH this is a separator line to
the cell on the right. ‘vl=s’: a single separator line between the cells. ‘vl=d’: a double separa-
tor line. ‘vl=’ (no value): no vertical cell separator lines. For more information see the documen-
tation of the ‘hl’ argument above.
Default: ‘vl=s’ (string ‘t*vl’).

hdtbl customization
Before creating the first table, you should configure default values to minimize the markup needed in each
table. The following example sets up defaults suitable for typical papers:

.ds t*bgc white\" background color

.ds t*fgc black\" foreground color

.ds t*bc black\" border color

.nr t*cpd 0.1n\" cell padding

The file /usr/share/doc/groff-1.23.0/examples/hdtbl/common.roff provides another example setup in the
“minimal Page setup” section.

A table which does not fit on a partially filled page is printed automatically on the top of the next page if
you append the little utility macro t*hm to the page header macro of your document’s main macro pack-
age. For example, say

.am pg@top

. t*hm

..

if you use the ms macro package.

The macro t*EM checks for held or kept tables, and for missing ETB macros (table not closed). You can
call this macro by appending it the to end-of-input macro of the main, or “full-service”, macro package
your document uses. For example, try

.am pg@end-text

. t*EM

..
if you use the ms package.

Bugs and suggestions
Please send your comments to the groff mailing list 〈groff@gnu.org〉 or directly to the author.

Authors
The hdtbl macro package was written by Joachim Walsdorff 〈Joachim.Walsdorff@urz.uni-heidelberg.de〉.

See also
groff (1)

provides an overview of GNU roff and details how to invoke groff at the command line.

groff (7)
summarizes the roff language and GNU extensions to it.

tbl(1) describes the traditional roff preprocessor for tables.

groff 1.23.0 2 July 2023 238

groff_man(7) Miscellaneous Information Manual groff_man(7)

Name
groff_man - compose manual pages with GNU roff

Synopsis
groff -man [option . . .] [file . . .]
groff -m man [option . . .] [file . . .]

Description
The GNU implementation of the man macro package is part of the groff document formatting system. It is
used to produce manual pages (“man pages”) like the one you are reading.

This document presents the macros thematically; for those needing only a quick reference, the following ta-
ble lists them alphabetically, with cross references to appropriate subsections below.

Man page authors and maintainers who are not already experienced groff users should consult
groff_man_style(7), an expanded version of this document, for additional explanations and advice. It cov-
ers only those concepts required for man page document maintenance, and not the full breadth of the groff
typesetting system.

Macro Meaning Subsection

.B Bold Font style macros

.BI Bold, italic alternating Font style macros

.BR Bold, roman alternating Font style macros

.EE Example end Document structure macros

.EX Example begin Document structure macros

.I Italic Font style macros

.IB Italic, bold alternating Font style macros

.IP Indented paragraph Paragraphing macros

.IR Italic, roman alternating Font style macros

.LP Begin paragraph Paragraphing macros

.ME Mail-to end Hyperlink macros

.MR Man page cross reference Hyperlink macros

.MT Mail-to start Hyperlink macros

.P Begin paragraph Paragraphing macros

.PP Begin paragraph Paragraphing macros

.RB Roman, bold alternating Font style macros

.RE Relative inset end Document structure macros

.RI Roman, italic alternating Font style macros

.RS Relative inset start Document structure macros

.SB Small bold Font style macros

.SH Section heading Document structure macros

.SM Small Font style macros

.SS Subsection heading Document structure macros

.SY Synopsis start Command synopsis macros

.TH Title heading Document structure macros

.TP Tagged paragraph Paragraphing macros

.TQ Supplemental paragraph tag Paragraphing macros

.UE URI end Hyperlink macros

.UR URI start Hyperlink macros

.YS Synopsis end Command synopsis macros

We discuss other macros (.AT, .DT, .HP, .OP, .PD, and .UC) in subsection “Deprecated features” below.

Throughout Unix documentation, a manual entry is referred to simply as a “man page”, regardless of its
length, without gendered implication, and irrespective of the macro package selected for its composition.

groff 1.23.0 18 December 2023 239

groff_man(7) Miscellaneous Information Manual groff_man(7)

Macro reference preliminaries
A tagged paragraph describes each macro. We present coupled pairs together, as with .EX and .EE.

An empty macro argument can be specified with a pair of double-quotes (""), but the man package is de-
signed such that this should seldom be necessary. Most macro arguments will be formatted as text in the
output; exceptions are noted.

Document structure macros
Document structure macros organize a man page’s content. All of them break the output line. .TH (title
heading) identifies the document as a man page and configures the page headers and footers. Section head-
ings (.SH), one of which is mandatory and many of which are conventionally expected, facilitate location
of material by the reader and aid the man page writer to discuss all essential aspects of the topic. Subsec-
tion headings (.SS) are optional and permit sections that grow long to develop in a controlled way. Many
technical discussions benefit from examples; lengthy ones, especially those reflecting multiple lines of input
to or output from the system, are usefully bracketed by .EX and .EE. When none of the foregoing meets a
structural demand, use .RS/.RE to inset a region within a (sub)section.

.TH topic section [footer-middle] [footer-inside] [header-middle]
Determine the contents of the page header and footer. The subject of the man page is topic and the
section of the manual to which it belongs is section. See man(1) or intro(1) for the manual sec-
tioning applicable to your system. topic and section are positioned together at the left and right in
the header (with section in parentheses immediately appended to topic). footer-middle is centered
in the footer. The arrangement of the rest of the footer depends on whether double-sided layout is
enabled with the option -rD1. When disabled (the default), footer-inside is positioned at the bot-
tom left. Otherwise, footer-inside appears at the bottom left on recto (odd-numbered) pages, and
at the bottom right on verso (even-numbered) pages. The outside footer is the page number, ex-
cept in the continuous-rendering mode enabled by the option -rcR=1, in which case it is the topic
and section, as in the header. header-middle is centered in the header. If section is an integer be-
tween 1 and 9 (inclusive), there is no need to specify header-middle; an.tmac will supply text for
it. The macro package may also abbreviate topic and footer-inside with ellipses if they would
overrun the space available in the header and footer, respectively. For HTML output, headers and
footers are suppressed.

Additionally, this macro breaks the page, resetting the number to 1 (unless the -rC1 option is
given). This feature is intended only for formatting multiple man documents in sequence.

A valid man document calls .TH once, early in the file, prior to any other macro calls.

.SH [heading-text]
Set heading-text as a section heading. If no argument is given, a one-line input trap is planted;
text on the next line becomes heading-text. The left margin is reset to zero to set the heading text
in bold (or the font specified by the string HF), and, on typesetting devices, slightly larger than the
base type size. If the heading font *[HF] is bold, use of an italic style in heading-text is mapped
to the bold-italic style if available in the font family. The inset level is reset to 1, setting the left
margin to the value of the IN register. Text after heading-text is set as an ordinary paragraph (.P).

The content of heading-text and ordering of sections follows a set of common practices, as has
much of the layout of material within sections. For example, a section called “Name” or “NAME”
must exist, must be the first section after the .TH call, and must contain only text of the form

topic[, another-topic]. . . \- summary-description
for a man page to be properly indexed. See groff_man_style(7) for suggestions and man(7) for the
conventions prevailing on your system.

.SS [subheading-text]
Set subheading-text as a subsection heading indented between a section heading and an ordinary
paragraph (.P). If no argument is given, a one-line input trap is planted; text on the next line be-
comes subheading-text. The left margin is reset to the value of the SN register to set the heading
text in bold (or the font specified by the string HF). If the heading font *[HF] is bold, use of an
italic style in subheading-text is mapped to the bold-italic style if available in the font family. The

groff 1.23.0 18 December 2023 240

groff_man(7) Miscellaneous Information Manual groff_man(7)

inset level is reset to 1, setting the left margin to the value of the IN register. Text after subhead-
ing-text is set as an ordinary paragraph (.P).

.EX

.EE Begin and end example. After .EX, filling is disabled and a constant-width (monospaced) font is
selected. Calling .EE enables filling and restores the previous font.

These macros are extensions introduced in Ninth Edition Research Unix. Systems running that
troff , or those from Documenter’s Workbench, Heirloom Doctools, or Plan 9 troff support them.
To be certain your page will be portable to systems that do not, copy their definitions from the
an-ext.tmac file of a groff installation.

.RS [inset-amount]
Start a new relative inset level. The position of the left margin is saved, then moved right by inset-
amount, if specified, and by the amount of the IN register otherwise. Calls to .RS can be nested;
each increments by 1 the inset level used by .RE. The level prior to any .RS calls is 1.

.RE [level]
End a relative inset. The left margin corresponding to inset level level is restored. If no argument
is given, the inset level is reduced by 1.

Paragraphing macros
An ordinary paragraph (.P) is set without a first-line indentation at the current left margin. In man pages
and other technical literature, definition lists are frequently encountered; these can be set as “tagged para-
graphs”, which have one (.TP) or more (.TQ) leading tags followed by a paragraph that has an additional
indentation. The indented paragraph (.IP) macro is useful to continue the indented content of a narrative
started with .TP, or to present an itemized or ordered list. All of these macros break the output line. If an-
other paragraph macro has occurred since the previous .SH or .SS, they (except for .TQ) follow the break
with a default amount of vertical space, which can be changed by the deprecated .PD macro; see subsection
“Horizontal and vertical spacing” below. They also reset the type size and font style to defaults (.TQ again
excepted); see subsection “Font style macros” below.

.P

.LP

.PP Begin a new paragraph; these macros are synonymous. The indentation is reset to the default
value; the left margin, as affected by .RS and .RE, is not.

.TP [indentation]
Set a paragraph with a leading tag, and the remainder of the paragraph indented. A one-line input
trap is planted; text on the next line, which can be formatted with a macro, becomes the tag, which
is placed at the current left margin. The tag can be extended with the \c escape sequence. Subse-
quent text is indented by indentation, if specified, and by the amount of the IN register otherwise.
If the tag is not as wide as the indentation, the paragraph starts on the same line as the tag, at the
applicable indentation, and continues on the following lines. Otherwise, the descriptive part of the
paragraph begins on the line following the tag.

.TQ Set an additional tag for a paragraph tagged with .TP. An input trap is planted as with .TP.

This macro is a GNU extension not defined on systems running AT&T, Plan 9, or Solaris troff ; see
an-ext.tmac in section “Files” below.

.IP [tag] [indentation]
Set an indented paragraph with an optional tag. The tag and indentation arguments, if present, are
handled as with .TP, with the exception that the tag argument to .IP cannot include a macro call.

Command synopsis macros
.SY and .YS aid you to construct a command synopsis that has the classical Unix appearance. They break
the output line.

These macros are GNU extensions not defined on systems running AT&T, Plan 9, or Solaris troff ; see
an-ext.tmac in section “Files” below.

groff 1.23.0 18 December 2023 241

groff_man(7) Miscellaneous Information Manual groff_man(7)

.SY command
Begin synopsis. A new paragraph begins at the left margin unless .SY has already been called
without a corresponding .YS, in which case only a break is performed. Adjustment and automatic
hyphenation are disabled. command is set in bold. If a break is required, lines after the first are
indented by the width of command plus a space.

.YS End synopsis. Indentation, adjustment, and hyphenation are restored to their previous states.

Hyperlink macros
Man page cross references are best presented with .MR. Text may be hyperlinked to email addresses with
.MT/.ME or other URIs with .UR/.UE. Hyperlinked text is supported on HTML and terminal output de-
vices; terminals and pager programs must support ECMA-48 OSC 8 escape sequences (see grotty(1)).
When device support is unavailable or disabled with the U register (see section “Options” below), .MT and
.UR URIs are rendered between angle brackets after the linked text.

.MT, .ME, .UR, and .UE are GNU extensions not defined on systems running AT&T, Plan 9, or Solaris
troff ; see an-ext.tmac in section “Files” below. Plan 9 from User Space’s troff implements .MR.

The arguments to .MR, .MT, and .UR should be prepared for typesetting since they can appear in the out-
put. Use special character escape sequences to encode Unicode basic Latin characters where necessary,
particularly the hyphen-minus. The formatter removes \: escape sequences from hyperlinks when supply-
ing device control commands to output drivers.

.MR topic manual-section [trailing-text]
(since groff 1.23) Set a man page cross reference as “topic(manual-section)”. If trailing-text (typ-
ically punctuation) is specified, it follows the closing parenthesis without intervening space. Hy-
phenation is disabled while the cross reference is set. topic is set in the font specified by the MF
string. The cross reference hyperlinks to a URI of the form “man:topic(manual-section)”.

.MT address

.ME [trailing-text]
Identify address as an RFC 6068 addr-spec for a “mailto:” URI with the text between the two
macro calls as the link text. An argument to .ME is placed after the link text without intervening
space. address may not be visible in the rendered document if hyperlinks are enabled and sup-
ported by the output driver. If they are not, address is set in angle brackets after the link text and
before trailing-text. If hyperlinking is enabled but there is no link text, address is formatted and
hyperlinked without angle brackets.

.UR uri

.UE [trailing-text]
Identify uri as an RFC 3986 URI hyperlink with the text between the two macro calls as the link
text. An argument to .UE is placed after the link text without intervening space. uri may not be
visible in the rendered document if hyperlinks are enabled and supported by the output driver. If
they are not, uri is set in angle brackets after the link text and before trailing-text. If hyperlinking
is enabled but there is no link text, uri is formatted and hyperlinked without angle brackets.

The hyperlinking of .TP paragraph tags with .UR/.UE and .MT/.ME is not yet supported; if attempted, the
hyperlink will be typeset at the beginning of the indented paragraph even on hyperlink-supporting devices.

Font style macros
The man macro package is limited in its font styling options, offering only bold (.B), italic (.I), and roman.
Italic text is usually set underscored instead on terminal devices. The .SM and .SB macros set text in ro-
man or bold, respectively, at a smaller type size; these differ visually from regular-sized roman or bold text
only on typesetting devices. It is often necessary to set text in different styles without intervening space.
The macros .BI, .BR, .IB, .IR, .RB, and .RI, where “B”, “I”, and “R” indicate bold, italic, and roman, re-
spectively, set their odd- and even-numbered arguments in alternating styles, with no space separating them.

The default type size and family for typesetting devices is 10-point Times, except on the X75-12 and
X100-12 devices where the type size is 12 points. The default style is roman.

groff 1.23.0 18 December 2023 242

groff_man(7) Miscellaneous Information Manual groff_man(7)

.B [text]
Set text in bold. If no argument is given, a one-line input trap is planted; text on the next line,
which can be further formatted with a macro, is set in bold.

.I [text] Set text in an italic or oblique face. If no argument is given, a one-line input trap is planted; text
on the next line, which can be further formatted with a macro, is set in an italic or oblique face.

.SM [text]
Set text one point smaller than the default type size on typesetting devices. If no argument is
given, a one-line input trap is planted; text on the next line, which can be further formatted with a
macro, is set smaller.

.SB [text]
Set text in bold and (on typesetting devices) one point smaller than the default type size. If no ar-
gument is given, a one-line input trap is planted; text on the next line, which can be further format-
ted with a macro, is set smaller and in bold. This macro is an extension introduced in SunOS 4.0.

Unlike the above font style macros, the font style alternation macros below set no input traps; they must be
given arguments to have effect. Italic corrections are applied as appropriate.

.BI bold-text italic-text . . .
Set each argument in bold and italics, alternately.

.BR bold-text roman-text . . .
Set each argument in bold and roman, alternately.

.IB italic-text bold-text . . .
Set each argument in italics and bold, alternately.

.IR italic-text roman-text . . .
Set each argument in italics and roman, alternately.

.RB roman-text bold-text . . .
Set each argument in roman and bold, alternately.

.RI roman-text italic-text . . .
Set each argument in roman and italics, alternately.

Horizontal and vertical spacing
The indentation argument accepted by .IP, .TP, and the deprecated .HP is a number plus an optional scal-
ing unit, as is .RS’s inset-amount. If no scaling unit is given, the man package assumes “n”. An indenta-
tion specified in a call to .IP, .TP, or the deprecated .HP persists until (1) another of these macros is called
with an indentation argument, or (2) .SH, .SS, or .P or its synonyms is called; these clear the indentation
entirely.

The left margin used by ordinary paragraphs set with .P (and its synonyms) not within an .RS/.RE relative
inset is 7.2n for typesetting devices and 7n for terminal devices (but see the -rIN option). Headers, footers
(both set with .TH), and section headings (.SH) are set at the page offset (see groff (7)) and subsection
headings (.SS) indented from it by 3n (but see the -rSN option).

Several macros insert vertical space: .SH, .SS, .TP, .P (and its synonyms), .IP, and the deprecated .HP.
The default inter-section and inter-paragraph spacing is is 1v for terminal devices and 0.4v for typesetting
devices. (The deprecated macro .PD can change this vertical spacing, but its use is discouraged.) Between
.EX and .EE calls, the inter-paragraph spacing is 1v regardless of output device.

Registers
Registers are described in section “Options” below. They can be set not only on the command line but in
the site man.local file as well; see section “Files” below.

groff 1.23.0 18 December 2023 243

groff_man(7) Miscellaneous Information Manual groff_man(7)

Strings
The following strings are defined for use in man pages. None of these is necessary in a contemporary man
page; see groff_man_style(7). Others are supported for configuration of rendering parameters; see section
“Options” below.

*R interpolates a special character escape sequence for the “registered sign” glyph, \(rg, if available,
and “(Reg.)” otherwise.

*S interpolates an escape sequence setting the type size to the document default.

*(lq
*(rq interpolate special character escape sequences for left and right double-quotation marks, \(lq and

\(rq, respectively.

*(Tm interpolates a special character escape sequence for the “trade mark sign” glyph, \(tm, if available,
and “(TM)” otherwise.

Hooks
Two macros, both GNU extensions, are called internally by the groff man package to format page headers
and footers and can be redefined by the administrator in a site’s man.local file (see section “Files” below).
The presentation of .TH above describes the default headers and footers. Because these macros are hooks
for groff man internals, man pages have no reason to call them. Such hook definitions will likely consist of
“.sp” and “.tl” requests. They must also increase the page length with “.pl” requests in continuous render-
ing mode; .PT furthermore has the responsibility of emitting a PDF bookmark after writing the first page
header in a document. Consult the existing implementations in an.tmac when drafting replacements.

.BT Set the page footer text (“bottom trap”).

.PT Set the page header text (“page trap”).

To remove a page header or footer entirely, define the appropriate macro as empty rather than deleting it.

Deprecated features
Use of the following in man pages for public distribution is discouraged.

.AT [system [release]]
Alter the footer for use with legacy AT&T man pages, overriding any definition of the footer-in-
side argument to .TH. This macro exists only to render man pages from historical systems.

system can be any of the following.

3 7th edition (default)

4 System III

5 System V

The optional release argument specifies the release number, as in “System V Release 3”.

.DT Reset tab stops to the default (every 0.5i).

Use of this presentation-oriented macro is deprecated. It translates poorly to HTML, under which
exact space control and tabulation are not readily available. Thus, information or distinctions that
you use tab stops to express are likely to be lost. If you feel tempted to change the tab stops such
that calling this macro later is desirable to restore them, you should probably be composing a table
using tbl(1) instead.

.HP [indentation]
Set up a paragraph with a hanging left indentation. The indentation argument, if present, is han-
dled as with .TP.

Use of this presentation-oriented macro is deprecated. A hanging indentation cannot be expressed
naturally under HTML, and non-roff -based man page interpreters may treat .HP as an ordinary
paragraph. Thus, information or distinctions you mean to express with indentation may be lost.

groff 1.23.0 18 December 2023 244

groff_man(7) Miscellaneous Information Manual groff_man(7)

.OP option-name [option-argument]
Indicate an optional command parameter called option-name, which is set in bold. If the option
takes an argument, specify option-argument using a noun, abbreviation, or hyphenated noun
phrase. If present, option-argument is preceded by a space and set in italics. Square brackets in
roman surround both arguments.

Use of this quasi-semantic macro, an extension originating in Documenter’s Workbench troff , is
deprecated. It cannot easily be used to annotate options that take optional arguments or options
whose arguments have internal structure (such as a mixture of literal and variable components).
One could work around these limitations with font selection escape sequences, but it is preferable
to use font style alternation macros, which afford greater flexibility.

.PD [vertical-space]
Define the vertical space between paragraphs or (sub)sections. The optional argument vertical-
space specifies the amount; the default scaling unit is “v”. Without an argument, the spacing is re-
set to its default value; see subsection “Horizontal and vertical spacing” above.

Use of this presentation-oriented macro is deprecated. It translates poorly to HTML, under which
exact control of inter-paragraph spacing is not readily available. Thus, information or distinctions
that you use .PD to express are likely to be lost.

.UC [version]
Alter the footer for use with legacy BSD man pages, overriding any definition of the footer-inside
argument to .TH. This macro exists only to render man pages from historical systems.

version can be any of the following.

3 3rd Berkeley Distribution (default)

4 4th Berkeley Distribution

5 4.2 Berkeley Distribution

6 4.3 Berkeley Distribution

7 4.4 Berkeley Distribution

History
M. Douglas McIlroy 〈m.douglas.mcilroy@dartmouth.edu〉 designed, implemented, and documented the
AT&T man macros for Unix Version 7 (1979) and employed them to edit the first volume of its Program-
mer’s Manual, a compilation of all man pages supplied by the system. That man supported the macros
listed in this page not described as extensions, except .P and the deprecated .AT and .UC. The only strings
defined were R and S; no registers were documented.

.UC appeared in 3BSD (1980). Unix System III (1980) introduced .P and exposed the registers IN and LL,
which had been internal to Seventh Edition Unix man. PWB/UNIX 2.0 (1980) added the Tm string.
4BSD (1980) added lq and rq strings. SunOS 2.0 (1985) recognized C, D, P, and X registers. 4.3BSD
(1986) added .AT and .P. Ninth Edition Research Unix (1986) introduced .EX and .EE. SunOS 4.0 (1988)
added .SB.

The foregoing features were what James Clark implemented in early versions of groff . Later, groff 1.20
(2009) originated .SY/.YS, .TQ, .MT/.ME, and .UR/.UE. Plan 9 from User Space’s troff introduced .MR
in 2020.

Options
The following groff options set registers (with -r) and strings (with -d) recognized and used by the man
macro package. To ensure rendering consistent with output device capabilities and reader preferences, man
pages should never manipulate them.

-dAD=adjustment-mode
Set line adjustment to adjustment-mode, which is typically “b” for adjustment to both margins (the
default), or “l” for left alignment (ragged right margin). Any valid argument to groff ’s “.ad” re-
quest may be used. See groff (7) for less-common choices.

groff 1.23.0 18 December 2023 245

groff_man(7) Miscellaneous Information Manual groff_man(7)

-rcR=1
Enable continuous rendering. Output is not paginated; instead, one (potentially very long) page is
produced. This is the default for terminal and HTML devices. Use -rcR=0 to disable it on termi-
nal devices; on HTML devices, it cannot be disabled.

-rC1 Number output pages consecutively, in strictly increasing sequence, rather than resetting the page
number to 1 (or the value of register P) with each new man document.

-rCS=1
Set section headings (the argument(s) to .SH) in full capitals. This transformation is off by default
because it discards case distinction information.

-rCT=1
Set the man page topic (the first argument to .TH) in full capitals in headers and footers. This
transformation is off by default because it discards case distinction information.

-rD1 Enable double-sided layout, formatting footers for even and odd pages differently; see the descrip-
tion of .TH in subsection “Document structure macros” above.

-rFT= footer-distance
Set distance of the footer relative to the bottom of the page to footer-distance; this amount is al-
ways negative. At one half-inch above this location, the page text is broken before writing the
footer. Ignored if continuous rendering is enabled. The default is -0.5i.

-dHF=heading-font
Set the font used for section and subsection headings; the default is “B” (bold style of the default
family). Any valid argument to groff ’s “.ft” request may be used. See groff (7).

-rHY=0
Disable automatic hyphenation. Normally, it is enabled (1). The hyphenation mode is determined
by the groff locale; see section “Localization“ of groff (7).

-rIN=standard-indentation
Set the amount of indentation used for ordinary paragraphs (.P and its synonyms) and the default
indentation amount used by .IP, .RS, .TP, and the deprecated .HP. See subsection “Horizontal
and vertical spacing” above for the default. For terminal devices, standard-indentation should al-
ways be an integer multiple of unit “n” to get consistent indentation.

-rLL=line-length
Set line length; the default is 78n for terminal devices and 6.5i for typesetting devices.

-rLT=title-length
Set the line length for titles. By default, it is set to the line length (see -rLL above).

-dMF=man-page-topic-font
Set the font used for man page topics named in .TH and .MR calls; the default is “I” (italic style
of the default family). Any valid argument to groff ’s “.ft” request may be used. If the MF string
ends in “I”, it is assumed to be an oblique typeface, and italic corrections are applied before and
after man page topics.

-rPn Start enumeration of pages at n. The default is 1.

-rStype-size
Use type-size for the document’s body text; acceptable values are 10, 11, or 12 points. See subsec-
tion “Font style macros” above for the default.

-rSN=subsection-indentation
Set indentation of subsection headings to subsection-indentation. See subsection “Horizontal and
vertical spacing” above for the default.

groff 1.23.0 18 December 2023 246

groff_man(7) Miscellaneous Information Manual groff_man(7)

-rU1 Enable generation of URI hyperlinks in the grohtml and grotty output drivers. grohtml enables
them by default; grotty does not, pending more widespread pager support for OSC 8 escape se-
quences. Use -rU0 to disable hyperlinks; this will make the arguments to MT and UR calls visi-
ble in the document text produced by link-capable drivers.

-rXp Number successors of page p as pa, pb, pc, and so forth. The register tracking the suffixed page
letter uses format “a” (see the “.af” request in groff (7)).

Files
/usr/share/groff/1.23.0/tmac/an.tmac

Most man macros are defined in this file. It also loads extensions from an-ext.tmac (see below).

/usr/share/groff/1.23.0/tmac/andoc.tmac
This brief groff program detects whether the man or mdoc macro package is being used by a doc-
ument and loads the correct macro definitions, taking advantage of the fact that pages using them
must call .TH or .Dd, respectively, before any other macros. A man program or user typing, for
example, “groff -mandoc page.1”, need not know which package the file page.1 uses. Multiple
man pages, in either format, can be handled; andoc reloads each macro package as necessary.

/usr/share/groff/1.23.0/tmac/an-ext.tmac
Except for .SB, definitions of macros described above as extensions are contained in this file; in
some cases, they are simpler versions of definitions appearing in an.tmac, and are ignored if the
formatter is GNU troff . They are written to be compatible with AT&T troff and permissively li-
censed—not copylefted. To reduce the risk of name space collisions, string and register names be-
gin only with “m”. We encourage man page authors who are concerned about portability to legacy
Unix systems to copy these definitions into their pages, and maintainers of troff implementations
or work-alike systems that format man pages to re-use them.

The definitions for these macros are read after a page calls .TH, so they will replace any macros of
the same names preceding it in your file. If you use your own implementations of these macros,
they must be defined after .TH is called to have any effect. Furthermore, it is wise to define such
page-local macros (if at all) after the “Name” section to accommodate timid makewhatis or mandb
implementations that may give up their scan for indexing material early.

/usr/share/groff/1.23.0/tmac/man.tmac
This is a wrapper that loads an.tmac.

/usr/share/groff/1.23.0/tmac/mandoc.tmac
This is a wrapper that loads andoc.tmac.

/usr/share/groff/site-tmac/man.local
Put site-local changes and customizations into this file.

Authors
The initial GNU implementation of the man macro package was written by James Clark. Later, Werner
Lemberg 〈wl@gnu.org〉 supplied the S, LT, and cR registers, the last a 4.3BSD-Reno mdoc(7) feature.
Larry Kollar 〈kollar@alltel.net〉 added the FT, HY, and SN registers; the HF string; and the PT and BT
macros. G. Branden Robinson 〈g.branden.robinson@gmail.com〉 implemented the AD and MF strings;
CS, CT, and U registers; and the MR macro. Except for .SB, the extension macros were written by Lem-
berg, Eric S. Raymond 〈esr@thyrsus.com〉, and Robinson.

This document was originally written for the Debian GNU/Linux system by Susan G. Kleinmann 〈sgk@
debian.org〉. It was corrected and updated by Lemberg and Robinson. The extension macros were docu-
mented by Raymond and Robinson.

See also
tbl(1), eqn(1), and refer(1) are preprocessors used with man pages. man(1) describes the man page librar-
ian on your system. groff_mdoc(7) details the groff version of the BSD-originated alternative macro pack-
age for man pages.

groff_man_style(7), groff (7), groff_char(7), man(7)

groff 1.23.0 18 December 2023 247

groff_man_style(7) Miscellaneous Information Manual groff_man_style(7)

Name
groff_man_style - GNU roff man page tutorial and style guide

Synopsis
groff -man [option . . .] [file . . .]
groff -m man [option . . .] [file . . .]

Description
The GNU implementation of the man macro package is part of the groff document formatting system. It is
used to produce manual pages (“man pages”) like the one you are reading.

This document presents the macros thematically; for those needing only a quick reference, the following ta-
ble lists them alphabetically, with cross references to appropriate subsections below.

Macro Meaning Subsection

.B Bold Font style macros

.BI Bold, italic alternating Font style macros

.BR Bold, roman alternating Font style macros

.EE Example end Document structure macros

.EX Example begin Document structure macros

.I Italic Font style macros

.IB Italic, bold alternating Font style macros

.IP Indented paragraph Paragraphing macros

.IR Italic, roman alternating Font style macros

.LP Begin paragraph Paragraphing macros

.ME Mail-to end Hyperlink macros

.MR Man page cross reference Hyperlink macros

.MT Mail-to start Hyperlink macros

.P Begin paragraph Paragraphing macros

.PP Begin paragraph Paragraphing macros

.RB Roman, bold alternating Font style macros

.RE Relative inset end Document structure macros

.RI Roman, italic alternating Font style macros

.RS Relative inset start Document structure macros

.SB Small bold Font style macros

.SH Section heading Document structure macros

.SM Small Font style macros

.SS Subsection heading Document structure macros

.SY Synopsis start Command synopsis macros

.TH Title heading Document structure macros

.TP Tagged paragraph Paragraphing macros

.TQ Supplemental paragraph tag Paragraphing macros

.UE URI end Hyperlink macros

.UR URI start Hyperlink macros

.YS Synopsis end Command synopsis macros

We discuss other macros (.AT, .DT, .HP, .OP, .PD, and .UC) in subsection “Deprecated features” below.

Throughout Unix documentation, a manual entry is referred to simply as a “man page”, regardless of its
length, without gendered implication, and irrespective of the macro package selected for its composition.

Man pages should be encoded using Unicode basic Latin code points exclusively, and employ the Unix
line-ending convention (U+000A only).

Fundamental concepts
groff is a programming system for typesetting: we thus often use the verb “to set” in the sense “to typeset”.
The formatter troff (1) collects words from the input and fills output lines with as many as will fit. Words
are separated by spaces and newlines. A transition to a new output line is called a break. When formatted,
a word may be broken at hyphens, at \% or \: escape sequences (see subsection “Portability” below), or at

groff 1.23.0 18 December 2023 248

groff_man_style(7) Miscellaneous Information Manual groff_man_style(7)

predetermined locations if automatic hyphenation is enabled (see the -rHY option in section “Options” be-
low). An output line may be supplemented with inter-sentence space, and then optionally adjusted with
more space to a consistent line length (see the -dAD option). roff (7) details these processes.

An input line that starts with a dot (.) or neutral apostrophe (') is a control line. To call a macro, put its
name after a dot on a control line. We refer to macros in this document using this leading dot. Some
macros interpret arguments, words that follow the macro name. A newline, unless escaped (see subsection
“Portability” below), marks the end of the macro call. An input line consisting of a dot followed by a new-
line is called the empty request; it does nothing. Text lines are input lines that are not control lines.

We describe below several man macros that plant one-line input traps: the next input line that directly pro-
duces formatted output is treated specially. For man documents that follow the advice in section “Portabil-
ity” below, this means that control lines using the empty request and uncommented input lines ending with
an escaped newline do not spring the trap; anything else does (but see the .TP macro description).

Macro reference preliminaries
A tagged paragraph describes each macro. We present coupled pairs together, as with .EX and .EE.

Optional macro arguments are indicated by surrounding them with square brackets. If a macro accepts
multiple arguments, those containing space characters must be double-quoted to be interpreted correctly.
An empty macro argument can be specified with a pair of double-quotes (""), but the man package is de-
signed such that this should seldom be necessary. See section “Notes” below for examples of cases where
better alternatives to empty arguments in macro calls are available. Most macro arguments will be format-
ted as text in the output; exceptions are noted.

Document structure macros
Document structure macros organize a man page’s content. All of them break the output line. .TH (title
heading) identifies the document as a man page and configures the page headers and footers. Section head-
ings (.SH), one of which is mandatory and many of which are conventionally expected, facilitate location
of material by the reader and aid the man page writer to discuss all essential aspects of the topic. Subsec-
tion headings (.SS) are optional and permit sections that grow long to develop in a controlled way. Many
technical discussions benefit from examples; lengthy ones, especially those reflecting multiple lines of input
to or output from the system, are usefully bracketed by .EX and .EE. When none of the foregoing meets a
structural demand, use .RS/.RE to inset a region within a (sub)section.

.TH topic section [footer-middle] [footer-inside] [header-middle]
Determine the contents of the page header and footer. roff systems refer to these collectively as
“titles”. The subject of the man page is topic and the section of the manual to which it belongs is
section. This use of “section” has nothing to do with the section headings otherwise discussed in
this page; it arises from the organizational scheme of printed and bound Unix manuals. See
man(1) or intro(1) for the manual sectioning applicable to your system. topic and section are po-
sitioned together at the left and right in the header (with section in parentheses immediately ap-
pended to topic). footer-middle is centered in the footer. The arrangement of the rest of the footer
depends on whether double-sided layout is enabled with the option -rD1. When disabled (the de-
fault), footer-inside is positioned at the bottom left. Otherwise, footer-inside appears at the bot-
tom left on recto (odd-numbered) pages, and at the bottom right on verso (even-numbered) pages.
The outside footer is the page number, except in the continuous-rendering mode enabled by the
option -rcR=1, in which case it is the topic and section, as in the header. header-middle is cen-
tered in the header. If section is an integer between 1 and 9 (inclusive), there is no need to specify
header-middle; an.tmac will supply text for it. The macro package may also abbreviate topic and
footer-inside with ellipses (. . .) if they would overrun the space available in the header and footer,
respectively. For HTML output, headers and footers are suppressed.

Additionally, this macro breaks the page, resetting the number to 1 (unless the -rC1 option is
given). This feature is intended only for formatting multiple man documents in sequence.

A valid man document calls .TH once, early in the file, prior to any other macro calls.

By convention, footer-middle is the date of the most recent modification to the man page source
document, and footer-inside is the name and version or release of the project providing it.

groff 1.23.0 18 December 2023 249

groff_man_style(7) Miscellaneous Information Manual groff_man_style(7)

.SH [heading-text]
Set heading-text as a section heading. If no argument is given, a one-line input trap is planted;
text on the next line becomes heading-text. The left margin is reset to zero to set the heading text
in bold (or the font specified by the string HF), and, on typesetting devices, slightly larger than the
base type size. If the heading font *[HF] is bold, use of an italic style in heading-text is mapped
to the bold-italic style if available in the font family. The inset level is reset to 1, setting the left
margin to the value of the IN register. Text after heading-text is set as an ordinary paragraph (.P).

The content of heading-text and ordering of sections follows a set of common practices, as has
much of the layout of material within sections. For example, a section called “Name” or “NAME”
must exist, must be the first section after the .TH call, and must contain only text of the form

topic[, another-topic]. . . \- summary-description
for a man page to be properly indexed. See man(7) for the conventions prevailing on your system.

.SS [subheading-text]
Set subheading-text as a subsection heading indented between a section heading and an ordinary
paragraph (.P). If no argument is given, a one-line input trap is planted; text on the next line be-
comes subheading-text. The left margin is reset to the value of the SN register to set the heading
text in bold (or the font specified by the string HF). If the heading font *[HF] is bold, use of an
italic style in subheading-text is mapped to the bold-italic style if available in the font family. The
inset level is reset to 1, setting the left margin to the value of the IN register. Text after subhead-
ing-text is set as an ordinary paragraph (.P).

.EX

.EE Begin and end example. After .EX, filling is disabled and a constant-width (monospaced) font is
selected. Calling .EE enables filling and restores the previous font.

Example regions are useful for formatting code, shell sessions, and text file contents. An example
region is not a “literal mode” of any sort: special character escape sequences must still be used to
produce correct glyphs for ', -, \, ^, `, and ~, and sentence endings are still detected and additional
inter-sentence space applied. If the amount of additional inter-sentence spacing is altered, the ren-
dering of, for instance, regular expressions using . or ? followed by multiple spaces can change.
Use the dummy character escape sequence \& before the spaces.

These macros are extensions introduced in Ninth Edition Research Unix. Systems running that
troff , or those from Documenter’s Workbench, Heirloom Doctools, or Plan 9 troff support them.
To be certain your page will be portable to systems that do not, copy their definitions from the
an-ext.tmac file of a groff installation.

.RS [inset-amount]
Start a new relative inset level. The position of the left margin is saved, then moved right by inset-
amount, if specified, and by the amount of the IN register otherwise. Calls to .RS can be nested;
each increments by 1 the inset level used by .RE. The level prior to any .RS calls is 1.

.RE [level]
End a relative inset. The left margin corresponding to inset level level is restored. If no argument
is given, the inset level is reduced by 1.

Paragraphing macros
An ordinary paragraph (.P) like this one is set without a first-line indentation at the current left margin. In
man pages and other technical literature, definition lists are frequently encountered; these can be set as
“tagged paragraphs”, which have one (.TP) or more (.TQ) leading tags followed by a paragraph that has an
additional indentation. The indented paragraph (.IP) macro is useful to continue the indented content of a
narrative started with .TP, or to present an itemized or ordered list. All of these macros break the output
line. If another paragraph macro has occurred since the previous .SH or .SS, they (except for .TQ) follow
the break with a default amount of vertical space, which can be changed by the deprecated .PD macro; see
subsection “Horizontal and vertical spacing” below. They also reset the type size and font style to defaults
(.TQ again excepted); see subsection “Font style macros” below.

groff 1.23.0 18 December 2023 250

groff_man_style(7) Miscellaneous Information Manual groff_man_style(7)

.P

.LP

.PP Begin a new paragraph; these macros are synonymous. The indentation is reset to the default
value; the left margin, as affected by .RS and .RE, is not.

.TP [indentation]
Set a paragraph with a leading tag, and the remainder of the paragraph indented. A one-line input
trap is planted; text on the next line, which can be formatted with a macro, becomes the tag, which
is placed at the current left margin. The tag can be extended with the \c escape sequence. Subse-
quent text is indented by indentation, if specified, and by the amount of the IN register otherwise.
If the tag is not as wide as the indentation, the paragraph starts on the same line as the tag, at the
applicable indentation, and continues on the following lines. Otherwise, the descriptive part of the
paragraph begins on the line following the tag.

The line containing the tag can include a macro call, for instance to set the tag in bold with .B.
.TP was used to write the first paragraph of this description of .TP, and .IP the subsequent one.

.TQ Set an additional tag for a paragraph tagged with .TP. An input trap is planted as with .TP.

This macro is a GNU extension not defined on systems running AT&T, Plan 9, or Solaris troff ; see
an-ext.tmac in section “Files” below.

The descriptions of .P, .LP, and .PP above were written using .TP and .TQ.

.IP [tag] [indentation]
Set an indented paragraph with an optional tag. The tag and indentation arguments, if present, are
handled as with .TP, with the exception that the tag argument to .IP cannot include a macro call.

Two convenient uses for .IP are

(1) to start a new paragraph with the same indentation as an immediately preceding .IP or
.TP paragraph, if no indentation argument is given; and

(2) to set a paragraph with a short tag that is not semantically important, such as a bullet
(•)—obtained with the \(bu special character escape sequence—or list enumerator, as
seen in this very paragraph.

Command synopsis macros
.SY and .YS aid you to construct a command synopsis that has the classical Unix appearance. They break
the output line.

These macros are GNU extensions not defined on systems running AT&T, Plan 9, or Solaris troff ; see
an-ext.tmac in section “Files” below.

.SY command
Begin synopsis. A new paragraph begins at the left margin (as with .P) unless .SY has already
been called without a corresponding .YS, in which case only a break is performed. Adjustment
and automatic hyphenation are disabled. command is set in bold. If a break is required, lines after
the first are indented by the width of command plus a space.

.YS End synopsis. Indentation, adjustment, and hyphenation are restored to their previous states.

Multiple .SY/.YS blocks can be specified, for instance to distinguish differing modes of operation of a com-
plex command like tar(1); each will be vertically separated as paragraphs are.

.SY can be repeated before .YS to indicate synonymous ways of invoking a particular mode of operation.

groff ’s own command-line interface serves to illustrate most of the specimens of synopsis syntax one is
likely to encounter.

.SY groff

.RB [\-abcCeEgGijklNpRsStUVXzZ]

.RB [\-d\~\c

.IR cs]

.RB [\-d\~\c

groff 1.23.0 18 December 2023 251

groff_man_style(7) Miscellaneous Information Manual groff_man_style(7)

.IB name =\c

.IR string]

.RB [\-D\~\c

.IR enc]
(and so on similarly)
.RI [file\~ .\|.\|.]
.YS
.
.
.SY groff
.B \-h
.
.SY groff
.B \-\-help
.YS
.
.
.SY groff
.B \-v
.RI [option\~ .\|.\|.\&]
.RI [file\~ .\|.\|.]
.
.SY groff
.B \-\-version
.RI [option\~ .\|.\|.\&]
.RI [file\~ .\|.\|.]
.YS

produces the following output.

groff [-abcCeEgGijklNpRsStUVXzZ] [-d cs] [-d name=string] [-D enc] [-f fam] [-F dir]
[-I dir] [-K enc] [-L arg] [-m name] [-M dir] [-n num] [-o list] [-P arg] [-r cn]
[-r reg=expr] [-T dev] [-w name] [-W name] [file . . .]

groff -h
groff --help

groff -v [option . . .] [file . . .]
groff --version [option . . .] [file . . .]

Several features of the above example are of note.

• The empty request (.), which does nothing, is used to vertically space the input file for readability by the
document maintainer. Do not put blank (empty) lines in a man page source document.

• Command and option names are presented in bold to cue the user that they should be input literally.

• Option dashes are specified with the \- escape sequence; this is an important practice to make them
clearly visible and to facilitate copy-and-paste from the rendered man page to a shell prompt or text file.

• Option arguments and command operands are presented in italics (but see subsection “Font style
macros” below regarding terminals) to cue the user that they must be replaced with appropriate text.

• Symbols that are neither to be typed literally nor replaced at the user’s discretion appear in the roman
style; brackets surround optional arguments, and an ellipsis indicates that the previous syntactical ele-
ment may be repeated arbitrarily.

• The non-breaking adjustable space escape sequence \~ is used to prevent the output line from being bro-
ken within the option brackets; see subsection “Portability” below.

groff 1.23.0 18 December 2023 252

groff_man_style(7) Miscellaneous Information Manual groff_man_style(7)

• The output line continuation escape sequence \c is used with font style alternation macros to allow all
three font styles to be set without (breakable) space among them; see subsection “Portability” below.

• The dummy character escape sequence \& follows the ellipsis when further text will follow after space
on the output line, keeping its last period from being interpreted as the end of a sentence and causing ad-
ditional inter-sentence space to be placed after it. See subsection “Portability” below.

Hyperlink macros
Man page cross references like ls(1) are best presented with .MR. Text may be hyperlinked to email ad-
dresses with .MT/.ME or other URIs with .UR/.UE. Hyperlinked text is supported on HTML and terminal
output devices; terminals and pager programs must support ECMA-48 OSC 8 escape sequences (see
grotty(1)). When device support is unavailable or disabled with the U register (see section “Options” be-
low), .MT and .UR URIs are rendered between angle brackets after the linked text.

.MT, .ME, .UR, and .UE are GNU extensions not defined on systems running AT&T, Plan 9, or Solaris
troff ; see an-ext.tmac in section “Files” below. Plan 9 from User Space’s troff implements .MR.

The arguments to .MR, .MT, and .UR should be prepared for typesetting since they can appear in the out-
put. Use special character escape sequences to encode Unicode basic Latin characters where necessary,
particularly the hyphen-minus. (See section “Portability” below.) URIs can be lengthy; rendering them can
result in jarring adjustment or variations in line length, or troff warnings when a hyperlink is longer than an
output line. The application of non-printing break point escape sequences \: after each slash (or series
thereof), and before each dot (or series thereof) is recommended as a rule of thumb. The former practice
avoids forcing a trailing slash in a URI onto a separate output line, and the latter helps the reader to avoid
mistakenly interpreting a dot at the end of a line as a period (or multiple dots as an ellipsis). Thus,

.UR http://\:example\:.com/\:fb8afcfbaebc74e\:.cc
has several potential break points in the URI shown. Consider adding break points before or after at signs
in email addresses, and question marks, ampersands, and number signs in HTTP(S) URIs. The formatter
removes \: escape sequences from hyperlinks when supplying device control commands to output drivers.

.MR topic manual-section [trailing-text]
(since groff 1.23) Set a man page cross reference as “topic(manual-section)”. If trailing-text (typ-
ically punctuation) is specified, it follows the closing parenthesis without intervening space. Hy-
phenation is disabled while the cross reference is set. topic is set in the font specified by the MF
string. The cross reference hyperlinks to a URI of the form “man:topic(manual-section)”.

The output driver
.MR grops 1
produces PostScript from
.I troff
output.
.
The Ghostscript program (\c
.MR gs 1)
interprets PostScript and PDF.

.MT address

.ME [trailing-text]
Identify address as an RFC 6068 addr-spec for a “mailto:” URI with the text between the two
macro calls as the link text. An argument to .ME is placed after the link text without intervening
space. address may not be visible in the rendered document if hyperlinks are enabled and sup-
ported by the output driver. If they are not, address is set in angle brackets after the link text and
before trailing-text. If hyperlinking is enabled but there is no link text, address is formatted and
hyperlinked without angle brackets.

groff 1.23.0 18 December 2023 253

groff_man_style(7) Miscellaneous Information Manual groff_man_style(7)

When rendered by groff to a PostScript device,

Contact
.MT fred\:.foonly@\:fubar\:.net
Fred Foonly
.ME
for more information.

displays as “Contact Fred Foonly 〈fred.foonly@fubar.net〉 for more information.”.

.UR uri

.UE [trailing-text]
Identify uri as an RFC 3986 URI hyperlink with the text between the two macro calls as the link
text. An argument to .UE is placed after the link text without intervening space. uri may not be
visible in the rendered document if hyperlinks are enabled and supported by the output driver. If
they are not, uri is set in angle brackets after the link text and before trailing-text. If hyperlinking
is enabled but there is no link text, uri is formatted and hyperlinked without angle brackets.

When rendered by groff to a PostScript device,

The GNU Project of the Free Software Foundation
hosts the
.UR https://\:www\:.gnu\:.org/\:software/\:groff/
.I groff
home page
.UE .

displays as “The GNU Project of the Free Software Foundation hosts the groff home page 〈https://
www.gnu.org/software/groff/〉.”.

The hyperlinking of .TP paragraph tags with .UR/.UE and .MT/.ME is not yet supported; if attempted, the
hyperlink will be typeset at the beginning of the indented paragraph even on hyperlink-supporting devices.

Font style macros
The man macro package is limited in its font styling options, offering only bold (.B), italic (.I), and roman.
Italic text is usually set underscored instead on terminal devices. The .SM and .SB macros set text in ro-
man or bold, respectively, at a smaller type size; these differ visually from regular-sized roman or bold text
only on typesetting devices. It is often necessary to set text in different styles without intervening space.
The macros .BI, .BR, .IB, .IR, .RB, and .RI, where “B”, “I”, and “R” indicate bold, italic, and roman, re-
spectively, set their odd- and even-numbered arguments in alternating styles, with no space separating them.

Because font styles are presentational rather than semantic, conflicting traditions have arisen regarding
which font styles should be used to mark file or path names, environment variables, and inlined literals.

The default type size and family for typesetting devices is 10-point Times, except on the X75-12 and
X100-12 devices where the type size is 12 points. The default style is roman.

.B [text]
Set text in bold. If no argument is given, a one-line input trap is planted; text on the next line,
which can be further formatted with a macro, is set in bold.

Use bold for literal portions of syntax synopses, for command-line options in running text, and for
literals that are major topics of the subject under discussion; for example, this page uses bold for
macro, string, and register names. In an .EX/.EE example of interactive I/O (such as a shell ses-
sion), set only user input in bold.

.I [text] Set text in an italic or oblique face. If no argument is given, a one-line input trap is planted; text
on the next line, which can be further formatted with a macro, is set in an italic or oblique face.

Use italics for file and path names, for environment variables, for C data types, for enumeration or
preprocessor constants in C, for variant (user-replaceable) portions of syntax synopses, for the first
occurrence (only) of a technical concept being introduced, for names of journals and of literary
works longer than an article, and anywhere a parameter requiring replacement by the user is

groff 1.23.0 18 December 2023 254

groff_man_style(7) Miscellaneous Information Manual groff_man_style(7)

encountered. An exception involves variant text in a context already typeset in italics, such as file
or path names with replaceable components; in such cases, follow the convention of mathematical
typography: set the file or path name in italics as usual but use roman for the variant part (see .IR
and .RI below), and italics again in running roman text when referring to the variant material.

.SM [text]
Set text one point smaller than the default type size on typesetting devices. If no argument is
given, a one-line input trap is planted; text on the next line, which can be further formatted with a
macro, is set smaller.

Note: terminals will render text at normal size instead. Do not rely upon .SM to communicate se-
mantic information distinct from using roman style at normal size; it will be hidden from readers
using such devices.

.SB [text]
Set text in bold and (on typesetting devices) one point smaller than the default type size. If no ar-
gument is given, a one-line input trap is planted; text on the next line, which can be further format-
ted with a macro, is set smaller and in bold. This macro is an extension introduced in SunOS 4.0.

Note: terminals will render text in bold at the normal size instead. Do not rely upon .SB to com-
municate semantic information distinct from using bold style at normal size; it will be hidden from
readers using such devices.

Observe what is not prescribed for setting in bold or italics above: elements of “synopsis language” such as
ellipses and brackets around options; proper names and adjectives; titles of anything other than major works
of literature; identifiers for standards documents or technical reports such as CSTR #54, RFC 1918, Uni-
code 13.0, or POSIX.1-2017; acronyms; and occurrences after the first of a technical term.

Be frugal with italics for emphasis, and particularly with bold. Article titles and brief runs of literal text,
such as references to individual characters or short strings, including section and subsection headings of
man pages, are suitable objects for quotation; see the \(lq, \(rq, \(oq, and \(cq escape sequences in subsec-
tion “Portability” below.

Unlike the above font style macros, the font style alternation macros below set no input traps; they must be
given arguments to have effect. Italic corrections are applied as appropriate. If a space is required within
an argument, first consider whether the same result could be achieved with as much clarity by using single-
style macros on separate input lines. When it cannot, double-quote an argument containing embedded
space characters. Setting all three different styles within a word presents challenges; it is possible with the
\c and/or \f escape sequences. See subsection “Portability” below for approaches.

.BI bold-text italic-text . . .
Set each argument in bold and italics, alternately.

.BI -r register = numeric-expression

.BR bold-text roman-text . . .
Set each argument in bold and roman, alternately.

After
.B .NH
is called,

.IB italic-text bold-text . . .
Set each argument in italics and bold, alternately.

In places where
.IB n th
is allowed,

.IR italic-text roman-text . . .
Set each argument in italics and roman, alternately.

groff 1.23.0 18 December 2023 255

groff_man_style(7) Miscellaneous Information Manual groff_man_style(7)

Use GNU
.IR pic 's
.B figname
command to change the name of the vbox.

.RB roman-text bold-text . . .
Set each argument in roman and bold, alternately.

if
.I file
is
.RB \[lq] \- \[rq],
the standard input stream is read.

.RI roman-text italic-text . . .
Set each argument in roman and italics, alternately.

.RI (tpic
was a fork of AT&T
.I pic
by Tim Morgan of the University of California at Irvine

Horizontal and vertical spacing
The indentation argument accepted by .IP, .TP, and the deprecated .HP is a number plus an optional scal-
ing unit, as is .RS’s inset-amount. If no scaling unit is given, the man package assumes “n”; that is, the
width of a letter “n” in the font current when the macro is called (see section “Measurements” in groff (7)).
An indentation specified in a call to .IP, .TP, or the deprecated .HP persists until (1) another of these
macros is called with an indentation argument, or (2) .SH, .SS, or .P or its synonyms is called; these clear
the indentation entirely.

The left margin used by ordinary paragraphs set with .P (and its synonyms) not within an .RS/.RE relative
inset is 7.2n for typesetting devices and 7n for terminal devices (but see the -rIN option). Headers, footers
(both set with .TH), and section headings (.SH) are set at the page offset (see groff (7)) and subsection
headings (.SS) indented from it by 3n (but see the -rSN option).

It may be helpful to think of the left margin and indentation as related but distinct concepts; groff ’s imple-
mentation of the man macro package tracks them separately. The left margin is manipulated by .RS and
.RE (and by .SH and .SS, which reset it to the default). Indentation is controlled by the paragraphing
macros (though, again, .SH and .SS reset it); it is imposed by the .TP, .IP, and deprecated .HP macros, and
cancelled by .P and its synonyms. An extensive example follows.

This ordinary (.P) paragraph is not in a relative inset nor does it possess an indentation.

Now we have created a relative inset (in other words, moved the left margin) with .RS and started
another ordinary paragraph with .P.

tag This tagged paragraph, set with .TP, is still within the .RS region, but lines after the first
have a supplementary indentation that the tag lacks.

A paragraph like this one, set with .IP, will appear to the reader as also associated with
the tag above, because .IP re-uses the previous paragraph’s indentation unless given an
argument to change it. This paragraph is affected both by the moved left margin (.RS)
and indentation (.IP).

This table is affected both by
the left margin and indentation.

• This indented paragraph has a bullet for a tag, making it more obvious that the left margin
and indentation are distinct; only the former affects the tag, but both affect the text of the
paragraph.

groff 1.23.0 18 December 2023 256

groff_man_style(7) Miscellaneous Information Manual groff_man_style(7)

This ordinary (.P) paragraph resets the indentation, but the left margin is still inset.

This table is affected only
by the left margin.

Finally, we have ended the relative inset by using .RE, which (because we used only one .RS/.RE pair) has
reset the left margin to the default. This is an ordinary .P paragraph.

Resist the temptation to mock up tabular or multi-column output with tab characters or the indentation ar-
guments to .IP, .TP, .RS, or the deprecated .HP; the result may not render comprehensibly on an output de-
vice you fail to check, or which is developed in the future. The table preprocessor tbl(1) can likely meet
your needs.

Several macros insert vertical space: .SH, .SS, .TP, .P (and its synonyms), .IP, and the deprecated .HP.
The default inter-section and inter-paragraph spacing is is 1v for terminal devices and 0.4v for typesetting
devices (“v” is a unit of vertical distance, where 1v is the distance between adjacent text baselines in a sin-
gle-spaced document). (The deprecated macro .PD can change this vertical spacing, but its use is discour-
aged.) Between .EX and .EE calls, the inter-paragraph spacing is 1v regardless of output device.

Registers
Registers are described in section “Options” below. They can be set not only on the command line but in
the site man.local file as well; see section “Files” below.

Strings
The following strings are defined for use in man pages. Others are supported for configuration of rendering
parameters; see section “Options” below.

*R interpolates a special character escape sequence for the “registered sign” glyph, \(rg, if available,
and “(Reg.)” otherwise.

*S interpolates an escape sequence setting the type size to the document default.

*(lq
*(rq interpolate special character escape sequences for left and right double-quotation marks, \(lq and

\(rq, respectively.

*(Tm interpolates a special character escape sequence for the “trade mark sign” glyph, \(tm, if available,
and “(TM)” otherwise.

None of the above is necessary in a contemporary man page. *S is superfluous, since type size changes are
invisible on terminal devices and macros that change it restore its original value afterward. Better alterna-
tives exist for the rest; simply use the \(rg, \(lq, \(rq, and \(tm special character escape sequences directly.
Unless a man page author is aiming for a pathological level of portability, such as the composition of pages
for consumption on simulators of 1980s Unix systems (or Solaris troff , though even it supports \(rg), the
above strings should be avoided.

Portability
It is wise to quote multi-word section and subsection headings; the .SH and .SS macros of man(7) imple-
mentations descended from Seventh Edition Unix supported six arguments at most. A similar restriction
applied to the .B, .I, .SM, and font style alternation macros.

The two major syntactical categories for formatting control in the roff language are requests and escape se-
quences. Since the man macros are implemented in terms of groff requests and escape sequences, one can,
in principle, supplement the functionality of man with these lower-level elements where necessary.

However, using raw groff requests (apart from the empty request “.”) is likely to make your page render
poorly when processed by other tools; many of these attempt to interpret page sources directly for conver-
sion to HTML. Some requests make implicit assumptions about things like character and page sizes that
may not hold in an HTML environment; also, many of these viewers don’t interpret the full groff vocabu-
lary, a problem that can lead to portions of your text being omitted or presented incomprehensibly.

For portability to modern viewers, it is best to write your page solely with the macros described in this page
(except for the ones identified as deprecated, which should be avoided). The macros we have described as
extensions (.EX/.EE, .SY/.YS, .TQ, .UR/.UE, .MT/.ME, .MR, and .SB) should be used with caution, as

groff 1.23.0 18 December 2023 257

groff_man_style(7) Miscellaneous Information Manual groff_man_style(7)

they may not be built in to some viewer that is important to your audience. See an-ext.tmac in section
“Files” below.

Similar caveats apply to escape sequences. Some escape sequences are however required for correct type-
setting even in man pages and usually do not cause portability problems. Several of these render glyphs
corresponding to punctuation code points in the Unicode basic Latin range (U+0000–U+007F) that are han-
dled specially in roff input; the escape sequences below must be used to render them correctly and portably
when documenting material that uses them syntactically—namely, any of the set ' - \ ^ ` ~ (apostrophe,
dash or minus, backslash, caret, grave accent, tilde).

\" Comment. Everything after the double-quote to the end of the input line is ignored. Whole-line
comments should be placed immediately after the empty request (“.”).

\newline
Join the next input line to the current one. Except for the update of the input line counter (used for
diagnostic messages and related purposes), a series of lines ending in backslash-newline appears to
groff as a single input line. Use this escape sequence to split excessively long input lines for doc-
ument maintenance.

\% Control hyphenation. The location of this escape sequence within a word marks a hyphenation
point, supplementing groff ’s automatic hyphenation patterns. At the beginning of a word, it sup-
presses any hyphenation breaks within except those specified with \%.

\: Insert a non-printing break point. A word can break at such a point, but a hyphen glyph is not
written to the output if it does. This escape sequence is an input word boundary, so the remainder
of the word is subject to hyphenation as normal. You can use \: and \% in combination to control
breaking of a file name or URI or to permit hyphenation only after certain explicit hyphens within
a word. See subsection “Hyperlink macros” above for an example.

This escape sequence is a groff extension also supported by Heirloom Doctools troff 050915
(September 2005), mandoc 1.14.5 (2019-03-10), and neatroff (commit 399a4936, 2014-02-17),
but not by Plan 9, Solaris, or Documenter’s Workbench troff s.

\~ Adjustable non-breaking space. Use this escape sequence to prevent a break inside a short phrase
or between a numerical quantity and its corresponding unit(s).

Before starting the motor,
set the output speed to\~1.
There are 1,024\~bytes in 1\~KiB.
CSTR\~#8 documents the B\~language.

This escape sequence is a groff extension also supported by Heirloom Doctools troff 050915
(September 2005), mandoc 1.9.5 (2009-09-21), neatroff (commit 1c6ab0f6e, 2016-09-13), and
Plan 9 from User Space troff (commit 93f8143600, 2022-08-12), but not by Solaris or Docu-
menter’s Workbench troff s.

\& Dummy character. Insert at the beginning of an input line to prevent a dot or apostrophe from be-
ing interpreted as beginning a roff control line. Append to an end-of-sentence punctuation se-
quence to keep it from being recognized as such.

\| Thin space (one-sixth em on typesetters, zero-width on terminals); a non-breaking space. Used
primarily in ellipses (“.\|.\|.”) to space the dots more pleasantly on typesetting devices like dvi,
pdf, and ps.

\c End a text line without inserting space or attempting a break. Normally, if filling is enabled, the
end of a text line is treated like a space; an output line may be broken there (if not, an adjustable
space is inserted); if filling is disabled, the line will be broken there, as in .EX/.EE examples. The
next line is interpreted as usual and can include a macro call (contrast with \newline). \c is useful
when three font styles are needed in a single word, as in a command synopsis.

.RB [\-\-stylesheet=\c

.IR name]

groff 1.23.0 18 December 2023 258

groff_man_style(7) Miscellaneous Information Manual groff_man_style(7)

It also helps when changing font styles in .EX/.EE examples, since they are not filled.

.EX
$ \c
.B groff \-T utf8 \-Z \c
.I file \c
.B | grotty \-i
.EE

Alternatively, and perhaps with better portability, the \f font selection escape sequence can be
used; see below. Using \c to continue a .TP paragraph tag across multiple input lines will render
incorrectly with groff 1.22.3, mandoc 1.14.1, older versions of these programs, and perhaps with
some other formatters.

\e Format the current escape character on the output; widely used in man pages to render a backslash
glyph. It works reliably as long as the “.ec” request is not used, which should never happen in
man pages, and it is slightly more portable than the more explicit \(rs (“reverse solidus”) special
character escape sequence.

\fB, \fI, \fR, \fP
Switch to bold, italic, roman, or back to the previous style, respectively. Either \f or \c is needed
when three different font styles are required in a word.

.RB [\-\-reference\-dictionary=\fI\,name\/\fP]

.RB [\-\-reference\-dictionary=\c

.IR name]

Style escape sequences may be more portable than \c. As shown above, it is up to you to account
for italic corrections with “\ /” and “\ ,”, which are themselves GNU extensions, if desired and if
supported by your implementation.

\fP reliably returns to the style in use immediately preceding the previous \f escape sequence only
if no sectioning, paragraph, or style macro calls have intervened.

As long as at most two styles are needed in a word, style macros like .B and .BI usually result in
more readable roff source than \f escape sequences do.

Several special characters are also widely portable. Except for \-, \(em, and \(ga, AT&T troff did not con-
sistently define the characters listed below, but its descendants, like Plan 9 or Solaris troff , can be made to
support them by defining them in font description files, making them aliases of existing glyphs if necessary;
see groff_font(5).

\- Minus sign or basic Latin hyphen-minus. This escape sequence produces the Unix command-line
option dash in the output. “-” is a hyphen in the roff language; some output devices replace it
with U+2010 (hyphen) or similar.

\(aq Basic Latin neutral apostrophe. Some output devices format “ ' ” as a right single quotation mark.

\(oq
\(cq Opening (left) and closing (right) single quotation marks. Use these for paired directional single

quotes, ‘like this’.

\(dq Basic Latin quotation mark (double quote). Use in macro calls to prevent ‘ " ” from being inter-
preted as beginning a quoted argument, or simply for readability.

.TP

.BI "split \(dq" text \(dq

\(lq
\(rq Left and right double quotation marks. Use these for paired directional double quotes, “like this”.

groff 1.23.0 18 December 2023 259

groff_man_style(7) Miscellaneous Information Manual groff_man_style(7)

\(em Em-dash. Use for an interruption—such as this one—in a sentence.

\(en En-dash. Use to separate the ends of a range, particularly between numbers; for example, “the
digits 1–9”.

\(ga Basic Latin grave accent. Some output devices format “ ` ” as a left single quotation mark.

\(ha Basic Latin circumflex accent (“hat”). Some output devices format “^” as U+02C6 (modifier let-
ter circumflex accent) or similar.

\(rs Reverse solidus (backslash). The backslash is the default escape character in the roff language, so
it does not represent itself in output. Also see \e above.

\(ti Basic Latin tilde. Some output devices format “~” as U+02DC (small tilde) or similar.

For maximum portability, escape sequences and special characters not listed above are better avoided in
man pages.

Hooks
Two macros, both GNU extensions, are called internally by the groff man package to format page headers
and footers and can be redefined by the administrator in a site’s man.local file (see section “Files” below).
The presentation of .TH above describes the default headers and footers. Because these macros are hooks
for groff man internals, man pages have no reason to call them. Such hook definitions will likely consist of
“.sp” and “.tl” requests. They must also increase the page length with “.pl” requests in continuous render-
ing mode; .PT furthermore has the responsibility of emitting a PDF bookmark after writing the first page
header in a document. Consult the existing implementations in an.tmac when drafting replacements.

.BT Set the page footer text (“bottom trap”).

.PT Set the page header text (“page trap”).

To remove a page header or footer entirely, define the appropriate macro as empty rather than deleting it.

Deprecated features
Use of the following in man pages for public distribution is discouraged.

.AT [system [release]]
Alter the footer for use with legacy AT&T man pages, overriding any definition of the footer-in-
side argument to .TH. This macro exists only to render man pages from historical systems.

system can be any of the following.

3 7th edition (default)

4 System III

5 System V

The optional release argument specifies the release number, as in “System V Release 3”.

.DT Reset tab stops to the default (every 0.5i [inches]).

Use of this presentation-oriented macro is deprecated. It translates poorly to HTML, under which
exact space control and tabulation are not readily available. Thus, information or distinctions that
you use tab stops to express are likely to be lost. If you feel tempted to change the tab stops such
that calling this macro later is desirable to restore them, you should probably be composing a table
using tbl(1) instead.

.HP [indentation]
Set up a paragraph with a hanging left indentation. The indentation argument, if present, is han-
dled as with .TP.

Use of this presentation-oriented macro is deprecated. A hanging indentation cannot be expressed
naturally under HTML, and non-roff -based man page interpreters may treat .HP as an ordinary
paragraph. Thus, information or distinctions you mean to express with indentation may be lost.

groff 1.23.0 18 December 2023 260

groff_man_style(7) Miscellaneous Information Manual groff_man_style(7)

.OP option-name [option-argument]
Indicate an optional command parameter called option-name, which is set in bold. If the option
takes an argument, specify option-argument using a noun, abbreviation, or hyphenated noun
phrase. If present, option-argument is preceded by a space and set in italics. Square brackets in
roman surround both arguments.

Use of this quasi-semantic macro, an extension originating in Documenter’s Workbench troff , is
deprecated. It cannot easily be used to annotate options that take optional arguments or options
whose arguments have internal structure (such as a mixture of literal and variable components).
One could work around these limitations with font selection escape sequences, but it is preferable
to use font style alternation macros, which afford greater flexibility.

.PD [vertical-space]
Define the vertical space between paragraphs or (sub)sections. The optional argument vertical-
space specifies the amount; the default scaling unit is “v”. Without an argument, the spacing is re-
set to its default value; see subsection “Horizontal and vertical spacing” above.

Use of this presentation-oriented macro is deprecated. It translates poorly to HTML, under which
exact control of inter-paragraph spacing is not readily available. Thus, information or distinctions
that you use .PD to express are likely to be lost.

.UC [version]
Alter the footer for use with legacy BSD man pages, overriding any definition of the footer-inside
argument to .TH. This macro exists only to render man pages from historical systems.

version can be any of the following.

3 3rd Berkeley Distribution (default)

4 4th Berkeley Distribution

5 4.2 Berkeley Distribution

6 4.3 Berkeley Distribution

7 4.4 Berkeley Distribution

History
M. Douglas McIlroy 〈m.douglas.mcilroy@dartmouth.edu〉 designed, implemented, and documented the
AT&T man macros for Unix Version 7 (1979) and employed them to edit the first volume of its Program-
mer’s Manual, a compilation of all man pages supplied by the system. That man supported the macros
listed in this page not described as extensions, except .P and the deprecated .AT and .UC. The only strings
defined were R and S; no registers were documented.

.UC appeared in 3BSD (1980). Unix System III (1980) introduced .P and exposed the registers IN and LL,
which had been internal to Seventh Edition Unix man. PWB/UNIX 2.0 (1980) added the Tm string.
4BSD (1980) added lq and rq strings. SunOS 2.0 (1985) recognized C, D, P, and X registers. 4.3BSD
(1986) added .AT and .P. Ninth Edition Research Unix (1986) introduced .EX and .EE. SunOS 4.0 (1988)
added .SB.

The foregoing features were what James Clark implemented in early versions of groff . Later, groff 1.20
(2009) originated .SY/.YS, .TQ, .MT/.ME, and .UR/.UE. Plan 9 from User Space’s troff introduced .MR
in 2020.

Options
The following groff options set registers (with -r) and strings (with -d) recognized and used by the man
macro package. To ensure rendering consistent with output device capabilities and reader preferences, man
pages should never manipulate them.

-dAD=adjustment-mode
Set line adjustment to adjustment-mode, which is typically “b” for adjustment to both margins (the
default), or “l” for left alignment (ragged right margin). Any valid argument to groff ’s “.ad” re-
quest may be used. See groff (7) for less-common choices.

groff 1.23.0 18 December 2023 261

groff_man_style(7) Miscellaneous Information Manual groff_man_style(7)

-rcR=1
Enable continuous rendering. Output is not paginated; instead, one (potentially very long) page is
produced. This is the default for terminal and HTML devices. Use -rcR=0 to disable it on termi-
nal devices; on HTML devices, it cannot be disabled.

-rC1 Number output pages consecutively, in strictly increasing sequence, rather than resetting the page
number to 1 (or the value of register P) with each new man document.

-rCS=1
Set section headings (the argument(s) to .SH) in full capitals. This transformation is off by default
because it discards case distinction information.

-rCT=1
Set the man page topic (the first argument to .TH) in full capitals in headers and footers. This
transformation is off by default because it discards case distinction information.

-rD1 Enable double-sided layout, formatting footers for even and odd pages differently; see the descrip-
tion of .TH in subsection “Document structure macros” above.

-rFT= footer-distance
Set distance of the footer relative to the bottom of the page to footer-distance; this amount is al-
ways negative. At one half-inch above this location, the page text is broken before writing the
footer. Ignored if continuous rendering is enabled. The default is -0.5i.

-dHF=heading-font
Set the font used for section and subsection headings; the default is “B” (bold style of the default
family). Any valid argument to groff ’s “.ft” request may be used. See groff (7).

-rHY=0
Disable automatic hyphenation. Normally, it is enabled (1). The hyphenation mode is determined
by the groff locale; see section “Localization“ of groff (7).

-rIN=standard-indentation
Set the amount of indentation used for ordinary paragraphs (.P and its synonyms) and the default
indentation amount used by .IP, .RS, .TP, and the deprecated .HP. See subsection “Horizontal
and vertical spacing” above for the default. For terminal devices, standard-indentation should al-
ways be an integer multiple of unit “n” to get consistent indentation.

-rLL=line-length
Set line length; the default is 78n for terminal devices and 6.5i for typesetting devices.

-rLT=title-length
Set the line length for titles. (“Titles” is the roff term for headers and footers.) By default, it is set
to the line length (see -rLL above).

-dMF=man-page-topic-font
Set the font used for man page topics named in .TH and .MR calls; the default is “I” (italic style
of the default family). Any valid argument to groff ’s “.ft” request may be used. If the MF string
ends in “I”, it is assumed to be an oblique typeface, and italic corrections are applied before and
after man page topics.

-rPn Start enumeration of pages at n. The default is 1.

-rStype-size
Use type-size for the document’s body text; acceptable values are 10, 11, or 12 points. See subsec-
tion “Font style macros” above for the default.

-rSN=subsection-indentation
Set indentation of subsection headings to subsection-indentation. See subsection “Horizontal and
vertical spacing” above for the default.

groff 1.23.0 18 December 2023 262

groff_man_style(7) Miscellaneous Information Manual groff_man_style(7)

-rU1 Enable generation of URI hyperlinks in the grohtml and grotty output drivers. grohtml enables
them by default; grotty does not, pending more widespread pager support for OSC 8 escape se-
quences. Use -rU0 to disable hyperlinks; this will make the arguments to MT and UR calls visi-
ble in the document text produced by link-capable drivers.

-rXp Number successors of page p as pa, pb, pc, and so forth. The register tracking the suffixed page
letter uses format “a” (see the “.af” request in groff (7)). For example, the option -rX2 produces
the following page numbers: 1, 2, 2a, 2b, . . . , 2aa, 2ab, and so on.

Files
/usr/share/groff/1.23.0/tmac/an.tmac

Most man macros are defined in this file. It also loads extensions from an-ext.tmac (see below).

/usr/share/groff/1.23.0/tmac/andoc.tmac
This brief groff program detects whether the man or mdoc macro package is being used by a doc-
ument and loads the correct macro definitions, taking advantage of the fact that pages using them
must call .TH or .Dd, respectively, before any other macros. A man program or user typing, for
example, “groff -mandoc page.1”, need not know which package the file page.1 uses. Multiple
man pages, in either format, can be handled; andoc reloads each macro package as necessary.

/usr/share/groff/1.23.0/tmac/an-ext.tmac
Except for .SB, definitions of macros described above as extensions are contained in this file; in
some cases, they are simpler versions of definitions appearing in an.tmac, and are ignored if the
formatter is GNU troff . They are written to be compatible with AT&T troff and permissively li-
censed—not copylefted. To reduce the risk of name space collisions, string and register names be-
gin only with “m”. We encourage man page authors who are concerned about portability to legacy
Unix systems to copy these definitions into their pages, and maintainers of troff implementations
or work-alike systems that format man pages to re-use them.

The definitions for these macros are read after a page calls .TH, so they will replace any macros of
the same names preceding it in your file. If you use your own implementations of these macros,
they must be defined after .TH is called to have any effect. Furthermore, it is wise to define such
page-local macros (if at all) after the “Name” section to accommodate timid makewhatis or mandb
implementations that may give up their scan for indexing material early.

/usr/share/groff/1.23.0/tmac/man.tmac
This is a wrapper that loads an.tmac.

/usr/share/groff/1.23.0/tmac/mandoc.tmac
This is a wrapper that loads andoc.tmac.

/usr/share/groff/site-tmac/man.local
Put site-local changes and customizations into this file.

.\" Use narrower indentation on terminals and similar.

.if n .nr IN 4n

.\" Put only one space after the end of a sentence.

.ss 12 0 \" See groff(7).

.\" Keep pages narrow even on wide terminals.

.if n .if \n[LL]>78n .nr LL 78n

.\" Ensure hyperlinks are enabled for terminals.

.nr U 1

On multi-user systems, it is more considerate to users whose preferences may differ from the ad-
ministrator’s to be less aggressive with such settings, or to permit their override with a user-spe-
cific man.local file. Place the requests below at the end of the site-local file to manifest courtesy.

.soquiet \V[XDG_CONFIG_HOME]/man.local

.soquiet \V[HOME]/.man.local
However, a security-sandboxed man(1) program may lack permission to open such files.

groff 1.23.0 18 December 2023 263

groff_man_style(7) Miscellaneous Information Manual groff_man_style(7)

Notes
Some tips on troubleshooting your man pages follow.

• Some ASCII characters look funny or copy and paste wrong.
On devices with large glyph repertoires, like UTF-8-capable terminals and PDF, several keyboard
glyphs are mapped to code points outside the Unicode basic Latin range because that usually re-
sults in better typography in the general case. When documenting GNU/Linux command or C lan-
guage syntax, however, this translation is sometimes not desirable.

To get a “literal”.should be input.

' \(aq
- \-
\ \(rs
^ \(ha
` \(ga
~ \(ti

Additionally, if a neutral double quote (") is needed in a macro argument, you can use \(dq to get
it. You should not use \(aq for an ordinary apostrophe (as in “can’t”) or \- for an ordinary hyphen
(as in “word-aligned”). Review subsection “Portability” above.

• Do I ever need to use an empty macro argument ("")?
Probably not. When this seems necessary, often a shorter or clearer alternative is available.

Instead of.should be considered.

.TP "" .TP

.BI "" italic-text bold-text .IB italic-text bold-text

.TH foo 1 "" "foo 1.2.3" .TH foo 1 yyyy-mm-dd "foo 1.2.3"

.IP "" 4n .IP

.IP "" 4n .RS 4n
paragraph .P
. . . paragraph
. . . .RE

.B one two "" three .B one two three

In the title heading (.TH), the date of the page’s last revision is more important than packaging in-
formation; it should not be omitted. Ideally, a page maintainer will keep both up to date.

.IP is sometimes ill-understood and misused, especially when no marker argument is supplied—an
indentation argument is not required. By setting an explicit indentation, you may be overriding the
reader’s preference as set with the -rIN option. If your page renders adequately without one, use
the simpler form. If you need to indent multiple (unmarked) paragraphs, consider setting an inset
region with .RS and .RE instead.

In the last example, the empty argument does have a subtly different effect than its suggested re-
placement: the empty argument causes an additional space character to be interpolated between
the arguments “two” and “three”—but it is a regular breaking space, so it can be discarded at the
end of an output line. It is better not to be subtle, particularly with space, which can be overlooked
in source and rendered forms.

• .RS doesn’t indent relative to my indented paragraph.
The .RS macro sets the left margin; that is, the position at which an ordinary paragraph (.P and its
synonyms) will be set. .IP, .TP, and the deprecated .HP use the same default indentation. If not
given an argument, .RS moves the left margin by this same amount. To create an inset relative to
an indented paragraph, call .RS repeatedly until an acceptable indentation is achieved, or give .RS
an indentation argument that is at least as much as the paragraph’s indentation amount relative to
an adjacent .P paragraph. See subsection “Horizontal and vertical spacing” above for the values.

groff 1.23.0 18 December 2023 264

groff_man_style(7) Miscellaneous Information Manual groff_man_style(7)

Another approach you can use with tagged paragraphs is to place an .RS call immediately after the
paragraph tag; this will also force a break regardless of the width of the tag, which some authors
prefer. Follow-up paragraphs under the tag can then be set with .P instead of .IP. Remember to
use .RE to end the indented region before starting the next tagged paragraph (at the appropriate
nesting level).

• .RE doesn’t move the inset back to the expected level.
• warning: scaling unit invalid in context
• warning: register 'an-saved-marginn' not defined
• warning: register 'an-saved-prevailing-indentn' not defined

The .RS macro takes an indentation amount as an argument; the .RE macro’s argument is a spe-
cific inset level. .RE 1 goes to the level before any .RS macros were called, .RE 2 goes to the
level of the first .RS call you made, and so forth. If you desire symmetry in your macro calls, sim-
ply issue one .RE without an argument for each .RS that precedes it.

After calls to the .SH and .SS sectioning macros, all relative insets are cleared and calls to .RE
have no effect until .RS is used again.

• Do I need to keep typing the indentation in a series of .IP calls?
Not if you don’t want to change it. Review subsection “Horizontal and vertical spacing” above.

Instead of.should be considered.

.IP \(bu 4n .IP \(bu 4n
paragraph paragraph
.IP \(bu 4n .IP \(bu
another-paragraph another-paragraph

• Why doesn’t the package provide a string to insert an ellipsis?
Examples of ellipsis usage are shown above, in subsection “Command synopsis macros”. The id-
iomatic roff ellipsis is three dots (periods) with thin space escape sequences \| internally separating
them. Since dots both begin control lines and are candidate end-of-sentence characters, however,
it is sometimes necessary to prefix and/or suffix an ellipsis with the dummy character escape se-
quence \&. That fact stands even if a string is defined to contain the sequence; further, if the string
ends with \&, end-of-sentence detection is defeated when you use the string at the end of an actual
sentence. (Ending a sentence with an ellipsis is often poor style, but not always.) A hypothetical
string EL that contained an ellipsis, but not the trailing dummy character \&, would then need to
be suffixed with the latter when not ending a sentence.

Instead of.do this.

.ds EL \&.\|.\|. Arguments are
Arguments are .IR src-file\~ .\|.\|.\&
.IR src-file\~ *(EL\& .IR dest-dir .
.IR dest-dir .

The first column practices a false economy; the savings in typing is offset by the cost of obscuring
even the suggestion of an ellipsis to a casual reader of the source document, and reduced portabil-
ity to non-roff man page formatters that cannot handle string definitions.

There is an ellipsis code point in Unicode, and some fonts have an ellipsis glyph, which some man
pages have accessed in a non-portable way with the font-dependent \N escape sequence. We dis-
courage the use of these; on terminals, they may crowd the dots into a half-width character cell,
and will not render at all if the output device doesn’t have the glyph. In syntax synopses, missing
ellipses can cause great confusion. Dots and space are universally supported.

Authors
The initial GNU implementation of the man macro package was written by James Clark. Later, Werner
Lemberg 〈wl@gnu.org〉 supplied the S, LT, and cR registers, the last a 4.3BSD-Reno mdoc(7) feature.
Larry Kollar 〈kollar@alltel.net〉 added the FT, HY, and SN registers; the HF string; and the PT and BT
macros. G. Branden Robinson 〈g.branden.robinson@gmail.com〉 implemented the AD and MF strings;

groff 1.23.0 18 December 2023 265

groff_man_style(7) Miscellaneous Information Manual groff_man_style(7)

CS, CT, and U registers; and the MR macro. Except for .SB, the extension macros were written by Lem-
berg, Eric S. Raymond 〈esr@thyrsus.com〉, and Robinson.

This document was originally written for the Debian GNU/Linux system by Susan G. Kleinmann 〈sgk@
debian.org〉. It was corrected and updated by Lemberg and Robinson. The extension macros were docu-
mented by Raymond and Robinson. Raymond also originated the portability section, to which Ingo
Schwarze 〈schwarze@usta.de〉 contributed most of the material on escape sequences.

See also
tbl(1), eqn(1), and refer(1) are preprocessors used with man pages. man(1) describes the man page librar-
ian on your system. groff_mdoc(7) details the groff version of the BSD-originated alternative macro pack-
age for man pages.

groff_man(7), groff (7), groff_char(7), man(7)

groff 1.23.0 18 December 2023 266

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

Name
groff_mdoc — compose BSD-style manual (man) pages with GNU roff

Synopsis
groff -mdoc file . . .

Description
The GNU implementation of the mdoc macro package is part of the groff(1) document formatting system.
mdoc is a structurally- and semantically-oriented package for writing Unix manual pages with troff(1). Its
predecessor, the man(7) package, primarily addressed page layout and presentational concerns, leaving the
selection of fonts and other typesetting details to the individual author. This discretion has led to divergent
styling practices among authors using it.

mdoc organizes its macros into domains. The page structure domain lays out the page and comprises titles,
section headings, displays, and lists. The general text domain supplies macros to quote or style text, or to
interpolate common noun phrases. The manual domain offers semantic macros corresponding to the termi-
nology used by practitioners in discussion of Unix commands, routines, and files. Manual domain macros
distinguish command-line arguments and options, function names, function parameters, pathnames, vari-
ables, cross references to other manual pages, and so on. These terms are meaningful both to the author
and the readers of a manual page. It is hoped that the resulting increased consistency of the man page cor-
pus will enable easier translation to future documentation tools.

Throughout Unix documentation, a manual entry is referred to simply as a “man page”, regardless of its
length, without gendered implication, and irrespective of the macro package selected for its composition.

Getting started
The mdoc package attempts to simplify man page authorship and maintenance without requiring mastery of
the roff language. This document presents only essential facts about roff. For further background, including
a discussion of basic typographical concepts like “breaking”, “filling”, and “adjustment”, see roff(7). Spe-
cialized units of measurement also arise, namely ens, vees, inches, and points, abbreviated “n”, “v”, “i”,
and “p”, respectively; see section “Measurements” of groff(7).

For brief examples, we employ an arrow notation illustrating a transformation of input on the left to ren-
dered output on the right. Consider the .Dq macro, which double-quotes its arguments.

.Dq man page → “man page”

Usage
An mdoc macro is called by placing the roff control character, ‘.’ (dot) at the beginning of a line followed
by its name. In this document, we often discuss a macro name with this leading dot to identify it clearly,
but the dot is not part of its name. Space or tab characters can separate the dot from the macro name. Ar-
guments may follow, separated from the macro name and each other by spaces, but not tabs. The dot at the
beginning of the line prepares the formatter to expect a macro name. A dot followed immediately by a
newline is ignored; this is called the empty request. To begin an input line with a dot (or a neutral apostro-
phe ‘'’) in some context other than a macro call, precede it with the ‘\&’ escape sequence; this is a dummy
character, not formatted for output. The backslash is the roff escape character; it can appear anywhere and
it always followed by at least one more character. If followed by a newline, the backslash escapes the input
line break; you can thus keep input lines to a reasonable length without affecting their interpretation.

Macros in GNU troff accept an unlimited number of arguments, in contrast to other troffs that often can’t
handle more than nine. In limited cases, arguments may be continued or extended on the next input line
without resort to the ‘\newline’ escape sequence; see subsection “Extended arguments” below. Neutral
double quotes " can be used to group multiple words into an argument; see subsection “Passing space
characters in an argument” below.

Most of mdoc’s general text and manual domain macros parse their argument lists for callable macro
names. This means that an argument in the list matching a general text or manual domain macro name (and
defined to be callable) will be called with the remaining arguments when it is encountered. In such cases,
the argument, although the name of a macro, is not preceded by a dot. Macro calls can thus be nested. This
approach to macro argument processing is a unique characteristic of the mdoc package, not a general fea-
ture of roff syntax.

groff 1.23.0 2 July 2023 267

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

For example, the option macro, .Op, may call the flag and argument macros, .Fl and .Ar, to specify an op-
tional flag with an argument.

.Op Fl s Ar bytes → [-s bytes]
To prevent a word from being interpreted as a macro name, precede it with the dummy character.

.Op \&Fl s \&Ar bytes → [Fl s Ar bytes]

In this document, macros whose argument lists are parsed for callable arguments are referred to as parsed,
and those that may be called from an argument list are referred to as callable. This usage is a technical faux
pas, since all mdoc macros are in fact interpreted (unless prevented with ‘\&’), but as it is cumbersome to
constantly refer to macros as “being able to call other macros”, we employ the term “parsed” instead. Ex-
cept where explicitly stated, all mdoc macros are parsed and callable.

In the following, we term an mdoc macro that starts a line (with a leading dot) a command if a distinction
from those appearing as arguments of other macros is necessary.

Passing space characters in an argument
Sometimes it is desirable to give a macro an argument containing one or more space characters, for instance
to specify a particular arrangement of arguments demanded by the macro. Additionally, quoting multi-
word arguments that are to be treated the same makes mdoc work faster; macros that parse arguments do so
once (at most) for each. For example, the function command .Fn expects its first argument to be the name
of a function and any remaining arguments to be function parameters. Because C language standards man-
date the inclusion of types and identifiers in the parameter lists of function definitions, each ‘Fn’ parameter
after the first will be at least two words in length, as in “int foo”.

There are a few ways to embed a space in a macro argument. One is to use the unadjustable space escape
sequence \space. The formatter treats this escape sequence as if it were any other printable character, and
will not break a line there as it would a word space when the output line is full. This method is useful for
macro arguments that are not expected to straddle an output line boundary, but has a drawback: this space
does not adjust as others do when the output line is formatted. An alternative is to use the unbreakable
space escape sequence, ‘\~’, which cannot break but does adjust. This groff extension is widely but not
perfectly portable. Another method is to enclose the string in double quotes.

.Fn fetch char\ ∗str → fetch(char ∗str)

.Fn fetch char\~∗str → fetch(char ∗str)

.Fn fetch "char ∗str" → fetch(char ∗str)
If the ‘\’ before the space in the first example or the double quotes in the third example were omitted, .Fn
would see three arguments, and the result would contain an undesired comma.

.Fn fetch char ∗str → fetch(char , ∗str)

Trailing space characters
It is wise to remove trailing spaces from the ends of input lines. Should the need arise to put a formattable
space at the end of a line, do so with the unadjustable or unbreakable space escape sequences.

Formatting the backslash glyph
When you need the roff escape character ‘\’ to appear in the output, use ‘\e’ or \(rs instead. Techni-
cally, ‘\e’ formats the current escape character; it works reliably as long as no roff request is used to
change it, which should never happen in man pages. \(rs is a groff special character escape sequence that
explicitly formats the “reverse solidus” (backslash) glyph.

Other possible pitfalls
groff mdoc warns when an empty input line is found outside of a display, a topic presented in subsection
“Examples and displays” below. Use empty requests to space the source document for maintenance.

Leading spaces cause a break and are formatted. Avoid this behaviour if possible. Similarly, do not put
more than one space between words in an ordinary text line; they are not “normalized” to a single space as
other text formatters might do.

Don’t try to use the neutral double quote character ‘"’ to represent itself in an argument. Use the special
character escape sequence \(dq to format it. Further, this glyph should not be used for conventional quo-
tation; mdoc offers several quotation macros. See subsection “Enclosure and quoting macros” below.

groff 1.23.0 2 July 2023 268

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

The formatter attempts to detect the ends of sentences and by default puts the equivalent of two spaces be-
tween sentences on the same output line; see roff(7). To defeat this detection in a parsed list of macro argu-
ments, put ‘\&’ before the punctuation mark. Thus,

The
.Ql .
character.
.Pp
The
.Ql \&.
character.
.Pp
.No test .
test
.Pp
.No test.
test

gives
The ‘’. character

The ‘.’ character.

test. test

test. test
as output. As can be seen in the first and third output lines, mdoc handles punctuation characters specially
in macro arguments. This will be explained in section “General syntax” below.

A comment in the source file of a man page can begin with ‘.\"’ at the start of an input line, ‘\"’ after
other input, or ‘\#’ anywhere (the last is a groff extension); the remainder of any such line is ignored.

A man page template
Use mdoc to construct a man page from the following template.

.\" The following three macro calls are required.

.Dd date

.Dt topic [section-identifier [section-keyword-or-title]]

.Os [package-or-operating system [version-or-release]]

.Sh Name

.Nm topic

.Nd summary-description

.\" The next heading is used in sections 2 and 3.

.\" .Sh Library

.\" The next heading is used in sections 1-4, 6, 8, and 9.

.Sh Synopsis

.Sh Description

.\" Uncomment and populate the following sections as needed.

.\" .Sh "Implementation notes"

.\" The next heading is used in sections 2, 3, and 9.

.\" .Sh "Return values"

.\" The next heading is used in sections 1, 3, 6, and 8.

.\" .Sh Environment

.\" .Sh Files

.\" The next heading is used in sections 1, 6, and 8.

.\" .Sh "Exit status"

.\" .Sh Examples

.\" The next heading is used in sections 1, 4, 6, 8, and 9.

.\" .Sh Diagnostics

.\" .Sh Compatibility

groff 1.23.0 2 July 2023 269

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

.\" The next heading is used in sections 2, 3, 4, and 9.

.\" .Sh Errors

.\" .Sh "See also"

.\" .Sh Standards

.\" .Sh History

.\" .Sh Authors

.\" .Sh Caveats

.\" .Sh Bugs

The first items in the template are the commands .Dd, .Dt, and .Os. They identify the page and are dis-
cussed below in section “Title macros”.

The remaining items in the template are section headings (.Sh); of which “Name” and “Description” are
mandatory. These headings are discussed in section “Page structure domain”, which follows section
“Manual domain”. Familiarize yourself with manual domain macros first; we use them to illustrate the use
of page structure domain macros.

Conventions
In the descriptions of macros below, square brackets surround optional arguments. An ellipsis (‘ . . .’) repre-
sents repetition of the preceding argument zero or more times. Alternative values of a parameter are sepa-
rated with ‘|’. If a mandatory parameter can take one of several alternative values, use braces to enclose the
set, with spaces and ‘|’ separating the items.

ztar {c | x} [-w [-y | -z]] [-f archive] member . . .
An alternative to using braces is to separately synopsize distinct operation modes, particularly if the list of
valid optional arguments is dependent on the user’s choice of a mandatory parameter.

ztar c [-w [-y | -z]] [-f archive] member . . .
ztar x [-w [-y | -z]] [-f archive] member . . .

Most macros affect subsequent arguments until another macro or a newline is encountered. For example,
‘.Li ls Bq Ar file’ doesn’t produce ‘ls [file]’, but ‘ls [file]’. Consequently, a warning
message is emitted for many commands if the first argument is itself a macro, since it cancels the effect of
the preceding one. On rare occasions, you might want to format a word along with surrounding brackets as
a literal.

.Li "ls [file]" → ls [file] # list any files named e, f, i, or l

Many macros possess an implicit width, used when they are contained in lists and displays. If you avoid re-
lying on these default measurements, you escape potential conflicts with site-local modifications of the
mdoc package. Explicit -width and -offset arguments to the .Bl and .Bd macros are preferable.

Title macros
We present the mandatory title macros first due to their importance even though they formally belong to
the page structure domain macros. They designate the topic, date of last revision, and the operating system
or software project associated with the page. Call each once at the beginning of the document. They popu-
late the page headers and footers, which are in roff parlance termed “titles”.

.Dd date
This first macro of any mdoc manual records the last modification date of the document source.
Arguments are concatenated and separated with space characters.

Historically, date was written in U.S. traditional format, “Month day , year” where Month is the
full month name in English, day an integer without a leading zero, and year the four-digit year.
This localism is not enforced, however. You may prefer ISO 8601 format, YYYY-MM-DD. A
date of the form ‘$Mdocdate: Month day year $’ is also recognized. It is used in
OpenBSD manuals to automatically insert the current date when committing.

This macro is neither callable nor parsed.

groff 1.23.0 2 July 2023 270

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

.Dt topic [section-identifier [section-keyword-or-title]]
topic is the subject of the man page. A section-identifier that begins with an integer in
the range 1–9 or is one of the words unass, draft, or paper selects a predefined section title.
This use of “section” has nothing to do with the section headings otherwise discussed in this page;
it arises from the organizational scheme of printed and bound Unix manuals.

In this implementation, the following titles are defined for integral section numbers.

1 General Commands Manual
2 System Calls Manual
3 Library Functions Manual
4 Kernel Interfaces Manual
5 File Formats Manual
6 Games Manual
7 Miscellaneous Information Manual
8 System Manager’s Manual
9 Kernel Developer’s Manual

A section title may be arbitrary or one of the following abbreviations.

USD User’s Supplementary Documents
PS1 Programmer’s Supplementary Documents
AMD Ancestral Manual Documents
SMM System Manager’s Manual
URM User’s Reference Manual
PRM Programmer’s Manual
KM Kernel Manual
IND Manual Master Index
LOCAL Local Manual
CON Contributed Software Manual

For compatibility, MMI can be used for IND, and LOC for LOCAL. Values from the previous table
will specify a new section title. If section-keyword-or-title designates a computer ar-
chitecture recognized by groff mdoc, its value is prepended to the default section title as specified
by the second parameter. By default, the following architecture keywords are defined.

acorn26, acorn32, algor, alpha, amd64, amiga, amigappc, arc, arm, arm26, arm32, armish, atari, aviion, beagle, bebox,
cats, cesfic, cobalt, dreamcast, emips, evbarm, evbmips, evbppc, evbsh3, ews4800mips, hp300, hp700, hpcarm,
hpcmips, hpcsh, hppa, hppa64, i386, ia64, ibmnws, iyonix, landisk, loongson, luna68k, luna88k, m68k, mac68k,
macppc, mips, mips64, mipsco, mmeye, mvme68k, mvme88k, mvmeppc, netwinder, news68k, newsmips, next68k,
ofppc, palm, pc532, playstation2, pmax, pmppc, powerpc, prep, rs6000, sandpoint, sbmips, sgi, sgimips, sh3, shark,
socppc, solbourne, sparc, sparc64, sun2, sun3, tahoe, vax, x68k, x86_64, xen, zaurus

If a section title is not determined after the above matches have been attempted,
section-keyword-or-title is used.

The effects of varying .Dt arguments on the page header content are shown below. Observe how
‘\&’ prevents the numeral 2 from being used to look up a predefined section title.

.Dt foo 2 → foo(2) System Calls Manual foo(2)

.Dt foo 2 m68k → foo(2) m68k System Calls Manual foo(2)

.Dt foo 2 baz → foo(2) System Calls Manual foo(2)

.Dt foo \&2 baz → foo(2) baz foo(2)

.Dt foo "" baz → foo baz foo

.Dt foo M Z80 → foo(M) Z80 foo(M)

roff strings define section titles and architecture identifiers. Site-specific additions might be found
in the file mdoc.local; see section “Files” below.

This macro is neither callable nor parsed.

groff 1.23.0 2 July 2023 271

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

.Os [operating-system-or-package-name [version-or-release]]
This macro associates the document with a software distribution. When composing a man page to
be included in the base installation of an operating system, do not provide an argument; mdoc will
supply it. In this implementation, that default is “GNU”. It may be overridden in the site configu-
ration file, mdoc.local; see section “Files” below. A portable software package maintaining its
own man pages can supply its name and version number or release identifier as optional argu-
ments. A version-or-release argument should use the standard nomenclature for the software spec-
ified. In the following table, recognized version-or-release arguments for some predefined operat-
ing systems are listed. As with .Dt, site additions might be defined in mdoc.local.

ATT 7th, 7, III, 3, V, V.2, V.3, V.4

BSD 3, 4, 4.1, 4.2, 4.3, 4.3t, 4.3T, 4.3r, 4.3R, 4.4

NetBSD 0.8, 0.8a, 0.9, 0.9a, 1.0, 1.0a, 1.1, 1.2, 1.2a, 1.2b, 1.2c, 1.2d, 1.2e, 1.3, 1.3a,
1.4, 1.4.1, 1.4.2, 1.4.3, 1.5, 1.5.1, 1.5.2, 1.5.3, 1.6, 1.6.1, 1.6.2, 1.6.3, 2.0,
2.0.1, 2.0.2, 2.0.3, 2.1, 3.0, 3.0.1, 3.0.2, 3.0.3, 3.1, 3.1.1, 4.0, 4.0.1, 5.0, 5.0.1,
5.0.2, 5.1, 5.1.2, 5.1.3, 5.1.4, 5.2, 5.2.1, 5.2.2, 6.0, 6.0.1, 6.0.2, 6.0.3, 6.0.4,
6.0.5, 6.0.6, 6.1, 6.1.1, 6.1.2, 6.1.3, 6.1.4, 6.1.5, 7.0, 7.0.1, 7.0.2, 7.1, 7.1.1,
7.1.2, 7.2, 8.0, 8.1

FreeBSD 1.0, 1.1, 1.1.5, 1.1.5.1, 2.0, 2.0.5, 2.1, 2.1.5, 2.1.6, 2.1.7, 2.2, 2.2.1, 2.2.2,
2.2.5, 2.2.6, 2.2.7, 2.2.8, 2.2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 4.0, 4.1, 4.1.1, 4.2,
4.3, 4.4, 4.5, 4.6, 4.6.2, 4.7, 4.8, 4.9, 4.10, 4.11, 5.0, 5.1, 5.2, 5.2.1, 5.3, 5.4,
5.5, 6.0, 6.1, 6.2, 6.3, 6.4, 7.0, 7.1, 7.2, 7.3, 7.4, 8.0, 8.1, 8.2, 8.3, 8.4, 9.0, 9.1,
9.2, 9.3, 10.0, 10.1, 10.2, 10.3, 10.4, 11.0, 11.1, 11.2, 11.3, 12.0, 12.1

OpenBSD 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7,
3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5,
5.6, 5.7, 5.8, 5.9, 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6

DragonFly 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.8.1, 1.9, 1.10, 1.11, 1.12, 1.12.2,
1.13, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.9.1, 2.10, 2.10.1, 2.11,
2.12, 2.13, 3.0, 3.0.1, 3.0.2, 3.1, 3.2, 3.2.1, 3.2.2, 3.3, 3.4, 3.4.1, 3.4.2, 3.4.3,
3.5, 3.6, 3.6.1, 3.6.2, 3.7, 3.8, 3.8.1, 3.8.2, 4.0, 4.0.1, 4.0.2, 4.0.3, 4.0.4, 4.0.5,
4.0.6, 4.1, 4.2, 4.2.1, 4.2.2, 4.2.3, 4.2.4, 4.3, 4.4, 4.4.1, 4.4.2, 4.4.3, 4.5, 4.6,
4.6.1, 4.6.2, 4.7, 4.8, 4.8.1, 4.9, 5.0, 5.0.1, 5.0.2, 5.1, 5.2, 5.2.1, 5.2.2, 5.3, 5.4,
5.4.1, 5.4.2, 5.4.3, 5.5, 5.6, 5.6.1, 5.6.2

Darwin 8.0.0, 8.1.0, 8.2.0, 8.3.0, 8.4.0, 8.5.0, 8.6.0, 8.7.0, 8.8.0, 8.9.0, 8.10.0, 8.11.0,
9.0.0, 9.1.0, 9.2.0, 9.3.0, 9.4.0, 9.5.0, 9.6.0, 9.7.0, 9.8.0, 10.0.0, 10.1.0, 10.2.0,
10.3.0, 10.4.0, 10.5.0, 10.6.0, 10.7.0, 10.8.0, 11.0.0, 11.1.0, 11.2.0, 11.3.0,
11.4.0, 11.5.0, 12.0.0, 12.1.0, 12.2.0, 13.0.0, 13.1.0, 13.2.0, 13.3.0, 13.4.0,
14.0.0, 14.1.0, 14.2.0, 14.3.0, 14.4.0, 14.5.0, 15.0.0, 15.1.0, 15.2.0, 15.3.0,
15.4.0, 15.5.0, 15.6.0, 16.0.0, 16.1.0, 16.2.0, 16.3.0, 16.4.0, 16.5.0, 16.6.0,
17.0.0, 17.1.0, 17.2.0, 17.3.0, 17.4.0, 17.5.0, 17.6.0, 17.7.0, 18.0.0, 18.1.0,
18.2.0, 18.3.0, 18.4.0, 18.5.0, 18.6.0, 18.7.0, 19.0.0, 19.1.0, 19.2.0

Historically, the first argument used with .Dt was BSD or ATT. An unrecognized version argu-
ment after ATT is replaced with “Unix”; for other predefined abbreviations, it is ignored and a
warning diagnostic emitted. Otherwise, unrecognized arguments are displayed verbatim in the
page footer. For instance, this page uses “.Os groff 1.23.0” whereas a locally produced
page might employ “.Os "UXYZ CS Department"”, omitting versioning.

This macro is neither callable nor parsed.

groff 1.23.0 2 July 2023 272

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

Introduction to manual and general text domains
What’s in a Name . . .

The manual domain macro names are derived from the day to day informal language used to describe com-
mands, subroutines and related files. Slightly different variations of this language are used to describe the
three different aspects of writing a man page. First, there is the description of mdoc macro command us-
age. Second is the description of a Unix command with mdoc macros, and third, the description of a com-
mand to a user in the verbal sense; that is, discussion of a command in the text of a man page.

In the first case, troff macros are themselves a type of command; the general syntax for a troff command is:

.Xx argument1 argument2 ...

.Xx is a macro command, and anything following it are arguments to be processed. In the second case, the
description of a Unix command using the manual domain macros is a bit more involved; a typical
“Synopsis” command line might be displayed as:

filter [-flag] 〈infile〉 〈outfile〉

Here, filter is the command name and the bracketed string -flag is a flag argument designated as op-
tional by the option brackets. In mdoc terms, 〈infile〉 and 〈outfile〉 are called meta arguments; in this
example, the user has to replace the meta expressions given in angle brackets with real file names. Note
that in this document meta arguments are used to describe mdoc commands; in most man pages, meta vari-
ables are not specifically written with angle brackets. The macros that formatted the above example:

.Nm filter

.Op Fl flag

.Ao Ar infile Ac Ao Ar outfile Ac

In the third case, discussion of commands and command syntax includes both examples above, but may add
more detail. The arguments 〈infile〉 and 〈outfile〉 from the example above might be referred to as
operands or file arguments. Some command-line argument lists are quite long:

make [-eiknqrstv] [-D variable] [-d flags] [-f makefile] [-I directory]
[-j max_jobs] [variable=value] [target . . .]

Here one might talk about the command make and qualify the argument, makefile, as an argument to the
flag, -f, or discuss the optional file operand target. In the verbal context, such detail can prevent confu-
sion, however the mdoc package does not have a macro for an argument to a flag. Instead the ‘Ar’ argu-
ment macro is used for an operand or file argument like target as well as an argument to a flag like
variable. The make command line was produced from:

.Nm make

.Op Fl eiknqrstv

.Op Fl D Ar variable

.Op Fl d Ar flags

.Op Fl f Ar makefile

.Op Fl I Ar directory

.Op Fl j Ar max_jobs

.Op Ar variable Ns = Ns Ar value

.Bk

.Op Ar target ...

.Ek

The .Bk and .Ek macros are explained in “Keeps”.

General Syntax
The manual domain and general text domain macros share a similar syntax with a few minor deviations;
most notably, .Ar, .Fl, .Nm, and .Pa differ only when called without arguments; and .Fn and .Xr im-
pose an order on their argument lists. All manual domain macros are capable of recognizing and properly
handling punctuation, provided each punctuation character is separated by a leading space. If a command
is given:

groff 1.23.0 2 July 2023 273

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

.Ar sptr, ptr),

The result is:

sptr, ptr),

The punctuation is not recognized and all is output in the font used by .Ar. If the punctuation is separated
by a leading white space:

.Ar sptr , ptr) ,

The result is:

sptr, ptr),

The punctuation is now recognized and output in the default font distinguishing it from the argument
strings. To remove the special meaning from a punctuation character, escape it with ‘\&’.

The following punctuation characters are recognized by mdoc:

. , : ; (
) [] ? !

troff is limited as a macro language, and has difficulty when presented with a string containing certain
mathematical, logical, or quotation character sequences:

{+,-,/,∗,%,<,>,<=,>=,=,==,&,`,',"}

The problem is that troff may assume it is supposed to actually perform the operation or evaluation sug-
gested by the characters. To prevent the accidental evaluation of these characters, escape them with ‘\&’.
Typical syntax is shown in the first manual domain macro displayed below, .Ad.

Manual domain
Addresses

The address macro identifies an address construct.

Usage: .Ad 〈address〉 . . .

.Ad addr1 addr1

.Ad addr1 . addr1.

.Ad addr1 , file2 addr1, file2

.Ad f1 , f2 , f3 : f1, f2, f3:

.Ad addr)) , addr)),

The default width is 12n.

Author Name
The .An macro is used to specify the name of the author of the item being documented, or the name of the
author of the actual manual page.

Usage: .An 〈author name〉 . . .

.An "Joe Author" Joe Author

.An "Joe Author" , Joe Author,

.An "Joe Author" Aq nobody@FreeBSD.org
Joe Author <nobody@FreeBSD.org>

.An "Joe Author")) , Joe Author)),

The default width is 12n.

In a section titled “Authors”, ‘An’ causes a break, allowing each new name to appear on its own line. If
this is not desirable,

.An -nosplit

groff 1.23.0 2 July 2023 274

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

call will turn this off. To turn splitting back on, write

.An -split

Arguments
The .Ar argument macro may be used whenever an argument is referenced. If called without arguments,
‘file ...’ is output. This places the ellipsis in italics, which is ugly and incorrect, and will be noticed
on terminals that underline text instead of using an oblique typeface. We recommend using .Ar file
No ... instead.

Usage: .Ar [〈argument〉] . . .

.Ar file ...

.Ar file No ...
file . . .

.Ar file1 file1

.Ar file1 . file1.

.Ar file1 file2 file1 file2

.Ar f1 f2 f3 : f1 f2 f3:

.Ar file)) , file)),

The default width is 12n.

Configuration Declaration (Section Four Only)
The .Cd macro is used to demonstrate a config(8) declaration for a device interface in a section four man-
ual.

Usage: .Cd 〈argument〉 . . .

.Cd "device le0 at scode?" device le0 at scode?

In a section titled “Synopsis”, ‘Cd’ causes a break before and after its arguments.

The default width is 12n.

Command Modifiers
The command modifier is identical to the .Fl (flag) command with the exception that the .Cm macro does
not assert a dash in front of every argument. Traditionally flags are marked by the preceding dash, however,
some commands or subsets of commands do not use them. Command modifiers may also be specified in
conjunction with interactive commands such as editor commands. See “Flags”.

The default width is 10n.

Defined Variables
A variable (or constant) that is defined in an include file is specified by the macro .Dv.

Usage: .Dv 〈defined-variable〉 . . .

.Dv MAXHOSTNAMELEN MAXHOSTNAMELEN

.Dv TIOCGPGRP) TIOCGPGRP)

The default width is 12n.

Errnos
The .Er errno macro specifies the error return value for section 2, 3, and 9 library routines. The second
example below shows .Er used with the .Bq general text domain macro, as it would be used in a section
two manual page.

Usage: .Er 〈errno type〉 . . .

.Er ENOENT ENOENT

.Er ENOENT) ; ENOENT);

.Bq Er ENOTDIR [ENOTDIR]

groff 1.23.0 2 July 2023 275

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

The default width is 17n.

Environment Variables
The .Ev macro specifies an environment variable.

Usage: .Ev 〈argument〉 . . .

.Ev DISPLAY DISPLAY

.Ev PATH . PATH.

.Ev PRINTER)) , PRINTER)),

The default width is 15n.

Flags
The .Fl macro handles command-line flags. It prepends a dash, ‘-’, to the flag. For interactive command
flags that are not prepended with a dash, the .Cm (command modifier) macro is identical, but without the
dash.

Usage: .Fl 〈argument〉 . . .

.Fl -

.Fl cfv -cfv

.Fl cfv . -cfv.

.Cm cfv . cfv.

.Fl s v t -s -v -t

.Fl - , --,

.Fl xyz) , -xyz),

.Fl | - |

The .Fl macro without any arguments results in a dash representing stdin/stdout. Note that giving .Fl a
single dash will result in two dashes.

The default width is 12n.

Function Declarations
The .Fd macro is used in the “Synopsis” section with section two or three functions. It is neither callable
nor parsed.

Usage: .Fd 〈argument〉 . . .

.Fd "#include <sys/types.h>" #include <sys/types.h>

In a section titled “Synopsis”, ‘Fd’ causes a break if a function has already been presented and a break has
not occurred, leaving vertical space between one function declaration and the next.

In a section titled “Synopsis”, the ‘In’ macro represents the #include statement, and is the short form of
the above example. It specifies the C header file as being included in a C program. It also causes a break.

While not in the “Synopsis” section, it represents the header file enclosed in angle brackets.

Usage: .In 〈header file〉

.In stdio.h <stdio.h>

.In stdio.h <stdio.h>

Function Types
This macro is intended for the “Synopsis” section. It may be used anywhere else in the man page without
problems, but its main purpose is to present the function type (in BSD kernel normal form) for the
“Synopsis” of sections two and three. (It causes a break, allowing the function name to appear on the next
line.)

Usage: .Ft 〈type〉 . . .

.Ft struct stat struct stat

groff 1.23.0 2 July 2023 276

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

Functions (Library Routines)
The .Fn macro is modeled on ANSI C conventions.

Usage: .Fn 〈function〉 [〈parameter〉] . . .

.Fn getchar getchar()

.Fn strlen) , strlen()),

.Fn align "char ∗ptr" , align(char ∗ptr),

Note that any call to another macro signals the end of the .Fn call (it will insert a closing parenthesis at
that point).

For functions with many parameters (which is rare), the macros .Fo (function open) and .Fc (function
close) may be used with .Fa (function argument).

Example:

.Ft int

.Fo res_mkquery

.Fa "int op"

.Fa "char ∗dname"

.Fa "int class"

.Fa "int type"

.Fa "char ∗data"

.Fa "int datalen"

.Fa "struct rrec ∗newrr"

.Fa "char ∗buf"

.Fa "int buflen"

.Fc

Produces:

int res_mkquery(int op , char ∗dname , int class , int type , char ∗data ,
int datalen , struct rrec ∗newrr , char ∗buf , int buflen)

Typically, in a “Synopsis” section, the function delcaration will begin the line. If more than one function is
presented in the “Synopsis” section and a function type has not been given, a break will occur, leaving ver-
tical space between the current and prior function names.

The default width values of .Fn and .Fo are 12n and 16n, respectively.

Function Arguments
The .Fa macro is used to refer to function arguments (parameters) outside of the “Synopsis” section of the
manual or inside the “Synopsis” section if the enclosure macros .Fo and .Fc instead of .Fn are used.
.Fa may also be used to refer to structure members.

Usage: .Fa 〈function argument〉 . . .

.Fa d_namlen)) , d_namlen)),

.Fa iov_len iov_len

The default width is 12n.

Return Values
The .Rv macro generates text for use in the “Return values” section.

Usage: .Rv [-std] [〈function〉 . . .]

For example, .Rv -std atexit produces:

The atexit() function returns the value 0 if successful; otherwise the value -1 is returned and the
global variable errno is set to indicate the error.

The -std option is valid only for manual page sections 2 and 3. Currently, this macro does nothing if
used without the -std flag.

groff 1.23.0 2 July 2023 277

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

Exit Status
The .Ex macro generates text for use in the “Diagnostics” section.

Usage: .Ex [-std] [〈utility〉 . . .]

For example, .Ex -std cat produces:

The cat utility exits 0 on success, and >0 if an error occurs.

The -std option is valid only for manual page sections 1, 6 and 8. Currently, this macro does nothing if
used without the -std flag.

Interactive Commands
The .Ic macro designates an interactive or internal command.

Usage: .Ic 〈argument〉 . . .

.Ic :wq :wq

.Ic "do while {...}" do while {...}

.Ic setenv , unsetenv setenv, unsetenv

The default width is 12n.

Library Names
The .Lb macro is used to specify the library where a particular function is compiled in.

Usage: .Lb 〈argument〉 . . .

Available arguments to .Lb and their results are:

libarchive Reading and Writing Streaming Archives Library (libarchive, -larchive)
libarm ARM Architecture Library (libarm, -larm)
libarm32 ARM32 Architecture Library (libarm32, -larm32)
libbluetooth Bluetooth Library (libbluetooth, -lbluetooth)
libbsm Basic Security Module Library (libbsm, -lbsm)
libc Standard C Library (libc, -lc)
libc_r Reentrant C Library (libc_r, -lc_r)
libcalendar Calendar Arithmetic Library (libcalendar, -lcalendar)
libcam Common Access Method User Library (libcam, -lcam)
libcdk Curses Development Kit Library (libcdk, -lcdk)
libcipher FreeSec Crypt Library (libcipher, -lcipher)
libcompat Compatibility Library (libcompat, -lcompat)
libcrypt Crypt Library (libcrypt, -lcrypt)
libcurses Curses Library (libcurses, -lcurses)
libdevinfo Device and Resource Information Utility Library (libdevinfo, -ldevinfo)
libdevstat Device Statistics Library (libdevstat, -ldevstat)
libdisk Interface to Slice and Partition Labels Library (libdisk, -ldisk)
libdwarf DWARF Access Library (libdwarf, -ldwarf)
libedit Command Line Editor Library (libedit, -ledit)
libelf ELF Access Library (libelf, -lelf)
libevent Event Notification Library (libevent, -levent)
libfetch File Transfer Library for URLs (libfetch, -lfetch)
libform Curses Form Library (libform, -lform)
libgeom Userland API Library for kernel GEOM subsystem (libgeom, -lgeom)
libgpib General-Purpose Instrument Bus (GPIB) library (libgpib, -lgpib)
libi386 i386 Architecture Library (libi386, -li386)
libintl Internationalized Message Handling Library (libintl, -lintl)
libipsec IPsec Policy Control Library (libipsec, -lipsec)
libipx IPX Address Conversion Support Library (libipx, -lipx)

groff 1.23.0 2 July 2023 278

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

libiscsi iSCSI protocol library (libiscsi, -liscsi)
libjail Jail Library (libjail, -ljail)
libkiconv Kernel side iconv library (libkiconv, -lkiconv)
libkse N:M Threading Library (libkse, -lkse)
libkvm Kernel Data Access Library (libkvm, -lkvm)
libm Math Library (libm, -lm)
libm68k m68k Architecture Library (libm68k, -lm68k)
libmagic Magic Number Recognition Library (libmagic, -lmagic)
libmd Message Digest (MD4, MD5, etc.) Support Library (libmd, -lmd)
libmemstat Kernel Memory Allocator Statistics Library (libmemstat, -lmemstat)
libmenu Curses Menu Library (libmenu, -lmenu)
libnetgraph Netgraph User Library (libnetgraph, -lnetgraph)
libnetpgp Netpgp signing, verification, encryption and decryption (libnetpgp, -lnetpgp)
libossaudio OSS Audio Emulation Library (libossaudio, -lossaudio)
libpam Pluggable Authentication Module Library (libpam, -lpam)
libpcap Packet Capture Library (libpcap, -lpcap)
libpci PCI Bus Access Library (libpci, -lpci)
libpmc Performance Counters Library (libpmc, -lpmc)
libposix POSIX Compatibility Library (libposix, -lposix)
libprop Property Container Object Library (libprop, -lprop)
libpthread POSIX Threads Library (libpthread, -lpthread)
libpuffs puffs Convenience Library (libpuffs, -lpuffs)
librefuse File System in Userspace Convenience Library (librefuse, -lrefuse)
libresolv DNS Resolver Library (libresolv, -lresolv)
librpcsec_gss RPC GSS-API Authentication Library (librpcsec_gss, -lrpcsec_gss)
librpcsvc RPC Service Library (librpcsvc, -lrpcsvc)
librt POSIX Real-time Library (librt, -lrt)
libsdp Bluetooth Service Discovery Protocol User Library (libsdp, -lsdp)
libssp Buffer Overflow Protection Library (libssp, -lssp)
libSystem System Library (libSystem, -lSystem)
libtermcap Termcap Access Library (libtermcap, -ltermcap)
libterminfo Terminal Information Library (libterminfo, -lterminfo)
libthr 1:1 Threading Library (libthr, -lthr)
libufs UFS File System Access Library (libufs, -lufs)
libugidfw File System Firewall Interface Library (libugidfw, -lugidfw)
libulog User Login Record Library (libulog, -lulog)
libusbhid USB Human Interface Devices Library (libusbhid, -lusbhid)
libutil System Utilities Library (libutil, -lutil)
libvgl Video Graphics Library (libvgl, -lvgl)
libx86_64 x86_64 Architecture Library (libx86_64, -lx86_64)
libz Compression Library (libz, -lz)

Site-specific additions might be found in the file mdoc.local; see section “Files” below.

In a section titled “Library”, ‘Lb’ causes a break before and after its arguments.

Literals
The ‘Li’ literal macro may be used for special characters, symbolic constants, and other syntactical items
that should be typed exactly as displayed.

Usage: .Li 〈argument〉 . . .

.Li \en \n

.Li M1 M2 M3 ; M1 M2 M3;

.Li cntrl-D) , cntrl-D),

groff 1.23.0 2 July 2023 279

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

.Li 1024 ... 1024 ...

The default width is 16n.

Names
The ‘Nm’ macro is used for the document title or page topic. Upon its first call, it has the peculiarity of re-
membering its argument, which should always be the topic of the man page. When subsequently called
without arguments, ‘Nm’ regurgitates this initial name for the sole purpose of making less work for the au-
thor. Use of ‘Nm’ is also appropriate when presenting a command synopsis for the topic of a man page in
section 1, 6, or 8. Its behavior changes when presented with arguments of various forms.

.Nm groff_mdoc groff_mdoc

.Nm groff_mdoc

.Nm \-mdoc -mdoc

.Nm foo)) , foo)),

.Nm : groff_mdoc:

By default, the topic is set in boldface to reflect its prime importance in the discussion. Cross references to
other man page topics should use ‘Xr’; including a second argument for the section number enables them
to be hyperlinked. By default, cross-referenced topics are set in italics to avoid cluttering the page with
boldface.

The default width is 10n.

Options
The .Op macro places option brackets around any remaining arguments on the command line, and places
any trailing punctuation outside the brackets. The macros .Oo and .Oc (which produce an opening and a
closing option bracket, respectively) may be used across one or more lines or to specify the exact position
of the closing parenthesis.

Usage: .Op [〈option〉] . . .

.Op []

.Op Fl k [-k]

.Op Fl k) . [-k]).

.Op Fl k Ar kookfile [-k kookfile]

.Op Fl k Ar kookfile , [-k kookfile],

.Op Ar objfil Op Ar corfil [objfil [corfil]]

.Op Fl c Ar objfil Op Ar corfil , [-c objfil [corfil]],

.Op word1 word2 [word1 word2]

.Li .Op Oo Ao option Ac OcOp [〈option〉] . . .

Here a typical example of the .Oo and .Oc macros:

.Oo

.Op Fl k Ar kilobytes

.Op Fl i Ar interval

.Op Fl c Ar count

.Oc

Produces:

[[-k kilobytes] [-i interval] [-c count]]

The default width values of .Op and .Oo are 14n and 10n, respectively.

Pathnames
The .Pa macro formats file specifications. If called without arguments, ‘~’ (recognized by many shells) is
output, representing the user’s home directory.

Usage: .Pa [〈pathname〉] . . .

groff 1.23.0 2 July 2023 280

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

.Pa ~

.Pa /usr/share /usr/share

.Pa /tmp/fooXXXXX) . /tmp/fooXXXXX).

The default width is 32n.

Standards
The .St macro replaces standard abbreviations with their formal names.

Usage: .St 〈abbreviation〉 . . .

Available pairs for “Abbreviation/Formal Name” are:

ANSI/ISO C

-ansiC ANSI X3.159-1989 (“ANSI C89”)
-ansiC-89 ANSI X3.159-1989 (“ANSI C89”)
-isoC ISO/IEC 9899:1990 (“ISO C90”)
-isoC-90 ISO/IEC 9899:1990 (“ISO C90”)
-isoC-99 ISO/IEC 9899:1999 (“ISO C99”)
-isoC-2011 ISO/IEC 9899:2011 (“ISO C11”)

POSIX Part 1: System API

-iso9945-1-90 ISO/IEC 9945-1:1990 (“POSIX.1”)
-iso9945-1-96 ISO/IEC 9945-1:1996 (“POSIX.1”)
-p1003.1 IEEE Std 1003.1 (“POSIX.1”)
-p1003.1-88 IEEE Std 1003.1-1988 (“POSIX.1”)
-p1003.1-90 ISO/IEC 9945-1:1990 (“POSIX.1”)
-p1003.1-96 ISO/IEC 9945-1:1996 (“POSIX.1”)
-p1003.1b-93 IEEE Std 1003.1b-1993 (“POSIX.1”)
-p1003.1c-95 IEEE Std 1003.1c-1995 (“POSIX.1”)
-p1003.1g-2000 IEEE Std 1003.1g-2000 (“POSIX.1”)
-p1003.1i-95 IEEE Std 1003.1i-1995 (“POSIX.1”)
-p1003.1-2001 IEEE Std 1003.1-2001 (“POSIX.1”)
-p1003.1-2004 IEEE Std 1003.1-2004 (“POSIX.1”)
-p1003.1-2008 IEEE Std 1003.1-2008 (“POSIX.1”)

POSIX Part 2: Shell and Utilities

-iso9945-2-93 ISO/IEC 9945-2:1993 (“POSIX.2”)
-p1003.2 IEEE Std 1003.2 (“POSIX.2”)
-p1003.2-92 IEEE Std 1003.2-1992 (“POSIX.2”)
-p1003.2a-92 IEEE Std 1003.2a-1992 (“POSIX.2”)

X/Open

-susv1 Version 1 of the Single UNIX Specification (“SUSv1”)
-susv2 Version 2 of the Single UNIX Specification (“SUSv2”)
-susv3 Version 3 of the Single UNIX Specification (“SUSv3”)
-susv4 Version 4 of the Single UNIX Specification (“SUSv4”)
-svid4 System V Interface Definition, Fourth Edition (“SVID4”)
-xbd5 X/Open Base Definitions Issue 5 (“XBD5”)
-xcu5 X/Open Commands and Utilities Issue 5 (“XCU5”)
-xcurses4.2 X/Open Curses Issue 4, Version 2 (“XCURSES4.2”)
-xns5 X/Open Networking Services Issue 5 (“XNS5”)
-xns5.2 X/Open Networking Services Issue 5.2 (“XNS5.2”)
-xpg3 X/Open Portability Guide Issue 3 (“XPG3”)
-xpg4 X/Open Portability Guide Issue 4 (“XPG4”)

groff 1.23.0 2 July 2023 281

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

-xpg4.2 X/Open Portability Guide Issue 4, Version 2 (“XPG4.2”)
-xsh5 X/Open System Interfaces and Headers Issue 5 (“XSH5”)

Miscellaneous

-ieee754 IEEE Std 754-1985
-iso8601 ISO 8601
-iso8802-3 ISO/IEC 8802-3:1989

Variable Types
The .Vt macro may be used whenever a type is referenced. In a section titled “Synopsis”, ‘Vt’ causes a
break (useful for old-style C variable declarations).

Usage: .Vt 〈type〉 . . .

.Vt extern char ∗optarg ; extern char ∗optarg;

.Vt FILE ∗ FILE ∗

Variables
Generic variable reference.

Usage: .Va 〈variable〉 . . .

.Va count count

.Va settimer , settimer,

.Va "int ∗prt") : int ∗prt):

.Va "char s"])) , char s])),

The default width is 12n.

Manual Page Cross References
The .Xr macro expects the first argument to be a manual page name. The optional second argument, if a
string (defining the manual section), is put into parentheses.

Usage: .Xr 〈man page name〉 [〈section〉] . . .

.Xr mdoc mdoc

.Xr mdoc , mdoc,

.Xr mdoc 7 mdoc(7)

.Xr xinit 1x ; xinit(1x);

The default width is 10n.

General text domain
AT&T Macro

Usage: .At [〈version〉] . . .

.At AT&T UNIX

.At v6 . Version 6 AT&T UNIX.

The following values for 〈version〉 are possible:

32v, v1, v2, v3, v4, v5, v6, v7, III, V, V.1, V.2, V.3, V.4

BSD Macro
Usage: .Bx {-alpha | -beta | -devel} . . .

.Bx [〈version〉 [〈release〉]] . . .

.Bx BSD

.Bx 4.3 . 4.3BSD.

.Bx -devel BSD (currently under development)

〈version〉 will be prepended to the string ‘BSD’. The following values for 〈release〉 are possible:

Reno, reno, Tahoe, tahoe, Lite, lite, Lite2, lite2

groff 1.23.0 2 July 2023 282

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

NetBSD Macro
Usage: .Nx [〈version〉] . . .

.Nx NetBSD

.Nx 1.4 . NetBSD 1.4.

For possible values of 〈version〉 see the description of the .Os command above in section “Title macros”.

FreeBSD Macro
Usage: .Fx [〈version〉] . . .

.Fx FreeBSD

.Fx 2.2 . FreeBSD 2.2.

For possible values of 〈version〉 see the description of the .Os command above in section “Title macros”.

DragonFly Macro
Usage: .Dx [〈version〉] . . .

.Dx DragonFly

.Dx 1.4 . DragonFly 1.4.

For possible values of 〈version〉 see the description of the .Os command above in section “Title macros”.

OpenBSD Macro
Usage: .Ox [〈version〉] . . .

.Ox 1.0 OpenBSD 1.0

BSD/OS Macro
Usage: .Bsx [〈version〉] . . .

.Bsx 1.0 BSD/OS 1.0

Unix Macro
Usage: .Ux ...

.Ux Unix

Emphasis Macro
Text may be stressed or emphasized with the .Em macro. The usual font for emphasis is italic.

Usage: .Em 〈argument〉 . . .

.Em does not does not

.Em exceed 1024 . exceed 1024.

.Em vide infra)) , vide infra)),

The default width is 10n.

Font Mode
The .Bf font mode must be ended with the .Ef macro (the latter takes no arguments). Font modes may
be nested within other font modes.

.Bf has the following syntax:

.Bf 〈font mode〉

〈font mode〉 must be one of the following three types:

Em | -emphasis Same as if the .Em macro was used for the entire block of text.
Li | -literal Same as if the .Li macro was used for the entire block of text.
Sy | -symbolic Same as if the .Sy macro was used for the entire block of text.

Both macros are neither callable nor parsed.

Enclosure and Quoting Macros
The concept of enclosure is similar to quoting. The object being to enclose one or more strings between a
pair of characters like quotes or parentheses. The terms quoting and enclosure are used interchangeably

groff 1.23.0 2 July 2023 283

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

throughout this document. Most of the one-line enclosure macros end in small letter ‘q’ to give a hint of
quoting, but there are a few irregularities. For each enclosure macro, there is a pair of opening and closing
macros that end with the lowercase letters ‘o’ and ‘c’ respectively.

Quote Open Close Function Result
.Aq .Ao .Ac Angle Bracket Enclosure <string>
.Bq .Bo .Bc Bracket Enclosure [string]
.Brq .Bro .Brc Brace Enclosure {string}
.Dq .Do .Dc Double Quote “string”
.Eq .Eo .Ec Enclose String (in XY) XstringY
.Pq .Po .Pc Parenthesis Enclosure (string)
.Ql Quoted Literal “string” or string
.Qq .Qo .Qc Straight Double Quote "string"
.Sq .So .Sc Single Quote ‘string’

All macros ending with ‘q’ and ‘o’ have a default width value of 12n.

.Eo, .Ec These macros expect the first argument to be the opening and closing strings, respectively.

.Es, .En To work around the nine-argument limit in the original troff program, mdoc supports two other
macros that are now obsolete. .Es uses its first and second parameters as opening and clos-
ing marks which are then used to enclose the arguments of .En. The default width value is
12n for both macros.

.Eq The first and second arguments of this macro are the opening and closing strings respectively,
followed by the arguments to be enclosed.

.Ql The quoted literal macro behaves differently in troff and nroff modes. If formatted with
nroff(1), a quoted literal is always quoted. If formatted with troff, an item is only quoted if the
width of the item is less than three constant-width characters. This is to make short strings
more visible where the font change to literal (constant-width) is less noticeable.

The default width is 16n.

.Pf The prefix macro suppresses the whitespace between its first and second argument:

.Pf (Fa name2 (name2

The default width is 12n.

The .Ns macro (see below) performs the analogous suffix function.

.Ap The .Ap macro inserts an apostrophe and exits any special text modes, continuing in .No
mode.

Examples of quoting:

.Aq 〈〉

.Aq Pa ctype.h) , 〈ctype.h〉),

.Bq []

.Bq Em Greek , French . [Greek, French].

.Dq “”

.Dq string abc . “string abc”.

.Dq '\[ha][A-Z]' “’^[A-Z]’”

.Ql man mdoc man mdoc

.Qq ""

.Qq string) , "string"),

.Qq string Ns), "string),"

.Sq ‘’

groff 1.23.0 2 July 2023 284

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

.Sq string ‘string’

.Em or Ap ing or’ing

For a good example of nested enclosure macros, see the .Op option macro. It was created from the same
underlying enclosure macros as those presented in the list above. The .Xo and .Xc extended argument list
macros are discussed below.

Normal text macro
‘No’ formats subsequent argument(s) normally, ending the effect of ‘Em’ and similar. Parsing is not sup-
pressed, so you must prefix words like ‘No’ with ‘\&’ to avoid their interpretation as mdoc macros.

Usage: .No argument . . .

.Em Use caution No here . → Use caution here.

.Em No dogs allowed . → No dogs allowed.

.Em \&No dogs allowed . → No dogs allowed.

The default width is 12n.

No-Space Macro
The .Ns macro suppresses insertion of a space between the current position and its first parameter. For ex-
ample, it is useful for old style argument lists where there is no space between the flag and argument:

Usage: ... 〈argument〉 Ns [〈argument〉] . . .
.Ns 〈argument〉 . . .

.Op Fl I Ns Ar directory [-Idirectory]

Note: The .Ns macro always invokes the .No macro after eliminating the space unless another macro
name follows it. If used as a command (i.e., the second form above in the ‘Usage’ line), .Ns is identical to
.No.

(Sub)section cross references
Use the .Sx macro to cite a (sub)section heading within the given document.

Usage: .Sx 〈section-reference〉 . . .

.Sx Files → “Files”

The default width is 16n.

Symbolics
The symbolic emphasis macro is generally a boldface macro in either the symbolic sense or the traditional
English usage.

Usage: .Sy 〈symbol〉 . . .

.Sy Important Notice → Important Notice

The default width is 6n.

Mathematical Symbols
Use this macro for mathematical symbols and similar things.

Usage: .Ms 〈math symbol〉 . . .

.Ms sigma → sigma

The default width is 6n.

References and Citations
The following macros make a modest attempt to handle references. At best, the macros make it convenient
to manually drop in a subset of refer(1) style references.

.Rs Reference start (does not take arguments). In a section titled “See also”, it causes a break
and begins collection of reference information until the reference end macro is read.

groff 1.23.0 2 July 2023 285

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

.Re Reference end (does not take arguments). The reference is printed.

.%A Reference author name; one name per invocation.

.%B Book title.

.%C City/place.

.%D Date.

.%I Issuer/publisher name.

.%J Journal name.

.%N Issue number.

.%O Optional information.

.%P Page number.

.%Q Corporate or foreign author.

.%R Report name.

.%T Title of article.

.%U Optional hypertext reference.

.%V Volume.

Macros beginning with ‘%’ are not callable but accept multiple arguments in the usual way. Only the .Tn
macro is handled properly as a parameter; other macros will cause strange output. .%B and .%T can be
used outside of the .Rs/.Re environment.

Example:

.Rs

.%A "Matthew Bar"

.%A "John Foo"

.%T "Implementation Notes on foobar(1)"

.%R "Technical Report ABC-DE-12-345"

.%Q "Drofnats College"

.%C "Nowhere"

.%D "April 1991"

.Re

produces

Matthew Bar and John Foo, Implementation Notes on foobar(1), Technical Report ABC-
DE-12-345, Drofnats College, Nowhere, April 1991.

Trade Names or Acronyms
The trade name macro prints its arguments at a smaller type size. It is intended to imitate a small caps fonts
for fully capitalized acronyms.

Usage: .Tn 〈symbol〉 . . .

.Tn DEC DEC

.Tn ASCII ASCII

The default width is 10n.

Extended Arguments
The .Xo and .Xc macros allow one to extend an argument list on a macro boundary for the .It macro
(see below). Note that .Xo and .Xc are implemented similarly to all other macros opening and closing an
enclosure (without inserting characters, of course). This means that the following is true for those macros
also.

Here is an example of .Xo using the space mode macro to turn spacing off:

.Bd -literal -offset indent

.Sm off

.It Xo Sy I Ar operation

.No \en Ar count No \en

.Xc

groff 1.23.0 2 July 2023 286

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

.Sm on

.Ed

produces

Ioperation\ncount\n

Another one:

.Bd -literal -offset indent

.Sm off

.It Cm S No / Ar old_pattern Xo

.No / Ar new_pattern

.No / Op Cm g

.Xc

.Sm on

.Ed

produces

S/old_pattern/new_pattern/[g]

Another example of .Xo and enclosure macros: Test the value of a variable.

.Bd -literal -offset indent

.It Xo

.Ic .ifndef

.Oo \&! Oc Ns Ar variable Oo

.Ar operator variable No ...

.Oc Xc

.Ed

produces

.ifndef [!]variable [operator variable . . .]

Page structure domain
Section headings

The following .Sh section heading macros are required in every man page. The remaining section head-
ings are recommended at the discretion of the author writing the manual page. The .Sh macro is parsed
but not generally callable. It can be used as an argument in a call to .Sh only; it then reactivates the de-
fault font for .Sh.

The default width is 8n.

.Sh Name The .Sh Name macro is mandatory. If not specified, headers, footers, and page
layout defaults will not be set and things will be rather unpleasant. The Name
section consists of at least three items. The first is the .Nm name macro naming
the subject of the man page. The second is the name description macro, .Nd,
which separates the subject name from the third item, which is the description.
The description should be the most terse and lucid possible, as the space avail-
able is small.

.Nd first prints ‘-’, then all its arguments.

.Sh Library This section is for section two and three function calls. It should consist of a sin-
gle .Lb macro call; see “Library Names”.

.Sh Synopsis The “Synopsis” section describes the typical usage of the subject of a man page.
The macros required are either .Nm, .Cd, or .Fn (and possibly .Fo, .Fc,
.Fd, and .Ft). The function name macro .Fn is required for manual page sec-
tions 2 and 3; the command and general name macro .Nm is required for sec-
tions 1, 5, 6, 7, and 8. Section 4 manuals require a .Nm, .Fd or a .Cd

groff 1.23.0 2 July 2023 287

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

configuration device usage macro. Several other macros may be necessary to
produce the synopsis line as shown below:

cat [-benstuv] [-] file . . .

The following macros were used:

.Nm cat

.Op Fl benstuv

.Op Fl

.Ar file No ...

.Sh Description In most cases the first text in the “Description” section is a brief paragraph on
the command, function or file, followed by a lexical list of options and respective
explanations. To create such a list, the .Bl (begin list), .It (list item) and .El
(end list) macros are used (see “Lists and Columns” below).

.Sh Implementation notes
Implementation specific information should be placed here.

.Sh Return values Sections 2, 3 and 9 function return values should go here. The .Rv macro may
be used to generate text for use in the “Return values” section for most section 2
and 3 library functions; see “Return Values”.

The following .Sh section headings are part of the preferred manual page layout and must be used appro-
priately to maintain consistency. They are listed in the order in which they would be used.

.Sh Environment The Environment section should reveal any related environment variables and
clues to their behavior and/or usage.

.Sh Files Files which are used or created by the man page subject should be listed via the
.Pa macro in the “Files” section.

.Sh Examples There are several ways to create examples. See subsection “Examples and
Displays” below for details.

.Sh Diagnostics Diagnostic messages from a command should be placed in this section. The
.Ex macro may be used to generate text for use in the “Diagnostics” section for
most section 1, 6 and 8 commands; see “Exit Status”.

.Sh Compatibility Known compatibility issues (e.g. deprecated options or parameters) should be
listed here.

.Sh Errors Specific error handling, especially from library functions (man page sections 2,
3, and 9) should go here. The .Er macro is used to specify an error (errno).

.Sh See also References to other material on the man page topic and cross references to other
relevant man pages should be placed in the “See also” section. Cross references
are specified using the .Xr macro. Currently refer(1) style references are not
accommodated.

It is recommended that the cross references be sorted by section number, then al-
phabetically by name within each section, then separated by commas. Example:

ls(1), ps(1), group(5), passwd(5)

.Sh Standards If the command, library function, or file adheres to a specific implementation
such as IEEE Std 1003.2 (“POSIX.2”) or ANSI X3.159-1989 (“ANSI C89”) this
should be noted here. If the command does not adhere to any standard, its his-
tory should be noted in the History section.

.Sh History Any command which does not adhere to any specific standards should be out-
lined historically in this section.

groff 1.23.0 2 July 2023 288

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

.Sh Authors Credits should be placed here. Use the .An macro for names and the .Aq
macro for email addresses within optional contact information. Explicitly indi-
cate whether the person authored the initial manual page or the software or what-
ever the person is being credited for.

.Sh Bugs Blatant problems with the topic go here.

User-specified .Sh sections may be added; for example, this section was set with:

.Sh "Page structure domain"

Subsection headings
Subsection headings have exactly the same syntax as section headings: .Ss is parsed but not generally
callable. It can be used as an argument in a call to .Ss only; it then reactivates the default font for .Ss.

The default width is 8n.

Paragraphs and Line Spacing
.Pp The .Pp paragraph command may be used to specify a line space where necessary. The macro is not

necessary after a .Sh or .Ss macro or before a .Bl or .Bd macro (which both assert a vertical dis-
tance unless the -compact flag is given).

The macro is neither callable nor parsed and takes no arguments; an alternative name is .Lp.

Keeps
The only keep that is implemented at this time is for words. The macros are .Bk (begin keep) and .Ek
(end keep). The only option that .Bk currently accepts is -words (also the default); this prevents breaks
in the middle of options. In the example for make command-line arguments (see “What’s in a Name”), the
keep prevents nroff from placing the flag and the argument on separate lines.

Neither macro is callable or parsed.

More work needs to be done on the keep macros; specifically, a -line option should be added.

Examples and Displays
There are seven types of displays.

.D1 (This is D-one.) Display one line of indented text. This macro is parsed but not callable.

-ldghfstru

The above was produced by: .D1 Fl ldghfstru.

.Dl (This is D-ell.) Display one line of indented literal text. The .Dl example macro has been used
throughout this file. It allows the indentation (display) of one line of text. Its default font is set to
constant width (literal). .Dl is parsed but not callable.

% ls -ldg /usr/local/bin

The above was produced by: .Dl % ls \-ldg /usr/local/bin.

.Bd Begin display. The .Bd display must be ended with the .Ed macro. It has the following syntax:

.Bd {-literal | -filled | -unfilled | -ragged | -centered} [-offset 〈string〉] [-file 〈file name〉]
[-compact]

-ragged Fill, but do not adjust the right margin (only left-justify).
-centered Center lines between the current left and right margin. Note that each sin-

gle line is centered.
-unfilled Do not fill; break lines where their input lines are broken. This can pro-

duce overlong lines without warning messages.
-filled Display a filled block. The block of text is formatted (i.e., the text is justi-

fied on both the left and right side).

groff 1.23.0 2 July 2023 289

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

-literal Display block with literal font (usually fixed-width). Useful for source
code or simple tabbed or spaced text.

-file 〈file name〉 The file whose name follows the -file flag is read and displayed before
any data enclosed with .Bd and .Ed, using the selected display type. Any
troff/mdoc commands in the file will be processed.

-offset 〈string〉 If -offset is specified with one of the following strings, the string is in-
terpreted to indicate the level of indentation for the forthcoming block of
text:

left Align block on the current left margin; this is the default
mode of .Bd.

center Supposedly center the block. At this time unfortunately,
the block merely gets left aligned about an imaginary cen-
ter margin.

indent Indent by one default indent value or tab. The default in-
dent value is also used for the .D1 and .Dl macros, so
one is guaranteed the two types of displays will line up.
The indentation value is normally set to 6n or about two
thirds of an inch (six constant width characters).

indent-two Indent two times the default indent value.
right This left aligns the block about two inches from the right

side of the page. This macro needs work and perhaps may
never do the right thing within troff.

If 〈string〉 is a valid numeric expression instead (with a scaling indicator
other than ‘u’), use that value for indentation. The most useful scaling in-
dicators are ‘m’ and ‘n’, specifying the so-called Em and En square. This
is approximately the width of the letters ‘m’ and ‘n’ respectively of the cur-
rent font (for nroff output, both scaling indicators give the same values). If
〈string〉 isn’t a numeric expression, it is tested whether it is an mdoc macro
name, and the default offset value associated with this macro is used. Fi-
nally, if all tests fail, the width of 〈string〉 (typeset with a fixed-width font)
is taken as the offset.

-compact Suppress insertion of vertical space before begin of display.

.Ed End display (takes no arguments).

Lists and Columns
There are several types of lists which may be initiated with the .Bl begin-list macro. Items within the list
are specified with the .It item macro, and each list must end with the .El macro. Lists may be nested
within themselves and within displays. The use of columns inside of lists or lists inside of columns is
untested.

In addition, several list attributes may be specified such as the width of a tag, the list offset, and compact-
ness (blank lines between items allowed or disallowed). Most of this document has been formatted with a
tag style list (-tag).

It has the following syntax forms:

.Bl {-hang | -ohang | -tag | -diag | -inset} [-width 〈string〉] [-offset 〈string〉] [-compact]

.Bl -column [-offset 〈string〉] 〈string1〉 〈string2〉 . . .

.Bl {-item | -enum [-nested] | -bullet | -hyphen | -dash} [-offset 〈string〉] [-compact]

And now a detailed description of the list types.

-bullet A bullet list.

.Bl -bullet -offset indent -compact

.It
Bullet one goes here.

groff 1.23.0 2 July 2023 290

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

.It
Bullet two here.
.El

Produces:

• Bullet one goes here.
• Bullet two here.

-dash (or -hyphen)
A dash list.

.Bl -dash -offset indent -compact

.It
Dash one goes here.
.It
Dash two here.
.El

Produces:

- Dash one goes here.
- Dash two here.

-enum An enumerated list.

.Bl -enum -offset indent -compact

.It
Item one goes here.
.It
And item two here.
.El

The result:

1. Item one goes here.
2. And item two here.

If you want to nest enumerated lists, use the -nested flag (starting with the second-level
list):

.Bl -enum -offset indent -compact

.It
Item one goes here
.Bl -enum -nested -compact
.It
Item two goes here.
.It
And item three here.
.El
.It
And item four here.
.El

Result:

1. Item one goes here.
1.1. Item two goes here.
1.2. And item three here.

2. And item four here.

groff 1.23.0 2 July 2023 291

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

-item A list of type -item without list markers.

.Bl -item -offset indent

.It
Item one goes here.
Item one goes here.
Item one goes here.
.It
Item two here.
Item two here.
Item two here.
.El

Produces:

Item one goes here. Item one goes here. Item one goes here.

Item two here. Item two here. Item two here.

-tag A list with tags. Use -width to specify the tag width.

SL sleep time of the process (seconds blocked)
PAGEIN

number of disk I/O operations resulting from references by the process to pages
not loaded in core.

UID numerical user-id of process owner
PPID numerical id of parent of process priority (non-positive when in non-interrupt-

ible wait)

The raw text:

.Bl -tag -width "PPID" -compact -offset indent

.It SL
sleep time of the process (seconds blocked)
.It PAGEIN
number of disk I/O operations resulting from references
by the process to pages not loaded in core.
.It UID
numerical user-id of process owner
.It PPID
numerical id of parent of process priority
(non-positive when in non-interruptible wait)
.El

-diag Diag lists create section four diagnostic lists and are similar to inset lists except callable
macros are ignored. The -width flag is not meaningful in this context.

Example:

.Bl -diag

.It You can’t use Sy here.
The message says all.
.El

produces

You can’t use Sy here. The message says all.

-hang A list with hanging tags.

Hanged labels appear similar to tagged lists when the label is smaller than the label
width.

groff 1.23.0 2 July 2023 292

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

Longer hanged list labels blend into the paragraph unlike tagged paragraph labels.

And the unformatted text which created it:

.Bl -hang -offset indent

.It Em Hanged
labels appear similar to tagged lists when the
label is smaller than the label width.
.It Em Longer hanged list labels
blend into the paragraph unlike
tagged paragraph labels.
.El

-ohang Lists with overhanging tags do not use indentation for the items; tags are written to a separate
line.

SL
sleep time of the process (seconds blocked)

PAGEIN
number of disk I/O operations resulting from references by the process to pages not
loaded in core.

UID
numerical user-id of process owner

PPID
numerical id of parent of process priority (non-positive when in non-interruptible wait)

The raw text:

.Bl -ohang -offset indent

.It Sy SL
sleep time of the process (seconds blocked)
.It Sy PAGEIN
number of disk I/O operations resulting from references
by the process to pages not loaded in core.
.It Sy UID
numerical user-id of process owner
.It Sy PPID
numerical id of parent of process priority
(non-positive when in non-interruptible wait)
.El

-inset Here is an example of inset labels:

Tag The tagged list (also called a tagged paragraph) is the most common type of list
used in the Berkeley manuals. Use a -width attribute as described below.

Diag Diag lists create section four diagnostic lists and are similar to inset lists except
callable macros are ignored.

Hang Hanged labels are a matter of taste.

Ohang Overhanging labels are nice when space is constrained.

Inset Inset labels are useful for controlling blocks of paragraphs and are valuable for
converting mdoc manuals to other formats.

Here is the source text which produced the above example:

.Bl -inset -offset indent

.It Em Tag
The tagged list (also called a tagged paragraph)

groff 1.23.0 2 July 2023 293

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

is the most common type of list used in the
Berkeley manuals.
.It Em Diag
Diag lists create section four diagnostic lists
and are similar to inset lists except callable
macros are ignored.
.It Em Hang
Hanged labels are a matter of taste.
.It Em Ohang
Overhanging labels are nice when space is constrained.
.It Em Inset
Inset labels are useful for controlling blocks of
paragraphs and are valuable for converting
.Xr mdoc
manuals to other formats.
.El

-column This list type generates multiple columns. The number of columns and the width of each col-
umn is determined by the arguments to the -column list, 〈string1〉, 〈string2〉, etc. If
〈stringN〉 starts with a ‘.’ (dot) immediately followed by a valid mdoc macro name, inter-
pret 〈stringN〉 and use the width of the result. Otherwise, the width of 〈stringN〉 (typeset
with a fixed-width font) is taken as the Nth column width.

Each .It argument is parsed to make a row, each column within the row is a separate argu-
ment separated by a tab or the .Ta macro.

The table:

String Nroff Troff
<= <= ≤
>= >= ≥

was produced by:

.Bl -column -offset indent ".Sy String" ".Sy Nroff" ".Sy Troff"

.It Sy String Ta Sy Nroff Ta Sy Troff

.It Li <= Ta <= Ta \∗(<=

.It Li >= Ta >= Ta \∗(>=

.El

Don’t abuse this list type! For more complicated cases it might be far better and easier to use
tbl(1), the table preprocessor.

Other keywords:

-width 〈string〉 If 〈string〉 starts with a ‘.’ (dot) immediately followed by a valid mdoc macro
name, interpret 〈string〉 and use the width of the result. Almost all lists in this
document use this option.

Example:

.Bl -tag -width ".Fl test Ao Ar string Ac"

.It Fl test Ao Ar string Ac
This is a longer sentence to show how the
.Fl width
flag works in combination with a tag list.
.El

gives:

groff 1.23.0 2 July 2023 294

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

-test 〈string〉 This is a longer sentence to show how the -width flag
works in combination with a tag list.

(Note that the current state of mdoc is saved before 〈string〉 is interpreted; after-
wards, all variables are restored again. However, boxes (used for enclosures) can’t
be saved in GNU troff(1); as a consequence, arguments must always be balanced
to avoid nasty errors. For example, do not write .Ao Ar string but .Ao Ar
string Xc instead if you really need only an opening angle bracket.)

Otherwise, if 〈string〉 is a valid numeric expression (with a scaling indicator
other than ‘u’), use that value for indentation. The most useful scaling indicators
are ‘m’ and ‘n’, specifying the so-called Em and En square. This is approximately
the width of the letters ‘m’ and ‘n’ respectively of the current font (for nroff out-
put, both scaling indicators give the same values). If 〈string〉 isn’t a numeric
expression, it is tested whether it is an mdoc macro name, and the default width
value associated with this macro is used. Finally, if all tests fail, the width of
〈string〉 (typeset with a fixed-width font) is taken as the width.

If a width is not specified for the tag list type, ‘6n’ is used.

-offset 〈string〉 If 〈string〉 is indent, a default indent value (normally set to 6n, similar to the
value used in .Dl or .Bd) is used. If 〈string〉 is a valid numeric expression in-
stead (with a scaling indicator other than ‘u’), use that value for indentation. The
most useful scaling indicators are ‘m’ and ‘n’, specifying the so-called Em and En
square. This is approximately the width of the letters ‘m’ and ‘n’ respectively of
the current font (for nroff output, both scaling indicators give the same values). If
〈string〉 isn’t a numeric expression, it is tested whether it is an mdoc macro
name, and the default offset value associated with this macro is used. Finally, if
all tests fail, the width of 〈string〉 (typeset with a fixed-width font) is taken as
the offset.

-compact Suppress insertion of vertical space before the list and between list items.

Miscellaneous macros
A double handful of macros fit only uncomfortably into one of the above sections. Of these, we couldn’t
find attested examples for ‘Me’ or ‘Ot’. They are documented here for completeness—if you know their
proper usage, please send a mail to groff@gnu.org and include a specimen with its provenance.

.Bt formats boilerplate text.

.Bt → is currently in beta test.

It is neither callable nor parsed and takes no arguments. Its default width is 6n.

.Fr is an obsolete means of specifying a function return value.

Usage: .Fr return-value . . .

‘Fr’ allows a break right before the return value (usually a single digit) which is bad typographical
behaviour. Instead, set the return value with the rest of the code, using ‘\~’ to tie the return value to
the previous word.

Its default width is 12n.

.Hf Inlines the contents of a (header) file into the document.

Usage: .Hf file

It first prints File: followed by the file name, then the contents of file. It is neither callable nor
parsed.

.Lk Embed hyperlink.

groff 1.23.0 2 July 2023 295

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

Usage: .Lk uri [link-text]

Its default width is 6n.

.Me Usage unknown. The mdoc sources describe it as a macro for “menu entries”.

Its default width is 6n.

.Mt Embed email address.

Usage: .Mt email-address

Its default width is 6n.

.Ot Usage unknown. The mdoc sources describe it as “old function type (fortran)”.

.Sm Manipulate or toggle argument-spacing mode.

Usage: .Sm [on | off] . . .

If argument-spacing mode is off, no spaces between macro arguments are inserted. If called without a
parameter (or if the next parameter is neither ‘on’ nor off), ‘Sm’ toggles argument-spacing mode.

Its default width is 8n.

.Ud formats boilerplate text.

.Ud → currently under development.

It is neither callable nor parsed and takes no arguments. Its default width is 8n.

Predefined strings
The following strings are predefined for compatibility with legacy mdoc documents. Contemporary ones
should use the alternatives shown in the “Prefer” column below. See groff_char(7) for a full discussion of
these special character escape sequences.

String 7-bit 8-bit UCS Prefer Meaning
\∗(<= <= <= ≤ \(<= less than or equal to
\∗(>= >= >= ≥ \(>= greater than or equal to
\∗(Rq " " ” \(rq right double quote
\∗(Lq " " “ \(lq left double quote
\∗(ua ^ ^ ↑ \(ua vertical arrow up
\∗(aa ' ´ ´ \(aa acute accent
\∗(ga ` ` ` \(ga grave accent
\∗(q " " " \(dq neutral double quote
\∗(Pi pi pi π \(∗p lowercase pi
\∗(Ne != != ≠ \(!= not equals
\∗(Le <= <= ≤ \(<= less than or equal to
\∗(Ge >= >= ≥ \(>= greater than or equal to
\∗(Lt < < < < less than
\∗(Gt > > > > greater than
\∗(Pm +- ± ± \(+- plus or minus
\∗(If infinity infinity ∞ \(if infinity
\∗(Am & & & & ampersand
\∗(Na NaN NaN NaN NaN not a number
\∗(Ba | | | | bar

Some column headings are shorthand for standardized character encodings; “7-bit” for ISO 646:1991 IRV
(US-ASCII), “8-bit” for ISO 8859-1 (Latin-1) and IBM code page 1047, and “UCS” for ISO 10646 (Uni-
code character set). Historically, mdoc configured the string definitions to fit the capabilities expected of
the output device. Old typesetters lacked directional double quotes, producing repeated directional single
quotes ‘‘like this’’; early versions of mdoc in fact defined the ‘Lq’ and ‘Rq’ strings this way. Nowadays,
output drivers take on the responsibility of glyph substitution, as they possess relevant knowledge of their
available repertoires.

groff 1.23.0 2 July 2023 296

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

Diagnostics
The debugging macro .Db offered by previous versions of mdoc is unavailable in GNU troff(1) since the
latter provides better facilities to check parameters; additionally, groff mdoc implements many error and
warning messages, making the package more robust and more verbose.

The remaining debugging macro is .Rd, which dumps the package’s global register and string contents to
the standard error stream. A normal user will never need it.

Options
The following groff options set registers (with -r) and strings (with -d) recognized and used by the mdoc
macro package. To ensure rendering consistent with output device capabilities and reader preferences, man
pages should never manipulate them.

Setting string ‘AD’ configures the adjustment mode for most formatted text. Typical values are ‘b’ for ad-
justment to both margins (the default), or ‘l’ for left alignment (ragged right margin). Any valid argument
to groff’s ‘ad’ request may be used. See groff(7) for less-common choices.

groff -Tutf8 -dAD=l -mdoc groff_mdoc.7 | less -R

Setting register ‘C’ to 1 numbers output pages consecutively, rather than resetting the page number to 1 (or
the value of register ‘P’) with each new mdoc document.

By default, the package inhibits page breaks, headers, and footers in the midst of the document text if it is
being displayed with a terminal device such as ‘latin1’ or ‘utf8’, to enable more efficient viewing of the
page. This behavior can be changed to format the page as if for 66-line Teletype output by setting the con-
tinuous rendering register ‘cR’ to zero while calling groff(1).

groff -Tlatin1 -rcR=0 -mdoc foo.man > foo.txt
On HTML devices, it cannot be disabled.

Section headings (defined with .Sh) and page titles in headers (defined with .Dt) can be presented in full
capitals by setting the registers ‘CS’ and ‘CT’, respectively, to 1. These transformations are off by default
because they discard case distinction information.

Setting register ‘D’ to 1 enables double-sided page layout, which is only distinct when not continuously
rendering. It places the page number at the bottom right on odd-numbered (recto) pages, and at the bottom
left on even-numbered (verso) pages, swapping places with the arguments to .Os.

groff -Tps -rD1 -mdoc foo.man > foo.ps

The value of the ‘FT’ register determines the footer’s distance from the page bottom; this amount is always
negative and should specify a scaling unit. At one half-inch above this location, the page text is broken be-
fore writing the footer. It is ignored if continuous rendering is enabled. The default is -0.5i.

The ‘HF’ string sets the font used for section and subsection headings; the default is ‘B’ (bold style of the
default family). Any valid argument to groff’s ‘ft’ request may be used.

Normally, automatic hyphenation is enabled using a mode appropriate to the groff locale; see section “Lo-
calization“ of groff(7). It can be disabled by setting the ‘HY’ register to zero.

groff -Tutf8 -rHY=0 -mdoc foo.man | less -R

The paragraph and subsection heading indentation amounts can be changed by setting the registers ‘IN’
and ‘SN’.

groff -Tutf8 -rIN=5n -rSN=2n -mdoc foo.man | less -R
The default paragraph indentation is 7.2n on typesetters and 7n on terminals. The default subsection head-
ing indentation amount is 3n; section headings are set with an indentation of zero.

The line and title lengths can be changed by setting the registers ‘LL’ and ‘LT’, respectively:
groff -Tutf8 -rLL=100n -rLT=100n -mdoc foo.man | less -R

If not set, both registers default to 78n for terminal devices and 6.5i otherwise.

Setting the ‘P’ register starts enumeration of pages at its value. The default is 1.

To change the document font size to 11p or 12p, set register ‘S’ accordingly:
groff -Tdvi -rS11 -mdoc foo.man > foo.dvi

Register ‘S’ is ignored when formatting for terminal devices.

groff 1.23.0 2 July 2023 297

groff_mdoc(7) Miscellaneous Information Manual groff_mdoc(7)

Setting the ‘X’ register to a page number p numbers its successors as pa, pb, pc, and so forth. The register
tracking the suffixed page letter uses format ‘a’ (see the ‘af’ request in groff(7)).

Files
/usr/share/groff/1.23.0/tmac/andoc.tmac

This brief groff program detects whether the man or mdoc macro package is being used by a docu-
ment and loads the correct macro definitions, taking advantage of the fact that pages using them
must call TH or Dd, respectively, before any other macros. A user typing, for example,

groff -mandoc page.1
need not know which package the file page.1 uses. Multiple man pages, in either format, can be
handled; andoc.tmac reloads each macro package as necessary.

/usr/share/groff/1.23.0/tmac/doc.tmac
implements the bulk of the groff mdoc package and loads further components as needed from the
mdoc subdirectory.

/usr/share/groff/1.23.0/tmac/mdoc.tmac
is a wrapper that loads doc.tmac.

/usr/share/groff/1.23.0/tmac/mdoc/doc-common
defines macros, registers, and strings concerned with the production of formatted output. It in-
cludes strings of the form doc-volume-ds-X and doc-volume-as-X for manual section ti-
tles and architecture identifiers, respectively, where X is an argument recognized by .Dt.

/usr/share/groff/1.23.0/tmac/mdoc/doc-nroff
defines parameters appropriate for rendering to terminal devices.

/usr/share/groff/1.23.0/tmac/mdoc/doc-ditroff
defines parameters appropriate for rendering to typesetter devices.

/usr/share/groff/1.23.0/tmac/mdoc/doc-syms
defines many strings and macros that interpolate formatted text, such as names of operating system
releases, ∗BSD libraries, and standards documents. The string names are of the form
doc-str-O-V, doc-str-St--S-I (observe the double dashes), or doc-str-Lb-L, where
O is one of the operating system macros from section “General text domain” above, V is an encod-
ing of an operating system release (sometimes omitted along with the ‘-’ preceding it), S an iden-
tifier for a standards body or committee, I one for an issue of a standard promulgated by S, and L
a keyword identifying a ∗BSD library.

/usr/share/groff/site-tmac/mdoc.local
This file houses local additions and customizations to the package. It can be empty.

See also
The mandoc: https://mandoc.bsd.lv/ project maintains an independent implementation of the mdoc lan-
guage and a renderer that directly parses its markup as well as that of man.

groff(1), man(1), troff(1), groff_man(7), mdoc(7)

Bugs
Section 3f has not been added to the header routines.

.Fn needs to have a check to prevent splitting up the line if its length is too short. Occasionally it separates
the last parenthesis, and sometimes looks ridiculous if output lines are being filled.

The list and display macros do not do any keeps and certainly should be able to.

As of groff 1.23, ‘Tn’ no longer changes the type size; this functionality may return in the next release.

groff 1.23.0 2 July 2023 298

groff_me(7) Miscellaneous Information Manual groff_me(7)

Name
groff_me - “me” macro package for formatting roff documents

Synopsis
groff -me [option . . .] [file . . .]
groff -m me [option . . .] [file . . .]

Description
The GNU implementation of the me macro package is part of the groff document formatting system. The
me package of macro definitions for the roff language provides a convenient facility for preparing technical
papers in various formats. This version is based on the me distributed with 4.4BSD and can be used with
the GNU troff formatter as well as those descended from AT&T troff .

Some formatter requests affect page layout unpredictably when used in conjunction with this package;
however, the following may be used with impunity after the first call to a paragraphing macro like lp or pp.
Some arguments are optional; see groff (7) for details, particularly of requests whose argument list is desig-
nated with an ellipsis. An asterisk ∗ marks groff extensions.

ad c set text adjustment mode to c
af r f assign format f to register r
am m e append to macro m until e called
as s t append rest of line t to string s
bp n begin new page numbered n
br break output line
ce n center next n output lines
cp n en-/disable AT&T troff compatibility mode∗
de m e define macro m until e called
do t interpret input t with compatibility mode off∗
ds s t define rest of line t as string s
el t interpret t if corresponding ie false
fc c d set field delimiter c and padding glyph d
fi enable filling
hc c set hyphenation character to c
hy m set automatic hyphenation mode to m
ie p t as if, but enable interpretation of later el
if p t if condition p, interpret rest of line t
in h set indentation to distance h
lc c set leader repetition glyph to c
ls n set line spacing to n
mc c h set (right) margin glyph to c at distance h
mk r mark vertical position in register r
na disable adjustment of text
ne v need vertical space of distance v
nf disable filling
nh disable automatic hyphenation
nr r n i assign register r value n with auto-increment i
ns begin no-space mode
pl v set page length to v
pn n set next page number to n
po h set page offset to h
rj n right-align next n output lines∗
rm m remove macro, string, or request m
rn m n rename macro, string, or request m to n
rr r remove register r
rs resume spacing (end no-space mode)
rt v return to vertical position set by mk, or v

groff 1.23.0 2 July 2023 299

groff_me(7) Miscellaneous Information Manual groff_me(7)

so f source (interpolate) input file f
sp n insert n lines of vertical space
ta . . . set tab stops
tc c set tab repetition glyph to c
ti h set temporary indentation (next line only) to h
tl . . . output three-part title
tr . . . translate characters
ul n underline next n output lines

Except on title pages (produced by calling tp), me suppresses the output of vertical space at the tops of
pages (after the output of any page header); the sp request will thus not work there. You can instead call bl
or enclose the desired spacing request in a diversion, for instance by calling (b and)b. me also intercepts
the ll request; see the “me Reference Manual” for details.

Name space
Objects in me follow a rigid naming convention. To avoid conflict, any user-defined register, string, or
macro names should be single numerals or uppercase letters, or any longer sequence of letters and numerals
with at least one uppercase letter. (For portability between BSD and groff me, limit names to two charac-
ters, and avoid the name [(left square bracket).) The names employed by any preprocessors in use should
also not be repurposed.

Macros
$0 post-section heading hook
$1 pre-section depth 1 hook
$2 pre-section depth 2 hook
$3 pre-section depth 3 hook
$4 pre-section depth 4 hook
$5 pre-section depth 5 hook
$6 pre-section depth 6 hook
$C post-chapter title hook
$H page/column heading hook
$c output chapter number and title
$f output footer
$h output header
$p output section heading
$s output footnote area separator
(b begin block
(c begin centered block
(d begin delayed text
(f begin footnote
(l begin list
(q begin long quotation
(x begin index entry
(z begin floating keep
)b end block
)c end centered block
)d end delayed text
)f end footnote
)l end list
)q end long quotation
)x end index entry
)z end floating keep
++ set document segment type
+c begin chapter
1c end multi-column layout

groff 1.23.0 2 July 2023 300

groff_me(7) Miscellaneous Information Manual groff_me(7)

2c begin multi-column layout
EN end eqn equation
EQ begin eqn equation
GE end grn picture with drawing position at bottom
GF end grn picture with drawing position at top
GS start grn picture
IE end ideal picture with drawing position at bottom
IF end ideal picture with drawing position at top
IS start ideal picture
PE end pic picture with drawing position at bottom
PF end pic picture with drawing position at top
PS start pic picture
TE end tbl table
TH end heading for multi-page tbl table
TS start tbl table
b embolden argument
ba set base indentation
bc begin new column
bi embolden and italicize argument
bx box argument
ef set even-numbered page footer
eh set even-numbered page header
ep end page
fo set footer
he set header
hl draw horizontal line
hx suppress next page’s headers/footers
i italicize argument
ip begin indented paragraph
ld reset localization and date registers and strings∗
ll set line length
lp begin fully left-aligned paragraph
np begin numbered paragraph
of set odd-numbered page footer
oh set odd-numbered page header
pd output delayed text
pp begin first-line indented paragraph
q quote argument
r set argument in roman
re reset tab stops
sh begin numbered section
sm set argument at smaller type size
sx change section depth
sz set type size and vertical spacing
tp begin title page
u underline argument
uh begin unnumbered section
xl set line length (local)
xp output index

Some macros are provided for “old” roff (1) compatibility. The “me Reference Manual” describes alterna-
tives for modern documents.

ar use Arabic numerals for page numbers
bl insert space (even at page top; cf. sp)

groff 1.23.0 2 July 2023 301

groff_me(7) Miscellaneous Information Manual groff_me(7)

ix set indentation without break
m1 set page top to header distance
m2 set header to text distance
m3 set text to footer distance
m4 set footer to page bottom distance
n1 begin output line numbering
n2 end or alter output line numbering
pa begin page
ro use Roman numerals for page numbers
sk skip next page

Registers
$0 section depth
$1 first section number component
$2 second section number component
$3 third section number component
$4 fourth section number component
$5 fifth section number component
$6 sixth section number component
$c current column number
$d delayed text number
$f footnote number
$i paragraph base indentation
$l column width
$m number of available columns
$p numbered paragraph number
$s column spacing (indentation)
bi display (block) indentation
bm distance from text area to page bottom
bs display (block) pre/post space
bt block threshold for keeps
ch current chapter number
df display font
dv vertical spacing of displayed text (as percentage)∗
es equation pre/post space
ff footnote font
fi footnote indentation (first line only)
fm footer margin
fp footnote type size in points
fs footnote prespace
fu footnote undent (right indentation)
hm header margin
ii indented paragraph indentation
no line numbering offset∗
pf paragraph font
pi paragraph indentation
po page offset
pp paragraph type size in points
ps paragraph prespace
qi long quotation left/right indentation
qp long quotation type size in points
qs long quotation pre/post space
sf section title font
si section indentation per level of depth

groff 1.23.0 2 July 2023 302

groff_me(7) Miscellaneous Information Manual groff_me(7)

so additional section title offset
sp section title type size in points
ss section prespace
sx super/subscript line height increase∗
tf title font
tm distance from page top to text area
tp title type size in points
tv vertical spacing of text (as percentage)∗
xs index entry prespace
xu index undent (right indentation)
y2 year of the century∗
y4 year∗
yr year minus 1900
zs floating keep pre/post space

Strings
delayed text marker
$n concatenated section number
∗ footnote marker
- em dash
< begin subscripting
> end subscripting
dw weekday name
lq left double quotation mark
mo month name
rq right double quotation mark
td date
wa term for “appendix” used by .$c∗
wc term for “chapter” used by .$c∗
{ begin superscripting
} end superscripting

Files
/usr/share/groff/1.23.0/tmac/e.tmac

implements the package.

/usr/share/groff/1.23.0/tmac/refer-me.tmac
implements refer(1) support for me.

/usr/share/groff/1.23.0/tmac/me.tmac
is a wrapper enabling the package to be loaded with “groff -m me”.

Notes
Early roff macro packages often limited their names to a single letter, which followed the formatter’s m
flag letter, resulting in mm, ms, mv, mn, and so on. The “e” in “me” stands for “Eric P. Allman”, who
wrote the macro package and the original technical papers documenting it while an undergraduate at the
University of California.

See also
Two manuals are available in source and rendered form. On your system, they may be compressed and/or
available in additional formats.

/usr/share/doc/groff-1.23.0/meintro.me
/usr/share/doc/groff-1.23.0/meintro.ps

is “Writing Papers with Groff Using -me”, by Eric P. Allman, adapted for groff by James Clark.

groff 1.23.0 2 July 2023 303

groff_me(7) Miscellaneous Information Manual groff_me(7)

/usr/share/doc/groff-1.23.0/meref.me
/usr/share/doc/groff-1.23.0/meref.ps

is the “me Reference Manual”, by Eric P. Allman, adapted for groff by James Clark and G. Bran-
den Robinson.

Groff: The GNU Implementation of troff , by Trent A. Fisher and Werner Lemberg, is the primary groff
manual. You can browse it interactively with “info groff”.

For preprocessors supported by me, see eqn(1), grn(1), pic(1), refer(1), and tbl(1).

groff (1), troff (1), groff (7)

groff 1.23.0 2 July 2023 304

groff_mm(7) Miscellaneous Information Manual groff_mm(7)

Name
groff_mm - memorandum macros for GNU roff

Synopsis
groff -mm [option . . .] [file . . .]
groff -m mm [option . . .] [file . . .]

Description
The GNU implementation of the mm macro package is part of the groff document formatting system. The
mm package is suitable for the composition of letters, memoranda, reports, and books.

Call an mm macro at the beginning of a document to initialize the package. A simple mm document might
use only P for paragraphing. Set numbered and unnumbered section headings with H and HU, respec-
tively. Change the style of the typeface with B, I, and R; you can alternate styles with BI, BR, IB, IR, RB,
and RI. Several nestable list types are available via AL, BL, BVL, DL, ML, RL, and VL; each of these
begins a list, to which LI adds an item and LE ends the (nested) list. Customized list arrangements are
supported by LB. DS and DF start static and floating displays, respectively; either is terminated with DE.

groff mm is intended to be compatible with the mm implementation found in the AT&T Documenter’s
Workbench (DWB), with the following limitations.

• Omitted features include the logo and company name strings, }Z and]S, respectively; the encoded com-
pany site location addresses recognized as the third argument to the AU macro; the Pv (“private” head-
ing) register; and the OK (other keywords), and PM (proprietary markings) macros.

• The CS (output cover sheet) macro is implemented only for memorandum type 4.

• The grap preprocessor is not explicitly supported; no G1 and G2 macros are defined.

• The registers A, C, E, T, and U, typically set from the troff or nroff command lines with DWB mm, are
not recognized.

• When setting the registers L or W from the command line, use an explicit scaling unit to avoid surprises.

• DWB mm’s nP macro indented the second line of a paragraph to align it with the start of the text of the
first (after the paragraph number); groff mm’s does not.

• Cut marks are not supported.

DWB mm supported only seven levels of heading. As a compatible extension, groff mm supports fourteen,
introducing new registers H8 through H14, and affecting the interpretation of the HF and HP strings.

Macro, register, and string descriptions in this page frequently mention each other; most cross references
are to macros. Where a register or string is referenced, its type is explicitly identified. mm’s macro names
are usually in full capitals; registers and strings tend to have mixed-case names.

Document styles
groff mm offers three different frameworks for document organization. COVER/COVEND is a flexible
means of preparing any document requiring a cover page. LT/LO aids preparation of typical Anglophone
correspondence (business letters, for example). The MT memorandum type mechanism implements a
group of formal styles historically used by AT&T Bell Laboratories. Your document can select at most one
of these approaches; when used, each disables the others.

Localization
groff mm is designed to be easily localized. For languages other than English, strings that can appear in
output are collected in the file /usr/share/groff/1.23.0/tmac/xx.tmac, where xx is an ISO 639 two-letter lan-
guage identifier. Localization packages should be loaded after mm; for example, you might format a
Swedish mm document with the command “groff -mm -msv”.

This package can also be localized by site or territory; for example, /usr/share/groff/1.23.0/tmac/mse.tmac
illustrates how to adapt the output to a national standard using its ISO 3166 territory code. Such a package
can define a string that causes a macro file /usr/share/groff/1.23.0/tmac/mm/territory_locale to be loaded at
package initialization. If this mechanism is not used, /usr/share/groff/1.23.0/tmac/mm/locale is loaded in-
stead. No diagnostic is produced if these files do not exist.

groff 1.23.0 2 July 2023 305

groff_mm(7) Miscellaneous Information Manual groff_mm(7)

Registers and strings
Much mm behavior can be configured by registers and strings. A register is assigned with the nr request.

.nr ident [±]n [i]

ident is the name of the register, and n is the value to be assigned. n can be prefixed with a plus or minus
sign if incrementation or decrementation (respectively) of the register’s existing value by n is desired. If as-
signment of a (possibly) negative n is required, further prefix it with a zero or enclose it in parentheses. If
i is specified, the register is automatically modified by i prior to interpolation if a plus or minus sign is in-
cluded in the escape sequence as follows.

\n[±][ident]

i can be negative; it combines algebraically with the sign in the interpolation escape sequence.

Strings are defined with the ds request.

.ds ident contents

contents consumes everything up to the end of the line, including trailing spaces. It is a good practice to
end contents with a comment escape sequence (\") so that extraneous spaces do not intrude during docu-
ment maintenance. To include leading spaces in contents, prefix it with a double quote. Strings are inter-
polated with the \∗ escape sequence.

\∗[ident]

Register and string name spaces are distinct, but strings and macros share a name space. Defining a string
with the same name as an mm macro is not supported and may cause incorrect rendering, the emission of
diagnostic messages, and an error exit status from troff .

Register format
A register is interpolated using Arabic numerals if no other format has been assigned to it. Assign a format
to a register with the af request.

.af R c

R is the name of the register, and c is the format. If c is a sequence of Arabic numerals, their quantity de-
fines a zero-padded minimum width for the interpolated register value.

Form Sequence
1 0, 1, 2, 3, . . ., 10, . . .
001 000, 001, 002, 003, . . ., 1000, . . .
i 0, i, ii, iii, iv, . . .
I 0, I, II, III, IV, . . .
a 0, a, b, c, . . ., z, aa, ab, . . .
A 0, A, B, C, . . ., Z, AA, AB, . . .

Fonts
In groff mm, the fonts (or rather, font styles) R (roman), I (italic), and B (bold) are mounted at font posi-
tions 1, 2, and 3, respectively. Internally, font positions are used for backward compatibility. From a prac-
tical point of view, it doesn’t make a big difference—a different font family can still be selected by invok-
ing groff ’s fam request or using its -f command-line option. On the other hand, if you want to replace just,
for example, font I with Zapf Chancery Medium italic (available on groff ’s pdf and ps output devices), you
have to use the fp request, replacing the font at position 2 with “.fp 2 ZCMI”). Because the cover sheet,
memorandum type, and refer(1) integration macros explicitly request fonts named B, I, and R, you will
also need to remap these font names with the ftr request, for instance with “.ftr I ZCMI”.

Macros
An explicitly empty argument may be specified with a pair of double quotes; to call a macro XX with an
empty second argument but non-empty first and third ones, you could input the following.

.XX foo "" baz

Macro names longer than two characters are GNU extensions; some shorter names were not part of DWB
mm’s published interface but are documented aspects of groff mm.

groff 1.23.0 2 July 2023 306

groff_mm(7) Miscellaneous Information Manual groff_mm(7)

)E level text
Add heading text text to the table of contents with level, which is either 0 or in the range 1 to 7.
See also H. This undocumented DWB mm macro is exposed by groff mm to enable customized
tables of contents.

1C [1] Format page text in one column. The page is broken. A 1 argument suppresses this break; its use
may cause body text and a pending footnote to overprint. See 2C, MC, and NCOL.

2C Begin two-column formatting. This is a special case of MC. See 1C and NCOL.

AE Abstract end; stop collecting abstract text. See AS.

AF [firm-name]
Specify firm associated with the document. At most one can be declared; the firm name is used by
memorandum types and available to cover sheets. AF terminates a document title started with TL,
and can be called without an argument for that purpose. See MT and COVER.

AL [type [text-indent [1]]]
Begin an auto-incrementing numbered list. Item numbers start at one. The type argument assigns
the register format (see above) of the list item enumerators. The default is 1. An explicitly empty
type also indicates the default. A text-indent argument overrides register Li. A third argument
suppresses the blank line that normally precedes each list item. Use LI to declare list items, and
LE to end the list.

APP [id [title]]
Begin an appendix. If the identifier id is omitted, it is incremented (or initialized, if necessary).
The register format used for id is “A”. The page is broken. The register Aph determines whether
an appendix heading is then formatted. This heading uses the string App followed by id . Appen-
dices appear in any table of contents (see TC). The string Apptxt is set to title if the latter is
present, and made empty otherwise.

APPSK id n [title]
As APP, but increment the page number by n. Use this macro to “skip pages” when diagrams or
other materials not formatted by troff are included in appendices.

AS [placement [indentation]]
Abstract start; begin collecting abstract. Input up to the next AE call is included in the abstract.
placement influences the location of the abstract on the cover sheet of a memorandum (see MT).
COVER, by contrast, ignores placement by default, but can be customized to interpret it.

placement Effect
0 The abstract appears on page 1 and cover sheet if the document is a “released paper”

memorandum (“.MT 4”); otherwise, it appears on page 1 without a cover sheet.
1 The abstract appears only on the cover sheet (“.MT 4” only).

An abstract does not appear at all in external letters (“.MT 5”). A placement of 2 was supported
by DWB mm but is not by groff mm.

A second argument increases the indentation by indentation and reduces the line length by twice
this amount. A scaling unit of ens is assumed. The default is 0.

AST [caption]
Set the caption above the abstract to caption, or clear it if there is no argument. The default is
“ABSTRACT”.

AT title . . .
Specify author’s title(s). If present, AT must appear just after the corresponding author’s AU.
Each title occupies an output line beneath the author’s name in the signature block used by LT let-
ters (see SG) and in MT memoranda. The ms cover sheet style also uses it.

groff 1.23.0 2 July 2023 307

groff_mm(7) Miscellaneous Information Manual groff_mm(7)

AU [name [initials [loc [dept [ext [room [arg1 [arg2 [arg3]]]]]]]]]
Specify author. AU terminates a document title started with TL, and can be called without argu-
ments for that purpose. Author information is used by cover sheets, MT memoranda, and SG.
Further arguments comprise initials, location, department, telephone extension, room number or
name, and up to three additional items. Repeat AU to identify multiple authors.

Use WA/WE instead to identify the author for documents employing LT.

AV [name [1]]
Format approval lines for a handwritten signature and date. Two horizontal rules are drawn, with
the specified name and the text of the string Letdate beneath them. Above these rules, the text in
the string Letapp is formatted; a second argument replaces this text with a blank line. See LT.

AVL [name]
As AV, but the date, date rule, and approval notation Letapp are omitted.

B [bold-text [previous-font-text]] . . .
Join bold-text in boldface with previous-font-text in the previous font, without space between the
arguments. If no arguments, switch font to bold style.

B1 Begin boxed, kept display. The text is indented one character, and the right margin is one charac-
ter shorter. This is a GNU extension.

B2 End boxed, kept display. This is a GNU extension.

BE End bottom block; see BS.

BI [bold-text [italic-text]] . . .
Join bold-text in boldface with italic-text in italics, without space between the arguments.

BL [text-indent [1]]
Begin bulleted list. Items are prefixed with a bullet and a space. A text-indent argument overrides
register Pi. A second argument suppresses blank lines between items. Use LI to declare list
items, and LE to end the list.

BR [bold-text [roman-text]] . . .
Join bold-text in boldface with roman-text in roman style, without space between the arguments.

BS Begin bottom block. Input is collected until BE is called, and output between the footnote area
and footer of each page.

BVL [text-indent [mark-indent [1]]]
Begin broken variable-item (or “tagged”) list. Each item is expected to supply its own mark. The
line is always broken after the mark; contrast VL. text-indent sets the indentation of the text, and
mark-indent the distance from the current list indentation to the mark. A third argument sup-
presses the blank line that normally precedes each list item. Use LI to declare list items, and LE
to end the list.

COVER [style]
Begin a cover page description. COVER must appear before the body text (or main matter) of a
document. The argument style is used to construct the file name /usr/share/groff/1.23.0/tmac/mm/
style.cov and load it with the mso request. The default style is ms; the ms.cov file prepares a cover
page resembling those of the ms package. A .cov file must define a COVEND macro, which a
document must call at the end of the cover description. Use cover description macros in the fol-
lowing order; only TL and AU are required.

.COVER

.TL

.AF

.AU

.AT

.AS

groff 1.23.0 2 July 2023 308

groff_mm(7) Miscellaneous Information Manual groff_mm(7)

.AE

.COVEND

COVEND
End the cover description.

DE End static or floating display begun with DS or DF.

DF [format [fill [right-indentation]]]
Begin floating display. A floating display is saved in a queue and output in the order entered. Ar-
guments are handled as in DS. Floating displays cannot be nested. Placement of floating displays
is controlled by the registers De and Df.

DL [text-indent [1]]
Begin dashed list. Items are prefixed with an em dash and a space. A text-indent argument over-
rides register Pi. A second argument suppresses blank lines between items. Use LI to declare list
items, and LE to end the list.

DS [format [fill [right-indentation]]]
Begin static display. Input until DE is called is collected into a display. The display is output on a
single page unless it is taller than the height of the page. DS can be nested (contrast with DF).

format Effect
none Do not indent the display.
L Do not indent the display.
I Indent text by \n[Si].
C Center each line.
CB Center the whole display as a block.
R Right-adjust the lines.
RB Right-adjust the whole display as a block.

The values “L”, “I”, “C”, and “CB” can also be specified as “0”, “1”, “2”, and “3”, respectively,
for compatibility with DWB mm.

fill Effect
none Disable filling.
N Disable filling.
F Enable filling.

“N” and “F” can also be specified as “0” and “1”, respectively, for compatibility with DWB mm.

A third argument reduces the line length by right-indentation.

mm normally places blank lines before and after the display. Set register Ds to 0 to suppress these.

EC [title [override [flag [refname]]]]
Caption an equation. The caption consists of the string Liec followed by an automatically incre-
menting counter stored in the register Ec, punctuation configured by the register Of, then title (if
any). Use the af request to configure Ec’s number format. override and flag alter the equation
number as follows. Omitting flag and specifying 0 in its place are equivalent.

flag Effect
0 Prefix number with override.
1 Suffix number with override.
2 Replace number with override.

Equation captions are centered irrespective of the alignment of any enclosing display.

refname stores the equation number using SETR; it can be retreived with “.GETST refname”.
This argument is a GNU extension.

Captioned equations are listed in a table of contents (see TC) if the Boolean register Le is true.
Such a list uses the string Le as a heading.

groff 1.23.0 2 July 2023 309

groff_mm(7) Miscellaneous Information Manual groff_mm(7)

EF [" 'left'center'right' "]
Define the even-page footer, which is formatted just above the normal page footer on even-num-
bered pages. See PF. EF defines the string EOPef.

EH [" 'left'center'right' "]
Define the even-page header, which is formatted just below the normal page header on even-num-
bered pages. See PH. EH defines the string TPeh.

EN End equation input preprocessed by eqn(1); see EQ.

EOP If defined, this macro is called in lieu of normal page footer layout. Headers and footers are for-
matted in a separate environment. See TP.

Strings available to EOP
EOPf argument to PF
EOPef argument to EF
EOPof argument to OF

EPIC [-L] width height [name]
Draw a box with the given width and height. It also prints the text name or a default string if
name is not specified. This is used to include external pictures; just give the size of the picture.
-L left-aligns the picture; the default is to center. See PIC.

EQ [label]
Start equation input preprocessed by eqn(1). EQ and EN macro calls bracket an equation region.
Such regions must be contained in displays (DS/DE), except when the region is used only to con-
figure eqn and not to produce output. If present, label appears aligned to the right and centered
vertically within the display; see register Eq. If multiple eqn regions occur within a display, only
the last label (if any) is used.

EX [title [override [flag [refname]]]]
Caption an exhibit. Arguments are handled analogously to EC. The register Ex is the exhibit
counter. The string Liex precedes the exhibit number and any title. Exhibit captions are centered
irrespective of the alignment of any enclosing display.

Captioned exhibits are listed in a table of contents (see TC) if the Boolean register Lx is true.
Such a list uses the string Lx as a heading.

FC [closing-text]
Output the string Letfc, or the specified closing-text, as the formal closing of a letter.

FD [arg [1]]
Configure display of footnotes. The first argument encodes enablement of automatic hyphenation,
adjustment to the right margin, indentation of footnote text, and left- vs. right-alignment of the
footnote label within the space allocated for it.

arg Hyphenate? Adjust? Indent? Label alignment
0 no yes yes left
1 yes yes yes left
2 no no yes left
3 yes no yes left
4 no yes no left
5 yes yes no left
6 no no no left
7 yes no no left
8 no yes yes right
9 yes yes yes right
10 no no yes right
11 yes no yes right

An arg greater than 11 is treated as 0. mm’s default is 0.

groff 1.23.0 2 July 2023 310

groff_mm(7) Miscellaneous Information Manual groff_mm(7)

If a second argument, conventionally 1, is given, footnote numbering is reset when a first-level
heading is encountered. See FS.

FE End footnote; see FS.

FG [title [override [flag [refname]]]]
Caption a figure. Arguments are handled analogously to EC. The register Fg is the figure counter.
The string Lifg precedes the figure number and any title. Figure captions are centered irrespective
of the alignment of any enclosing display.

Captioned figures are listed in a table of contents (see TC) if the Boolean register Lf is true. Such
a list uses the string Lf as a heading.

FS [label]
Start footnote. Input until FE is called is collected into a footnote. By default, footnotes are auto-
matically numbered starting at 1; the number is available in register :p and, with a trailing period,
in string F. This string precedes the footnote text at the bottom of the column or page. Footnotes
are vertically separated by the product of registers Fs and Lsp. In groff mm, footnotes may be
used in displays.

A label argument replaces the contents of the string F; it need not be numeric. In this event, the
footnote marker in the body text must be explicitly written.

GETHN refname [varname]
Include the heading number where the corresponding “.SETR refname” was placed. This is dis-
played as “X.X.X.” in pass 1. See INITR. If varname is used, GETHN sets the string varname
to the heading number.

GETPN refname [varname]
Include the page number where the corresponding “.SETR refname” was placed. This is dis-
played as “9999” in pass 1. See INITR. If varname is used, GETPN sets the string varname to
the page number.

GETR refname
Combine GETHN and GETPN with the text “chapter” and “, page”. The string Qrf contains the
text for the cross reference:

.ds Qrf See chapter \\∗[Qrfh], page \\∗[Qrfp].

Qrf may be changed to support other languages. Strings Qrfh and Qrfp are set by GETR and
contain the page and heading number, respectively.

GETST refname [varname]
Include the string saved with the second argument to .SETR. This is a dummy string in pass 1. If
varname is used, GETST sets it to the saved string. See INITR.

H level [title [suffix]]
Set a numbered section heading at level. mm produces numbered heading marks of the form
a.b.c. . ., with up to fourteen levels of nesting. Each level’s number increases automatically with
each H call and is reset to zero when a more significant level is specified. “1” is the most signifi-
cant or coarsest division of the document. Text after an H call is formatted as a paragraph; calling
P is unnecessary.

title specifies an optional title; it must be double-quoted if it contains spaces. mm appends suffix
to title in the body of the document, but omits it from any table of contents (see TC). This facility
can be used to annotate the heading title with a footnote. suffix should not interpolate the F string;
specify a footnote mark explicitly. See FS.

Heading behavior is highly configurable. Several registers set a threshold, where heading levels at
or below the threshold value are handled in one way, and those above it another. For example, a
heading level within the threshold of register Cl is included in the table of contents (see TC).

groff 1.23.0 2 July 2023 311

groff_mm(7) Miscellaneous Information Manual groff_mm(7)

Heading layout. Register Ej sets a threshold for page breaking (ejection) prior to a heading. If
not preceded by a page break, a heading level below the threshold in register Hps is preceded by
the amount of vertical space in register Hps1, and by the amount in Hps2 otherwise. The Hb reg-
ister sets a threshold below which a break occurs after the heading, and register Hs sets a threshold
below which vertical space follows it. If the heading level is not less than both of these, a run-in
heading is produced; paragraph text follows on the same output line. Otherwise, register Hi con-
figures the indentation of text after headings. Threshold register Hc enables the centering of head-
ings; a heading level below both of the Hb and Hc thresholds is centered.

Heading typeface and size. The fonts used for heading numbers and titles at each level are config-
ured by the HF string. The string HP likewise assigns a type size to each heading level. The ver-
tical spacing used by headings may be controlled by the user-definable macros HX and/or HZ.

Heading number format. Registers named H1 through H14 store counters for each heading level.
Their values are printed using Arabic numerals by default; see HM. The heading levels are cate-
nated with dots for formatting; to typeset only the deepest, set the Ht register. Heading numbers
are not suffixed with a trailing dot except when only the first level is output; to omit a dot in this
case as well, clear the H1dot register.

Customizing heading behavior. mm calls hook macros to enable further customization of head-
ings. (DWB mm called these “exits”.) They can be used to change the heading’s mark (the num-
bered portion before any heading title), its vertical spacing, and its vertical space requirements (for
instance, to require a minimum quantity of subsequent output lines). Define hook macros in ex-
pectation of the following parameters. The argument declared-level is the level argument to H,
or 0 for unnumbered headings (see HU). actual-level is the same as declared-level for numbered
headings, and the value of register Hu for unnumbered headings. title is the corresponding argu-
ment to H or HU.

HX declared-level actual-level title
mm calls HX before setting the heading. Your definition may alter }0, }2, and ;3.

}0 (string)
contains the heading mark plus two spaces if declared-level is non-zero, and
otherwise is empty.

;0 (register)
encodes a position for the text after the heading. 0 means that the heading is to
be run in, 1 means that a break is to occur before the text, and 2 means that verti-
cal space is to separate heading and text.

}2 (string)
is the suffix that separates a run-in heading from the text. It contains two spaces
if register ;0 is 0, and otherwise is empty.

;3 (register)
contains the vertical space required for the heading to be typeset. If that amount
is not available, the page is broken prior to the heading. The default is 2v.

HY declared-level actual-level title
mm calls HY after determing the heading typeface and size. It could be used to change
indentation.

HZ declared-level actual-level title
mm calls HZ after formatting the heading, just before H or HU returns. It could be used
to change the page header to include a section heading.

HC [hyphenation-character]
Set hyphenation character. Default value is “\%”. Resets to the default if called without argument.
Hyphenation can be turned off by setting register Hy to 0 at the beginning of the file.

groff 1.23.0 2 July 2023 312

groff_mm(7) Miscellaneous Information Manual groff_mm(7)

HM [arg1 [arg2 [. . . [arg14]]]]
Set the heading mark style. Each argument assigns the specified register format (see above) to the
corresponding heading level. The default is 1 for all levels. An explicitly empty argument also in-
dicates the default.

HU heading-text
Set an unnumbered section heading. Except for a heading number, it is treated as a numbered
heading of the level stored in register Hu; see H.

I [italic-text [previous-font-text]] . . .
Join italic-text in italics with previous-font-text in the previous font, without space between the ar-
guments. If no arguments, switch font to italic style.

IA [recipient-name [title]]
Specify the inside address in a letter. Input is collected into the inside address until IE is called,
and then output. You can specify multiple recipients with empty IA/IE pairs; only the last address
is used. The arguments give each recipient a name and title. See LT.

IB [italic-text [bold-text]] . . .
Join italic-text in italics with bold-text in boldface, without space between the arguments.

IE End the inside address begun with IA.

IND argument . . .
If the Boolean register Ref is true, write an index entry as a specially prepared roff comment to the
standard error stream, with each argument separated from its predecessor by a tab character. The
entry’s location information is arranged as configured by the most recent INITI call.

INDP Output the index set up by INITI and populated by IND calls. By default, INDP calls SK and
writes a centered caption interpolating the string Index. It then disables filling and calls 2C; after-
ward, it restores filling and calls 1C.

Define macros to customize this behavior. INDP calls TXIND before the caption, TYIND in-
stead of writing the caption, and TZIND after formatting the index.

INITI location-type file-name [macro]
Initialize groff mm’s indexing system. Argument location-type selects how the location of each in-
dex entry is reported. file-name populates an internal string used later by INDP.

location-type Entry format
N page number
H heading mark
B page number, tab character, heading mark

If macro is specified, it is called for each index entry with the arguments given to IND.

INITR id
Initialize the cross reference macros. Cross references are written to the standard error stream,
which should be redirected into a file named id.qrf . mmroff (1) handles this and the two format-
ting passes it requires. The first pass identifies cross references, and the second one includes them.

See SETR, GETPN, and GETHN.

IR [italic-text [roman-text]] . . .
Join italic-text in italics with roman-text in roman style, without space between the arguments.

ISODATE [0]
Use ISO 8601 format for the date string DT used by some cover sheet and memorandum types;
that is, YYYY -MM-DD. Must be called before ND to be effective. If given an argument of 0, the
traditional date format for the groff locale is used; this is also the default.

LB text-indent mark-indent pad type [mark [pre-item-space [pre-list-space]]]
Begin list. The macros AL, BL, BVL, DL, ML, RL, and VL call LB in various ways; they are
simpler to use and may be preferred if they suit the desired purpose.

groff 1.23.0 2 July 2023 313

groff_mm(7) Miscellaneous Information Manual groff_mm(7)

The nesting level of lists is tracked by mm; the outermost level is 0. The text of each list item is
indented by text-indent; the default is taken from the Li register (in ens). Each item’s mark is in-
dented by mark-indent; the default is 0n. The mark is normally left-aligned. If pad is greater
than zero, mark-indent is overridden such that pad ens of space follow the mark. type selects one
of six possible ways to display the mark.

type Output for a mark “x”
1 x.
2 x)
3 (x)
4 [x]
5 <x>
6 {x}

If type is 0 and mark is unspecified, the items are set with a hanging indent. Otherwise, mark is
interpreted as a string defining the mark. If type is greater than zero, items are automatically num-
bered; mark is interpreted as a register format. The default type is 0.

The last two arguments manage vertical space. Unless a list’s nesting level is greater than the
value of register Ls, its items are preceded by pre-item-space multiplied by the register Lsp; the
default is 1. LB precedes the list by pre-list-space multiplied by the register Lsp; the default is 0.

LC [list-level]
Clear list state. Active lists are terminated as if with LE, either all (the default) or only those from
the current level down to list-level if specified. H calls LC automatically.

LE [1] End list. The current list is terminated. An argument of 1 causes vertical space in the amount of
register Lsp to follow the list.

LI [mark [item-mark-mode]]
Begin a list item. Input is collected into a list item until the current list is terminated or LI is
called again. By default, the item’s text is preceded by any mark configured by the current list. If
only mark is specified, it replaces the configured mark. A second argument prefixes mark to the
configured mark; an item-mark-mode value of 1 places an unbreakable space after mark, while a
value of 2 does not (rendering the two adjacent). Also see register Limsp.

LO option [value]
Specify letter options; see LT. Standard options are as follows. See IA regarding the inside ad-
dress and string DT regarding the date.

option Effect
AT Attention; put contents of string LetAT and value left-aligned after the inside address.
CN Confidential; put value, or contents of string LetCN, left-aligned after the date.
RN Reference; put contents of string LetRN and value after the confidental notation (if any)

and the date, aligned with the latter.
SA Salutation; put value, or contents of string LetSA, left-aligned after the inside address

and the confidental notation (if any).
SJ Subject; put contents of string LetSJ and value left-aligned after the inside address and

the attention and salutation notations (if any). In letter type “SP”, LetSJ is ignored and
value is set in full capitals.

LT [style]
Format a letter in the designated style, defaulting to BL (see below). A letter begins with the
writer’s address (WA/WE), followed by the date (ND), the inside address (IA/IE), the body of the
letter (P and other general-purpose mm macros), the formal closing (FC), the signature (SG), and
notations (NS/NE). Any of these may be omitted. Letter options specified with LO add further
annotations, which are extensible; see section “Internals” below.

groff 1.23.0 2 July 2023 314

groff_mm(7) Miscellaneous Information Manual groff_mm(7)

style Description
BL Blocked: the writer’s address, date, formal closing, and signature are indented to the cen-

ter of the line. Everything else is left-aligned.
SB Semi-blocked: as BL, but the first line of each paragraph is indented by 5m.
FB Fully blocked: everything begins at the left margin.
SP Simplified: as FB, but a formal closing is omitted, and the signature is set in full capitals.

MC column-width [gutter-width]
Begin multi-column layout. groff mm creates as many columns of column-width as the line length
will permit. gutter-width is the interior spacing between columns. It defaults to column-width/15.
1C returns to single-column layout. MC is a GNU extension. See MULB for an alternative.

ML mark [text-indent [1]]
Start a list with the mark argument preceding each list item. text-indent overrides the default in-
dentation of the list items set by register Li. If a third argument, conventionally 1, is given, the
blank line that normally precedes each list item is suppressed. Use LI to declare list items, and
LE to end the list.

MT [type [addressee]]
Select memorandum type. These correspond to formats used by AT&T Bell Laboratories, where
the mm package was initially developed, affecting the document layout. Some of these included a
cover page with a caption categorizing the document. groff mm uses type to construct the file
name /usr/share/groff/1.23.0/tmac/mm/type.MT and load it with the mso request. Memorandum
types 0 to 5 are supported; any other value of type is mapped to type 6. If type is omitted, 0 is im-
plied. addressee sets a string analogous to one used by AT&T cover sheet macros that are not im-
plemented in groff mm.

type Description
0 normal memorandum; no caption
1 captioned “MEMORANDUM FOR FILE”
2 captioned “PROGRAMMER’S NOTES”
3 captioned “ENGINEER’S NOTES”
4 released paper
5 external letter

See COVER for a more flexible cover sheet mechanism.

MOVE y-pos [x-pos [line-length]]
Move to a position, setting page offset to x-pos. If line-length is not given, the difference between
current and new page offset is used. Use PGFORM without arguments to return to normal.

MULB cw1 space1 [cw2 space2] . . . cwn
Begin alternative multi-column mode. All column widths must be specified, as must the amount
of space between each column pair. The arguments’ default scaling unit is n. MULB uses a di-
version and operates in a separate environment.

MULN Begin next column in alternative column mode.

MULE End alternative multi-column mode and emit the columns.

NCOL Move to the start of the next column (only when using 2C or MC). Contrast with MULN.

ND [arg]
Set the document’s date. mm does not interpret arg; it can be a revision identifier (or empty).

NE End notation begun with NS; filling is enabled.

nP [type]
Begin a numbered paragraph at heading level two. See P.

groff 1.23.0 2 July 2023 315

groff_mm(7) Miscellaneous Information Manual groff_mm(7)

NS [code [1]]
Declare notations, typically for letters or memoranda, of the type specified by code. The text cor-
responding to code is output, and filling is disabled until NE is called. Typically, a list of names or
attachments lies within NS/NE. If code is absent or does not match one of the values listed under
the Letns string description below, each line of notations is formatted as “Copy (line) to”. If a
second argument, conventionally 1, is given, code becomes the entire notation and NE is not nec-
essary. In groff mm, you can set up further notations to be recognized by NS; see the strings Letns
and Letnsdef below.

OF [" 'left'center'right' "]
Define the odd-page footer, which is formatted just above the normal page footer on odd-num-
bered pages. See PF. OF defines the string EOPof.

OH [" 'left'center'right' "]
Define the odd-page header, which is formatted just below the normal page header on odd-num-
bered pages. See PH. OH defines the string TPoh.

OP Make sure that the following text is printed at the top of an odd-numbered page. Does not output
an empty page if currently at the top of an odd page.

P [type]
Begin new paragraph. If type is missing or 0, P sets the paragraph fully left-aligned. A type of 1
idents the first line by \[Pi] ens. Set the register Pt to select a default paragraph indentation style.
The register Ps controls the vertical spacing between paragraphs.

PE Picture end; see pic(1).

PF [" 'left'center'right' "]
Define the page footer. The footer is formatted at the bottom of each page; the argument is other-
wise as described in PH. PF defines the string EOPf. See EF, OF, and EOP.

PGFORM [linelength [pagelength [pageoffset [1]]]]
Set line length, page length, and/or page offset. This macro can be used for letterheads and simi-
lar. It is normally the first macro call in a file, though it is not necessary. PGFORM can be used
without arguments to reset everything after a MOVE call. A line break is done unless the fourth
argument is given. This can be used to avoid the page number on the first page while setting new
width and length. (It seems as if this macro sometimes doesn’t work too well. Use the command-
line arguments to change line length, page length, and page offset instead.)

PGNH Suppress header on the next page. This macro must be called before any macros that produce out-
put to affect the layout of the first page.

PH [" 'left'center'right' "]
Define the page header, formatted at the top of each page, as the argument, where left, center, and
right are aligned to the respective locations on the line. A “%” character in arg is replaced by the
page number. If the argument is absent, no page header is set. The default page header is

"''- % -''"
which centers the page number between hyphens and formats nothing at the upper left and right.
Header macros call PX (if defined) after formatting the header. PH defines the string TPh. See
EH, OH, and TP.

PIC [-B] [-C|-I n|-L|-R] file [width [height]]
Include PostScript document file. The optional -B argument draws a box around the picture. The
optional -L, -C, -R, and -I n arguments align the picture or indent it by n (assuming a scaling
unit of m). By default, the picture is left-aligned. Optional width and height arguments resize the
picture. Use of this macro requires two-pass processing; see INITR and mmroff (1).

PS Picture start; see pic(1).

PY Picture end with flyback. Ends a pic(1) picture, returning the vertical position to where it was
prior to the picture. This is a GNU extension.

groff 1.23.0 2 July 2023 316

groff_mm(7) Miscellaneous Information Manual groff_mm(7)

R [roman-text [previous-font-text]] . . .
Join roman-text in roman style with previous-font-text in the previous font, without space between
the arguments. If no arguments, switch font to roman style.

RB [roman-text [bold-text]] . . .
Join roman-text in roman style with bold-text in boldface, without space between the arguments.

RD [prompt [diversion [string]]]
Read from standard input to diversion and/or string. The text is saved in a diversion named diver-
sion. Recall the text by writing the name of the diversion after a dot on an empty line. A string is
also defined if string is given. Diversion and/or prompt can be empty ("").

RF Reference end. Ends a reference definition and returns to normal processing. See RS.

RI [roman-text [italic-text]] . . .
Join roman-text in roman style with italic-text in italics, without space between the arguments.

RL [text-indent [1]]
Begin reference list. Each item is preceded by an automatically incremented number between
square brackets; compare AL. text-indent changes the default indentation. Use LI to declare list
items, and LE to end the list. A second argument, conventionally 1, suppresses the blank line that
normally precedes each list item.

RP [suppress-counter-reset [page-ejection-policy]]
Format a reference page, listing items accumulated within RS/RF pairs. The reference counter is
reset unless the first argument is 1. Normally, page breaks occur before and after the references
are output; the register Rpe configures this behavior, and a second argument overrides its value.
TC calls RP automatically if references have accumulated.

References are list items, and thus are vertically separated (see LB). Setting register Ls to 0 sup-
presses this spacing. The string Rp contains the reference page caption.

RS [reference-string]
Begin an automatically numbered reference definition. By default, references are numbered start-
ing at 1; the number is available in register :R. Interpolate the string Rf where the reference mark
should be and write the reference between RS/RF on an input line after the reference mark. If ref-
erence-string is specified, groff ms also stores the reference mark in a string of that name, which
can be interpolated as \∗[reference-string] subsequently.

S [type-size [vertical-spacing]]
Set type size and vertical spacing. Each argument is a groff measurement, using an appropriate
scaling unit and an optional + or - prefix to increment or decrement the current value. An argu-
ment of P restores the previous value, C indicates the current value, and D requests the default.
An empty or omitted argument is treated as P.

SA [mode]
Set or restore the default enablement of adjustment. Specify 0 or 1 as mode to set a document’s
default explicitly; 1 is assumed by mm. Adjustment can be temporarily suspended with the na re-
quest. When the H or HU macros are used to format a heading, or when SA is called without a
mode argument, the default adjustment is restored.

SETR refname [string]
Remember the current heading and page numbers as refname. Saves string if string is defined.
string is retrieved with GETST. See INITR.

SG [arg [1]]
Signature line. Prints the authors name(s) after the formal closing. The argument is appended to
the reference data, printed at either the first or last author. The reference data is the location, de-
partment, and initials specified with AU. It is printed at the first author if the second argument is
given, otherwise at the last. No reference data is printed if the author(s) is specified through
WA/WE. See section “Internals” below.

groff 1.23.0 2 July 2023 317

groff_mm(7) Miscellaneous Information Manual groff_mm(7)

SK [n] Skip n pages. If n is 0 or omitted, the page is broken unless the drawing position is already at the
top of a page. Otherwise, n pages, blank except for any headers and footers, are printed.

SM text [post]
SM pre text post

Format text at a smaller type size, joined with any specified pre and post at normal size.

SP [lines]
Space vertically. lines can have any scaling factor, like “3i” or “8v”. Several SP calls in a line
only produces the maximum number of lines, not the sum. SP is ignored also until the first text
line in a page. Add \& before a call to SP to avoid this.

TAB Reset tab stops to every 5 ens.

TB [title [override [flag [refname]]]]
Caption a table. Arguments are handled analogously to EC. The register Tb is the table counter.
The string Litb precedes the table number and any title. Table captions are centered irrespective
of the alignment of any enclosing display.

Captioned tables are listed in a table of contents (see TC) if the Boolean register Lt is true. Such a
list uses the string Lt as a heading.

TC [slevel [spacing [tlevel [tab [h1 [h2 [h3 [h4 [h5]]]]]]]]]
Output table of contents. This macro is normally the last called in the document. It flushes any
pending displays and, if any references are pending (see RS), calls RP. It then begins a new page
with the contents caption, stored in the string Licon, centered at the top. The entries follow after
three vees of space. Each entry is a saved section (number and) heading title (see the Cl register),
along with its associated page number. By default, an entry is indented by an amount correspond-
ing to its heading level and the maximum heading length encountered at that heading level; if de-
fined, the string Ci overrides these indentations. Entries at heading levels up to and including
slevel are preceded by spacing vees of space. Entries at heading levels up to and including tlevel
are followed by a leader and a right-aligned page number. If the Boolean-valued tab argument is
true, the leader is replaced with horizontal motion in the same amount. For entries above heading
level tlevel, the page number follows the heading text after a word space. Each argument h1. . .h5
appears in order on its own line, centered, above the contents caption. Page numbering restarts at
1, in register format “i”. If the Oc register is true, numbering of these pages is suppressed.

If TC is called with at most four arguments, it calls the user-defined macro TX (if defined) prior to
formatting the contents caption, and TY (if defined) instead of formatting the contents caption.

Analogous handling of lists of figures, tables, equations, and exhibits is achieved by defining
TXxx and TYxx macros, where xx is “FG”, “TB”, “EC”, or “EX”, respectively. Similarly, the
strings Lifg, Litb, Liex, and Liec determine captions for their respective lists.

TE Table end. See TS.

TH End table heading. It is repeated after page breaks within a table. See TS. The N argument sup-
ported by DWB mm is not implemented by groff mm.

TL [charging-case-number [filing-case-number]]
Begin document title. Input is collected into the title until AF or AU is called, and output as di-
rected by the cover page. charging-case-number and filing-case-number are saved for use in
memorandum types 0 and 5. See MT.

TM number . . .
Declare technical memorandum number(s) used by MT.

groff 1.23.0 2 July 2023 318

groff_mm(7) Miscellaneous Information Manual groff_mm(7)

TP If defined, this macro is called in lieu of normal page header layout. Headers and footers are for-
matted in a separate environment. See EOP.

Strings available to TP
TPh argument to PH
TPeh argument to EH
TPoh argument to OH

TS [H] Table start. Argument “H” tells mm that the table has a heading. See TE, TH, and tbl(1).

VERBON [format [type-size [font]]]
Begin verbatim display, where characters have equal width. format controls several parameters.
Add up the values of desired features; the default is 0. On typesetting devices, further arguments
configure the type-size in scaled points, and the face (font); the default is CR (Courier roman).

Value Effect
1 Disable the formatter’s escape character (\).
2 Vertically space before the display.
4 Vertically space after the display.
8 Number output lines; call formatter’s nm request with arguments in string Verbnm.
16 Indent by the amount stored in register Verbin.

VERBOFF
End verbatim display.

VL [text-indent [mark-indent [1]]]
Begin variable-item (or “tagged”) list. Each item should supply its own mark, or tag. If the mark
is wider than mark-indent, one space separates it from subsequent text; contrast BVL. text-indent
sets the indentation of the text, and mark-indent the distance from the current list indentation to
the mark. A third argument suppresses the blank line that normally precedes each list item. Use
LI to declare list items, and LE to end the list.

VM [-T] [top [bottom]]
Vertical margin. Increase the top and bottom margin by top and bottom, respectively. If option
-T is specified, set those margins to top and bottom. If no argument is given, reset the margin to
zero, or to the default (“7v 5v”) if -T is used. It is highly recommended that macros TP and/or
EOP are defined if using -T and setting top and/or bottom margin to less than the default. This
undocumented DWB mm macro is exposed by groff mm to increase user control of page layout.

WA [writer’s-name [title]]
Specify the writer(s) of an LT letter. Input is collected into the writer’s address until WA is called,
and then output. You can specify multiple writers with empty WA/WE pairs; only the last address
is used. The arguments give each writer a name and title.

WC [format . . .]
Control width of footnotes and displays.

format Effect
N equivalent to “-WF -FF -WD” (default)
WF set footnotes at full line length, even in two-column mode
-WF set footnotes using column line length
FF apply width of first footnote to encountered to subsequent ones
-FF footnote width determined by WF and -WF
WD set displays at full line length, even in two-column mode
-WD set displays using column line length

WE End the writer’s address begun with WA.

groff 1.23.0 2 July 2023 319

groff_mm(7) Miscellaneous Information Manual groff_mm(7)

Strings
Many mm strings interpolate predefined, localizable text. These are presented in quotation marks.

App “APPENDIX”

Apptxt stores the title argument to the last APP call.

BU interpolates a bullet (see BL).

Ci is a list of indentation amounts to use for table of contents heading levels, overriding their auto-
matic computation. Each word must be a horizontal measurement (like “1i”) and is mapped one-
to-one to heading levels 1, 2, and so on.

DT The date; set by the ND macro (defaults to the date the document is formatted). The format is the
conventional one for the groff locale, but see the ISODATE macro and Iso register.

EM interpolates an em dash.

F interpolates an automatically numbered footnote marker; the number is used by the next FS call
without an argument. In troff mode, the marker is superscripted; in nroff mode, it is surrounded
by square brackets.

H1txt Updated by .H and .HU to the current heading text. Also updated in table of contents & friends.

HF assigns font identifiers, separated by spaces, to heading levels in one-to-one correspondence. Each
identifier may be a font mounting position, font name, or style name. Omitted values are assumed
to be 1. The default is “2 2 2 2 2 2 2 2 2 2 2 2 2 2”, which places all headings in italics. DWB
mm’s default was “3 3 2 2 2 2 2”.

HP assigns type sizes, separated by spaces, to heading levels in one-to-one correspondence. Each size
is interpreted in scaled points; zero values are translated to 10. Omitted values are assumed to be 0
(and are translated accordingly). The default is “0 0 0 0 0 0 0 0 0 0 0 0 0 0”.

Index “INDEX”

Le “LIST OF EQUATIONS”

Letfc “Yours very truly,” (see FC)

Letapp “APPROVED:” (see AV)

LetAT “ATTENTION:” (see LO)

LetCN “CONFIDENTIAL” (see LO)

Letdate
“Date” (see AV)

Letns is a group of strings structuring the notations produced by NS. If the code argument to NS has no
corresponding string, the notation is included between parentheses, prefixed with Letns!copy, and
suffixed with Letns!to. Observe the spaces after “Copy” and before “to”.

NS code String Contents
0 Letns!0 Copy to
1 Letns!1 Copy (with att.) to
2 Letns!2 Copy (without att.) to
3 Letns!3 Att.
4 Letns!4 Atts.
5 Letns!5 Enc.
6 Letns!6 Encs.
7 Letns!7 Under separate cover
8 Letns!8 Letter to
9 Letns!9 Memorandum to
10 Letns!10 Copy (with atts.) to
11 Letns!11 Copy (without atts.) to

groff 1.23.0 2 July 2023 320

groff_mm(7) Miscellaneous Information Manual groff_mm(7)

12 Letns!12 Abstract Only to
13 Letns!13 Complete Memorandum to
14 Letns!14 CC
— Letns!copy Copy (with trailing space)
— Letns!to to (note leading space)

Letnsdef
Select the notation format used by NS when it is given no argument. The default is “0”.

LetRN “In reference to:” (see LO)

LetSA “To Whom It May Concern:” (see LO)

LetSJ “SUBJECT:” (see LO)

Lf “LIST OF FIGURES”

Licon “CONTENTS”

Liec “Equation”

Liex “Exhibit”

Lifg “Figure”

Litb “TABLE”

Lt “LIST OF TABLES”

Lx “LIST OF EXHIBITS”

MO1 . . . MO12
“January” through “December”

Qrf “See chapter \\∗[Qrfh], page \\n[Qrfp].”

Rf interpolates an automatically numbered reference mark; the number is used by the next RS call.
In troff mode, the marker is superscripted; in nroff mode, it is surrounded by square brackets.

Rp “REFERENCES”

Sm interpolates the service mark sign.

Tcst interpolates an indicator of the TC macro’s processing status. If TC is not operating, it is empty.
User-defined TP or EOP macros might condition page headers or footers on its contents.

Value Meaning
co Table of contents
fg List of figures
tb List of tables
ec List of equations
ex List of exhibits
ap Appendix

Tm interpolates ™, the trade mark sign.

Verbnm
supplies argument(s) to the nm request employed by the VERBON macro. The default is “1”.

Registers
Default register values, where meaningful, are shown in parentheses. Many are also marked as Boolean-
valued, meaning that they are considered “true” (on, enabled) when they have a positive value, and “false”
(off, disabled) otherwise.

.mgm indicates that groff mm is in use (Boolean-valued; 1).

:p is an auto-incrementing footnote counter; see FS.

groff 1.23.0 2 July 2023 321

groff_mm(7) Miscellaneous Information Manual groff_mm(7)

:R is an auto-incrementing reference counter; see RS.

Aph formats an appendix heading (and title, if supplied); see APP (Boolean-valued; 1).

Au includes supplemental author information (the third and subsequent arguments to AU) in memo-
randum “from” information; see COVER and MT (Boolean-valued; 1).

Cl sets the threshold for inclusion of headings in a table of contents. Headings at levels above this
value are excluded; see H and TC (2). The Cl register controls whether a heading is saved for
output in the table of contents at the time H or HU is called; if you change Cl’s value immediately
prior to calling TC, you are unlikely to get the result you want.

Cp suppresses page breaks before lists of captioned equations, exhibits, figures, and tables, and before
an index; see EC, EX, FG, TB, and INDP (Boolean-valued; 0).

D produces debugging information for the mm package on the standard error stream. A value of 0
outputs nothing; 1 reports formatting progress. Higher values communicate internal state informa-
tion of increasing verbosity (0).

De causes a page break after a floating display is output; see DF (Boolean-valued; 0).

Df configures the behavior of DF. The following values are recognized; 4 and 5 do not override the
De register (5).

Value Effect
0 Flush pending displays at the end of each section when section-page numbering is active,

otherwise at the end of the document.
1 Flush a pending display on the current page or column if there is enough space, other-

wise at the end of the document.
2 Flush one pending display at the top of each page or column.
3 Flush a pending display on the current page or column if there is enough space, other-

wise at the top of the next.
4 Flush as many pending displays as possible in a new page or column.
5 Fill columns or pages with flushed displays until none remain.

Ds puts vertical space in the amount of register Dsp (if defined) or Lsp before and after each static
display; see DS (Boolean-valued; 1).

Dsp configures the amount of vertical space placed before and after static displays; see DS and register
Ds (undefined).

Ec is an auto-incrementing equation counter; see EC.

Ej sets the threshold for page breaks (ejection) prior to the format of headings. Headings at levels
above this value are set on the same page and column if possible; see H (0).

Eq aligns an equation label to the left of a display instead of the right (Boolean-valued; 0).

Ex is an auto-incrementing exhibit counter; see EX.

Fg is an auto-incrementing figure counter; see FG.

Fs is multiplied by register Lsp to vertically separate footnotes; see FS (1).

H1 . . . H14
are auto-incrementing counters corresponding to each heading level; see H.

H1dot appends a period to the number of a level one heading; see H (Boolean-valued; 1).

H1h is a copy of A copy of register register H1, but it is incremented just before a page break. This can
be useful in user-defined macros; see H and HX.

Hb sets the threshold for breaking the line after formatting a heading. Text after headings at levels
above this value are set on the same output line if possible; see H (2).

groff 1.23.0 2 July 2023 322

groff_mm(7) Miscellaneous Information Manual groff_mm(7)

Hc sets the threshold for centering a heading. Headings at levels above this value use the prevailing
alignment (that is, they are not centered); see H (0).

Hi configures the indentation of text after headings. It does not affect “run-in” headings. The follow-
ing values are recognized; see H and P (1).

Value Effect
0 no indentation
1 indent per the paragraph type
2 indent to align with heading title

Hps sets the heading level threshold for application of preceding vertical space; see H. Headings at
levels above the value in register Hps use the amount of space in register Hps1; otherwise that in
Hps2. The value of Hps should be strictly greater than that of Ej (1).

Hps1 configures the amount of vertical space preceding a heading above the Hps threshold; see H (troff
devices: 0.5v; nroff devices: 1v).

Hps2 configures the amount of vertical space preceding a heading at or below the Hps threshold; see H
(troff devices: 1v; nroff devices: 2v).

Hs sets the heading level threshold for application of succeeding vertical space. If the heading level is
greater than Hs, the heading is followed by vertical space in the amount of register Hss; see H (2).

Hss is multiplied by register Lsp to produce vertical space after headings above the threshold in regis-
ter Hs; see H (1).

Ht suppresses output of heading level counters above the lowest when the heading is formatted; see H
(Boolean-valued; 0).

Hu sets the heading level used by unnumbered headings; see HU (2).

Hy enables automatic hyphenation of words (Boolean-valued; 0).

Iso configures the use of ISO 8601 date format if specified (with any value) on the command line; see
ISODATE. The default is determined by localization files.

L defines the page length for the document, and must be set from the command line. A scaling unit
should be appended. The default is that of the selected groff output device.

Le
Lf
Lt
Lx configure the report of lists of equation, figure, table, and exhibit captions, respectively, after a ta-

ble of contents; see TC (Boolean-valued; Le: 0; Lf, Lt, Lx: 1).

Letwam
sets the maximum number of input lines permitted in a writer’s address; see WA and WE (14).

Li configures the amount of indentation in ens applied to list items; see LI (6).

Limsp inserts a space between the prefix and the mark in automatically numbered lists; see AL (Boolean-
valued; 1).

Ls sets a threshold for placement of vertical space before list items. If the list nesting level is greater
than this value, no such spacing occurs; see LI (99).

Lsp configures the base amount of vertical space used for separation in the document. mm applies this
spacing to many contexts, sometimes with multipliers; see DS, FS, H, LI, and P (troff devices:
0.5v; nroff devices: 1v).

N configures the header and footer placements used by PH. The default footer is empty. If “section-
page” numbering is selected, the default header becomes empty and the default footer becomes
“x-y”, where x is is the section number (the number of the current first-level heading) and y the
page number within the section. The following values are recognized; for finer control, see PH,
PF, EH, EF, OH, and OF, and registers Sectf and Sectp. Value 5 is a GNU extension (0).

groff 1.23.0 2 July 2023 323

groff_mm(7) Miscellaneous Information Manual groff_mm(7)

Value Effect
0 Set header on all pages.
1 Move header to footer on page 1.
2 Omit header on page 1.
3 Use “section-page” numbering style on all pages.
4 Omit header on all pages.
5 Use “section-page” and “section-figure” numbering style on all pages.

Np causes paragraphs after first-level headings (only) to be numbered in the format s.p, where s is is
the section number (the number of the current first-level heading) and p is the paragraph number,
starting at 1; see H and P (Boolean-valued; 0).

O defines the page offset of the document, and must be set from the command line. A scaling unit
should be appended. The default is .75i on terminal devices. On typesetters, it is .963i or set to 1i
by the papersize.tmac package; see groff_tmac(5).

Oc suppresses the appearance of page numbers in the table of contents; see TC (Boolean-valued; 0).

Of selects a separator format within equation, exhibit, figure, and table captions; see EC, EX, FG,
and TB. The following values are recognized; the spaces shown are unpaddable (0).

Value Effect
0 ". "
1 " — "

P interpolates the current page number; it is the same as register % except when “section-page”
numbering is enabled.

Pi configures the amount of indentation in ens applied to the first line of a paragraph; see P (5).

Pgps causes the type size and vertical spacing set by S to apply to headers and footers, overriding the
HP string. If not set, S calls affect headers and footers only when followed by PH, PF, OH, EH,
OF, or OE calls (Boolean-valued; 1).

Ps is multiplied by register Lsp to vertically separate paragraphs; see P (1).

Pt determines when a first-line indentation is applied to a paragraph; see P (0).

Value Effect
0 never
1 always
2 always, except immediately after H, DE, or LE

Ref is used internally to control mmroff (1)’s two-pass approach to index and reference management;
see INITI and RS (Boolean-valued; 0).

Rpe configures the default page ejection policy for reference pages; see RP (0).

Value Effect
0 Break the page before and after the list of references.
1 Suppress page break after the list.
2 Suppress page break before the list.
3 Suppress page breaks before and after the list.

S defines the type size for the document, and must be set from the command line. A scaling unit
should be appended; p is typical (10p).

Sectf selects the “section-figure” numbering style. Its default is 0 unless register N is set to 5 at the
command line (Boolean-valued).

Sectp selects the “section-page” numbering style. Its default is 0 unless register N is set to 3 or 5 at the
command line (Boolean-valued).

groff 1.23.0 2 July 2023 324

groff_mm(7) Miscellaneous Information Manual groff_mm(7)

Si configures the amount of display indentation in ens; see DS (5).

Tb is an auto-incrementing table counter; see TB.

V defines the vertical spacing for the document, and must be set from the command line. A scaling
unit should be appended; p is typical. The default vertical spacing is 120% of the type size.

Verbin configures the amount of indentation for verbatim displays when indentation is selected; see
VERBON (5n).

W defines the “width” of the document (that is, the length of an output line with no indentation); it
must be set from the command line. A scaling unit should be appended. The default is 6i or as-
signed by the papersize.tmac package; see groff_tmac(5).

Internals
The LT letter macros call further macros depending on the letter type, with which they are suffixed. It is
therefore possible to define additional letter types, either in the territory-specific macro file, or as local addi-
tions. LT sets the registers Pt and Pi to 0 and 5, respectively. The following macros must be defined to
support a new letter type.

let@init_type
LT calls this macro to initialize any registers and other data needed by the letter type.

let@head_type
formats the letterhead; it is called instead of the usual page header macro. Its definition should re-
move the alias let@header unless the letterhead is desired on subsequent pages.

let@sg_type name title n is-final [SG-arg . . .]
SG calls this macro only for letters; MT memoranda have their own signature processing. name
and title are specified through WA/WE. n is the index of the nth writer, and is-final is true for the
last writer to be listed. Further SG arguments are appended to the signature line.

let@fc_type closing
This macro is called by FC, and has the formal closing as the argument.

LO implements letter options. It requires that a string named Lettype be defined, where type is the letter
type. LO then assigns its second argument (value) to the string let∗lo-type.

Files
/usr/share/groff/1.23.0/tmac/m.tmac

is the groff implementation of the memorandum macros.

/usr/share/groff/1.23.0/tmac/mm.tmac
is wrapper to load m.tmac.

/usr/share/groff/1.23.0/tmac/refer-mm.tmac
implements refer(1) support for mm.

/usr/share/groff/1.23.0/tmac/mm/ms.cov
implements an ms-like cover sheet.

/usr/share/groff/1.23.0/tmac/mm/0.MT
implements memorandum types 0–3 and 6.

/usr/share/groff/1.23.0/tmac/mm/4.MT
implements memorandum type 4.

/usr/share/groff/1.23.0/tmac/mm/5.MT
implements memorandum type 5.

/usr/share/groff/1.23.0/tmac/mm/locale
performs any (further) desired necessary localization; empty by default.

Authors
The GNU version of the mm macro package was written by Jörgen Hägg 〈jh@axis.se〉 of Lund, Sweden.

groff 1.23.0 2 July 2023 325

groff_mm(7) Miscellaneous Information Manual groff_mm(7)

See also
MM - A Macro Package for Generating Documents 〈https://tkurtbond.github.io/troff/mm-all.pdf〉, the
DWB 3.3 mm manual, introduces the package but does not document GNU extensions.

Groff: The GNU Implementation of troff , by Trent A. Fisher and Werner Lemberg, is the primary groff
manual. You can browse it interactively with “info groff”.

groff (1), troff (1), tbl(1), pic(1), eqn(1), refer(1), groff_mmse(7)

groff 1.23.0 2 July 2023 326

groff_mmse(7) Handbok för diverse information groff_mmse(7)

Namn
groff_mmse - svenska ”memorandum” makro för GNU roff

Syntax
groff -mmse [flaggor . . .] [filer . . .]
groff -m mmse [flaggor . . .] [filer . . .]

Beskrivning
mmse är en svensk variant av mm. Alla texter är översatta. En A4 sida får text som är 13 cm bred, 3,5 cm
indragning samt är 28,5 cm hög. Det finns stöd för brevuppställning enligt svensk standard för vänster och
högerjusterad text.

COVER kan använda se_ms som argument. Detta ger ett svenskt försättsblad. Se groff_mm(7) för övriga
detaljer.

Brev
Tillgängliga brevtyper:

.LT SVV
Vänsterställd löptext med adressat i position T0 (vänsterställt).

.LT SVH
Högerställd löptext med adressat i position T4 (passar fönsterkuvert).

Följande extra LO-variabler används.

.LO DNAMN namn
Anger dokumentets namn.

.LO MDAT datum
Mottagarens datum, anges under Ert datum: (LetMDAT).

.LO BIL sträng
Anger bilaga, nummer eller sträng med Bilaga (LetBIL) som prefix.

.LO KOMP text
Anger kompletteringsuppgift.

.LO DBET beteckning
Anger dokumentbeteckning eller dokumentnummer.

.LO BET beteckning
Anger beteckning (ärendebeteckning i form av diarienummer eller liknande).

.LO SIDOR antal
Anger totala antalet sidor och skrivs ut efter sidnumret inom parenteser.

Om makrot .TP är definierat anropas det efter utskrift av brevhuvudet. Där lägger man lämpligen in posta-
dress och annat som brevfot.

Skrivet av
Jörgen Hägg, Lund, Sweden <Jorgen.Hagg@axis.se>

Filer
/usr/share/groff/1.23.0/tmac/mse.tmac

/usr/share/groff/1.23.0/tmac/mm/se_∗.cov

Se också
groff_mm(7)

groff 1.23.0 2 July 2023 327

groff_mom(7) Miscellaneous Information Manual groff_mom(7)

Name
groff_mom - modern macros for document composition with GNU roff

Synopsis
groff -mom [option . . .] [file . . .]
groff -m mom [option . . .] [file . . .]

Description
mom is a macro set for groff , designed primarily to prepare documents for PDF and PostScript output.
mom provides macros in two categories: typesetting and document processing. The former provide access
to groff ’s typesetting capabilities in ways that are simpler to master than groff ’s requests and escape se-
quences. The latter provide highly customizable markup tags that allow the user to design and output pro-
fessional-looking documents with a minimum of typesetting intervention.

Files processed with pdfmom(1) produce PDF documents. The documents include a PDF outline that ap-
pears in the navigation pane panel of document viewers, and may contain clickable internal and external
links.

Normally. groff ’s native PDF driver, gropdf (1), is used to generate the output. When pdfmom is given the
“-T ps” option, it still produces PDF, but processing is delegated to pdfroff , which uses groff ’s PostScript
driver, grops(1). Not all PDF features are available when -T ps is given; its primary use is to allow pro-
cessing of files with embedded PostScript images.

Files processed with groff -mom (or -m mom) format for the device specified with the -T option. (In this
installation, ps is the default output device.)

mom comes with her own comprehensive documentation in HTML. A PDF manual, “Producing PDFs with
groff and mom”, discusses preparation of PDF documents with mom in detail.

Files
/usr/share/groff/1.23.0/tmac/mom.tmac

is a wrapper enabling the package to be loaded with “groff -m mom”.

/usr/share/groff/1.23.0/tmac/om.tmac
implements the package.

/usr/share/doc/groff-1.23.0/html/mom/toc.html
is the entry point to the HTML documentation.

/usr/share/doc/groff-1.23.0/pdf/mom-pdf.pdf
is “Producing PDFs with groff and mom”, by Deri James and Peter Schaffter.

/usr/share/doc/groff-1.23.0/examples/mom/∗.mom
are examples of mom usage.

Reference
Escape sequences

\∗[<colorname>]
begin using an initialized colour inline

\∗[BCK n]
move backward in a line

\∗[BOLDER]
invoke pseudo bold inline (related to macro .SETBOLDER)

\∗[BOLDERX]
off pseudo bold inline (related to macro .SETBOLDER)

\∗[BU n]
move characters pairs closer together inline (related to macro .KERN)

\∗[COND]
invoke pseudo condensing inline (related to macro .CONDENSE)

groff 1.23.0 2 July 2023 328

groff_mom(7) Miscellaneous Information Manual groff_mom(7)

\∗[CONDX]
off pseudo condensing inline (related to macro .CONDENSE)

\∗[CONDSUP]. . .\∗[CONDSUPX]
pseudo-condensed superscript

\∗[DOWN n]
temporarily move downward in a line

\∗[EN-MARK]
mark initial line of a range of line numbers (for use with line numbered endnotes)

\∗[EXT]
invoke pseudo extending inline (related to macro .EXTEND)

\∗[EXTX]
off pseudo condensing inline (related to macro .EXTEND)

\∗[EXTSUP]. . .\∗[EXTSUPX]
pseudo extended superscript

\∗[FU n]
move characters pairs further apart inline (related to macro .KERN)

\∗[FWD n]
move forward in a line

\∗[LEADER]
insert leaders at the end of a line

\∗[RULE]
draw a full measure rule

\∗[SIZE n]
change the point size inline (related to macro .PT_SIZE)

\∗[SLANT]
invoke pseudo italic inline (related to macro .SETSLANT)

\∗[SLANTX]
off pseudo italic inline (related to macro .SETSLANT)

\∗[ST<n>]. . .\∗[ST<n>X]
string tabs (mark tab positions inline)

\∗[SUP]. . .\∗[SUPX]
superscript

\∗[TB+]
inline escape for .TN (Tab Next)

\∗[UL]. . .\∗[ULX]
invoke underlining inline (fixed width fonts only)

\∗[UP n]
temporarily move upward in a line

Macros
.AUTOLEAD

set the linespacing relative to the point size

.B_MARGIN
set a bottom margin

.BR break a justified line

groff 1.23.0 2 July 2023 329

groff_mom(7) Miscellaneous Information Manual groff_mom(7)

.CENTER
set line-by-line quad centre

.CONDENSE
set the amount to pseudo condense

.EL break a line without advancing on the page

.EXTEND
set the amount to pseudo extend

.FALLBACK_FONT
establish a fallback font (for missing fonts)

.FAM alias to .FAMILY

.FAMILY <family>
set the family type

.FT set the font style (roman, italic, etc.)

.HI [<measure>]
hanging indent

.HY automatic hyphenation on/off

.HY_SET
set automatic hyphenation parameters

.IB [<left measure> <right measure>]
indent both

.IBX [CLEAR]
exit indent both

.IL [<measure>]
indent left

.ILX [CLEAR]
exit indent left

.IQ [CLEAR]
quit any/all indents

.IR [<measure>]
indent right

.IRX [CLEAR]
exit indent right

.JUSTIFY
justify text to both margins

.KERN
automatic character pair kerning on/off

.L_MARGIN
set a left margin (page offset)

.LEFT set line-by-line quad left

.LL set a line length

.LS set a linespacing (leading)

.PAGE set explicit page dimensions and margins

groff 1.23.0 2 July 2023 330

groff_mom(7) Miscellaneous Information Manual groff_mom(7)

.PAGEWIDTH
set a custom page width

.PAGELENGTH
set a custom page length

.PAPER <paper_type>
set common paper sizes (letter, A4, etc)

.PT_SIZE
set the point size

.QUAD
"justify" text left, centre, or right

.R_MARGIN
set a right margin

.RIGHT
set line-by-line quad right

.SETBOLDER
set the amount of emboldening

.SETSLANT
set the degree of slant

.SPREAD
force justify a line

.SS set the sentence space size

.T_MARGIN
set a top margin

.TI [<measure>]
temporary left indent

.WS set the minimum word space size

Documentation of details
Details of inline escape sequences in alphabetical order

\∗[<colorname>]
begin using an initialized colour inline

\∗[BCK n]
move backward in a line

\∗[BOLDER]
\∗[BOLDERX]

Emboldening on/off

\∗[BOLDER] begins emboldening type. \∗[BOLDERX] turns the feature off. Both are inline es-
cape sequences; therefore, they should not appear as separate lines, but rather be embedded in text
lines, like this:

Not \∗[BOLDER]everything\∗[BOLDERX] is as it seems.

Alternatively, if you wanted the whole line emboldened, you should do
\∗[BOLDER]Not everything is as it seems.\∗[BOLDERX]

Once \∗[BOLDER] is invoked, it remains in effect until turned off.

Note: If you’re using the document processing macros with .PRINTSTYLE TYPEWRITE, mom
ignores \∗[BOLDER] requests.

groff 1.23.0 2 July 2023 331

groff_mom(7) Miscellaneous Information Manual groff_mom(7)

\∗[BU n]
move characters pairs closer together inline (related to macro .KERN)

\∗[COND]
\∗[CONDX]

Pseudo-condensing on/off

\∗[COND] begins pseudo-condensing type. \∗[CONDX] turns the feature off. Both are inline es-
cape sequences; therefore, they should not appear as separate lines, but rather be embedded in text
lines, like this:

\∗[COND]Not everything is as it seems.\∗[CONDX]
\∗[COND] remains in effect until you turn it off with \∗[CONDX].

IMPORTANT: You must turn \∗[COND] off before making any changes to the point size of your
type, either via the .PT_SIZE macro or with the \s inline escape sequence. If you wish the new
point size to be pseudo-condensed, simply reinvoke \∗[COND] afterward. Equally, \∗[COND]
must be turned off before changing the condense percentage with .CONDENSE.

Note: If you’re using the document processing macros with .PRINTSTYLE TYPEWRITE, mom
ignores \∗[COND] requests.

\∗[CONDSUP]. . .\∗[CONDSUPX]
pseudo-condensed superscript

\∗[DOWN n]
temporarily move downward in a line

\∗[EN-MARK]
mark initial line of a range of line numbers (for use with line numbered endnotes)

\∗[EXT]
\∗[EXTX]

Pseudo-extending on/off

\∗[EXT] begins pseudo-extending type. \∗[EXTX] turns the feature off. Both are inline escape
sequences; therefore, they should not appear as separate lines, but rather be embedded in text lines,
like this:

\∗[EXT]Not everything is as it seems.\∗[EXTX]
\∗[EXT] remains in effect until you turn it off with \∗[EXTX].

IMPORTANT: You must turn \∗[EXT] off before making any changes to the point size of your
type, either via the .PT_SIZE macro or with the \s inline escape sequence. If you wish the new
point size to be pseudo-extended , simply reinvoke \∗[EXT] afterward. Equally, \∗[EXT] must be
turned off before changing the extend percentage with .EXTEND.

Note: If you are using the document processing macros with .PRINTSTYLE TYPEWRITE,
mom ignores \∗[EXT] requests.

\∗[EXTSUP]. . .\∗[EXTSUPX]
pseudo extended superscript

\∗[FU n]
move characters pairs further apart inline (related to macro .KERN)

\∗[FWD n]
move forward in a line

\∗[LEADER]
insert leaders at the end of a line

\∗[RULE]
draw a full measure rule

groff 1.23.0 2 July 2023 332

groff_mom(7) Miscellaneous Information Manual groff_mom(7)

\∗[SIZE n]
change the point size inline (related to macro .PT_SIZE)

\∗[SLANT]
\∗[SLANTX]

Pseudo italic on/off

\∗[SLANT] begins pseudo-italicizing type. \∗[SLANTX] turns the feature off. Both are inline
escape sequences; therefore, they should not appear as separate lines, but rather be embedded in
text lines, like this:

Not \∗[SLANT]everything\∗[SLANTX] is as it seems.

Alternatively, if you wanted the whole line pseudo-italicized , you’d do
\∗[SLANT]Not everything is as it seems.\∗[SLANTX]

Once \∗[SLANT] is invoked, it remains in effect until turned off.

Note: If you’re using the document processing macros with .PRINTSTYLE TYPEWRITE, mom
underlines pseudo-italics by default. To change this behaviour, use the special macro
.SLANT_MEANS_SLANT.

\∗[ST<number>]. . .\∗[ST<number>X]
Mark positions of string tabs

The quad direction must be LEFT or JUSTIFY (see .QUAD and .JUSTIFY) or the no-fill mode
set to LEFT in order for these inlines to function properly. Please see IMPORTANT , below.

String tabs need to be marked off with inline escape sequences before being set up with the .ST
macro. Any input line may contain string tab markers. <number>, above, means the numeric
identifier of the tab.

The following shows a sample input line with string tab markers.
\∗[ST1]De minimus\∗[ST1X]non curat\∗[ST2]lex\∗[ST2X].

String tab 1 begins at the start of the line and ends after the word time. String tab 2 starts at good
and ends after men. Inline escape sequences (e.g., font or point size changes, or horizontal
movements, including padding) are taken into account when mom determines the position and
length of string tabs.

Up to nineteen string tabs may be marked (not necessarily all on the same line, of course), and
they must be numbered between 1 and 19.

Once string tabs have been marked in input lines, they have to be set with .ST, after which they
may be called, by number, with .TAB.

Note: Lines with string tabs marked off in them are normal input lines, i.e. they get printed, just
like any input line. If you want to set up string tabs without the line printing, use the .SILENT
macro.

IMPORTANT: Owing to the way groff processes input lines and turns them into output lines, it is
not possible for mom to guess the correct starting position of string tabs marked off in lines that
are centered or set flush right.

Equally, she cannot guess the starting position if a line is fully justified and broken with
.SPREAD.

In other words, in order to use string tabs, LEFT must be active, or, if .QUAD LEFT or
JUSTIFY are active, the line on which the string tabs are marked must be broken manually with
.BR (but not .SPREAD).

To circumvent this behaviour, I recommend using the PAD to set up string tabs in centered or flush
right lines. Say, for example, you want to use a string tab to underscore the text of a centered line
with a rule. Rather than this,

.CENTER
\∗[ST1]A line of text\∗[ST1X]\c

groff 1.23.0 2 July 2023 333

groff_mom(7) Miscellaneous Information Manual groff_mom(7)

.EL

.ST 1

.TAB 1

.PT_SIZE 24

.ALD 3p
\∗[RULE]
.RLD 3p
.TQ

you should do:
.QUAD CENTER
.PAD "#\∗[ST1]A line of text\∗[ST1X]#"
.EL
.ST 1
.TAB 1
.PT_SIZE 24
.ALD 3p
\" You can't use \∗[UP] or \∗[DOWN] with \∗[RULE].
.RLD 3p
.TQ

\∗[SUP]. . .\∗[SUPX]
superscript

\∗[TB+]
Inline escape for .TN (Tab Next)

\∗[UL]. . .\∗[ULX]
invoke underlining inline (fixed width fonts only)

\∗[UP n]
temporarily move upward in a line

Details of macros in alphabetical order
.AUTOLEAD

set the linespacing relative to the point size

.B_MARGIN <bottom margin>
Bottom Margin

Requires a unit of measure

.B_MARGIN sets a nominal position at the bottom of the page beyond which you don’t want your
type to go. When the bottom margin is reached, mom starts a new page. .B_MARGIN requires a
unit of measure. Decimal fractions are allowed. To set a nominal bottom margin of 3/4 inch, en-
ter

.B_MARGIN .75i

Obviously, if you haven’t spaced the type on your pages so that the last lines fall perfectly at the
bottom margin, the margin will vary from page to page. Usually, but not always, the last line of
type that fits on a page before the bottom margin causes mom to start a new page.

Occasionally, owing to a peculiarity in groff , an extra line will fall below the nominal bottom mar-
gin. If you’re using the document processing macros, this is unlikely to happen; the document
processing macros are very hard-nosed about aligning bottom margins.

Note: The meaning of .B_MARGIN is slightly different when you’re using the document process-
ing macros.

.FALLBACK_FONT <fallback font> [ABORT | WARN]
Fallback Font

In the event that you pass an invalid argument to .FAMILY (i.e. a non-existent family), mom, by

groff 1.23.0 2 July 2023 334

groff_mom(7) Miscellaneous Information Manual groff_mom(7)

default, uses the fallback font, Courier Medium Roman (CR), in order to continue processing
your file.

If you’d prefer another fallback font, pass .FALLBACK_FONT the full family+font name of the
font you’d like. For example, if you’d rather the fallback font were Times Roman Medium Ro-
man,

.FALLBACK_FONT TR
would do the trick.

Mom issues a warning whenever a font style set with .FT does not exist, either because you
haven’t registered the style or because the font style does not exist in the current family set with
.FAMILY. By default, mom then aborts, which allows you to correct the problem.

If you’d prefer that mom not abort on non-existent fonts, but rather continue processing using a
fallback font, you can pass .FALLBACK_FONT the argument WARN, either by itself, or in con-
junction with your chosen fallback font.

Some examples of invoking .FALLBACK_FONT:

.FALLBACK_FONT WARN
mom will issue a warning whenever you try to access a non-existent font but will contin-
ue processing your file with the default fallback font, Courier Medium Roman.

.FALLBACK_FONT TR WARN
mom will issue a warning whenever you try to access a non-existent font but will contin-
ue processing your file with a fallback font of Times Roman Medium Roman; addition-
ally, TR will be the fallback font whenever you try to access a family that does not exist.

.FALLBACK_FONT TR ABORT
mom will abort whenever you try to access a non-existent font, and will use the fallback
font TR whenever you try to access a family that does not exist. If, for some reason, you
want to revert to ABORT, just enter ".FALLBACK_FONT ABORT" and mom will
once again abort on font errors.

.FAM <family>
Type Family, alias of .FAMILY

.FAMILY <family>
Type Family, alias of .FAM

.FAMILY takes one argument: the name of the family you want. Groff comes with a small set of
basic families, each identified by a 1-, 2- or 3-letter mnemonic. The standard families are:

A = Avant Garde
BM = Bookman
H = Helvetica
HN = Helvetica Narrow
N = New Century Schoolbook
P = Palatino
T = Times Roman
ZCM = Zapf Chancery

The argument you pass to .FAMILY is the identifier at left, above. For example, if you want Hel-
vetica, enter

.FAMILY H

Note: The font macro (.FT) lets you specify both the type family and the desired font with a single
macro. While this saves a few keystrokes, I recommend using .FAMILY for family, and .FT for
font, except where doing so is genuinely inconvenient. ZCM, for example, only exists in one
style: Italic (I).

Therefore,
.FT ZCMI

groff 1.23.0 2 July 2023 335

groff_mom(7) Miscellaneous Information Manual groff_mom(7)

makes more sense than setting the family to ZCM, then setting the font to I .

Additional note: If you are running a groff version prior to 1.19.2, you must follow all .FAMILY
requests with a .FT request, otherwise mom will set all type up to the next .FT request in the fall-
back font.

If you are running groff 1.19.2 or later, when you invoke the .FAMILY macro, mom remembers
the font style (Roman, Italic, etc) currently in use (if the font style exists in the new family) and
will continue to use the same font style in the new family. For example:

.FAMILY BM \" Bookman family

.FT I \" Medium Italic
<some text> \" Bookman Medium Italic
.FAMILY H \" Helvetica family
<more text> \" Helvetica Medium Italic

However, if the font style does not exist in the new family, mom will set all subsequent type in the
fallback font (by default, Courier Medium Roman) until she encounters a .FT request that’s
valid for the family.

For example, assuming you don’t have the font Medium Condensed Roman (mom extension
CD) in the Helvetica family:

.FAMILY UN \" Univers family

.FT CD \" Medium Condensed
<some text> \" Univers Medium Condensed
.FAMILY H \" Helvetica family
<more text> \" Courier Medium Roman!

In the above example, you must follow .FAMILY H with a .FT request that’s valid for Helvetica.

Please see the Appendices, Adding fonts to groff , for information on adding fonts and families to
groff ,aswellasto see a list of the extensions mom provides to groff ’s basic R, I, B, BI styles.

Suggestion: When adding families to groff , I recommend following the established standard for
the naming families and fonts. For example, if you add the Garamond family, name the font files

GARAMONDR
GARAMONDI
GARAMONDB
GARAMONDBI

GARAMOND then becomes a valid family name you can pass to .FAMILY. (You could, of
course, shorten GARAMOND to just G, or GD.) R, I, B, and BI after GARAMOND are the
roman, italic, bold and bold-italic fonts respectively.

.FONT R | B | BI | <any other valid font style>
Alias to .FT

.FT R | B | BI | <any other valid font style>
Set font

By default, groff permits .FT to take one of four possible arguments specifying the desired font:
R = (Medium) Roman
I = (Medium) Italic
B = Bold (Roman)
BI = Bold Italic

For example, if your family is Helvetica, entering
.FT B

will give you the Helvetica bold font. If your family were Palatino, you’d get the Palatino bold
font.

Mom considerably extends the range of arguments you can pass to .FT, making it more conve-
nient to add and access fonts of differing weights and shapes within the same family.

groff 1.23.0 2 July 2023 336

groff_mom(7) Miscellaneous Information Manual groff_mom(7)

Have a look here for a list of the weight/style arguments mom allows. Be aware, though, that you
must have the fonts, correctly installed and named, in order to use the arguments. (See Adding
fonts to groff for instructions and information.) Please also read the ADDITIONAL NOTE found
in the description of the .FAMILY macro.

How mom reacts to an invalid argument to .FT depends on which version of groff you’re using. If
your groff version is 1.19.2 or later, mom will issue a warning and, depending on how you’ve set
up the fallback font, either continue processing using the fallback font, or abort (allowing you to
correct the problem). In earlier versions, mom will silently continue processing, using either the
fallback font or the font that was in effect prior to the invalid .FT call.

.FT will also accept, as an argument, a full family and font name.

For example,
.FT HB

will set subsequent type in Helvetica Bold .

However, I strongly recommend keeping family and font separate except where doing so is gen-
uinely inconvenient.

For inline control of fonts, see Inline Escapes, font control.

.HI [<measure>]
Hanging indent — the optional argument requires a unit of measure.

A hanging indent looks like this:
The thousand injuries of Fortunato I had borne as best I
could, but when he ventured upon insult, I vowed
revenge. You who so well know the nature of my soul
will not suppose, however, that I gave utterance to a
threat, at length I would be avenged...

The first line of text hangs outside the left margin.

In order to use hanging indents, you must first have a left indent active (set with either .IL or .IB).
Mom will not hang text outside the left margin set with .L_MARGIN or outside the left margin
of a tab.

The first time you invoke .HI, you must give it a measure. If you want the first line of a paragraph
to hang by, say, 1 pica, do

.IL 1P

.HI 1P
Subsequent invocations of .HI do not require you to supply a measure; mom keeps track of the last
measure you gave it.

Generally speaking, you should invoke .HI immediately prior to the line you want hung (i.e. with-
out any intervening control lines). And because hanging indents affect only one line, there’s no
need to turn them off.

IMPORTANT: Unlike IL, IR and IB, measures given to .HI are NOT additive. Each time you
pass a measure to .HI, the measure is treated literally. Recipe: A numbered list using hanging in-
dents

Note: mom has macros for setting lists. This recipe exists to demonstrate the use of hanging in-
dents only.

.PAGE 8.5i 11i 1i 1i 1i 1i

.FAMILY T

.FT R

.PT_SIZE 12

.LS 14

.JUSTIFY

.KERN

.SS 0

groff 1.23.0 2 July 2023 337

groff_mom(7) Miscellaneous Information Manual groff_mom(7)

.IL \w'\0\0.'

.HI \w'\0\0.'
1.\0The most important point to be considered is whether
the answer to the meaning of Life, the Universe, and
Everything really is 42. We have no one's word on the
subject except Mr. Adams's.
.HI
2.\0If the answer to the meaning of Life, the Universe,
and Everything is indeed 42, what impact does this have on
the politics of representation? 42 is, after all not a
prime number. Are we to infer that prime numbers don't
deserve equal rights and equal access in the universe?
.HI
3.\0If 42 is deemed non-exclusionary, how do we present
it as the answer and, at the same time, forestall debate
on its exclusionary implications?

First, we invoke a left indent with a measure equal to the width of 2 figures spaces plus a period
(using the \w inline escape). At this point, the left indent is active; text afterward would normally
be indented. However, we invoke a hanging indent of exactly the same width, which hangs the
first line (and first line only!) to the left of the indent by the same distance (in this case, that means
“out to the left margin”). Because we begin the first line with a number, a period, and a figure
space, the actual text (The most important point. . .) starts at exactly the same spot as the indented
lines that follow.

Notice that subsequent invocations of .HI don’t require a measure to be given.

Paste the example above into a file and preview it with
pdfmom filename.mom | ps2pdf - filename.pdf

to see hanging indents in action.

.IB [<left measure> <right measure>]
Indent both — the optional argument requires a unit of measure

.IB allows you to set or invoke a left and a right indent at the same time.

At its first invocation, you must supply a measure for both indents; at subsequent invocations when
you wish to supply a measure, both must be given again. As with .IL and .IR, the measures are
added to the values previously passed to the macro. Hence, if you wish to change just one of the
values, you must give an argument of zero to the other.

A word of advice: If you need to manipulate left and right indents separately, use a combination of
.IL and .IR instead of .IB. You’ll save yourself a lot of grief.

A minus sign may be prepended to the arguments to subtract from their current values. The \w in-
line escape may be used to specify text-dependent measures, in which case no unit of measure is
required. For example,

.IB \w'margarine' \w'jello'
left indents text by the width of the word margarine and right indents by the width of jello.

Like .IL and .IR, .IB with no argument indents by its last active values. See the brief explanation
of how mom handles indents for more details.

Note: Calling a tab (with .TAB <n>) automatically cancels any active indents.

Additional note: Invoking .IB automatically turns off .IL and .IR.

.IL [<measure>]
Indent left — the optional argument requires a unit of measure

.IL indents text from the left margin of the page, or if you’re in a tab, from the left edge of the tab.
Once IL is on, the left indent is applied uniformly to every subsequent line of text, even if you

groff 1.23.0 2 July 2023 338

groff_mom(7) Miscellaneous Information Manual groff_mom(7)

change the line length.

The first time you invoke .IL, you must give it a measure. Subsequent invocations with a measure
add to the previous measure. A minus sign may be prepended to the argument to subtract from the
current measure. The \w inline escape may be used to specify a text-dependent measure, in which
case no unit of measure is required. For example,

.IL \w'margarine'
indents text by the width of the word margarine.

With no argument, .IL indents by its last active value. See the brief explanation of how mom han-
dles indents for more details.

Note: Calling a tab (with .TAB <n>) automatically cancels any active indents.

Additional note: Invoking .IL automatically turns off IB.

.IQ [<measure>]
IQ — quit any/all indents

IMPORTANT NOTE: The original macro for quitting all indents was .IX. This usage has been
deprecated in favour of IQ. .IX will continue to behave as before, but mom will issue a warning to
stderr indicating that you should update your documents.

As a consequence of this change, .ILX, .IRX and .IBX may now also be invoked as .ILQ, .IRQ
and .IBQ. Both forms are acceptable.

Without an argument, the macros to quit indents merely restore your original margins and line
length. The measures stored in the indent macros themselves are saved so you can call them again
without having to supply a measure.

If you pass these macros the optional argument CLEAR, they not only restore your original left
margin and line length, but also clear any values associated with a particular indent style. The next
time you need an indent of the same style, you have to supply a measure again.

.IQ CLEAR, as you’d suspect, quits and clears the values for all indent styles at once.

.IR [<measure>]
Indent right — the optional argument requires a unit of measure

.IR indents text from the right margin of the page, or if you’re in a tab, from the end of the tab.

The first time you invoke .IR, you must give it a measure. Subsequent invocations with a measure
add to the previous indent measure. A minus sign may be prepended to the argument to subtract
from the current indent measure. The \w inline escape may be used to specify a text-dependent
measure, in which case no unit of measure is required. For example,

.IR \w'jello'
indents text by the width of the word jello.

With no argument, .IR indents by its last active value. See the brief explanation of how mom han-
dles indents for more details.

Note: Calling a tab (with .TAB <n>) automatically cancels any active indents.

Additional note: Invoking .IR automatically turns off IB.

.L_MARGIN <left margin>
Left Margin

L_MARGIN establishes the distance from the left edge of the printer sheet at which you want your
type to start. It may be used any time, and remains in effect until you enter a new value.

Left indents and tabs are calculated from the value you pass to .L_MARGIN, hence it’s always a
good idea to invoke it before starting any serious typesetting. A unit of measure is required. Deci-
mal fractions are allowed. Therefore, to set the left margin at 3 picas (1/2 inch), you’d enter either

.L_MARGIN 3P
or

groff 1.23.0 2 July 2023 339

groff_mom(7) Miscellaneous Information Manual groff_mom(7)

.L_MARGIN .5i

If you use the macros .PAGE, .PAGEWIDTH or .PAPER without invoking .L_MARGIN (either
before or afterward), mom automatically sets .L_MARGIN to 1 inch.

Note: .L_MARGIN behaves in a special way when you’re using the document processing macros.

.MCO Begin multi-column setting.

.MCO (Multi-Column On) is the macro you use to begin multi-column setting. It marks the cur-
rent baseline as the top of your columns, for use later with .MCR. See the introduction to
columns for an explanation of multi-columns and some sample input.

Note: Do not confuse .MCO with the .COLUMNS macro in the document processing macros.

.MCR Once you’ve turned multi-columns on (with .MCO), .MCR, at any time, returns you to the top of
your columns.

.MCX [<distance to advance below longest column>]
Optional argument requires a unit of measure.

Exit multi-columns.

.MCX takes you out of any tab you were in (by silently invoking .TQ) and advances to the bottom
of the longest column.

Without an argument, .MCX advances 1 linespace below the longest column.

Linespace, in this instance, is the leading in effect at the moment .MCX is invoked.

If you pass the <distance> argument to .MCX, it advances 1 linespace below the longest column
(see above) PLUS the distance specified by the argument. The argument requires a unit of mea-
sure; therefore, to advance an extra 6 points below where .MCX would normally place you, you’d
enter

.MCX 6p

Note: If you wish to advance a precise distance below the baseline of the longest column, use
.MCX with an argument of 0 (zero; no unit of measure required) in conjunction with the .ALD
macro, like this:

.MCX 0

.ALD 24p
The above advances to precisely 24 points below the baseline of the longest column.

.NEWPAGE

Whenever you want to start a new page, use .NEWPAGE, by itself with no argument. Mom will
finish up processing the current page and move you to the top of a new one (subject to the top mar-
gin set with .T_MARGIN).

.PAGE <width> [<length> [<lm> [<rm> [<tm> [<bm>]]]]]

All arguments require a unit of measure

IMPORTANT: If you’re using the document processing macros, .PAGE must come after .START.
Otherwise, it should go at the top of a document, prior to any text. And remember, when you’re
using the document processing macros, top margin and bottom margin mean something slightly
different than when you’re using just the typesetting macros (see Top and bottom margins in docu-
ment processing).

.PAGE lets you establish paper dimensions and page margins with a single macro. The only re-
quired argument is page width. The rest are optional, but they must appear in order and you can’t
skip over any. <lm>, <rm>, <tm> and <bm> refer to the left, right, top and bottom margins re-
spectively.

Assuming your page dimensions are 11 inches by 17 inches, and that’s all you want to set, enter
.PAGE 11i 17i

groff 1.23.0 2 July 2023 340

groff_mom(7) Miscellaneous Information Manual groff_mom(7)

If you want to set the left margin as well, say, at 1 inch, PAGE would look like this:
.PAGE 11i 17i 1i

Now suppose you also want to set the top margin, say, at 1–1/2 inches. <tm> comes after <rm>
in the optional arguments, but you can’t skip over any arguments, therefore to set the top margin,
you must also give a right margin. The .PAGE macro would look like this:

.PAGE 11i 17i 1i 1i 1.5i
| |

required right---+ +---top margin
margin

Clearly, .PAGE is best used when you want a convenient way to tell mom just the dimensions of
your printer sheet (width and length), or when you want to tell her everything about the page (di-
mensions and all the margins), for example

.PAGE 8.5i 11i 45p 45p 45p 45p
This sets up an 8½ by 11 inch page with margins of 45 points (5/8-inch) all around.

Additionally, if you invoke .PAGE with a top margin argument, any macros you invoke after
.PAGE will almost certainly move the baseline of the first line of text down by one linespace. To
compensate, do

.RLD 1v
immediately before entering any text, or, if it’s feasible, make .PAGE the last macro you invoke
prior to entering text.

Please read the Important note on page dimensions and papersize for information on ensuring
groff respects your .PAGE dimensions and margins.

.PAGELENGTH <length of printer sheet>
tells mom how long your printer sheet is. It works just like .PAGEWIDTH.

Therefore, to tell mom your printer sheet is 11 inches long, you enter
.PAGELENGTH 11i

Please read the important note on page dimensions and papersize for information on ensuring
groff respects your PAGELENGTH .

.PAGEWIDTH <width of printer sheet>

The argument to .PAGEWIDTH is the width of your printer sheet.

.PAGEWIDTH requires a unit of measure. Decimal fractions are allowed. Hence, to tell mom
that the width of your printer sheet is 8½ inches, you enter

.PAGEWIDTH 8.5i

Please read the Important note on page dimensions and papersize for information on ensuring
groff respects your PAGEWIDTH .

.PAPER <paper type>
provides a convenient way to set the page dimensions for some common printer sheet sizes. The
argument <paper type> can be one of: LETTER, LEGAL, STATEMENT, TABLOID,
LEDGER, FOLIO, QUARTO, EXECUTIVE, 10x14, A3, A4, A5, B4, B5.

.PRINTSTYLE

.PT_SIZE <size of type in points>
Point size of type, does not require a unit of measure.

.PT_SIZE (Point Size) takes one argument: the size of type in points. Unlike most other macros
that establish the size or measure of something, .PT_SIZE does not require that you supply a unit
of measure since it’s a near universal convention that type size is measured in points. Therefore,
to change the type size to, say, 11 points, enter

.PT_SIZE 11
Point sizes may be fractional (e.g., 10.25 or 12.5).

groff 1.23.0 2 July 2023 341

groff_mom(7) Miscellaneous Information Manual groff_mom(7)

You can prepend a plus or a minus sign to the argument to .PT_SIZE, in which case the point size
will be changed by + or - the original value. For example, if the point size is 12, and you want
14, you can do

.PT_SIZE +2
then later reset it to 12 with

.PT_SIZE -2
The size of type can also be changed inline.

Note: It is unfortunate that the pic preprocessor has already taken the name, PS, and thus mom’s
macro for setting point sizes can’t use it. However, if you aren’t using pic, you might want to
alias .PT_SIZE as .PS, since there’d be no conflict. For example

.ALIAS PS PT_SIZE
would allow you to set point sizes with .PS.

.R_MARGIN <right margin>
Right Margin

Requires a unit of measure.

IMPORTANT: .R_MARGIN, if used, must come after .PAPER, .PAGEWIDTH, .L_MARGIN,
and/or .PAGE (if a right margin isn’t given to PAGE). The reason is that .R_MARGIN calculates
line length from the overall page dimensions and the left margin.

Obviously, it can’t make the calculation if it doesn’t know the page width and the left margin.

.R_MARGIN establishes the amount of space you want between the end of typeset lines and the
right hand edge of the printer sheet. In other words, it sets the line length. .R_MARGIN requires
a unit of measure. Decimal fractions are allowed.

The line length macro (LL) can be used in place of .R_MARGIN. In either case, the last one in-
voked sets the line length. The choice of which to use is up to you. In some instances, you may
find it easier to think of a section of type as having a right margin. In others, giving a line length
may make more sense.

For example, if you’re setting a page of type you know should have 6-pica margins left and right,
it makes sense to enter a left and right margin, like this:

.L_MARGIN 6P

.R_MARGIN 6P

That way, you don’t have to worry about calculating the line length. On the other hand, if you
know the line length for a patch of type should be 17 picas and 3 points, entering the line length
with LL is much easier than calculating the right margin, e.g.,

.LL 17P+3p

If you use the macros .PAGE, .PAGEWIDTH or PAPER without invoking .R_MARGIN after-
ward, mom automatically sets .R_MARGIN to 1 inch. If you set a line length after these macros
(with .LL), the line length calculated by .R_MARGIN is, of course, overridden.

Note: .R_MARGIN behaves in a special way when you’re using the document processing macros.

.ST <tab number> L | R | C | J [QUAD]

After string tabs have been marked off on an input line (see \∗[ST]. . .\∗[STX]), you need to set
them by giving them a direction and, optionally, the QUAD argument.

In this respect, .ST is like .TAB_SET except that you don’t have to give .ST an indent or a line
length (that’s already taken care of, inline, by \∗[ST]. . .\∗[STX]).

If you want string tab 1 to be left, enter
.ST 1 L

If you want it to be left and filled , enter
.ST 1 L QUAD

If you want it to be justified, enter

groff 1.23.0 2 July 2023 342

groff_mom(7) Miscellaneous Information Manual groff_mom(7)

.ST 1 J

.TAB <tab number>
After tabs have been defined (either with .TAB_SET or .ST), .TAB moves to whatever tab num-
ber you pass it as an argument.

For example,
.TAB 3

moves you to tab 3.

Note: .TAB breaks the line preceding it and advances 1 linespace. Hence,
.TAB 1
A line of text in tab 1.
.TAB 2
A line of text in tab 2.

produces, on output
A line of text in tab 1.

A line of text in tab 2.

If you want the tabs to line up, use .TN (“Tab Next”) or, more conveniently, the inline escape se-
quence \∗[TB+]:

.TAB 1
A line of text in tab 1.\∗[TB+]
A line of text in tab 2.

which produces
A line of text in tab 1. A line of text in tab 2.

If the text in your tabs runs to several lines, and you want the first lines of each tab to align, you
must use the multi-column macros.

Additional note: Any indents in effect prior to calling a tab are automatically turned off by TAB.
If you were happily zipping down the page with a left indent of 2 picas turned on, and you call a
tab whose indent from the left margin is 6 picas, your new distance from the left margin will be 6
picas, not I 6 picas plus the 2 pica indent.

Tabs are not by nature columnar, which is to say that if the text inside a tab runs to several lines,
calling another tab does not automatically move to the baseline of the first line in the previous tab.
To demonstrate:

TAB 1
Carrots
Potatoes
Broccoli
.TAB 2
$1.99/5 lbs
$0.25/lb
$0.99/bunch

produces, on output
Carrots
Potatoes
Broccoli

$1.99/5 lbs
$0.25/lb
$0.99/bunch

.TB <tab number>
Alias to .TAB

.TI [<measure>]
Temporary left indent — the optional argument requires a unit of measure

groff 1.23.0 2 July 2023 343

groff_mom(7) Miscellaneous Information Manual groff_mom(7)

A temporary indent is one that applies only to the first line of text that comes after it. Its chief use
is indenting the first line of paragraphs. (Mom’s .PP macro, for example, uses a temporary in-
dent.)

The first time you invoke .TI, you must give it a measure. If you want to indent the first line of a
paragraph by, say, 2 ems, do

.TI 2m

Subsequent invocations of .TI do not require you to supply a measure; mom keeps track of the last
measure you gave it.

Because temporary indents are temporary, there’s no need to turn them off.

IMPORTANT: Unlike .IL, .IR and IB, measures given to .TI are NOT additive. In the following
example, the second ".TI 2P" is exactly 2 picas.

.TI 1P
The beginning of a paragraph...
.TI 2P
The beginning of another paragraph...

.TN Tab Next

Inline escape \∗[TB+]

TN moves over to the next tab in numeric sequence (tab n+1) without advancing on the page. See
the NOTE in the description of the .TAB macro for an example of how TN works.

In tabs that aren’t given the QUAD argument when they’re set up with .TAB_SET or ST, you
must terminate the line preceding .TN with the \c inline escape sequence. Conversely, if you did
give a QUAD argument to .TAB_SET or ST, the \c must not be used.

If you find remembering whether to put in the \c bothersome, you may prefer to use the inline es-
cape alternative to .TN, \∗[TB+], which works consistently regardless of the fill mode.

Note: You must put text in the input line immediately after .TN. Stacking of .TN’s is not allowed.
In other words, you cannot do

.TAB 1
Some text\c
.TN
Some more text\c
.TN
.TN
Yet more text

The above example, assuming tabs numbered from 1 to 4, should be entered
.TAB 1
Some text\c
.TN
Some more text\c
.TN
\&\c
.TN
Yet more text

\& is a zero-width, non-printing character that groff recognizes as valid input, hence meets the re-
quirement for input text following .TN.

.TQ TQ takes you out of whatever tab you were in, advances 1 linespace, and restores the left margin,
line length, quad direction and fill mode that were in effect prior to invoking any tabs.

.T_MARGIN <top margin>
Top margin

Requires a unit of measure

groff 1.23.0 2 July 2023 344

groff_mom(7) Miscellaneous Information Manual groff_mom(7)

.T_MARGIN establishes the distance from the top of the printer sheet at which you want your
type to start. It requires a unit of measure, and decimal fractions are allowed. To set a top margin
of 2½ centimetres, you’d enter

.T_MARGIN 2.5c
.T_MARGIN calculates the vertical position of the first line of type on a page by treating the top
edge of the printer sheet as a baseline. Therefore,

.T_MARGIN 1.5i
puts the baseline of the first line of type 1½ inches beneath the top of the page.

Note: .T_MARGIN means something slightly different when you’re using the document process-
ing macros. See Top and bottom margins in document processing for an explanation.

IMPORTANT: .T_MARGIN does two things: it establishes the top margin for pages that come af-
ter it and it moves to that position on the current page. Therefore, .T_MARGIN should only be
used at the top of a file (prior to entering text) or after NEWPAGE, like this:

.NEWPAGE

.T_MARGIN 6P
<text>

Authors
mom was written by Peter Schaffter 〈peter@schaffter.ca〉. PDF support was provided by Deri James
〈deri@chuzzlewit.myzen.co.uk〉. This manual page was written by Bernd Warken.

See also
/usr/share/doc/groff-1.23.0/html/mom/toc.html

entry point to the HTML documentation

〈http://www.schaffter.ca/mom/momdoc/toc.html〉
HTML documentation online

〈http://www.schaffter.ca/mom/〉
the mom macros homepage

Groff: The GNU Implementation of troff , by Trent A. Fisher and Werner Lemberg, is the primary groff
manual. You can browse it interactively with “info groff”.

pdfmom(1), groff (1), troff (1)

groff 1.23.0 2 July 2023 345

groff_ms(7) Miscellaneous Information Manual groff_ms(7)

Name
groff_ms - GNU roff manuscript macro package for formatting documents

Synopsis
groff -ms [option . . .] [file . . .]
groff -m ms [option . . .] [file . . .]

Description
The GNU implementation of the ms macro package is part of the groff document formatting system. The
ms package is suitable for the composition of letters, memoranda, reports, and books.

These groff macros support cover page and table of contents generation, automatically numbered headings,
several paragraph styles, a variety of text styling options, footnotes, and multi-column page layouts. ms
supports the tbl(1), eqn(1), pic(1), and refer(1) preprocessors for inclusion of tables, mathematical equa-
tions, diagrams, and standardized bibliographic citations.

This implementation is mostly compatible with the documented interface and behavior of AT&T Unix Ver-
sion 7 ms. Many extensions from 4.2BSD (Berkeley) and Tenth Edition Research Unix have been recre-
ated.

Usage
The ms macro package expects a certain amount of structure: a well-formed document contains at least one
paragraphing or heading macro call. To compose a simple document from scratch, begin it by calling .LP
or .PP. Longer documents have a structure as follows.

Document type
Calling the RP macro at the beginning of your document puts the document description (see be-
low) on a cover page. Otherwise, ms places this information on the first page, followed immedi-
ately by the body text. Some document types found in other ms implementations are specific to
AT&T or Berkeley, and are not supported in groff ms.

Format and layout
By setting registers and strings, you can configure your document’s typeface, margins, spacing,
headers and footers, and footnote arrangement. See subsection “Document control settings” be-
low.

Document description
A document description consists of any of: a title, one or more authors’ names and affiliated insti-
tutions, an abstract, and a date or other identifier. See subsection “Document description macros”
below.

Body text
The main matter of your document follows its description (if any). ms supports highly structured
text consisting of paragraphs interspersed with multi-level headings (chapters, sections, subsec-
tions, and so forth) and augmented by lists, footnotes, tables, diagrams, and similar material. The
preponderance of subsections below covers these matters.

Table of contents
Macros enable the collection of entries for a table of contents (or index) as the material they dis-
cuss appears in the document. You then call a macro to emit the table of contents at the end of
your document. The table of contents must necessarily follow the rest of the text since GNU troff
is a single-pass formatter; it thus cannot determine the page number of a division of the text until it
has been set and output. Since ms output was designed for the production of hard copy, the tradi-
tional procedure was to manually relocate the pages containing the table of contents between the
cover page and the body text. Today, page resequencing is more often done in the digital domain.
An index works similarly, but because it typically needs to be sorted after collection, its prepara-
tion requires separate processing.

Document control settings
The following tables list the document control registers, strings, and special characters. For any parameter
whose default is unsatisfactory, define it before calling any ms macro other than RP.

groff 1.23.0 2 July 2023 346

groff_ms(7) Miscellaneous Information Manual groff_ms(7)

Margin settings
Parameter Definition Effective Default
\n[PO] Page offset (left margin) next page 1i (0)
\n[LL] Line length next paragraph 6.5i (65n)
\n[LT] Title line length next paragraph 6.5i (65n)
\n[HM] Top (header) margin next page 1i
\n[FM] Bottom (footer) margin next page 1i

Titles (headers, footers)
Parameter Definition Effective Default
\∗[LH] Left header text next header empty
\∗[CH] Center header text next header -\n[%]-
\∗[RH] Right header text next header empty
\∗[LF] Left footer text next footer empty
\∗[CF] Center footer text next footer empty
\∗[RF] Right footer text next footer empty

Text settings
Parameter Definition Effective Default
\n[PS] Point size next paragraph 10p
\n[VS] Vertical spacing (leading) next paragraph 12p
\n[HY] Hyphenation mode next paragraph 6
\∗[FAM] Font family next paragraph T

Paragraph settings
Parameter Definition Effective Default

\n[PI] Indentation next paragraph 5n
\n[PD] Paragraph distance (spacing) next paragraph 0.3v (1v)
\n[QI] Quotation indentation next paragraph 5n
\n[PORPHANS] # of initial lines kept next paragraph 1

Heading settings
Parameter Definition Effective Default

\n[PSINCR] Point size increment next heading 1p
\n[GROWPS] Size increase depth limit next heading 0
\n[HORPHANS] # of following lines kept next heading 1
\∗[SN-STYLE] Numbering style (alias) next heading \∗[SN-DOT]

\∗[SN-STYLE] can alternatively be made an alias of \∗[SN-NO-DOT] with the als request.

Footnote settings
Parameter Definition Effective Default
\n[FI] Indentation next footnote 2n
\n[FF] Format next footnote 0
\n[FPS] Point size next footnote \n[PS]-2p
\n[FVS] Vertical spacing (leading) next footnote \n[FPS]+2p
\n[FPD] Paragraph distance (spacing) next footnote \n[PD]/2
\∗[FR] Line length ratio special 11/12

Display settings
Parameter Definition Effective Default
\n[DD] Display distance (spacing) special 0.5v (1v)
\n[DI] Display indentation special 0.5i

groff 1.23.0 2 July 2023 347

groff_ms(7) Miscellaneous Information Manual groff_ms(7)

Other settings
Parameter Definition Effective Default

\n[MINGW] Minimum gutter width next page 2n
\n[TC-MARGIN] TOC page number margin width next PX call \w'000'
\[TC-LEADER] TOC leader character next PX call .\h'1m'

For entries marked “special” in the “Effective” column, see the discussion in the applicable section below.
The PO, LL, and LT register defaults vary by output device and paper format; the values shown are for
typesetters using U.S. letter paper, and then terminals. See section “Paper format” of groff (1). The PD and
DD registers use the larger value if the vertical motion quantum of the output device is too coarse for the
smaller one; usually, this is the case only for output to terminals and emulators thereof. The “gutter” af-
fected by \n[MINGW] is the gap between columns in multiple-column page arrangements. The
TC-MARGIN register and TC-LEADER special character affect the formatting of tables of contents as-
sembled by the XS, XA, and XE macros.

Document description macros
Define information describing the document by calling the macros below in the order shown; .DA or .ND
can be called to set the document date (or other identifier) at any time before (a) the abstract, if present, or
(b) its information is required in a header or footer. Use of these macros is optional, except that .TL is
mandatory if any of .RP, .AU, .AI, or .AB is called, and .AE is mandatory if .AB is called.

.RP [no-repeat-info] [no-renumber]
Use the “report” (AT&T: “released paper”) format for your document, creating a separate cover
page. The default arrangement is to place most of the document description (title, author names
and institutions, and abstract, but not the date) at the top of the first page. If the optional no-
repeat-info argument is given, ms produces a cover page but does not repeat any of its informa-
tion on subsequently (but see the DA macro below regarding the date). Normally, .RP sets the
page number following the cover page to 1. Specifying the optional no-renumber argument sup-
presses this alteration. Optional arguments can occur in any order. “no” is recognized as a syn-
onym of no-repeat-info for AT&T compatibility.

.TL Specify the document title. ms collects text on input lines following this call into the title until
reaching .AU, .AB, or a heading or paragraphing macro call.

.AU Specify an author’s name. ms collects text on input lines following this call into the author’s name
until reaching .AI, .AB, another .AU, or a heading or paragraphing macro call. Call it repeatedly
to specify multiple authors.

.AI Specify the preceding author’s institution. An .AU call is usefully followed by at most one .AI
call; if there are more, the last .AI call controls. ms collects text on input lines following this call
into the author’s institution until reaching .AU, .AB, or a heading or paragraphing macro call.

.DA [x . . .]
Typeset the current date, or any arguments x, in the center footer, and, if .RP is also called, left-
aligned at the end of the document description on the cover page.

.ND [x . . .]
Typeset the current date, or any arguments x, if .RP is also called, left-aligned at the end of the
document description on the cover page. This is groff ms’s default.

.AB [no]
Begin the abstract. ms collects text on input lines following this call into the abstract until reach-
ing an .AE call. By default, ms places the word “ABSTRACT” centered and in italics above the
text of the abstract. The optional argument “no” suppresses this heading.

.AE End the abstract.

Text settings
The FAM string, a GNU extension, sets the font family for body text; the default is “T”. The PS and VS
registers set the type size and vertical spacing (distance between text baselines), respectively. The font fam-
ily and type size are ignored on terminal devices. Setting these parameters before the first call of a heading,

groff 1.23.0 2 July 2023 348

groff_ms(7) Miscellaneous Information Manual groff_ms(7)

paragraphing, or (non-date) document description macro also applies them to headers, footers, and (for
FAM) footnotes.

The HY register defines the automatic hyphenation mode used with the hy request. Setting \n[HY] to 0 is
equivalent to using the nh request. This is a Tenth Edition Research Unix extension.

Typographical symbols
ms provides a few strings to obtain typographical symbols not easily entered with the keyboard. These and
many others are available as special character escape sequences—see groff_char(7).

\∗[-] Interpolate an em dash.

\∗[Q]
\∗[U] Interpolate typographer’s quotation marks where available, and neutral double quotes otherwise.

\∗[Q] is the left quote and \∗[U] the right.

Paragraphs
Paragraphing macros break, or terminate, any pending output line so that a new paragraph can begin. Sev-
eral paragraph types are available, differing in how indentation applies to them: to left, right, or both mar-
gins; to the first output line of the paragraph, all output lines, or all but the first. All paragraphing macro
calls cause the insertion of vertical space in the amount stored in the PD register, except at page or column
breaks, or adjacent to displays.

The PORPHANS register defines the minimum number of initial lines of any paragraph that must be kept
together to avoid isolated lines at the bottom of a page. If a new paragraph is started close to the bottom of
a page, and there is insufficient space to accommodate \n[PORPHANS] lines before an automatic page
break, then a page break is forced before the start of the paragraph. This is a GNU extension.

.LP Set a paragraph without any (additional) indentation.

.PP Set a paragraph with a first-line left indentation in the amount stored in the PI register.

.IP [marker [width]]
Set a paragraph with a left indentation. The optional marker is not indented and is empty by de-
fault. width overrides the indentation amount in \n[PI]; its default unit is “n”. Once specified,
width applies to further .IP calls until specified again or a heading or different paragraphing macro
is called.

.QP Set a paragraph indented from both left and right margins by \n[QI].

.QS

.QE Begin (QS) and end (QE) a region where each paragraph is indented from both margins by \n[QI].
The text between .QS and .QE can be structured further by use of other paragraphing macros.

.XP Set an “exdented” paragraph—one with a left indentation of \n[PI] on every line except the first
(also known as a hanging indent). This is a Berkeley extension.

Headings
Use headings to create a hierarchical structure for your document. The ms macros print headings in bold
using the same font family and, by default, type size as the body text. Headings are available with and
without automatic numbering. Text on input lines following the macro call becomes the heading’s title.
Call a paragraphing macro to end the heading text and start the section’s content.

.NH [depth]
Set an automatically numbered heading. ms produces a numbered heading in the form a.b.c. . ., to
any level desired, with the numbering of each depth increasing automatically and being reset to
zero when a more significant depth is increased. “1” is the most significant or coarsest division of
the document. Only non-zero values are output. If depth is omitted, it is taken to be 1. If you
specify depth such that an ascending gap occurs relative to the previous NH call—that is, you
“skip a depth”, as by “.NH 1” and then “.NH 3”, groff ms emits a warning on the standard error
stream.

groff 1.23.0 2 July 2023 349

groff_ms(7) Miscellaneous Information Manual groff_ms(7)

.NH S heading-depth-index . . .
Alternatively, you can give NH a first argument of “S”, followed by integers to number the head-
ing depths explicitly. Further automatic numbering, if used, resumes using the specified indices as
their predecessors. This feature is a Berkeley extension.

After .NH is called, the assigned number is made available in the strings SN-DOT (as it appears in a
printed heading with default formatting, followed by a terminating period) and SN-NO-DOT (with the ter-
minating period omitted). These are GNU extensions.

You can control the style used to print numbered headings by defining an appropriate alias for the string
SN-STYLE. By default, \∗[SN-STYLE] is aliased to \∗[SN-DOT]. If you prefer to omit the terminating
period from numbers appearing in numbered headings, you may alias it to \∗[SN-NO-DOT]. Any such
change in numbering style becomes effective from the next use of .NH following redefinition of the alias
for \∗[SN-STYLE]. The formatted number of the current heading is available in \∗[SN] (a feature first
documented by Berkeley); this string facilitates its inclusion in, for example, table captions, equation labels,
and .XS/.XA/.XE table of contents entries.

.SH [depth]
Set an unnumbered heading. The optional depth argument is a GNU extension indicating the
heading depth corresponding to the depth argument of .NH. It matches the type size at which the
heading is set to that of a numbered heading at the same depth when the \n[GROWPS] and
\n[PSINCR] heading size adjustment mechanism is in effect.

The PSINCR register defines an increment in type size to be applied to a heading at a lesser depth than that
specified in \n[GROWPS]. The value of \n[PSINCR] should be specified in points with the “p” scaling
unit and may include a fractional component.

The GROWPS register defines the heading depth above which the type size increment set by \n[PSINCR]
becomes effective. For each heading depth less than the value of \n[GROWPS], the type size is increased
by \n[PSINCR]. Setting \n[GROWPS] to a value less than 2 disables the incremental heading size feature.

In other words, if the value of GROWPS register is greater than the depth argument to a .NH or .SH call,
the type size of a heading produced by these macros increases by \n[PSINCR] units over \n[PS] multiplied
by the difference of \n[GROWPS] and depth.

The \n[HORPHANS] register operates in conjunction with the NH and SH macros to inhibit the printing
of isolated headings at the bottom of a page; it specifies the minimum number of lines of the subsequent
paragraph that must be kept on the same page as the heading. If insufficient space remains on the current
page to accommodate the heading and this number of lines of paragraph text, a page break is forced before
the heading is printed. Any display macro call or tbl, pic, or eqn region between the heading and the sub-
sequent paragraph suppresses this grouping.

Typeface and decoration
The ms macros provide a variety of ways to style text. Attend closely to the ordering of arguments labeled
pre and post, which is not intuitive. Support for pre arguments is a GNU extension.

.B [text [post [pre]]]
Style text in bold, followed by post in the previous font style without intervening space, and pre-
ceded by pre similarly. Without arguments, ms styles subsequent text in bold until the next para-
graphing, heading, or no-argument typeface macro call.

.R [text [post [pre]]]
As .B, but use the roman style (upright text of normal weight) instead of bold. Argument recogni-
tion is a GNU extension.

.I [text [post [pre]]]
As .B, but use an italic or oblique style instead of bold.

.BI [text [post [pre]]]
As .B, but use a bold italic or bold oblique style instead of upright bold. This is a Tenth Edition
Research Unix extension.

groff 1.23.0 2 July 2023 350

groff_ms(7) Miscellaneous Information Manual groff_ms(7)

.CW [text [post [pre]]]
As .B, but use a constant-width (monospaced) roman typeface instead of bold. This is a Tenth
Edition Research Unix extension.

.BX [text]
Typeset text and draw a box around it. On terminal devices, reverse video is used instead. If you
want text to contain space, use unbreakable space or horizontal motion escape sequences (\~,
\space, \^, \|, \0, or \h).

.UL [text [post]]
Typeset text with an underline. post, if present, is set after text with no intervening space.

.LG Set subsequent text in larger type (2 points larger than the current size) until the next type size,
paragraphing, or heading macro call. You can specify this macro multiple times to enlarge the
type size as needed.

.SM Set subsequent text in smaller type (2 points smaller than the current size) until the next type size,
paragraphing, or heading macro call. You can specify this macro multiple times to reduce the type
size as needed.

.NL Set subsequent text at the normal type size (\n[PS]).

When pre is used, a hyphenation control escape sequence \% that would ordinarily start text must start pre
instead.

groff ms also offers strings to begin and end super- and subscripting. These are GNU extensions.

\∗{
\∗} Begin and end superscripting, respectively.

\∗<
\∗> Begin and end subscripting, respectively.

Indented regions
You may need to indent a region of text while otherwise formatting it normally. Indented regions can be
nested.

.RS Begin a region where headings, paragraphs, and displays are indented (further) by \n[PI].

.RE End the (next) most recent indented region.

Keeps, boxed keeps, and displays
On occasion, you may want to keep several lines of text, or a region of a document, together on a single
page, preventing an automatic page break within certain boundaries. This can cause a page break to occur
earlier than it normally would.

You can alternatively specify a floating keep: if a keep cannot fit on the current page, ms holds its contents
and allows text following the keep (in the source document) to fill in the remainder of the current page.
When the page breaks, whether by reaching the end or bp request, ms puts the floating keep at the begin-
ning of the next page.

.KS Begin a keep.

.KF Begin a floating keep.

.KE End (floating) keep.

As an alternative to the keep mechanism, the ne request forces a page break if there is not at least the
amount of vertical space specified in its argument remaining on the page.

A boxed keep has a frame drawn around it.

.B1 Begin a keep with a box drawn around it.

.B2 End boxed keep.

Boxed keep macros cause breaks; if you need to box a word or phrase within a line, see the BX macro in
section “Highlighting” above. Box lines are drawn as close as possible to the text they enclose so that they

groff 1.23.0 2 July 2023 351

groff_ms(7) Miscellaneous Information Manual groff_ms(7)

are usable within paragraphs. If you wish to place one or more paragraphs in a boxed keep, you may im-
prove their appearance by calling .B1 after the first paragraphing macro, and by adding a small amount of
vertical space before calling .B2.

If you want a boxed keep to float, you will need to enclose the .B1 and .B2 calls within a pair of .KF and
.KE calls.

Displays turn off filling; lines of verse or program code are shown with their lines broken as in the source
document without requiring br requests between lines. Displays can be kept on a single page or allowed to
break across pages. The DS macro begins a kept display of the layout specified in its first argument; non-
kept displays are begun with dedicated macros corresponding to their layout.

.DS L

.LD Begin (DS: kept) left-aligned display.

.DS [I [indent]]

.ID [indent]
Begin (DS: kept) display indented by indent if specified, \n[DI] otherwise.

.DS B

.BD Begin (DS: kept) block display: the entire display is left-aligned, but indented such that the longest
line in the display is centered on the page.

.DS C

.CD Begin (DS: kept) centered display: each line in the display is centered.

.DS R

.RD Begin (DS: kept) right-aligned display. This is a GNU extension.

.DE End any display.

The distance stored in \n[DD] is inserted before and after each pair of display macros; this is a Berkeley ex-
tension. In groff ms, this distance replaces any adjacent inter-paragraph distance or subsequent spacing
prior to a section heading. The DI register is a GNU extension; its value is an indentation applied to dis-
plays created with .DS and .ID without arguments, to “.DS I” without an indentation argument, and to
equations set with “.EQ I”. Changes to either register take effect at the next display boundary.

Tables, figures, equations, and references
The ms package is often used with the tbl, pic, eqn, and refer preprocessors. The \n[DD] distance is also
applied to regions of the document preprocessed with eqn, pic, and tbl. Mark text meant for preprocessors
by enclosing it in pairs of tokens as follows, with nothing between the dot and the macro name. The pre-
processors match these tokens only at the start of an input line.

.TS [H]

.TE Demarcate a table to be processed by the tbl preprocessor. The optional H argument instructs ms
to repeat table rows (often column headings) at the top of each new page the table spans, if applic-
able; calling the TH macro marks the end of such rows. tbl(1) provides a comprehensive refer-
ence to the preprocessor and offers examples of its use.

.PS

.PE

.PF .PS begins a picture to be processed by the pic preprocessor; either of .PE or .PF ends it, the latter
with “flyback” to the vertical position at its top.

.EQ [align [label]]

.EN Demarcate an equation to be processed by the eqn preprocessor. The equation is centered by de-
fault; align can be C, L, or I to (explicitly) center, left-align, or indent it by \n[DI], respectively. If
specified, label is set right-aligned.

.[

.] Demarcate a bibliographic citation to be processed by the refer preprocessor. refer(1) provides a
comprehensive reference to the preprocessor and the format of its bibliographic database.

groff 1.23.0 2 July 2023 352

groff_ms(7) Miscellaneous Information Manual groff_ms(7)

When refer emits collected references (as might be done on a “Works Cited” page), it interpolates the string
\∗[REFERENCES] as an unnumbered heading (.SH).

Attempting to place a multi-page table inside a keep can lead to unpleasant results, particularly if the tbl
“allbox” option is used.

Footnotes
A footnote is typically anchored to a place in the text with a marker, which is a small integer, a symbol, or
arbitrary user-specified text.

\∗∗ Place an automatic number, an automatically generated numeric footnote marker, in the text. Each
time this string is interpolated, the number it produces increments by one. Automatic numbers
start at 1. This is a Berkeley extension.

Enclose the footnote text in FS and FE macro calls to set it at the nearest available “foot”, or bottom, of a
text column or page.

.FS [marker]
Begin a footnote. The .FS-MARK hook (see below) is called with any supplied marker argu-
ment, which is then also placed at the beginning of the footnote text. If marker is omitted, the
next pending automatic number enqueued by interpolation of the ∗ string is used, and if none ex-
ists, nothing is prefixed.

.FE End footnote text.

groff ms provides a hook macro, FS-MARK, for user-determined operations to be performed when the FS
macro is called. It is passed the same arguments as .FS itself. By default, this macro has an empty defini-
tion. .FS-MARK is a GNU extension.

Footnote text is formatted as paragraphs are, using analogous parameters. The registers FI, FPD, FPS, and
FVS correspond to PI, PD, PS, and VS, respectively; FPD, FPS, and FVS are GNU extensions.

The FF register controls the formatting of automatically numbered footnote paragraphs, and those for
which .FS is given a marker argument, at the bottom of a column or page as follows.

0 Set an automatic number, or a specified FS marker argument, as a superscript (on type-
setter devices) or surrounded by square brackets (on terminals). The footnote paragraph
is indented as with .PP if there is an .FS argument or an automatic number, and as with
.LP otherwise. This is the default.

1 As 0, but set the marker as regular text, and follow an automatic number with a period.

2 As 1, but without indentation (like .LP).

3 As 1, but set the footnote paragraph with the marker hanging (like .IP).

Language and localization
groff ms provides several strings that you can customize for your own purposes, or redefine to adapt the
macro package to languages other than English. It is already localized for Czech, German, French, Italian,
and Swedish. Load the desired localization macro package after ms; see groff_tmac(5).

String Default
\∗[REFERENCES] References
\∗[ABSTRACT] \f[I]ABSTRACT\f[]
\∗[TOC] Table of Contents
\∗[MONTH1] January
\∗[MONTH2] February
\∗[MONTH3] March
\∗[MONTH4] April
\∗[MONTH5] May
\∗[MONTH6] June
\∗[MONTH7] July

groff 1.23.0 2 July 2023 353

groff_ms(7) Miscellaneous Information Manual groff_ms(7)

\∗[MONTH8] August
\∗[MONTH9] September
\∗[MONTH10] October
\∗[MONTH11] November
\∗[MONTH12] December

The default for ABSTRACT includes font selection escape sequences to set the word in italics.

Headers and footers
There are multiple ways to produce headers and footers. One is to define the strings LH, CH, and RH to
set the left, center, and right headers, respectively; and LF, CF, and RF to set the left, center, and right
footers. This approach suffices for documents that do not distinguish odd- and even-numbered pages.

Another method is to call macros that set headers or footers for odd- or even-numbered pages. Each such
macro takes a delimited argument separating the left, center, and right header or footer texts from each
other. You can replace the neutral apostrophes (') shown below with any character not appearing in the
header or footer text. These macros are Berkeley extensions.

.OH 'left 'center 'right '

.OF 'left 'center 'right '

.EH 'left 'center 'right '

.EF 'left 'center 'right '
The OH and EH macros define headers for odd- (recto) and even-numbered (verso) pages, respec-
tively; the OF and EF macros define footers for them.

With either method, a percent sign % in header or footer text is replaced by the current page number. By
default, ms places no header on a page numbered “1” (regardless of its number format).

.P1 Typeset the header even on page 1. To be effective, this macro must be called before the header
trap is sprung on any page numbered “1”. This is a Berkeley extension.

For even greater flexibility, ms permits redefinition of the macros called when the page header and footer
traps are sprung. PT (“page trap”) is called by ms when the header is to be written, and BT (“bottom trap”)
when the footer is to be. The groff page location trap that ms sets up to format the header also calls the
(normally undefined) HD macro after .PT; you can define .HD if you need additional processing after set-
ting the header. The HD hook is a Berkeley extension. Any such macros you (re)define must implement
any desired specialization for odd-, even-, or first numbered pages.

Tab stops
Use the ta request to set tab stops as needed.

.TA Reset the tab stops to the ms default (every 5 ens). Redefine this macro to create a different set of
default tab stops.

Margins
Control margins using the registers summarized in the “Margins” portion of the table in section “Document
control settings” above. There is no setting for the right margin; the combination of page offset \n[PO] and
line length \n[LL] determines it.

Multiple columns
ms can set text in as many columns as reasonably fit on the page. The following macros force a page break
if a multi-column layout is active when they are called. \n[MINGW] is the default minimum gutter width;
it is a GNU extension. When multiple columns are in use, keeps and the HORPHANS and PORPHANS
registers work with respect to column breaks instead of page breaks.

.1C Arrange page text in a single column (the default).

.2C Arrange page text in two columns.

.MC [column-width [gutter-width]]
Arrange page text in multiple columns. If you specify no arguments, it is equivalent to the 2C
macro. Otherwise, column-width is the width of each column and gutter-width is the minimum
distance between columns.

groff 1.23.0 2 July 2023 354

groff_ms(7) Miscellaneous Information Manual groff_ms(7)

Creating a table of contents
Define an entry to appear in the table of contents by bracketing its text between calls to the XS and XE
macros. A typical application is to call them immediately after NH or SH and repeat the heading text
within them. The XA macro, used within .XS/.XE pairs, supplements an entry—for instance, when it re-
quires multiple output lines, whether because a heading is too long to fit or because style dictates that page
numbers not be repeated. You may wish to indent the text thus wrapped to correspond to its heading depth;
this can be done in the entry text by prefixing it with tabs or horizontal motion escape sequences, or by pro-
viding a second argument to the XA macro. .XS and .XA automatically associate the page number where
they are called with the text following them, but they accept arguments to override this behavior. At the end
of the document, call TC or PX to emit the table of contents; .TC resets the page number to i (Roman nu-
meral one), and then calls PX. All of these macros are Berkeley extensions.

.XS [page-number]

.XA [page-number [indentation]]

.XE Begin, supplement, and end a table of contents entry. Each entry is associated with page-number
(otherwise the current page number); a page-number of “no” prevents a leader and page number
from being emitted for that entry. Use of .XA within .XS/.XE is optional; it can be repeated. If
indentation is present, a supplemental entry is indented by that amount; ens are assumed if no unit
is indicated. Text on input lines between .XS and .XE is stored for later recall by .PX.

.PX [no]
Switch to single-column layout. Unless “no” is specified, center and interpolate \∗[TOC] in bold
and two points larger than the body text. Emit the table of contents entries.

.TC [no]
Set the page number to 1, the page number format to lowercase Roman numerals, and call PX
(with a “no” argument, if present).

The remaining features in this subsection are GNU extensions. groff ms obviates the need to repeat heading
text after .XS calls. Call .XN and .XH after .NH and .SH, respectively. Text to be appended to the format-
ted section heading, but not to appear in the table of contents entry, can follow these calls.

.XN heading-text
Format heading-text and create a corresponding table of contents entry; the indentation is com-
puted from the depth argument of the preceding NH call.

.XH depth heading-text
As .XN, but use depth to determine the indentation.

groff ms encourages customization of table of contents entry production. (Re-)define any of the following
macros as desired.

.XN-REPLACEMENT heading-text

.XH-REPLACEMENT depth heading-text
These hook macros implement .XN and .XH, and call XN-INIT and XH-INIT, respectively,
then call XH-UPDATE-TOC with the arguments given them.

.XH-INIT

.XN-INIT
These hook macros do nothing by default.

.XH-UPDATE-TOC depth heading-text
Bracket heading-text with XS and XE calls, indenting it by 2 ens per level of depth beyond the
first.

You can customize the style of the leader that bridges each table of contents entry with its page number; de-
fine the TC-LEADER special character by using the char request. A typical leader combines the dot
glyph “.” with a horizontal motion escape sequence to spread the dots. The width of the page number field
is stored in the TC-MARGIN register.

groff 1.23.0 2 July 2023 355

groff_ms(7) Miscellaneous Information Manual groff_ms(7)

Differences from AT&T ms
The groff ms macros are an independent reimplementation, using no AT&T code. Since they take advan-
tage of the extended features of groff , they cannot be used with AT&T troff . groff ms supports features de-
scribed above as Berkeley and Tenth Edition Research Unix extensions, and adds several of its own.

• The internals of groff ms differ from the internals of AT&T ms. Documents that depend upon imple-
mentation details of AT&T ms may not format properly with groff ms. Such details include macros
whose function was not documented in the AT&T ms manual (“Typing Documents on the UNIX Sys-
tem: Using the -ms Macros with Troff and Nroff”, M. E. Lesk, Bell Laboratories, 1978).

• The error-handling policy of groff ms is to detect and report errors, rather than to ignore them silently.

• Tenth Edition Research Unix supported P1/P2 macros to bracket code examples; groff ms does not.

• groff ms does not work in GNU troff ’s AT&T compatibility mode. If loaded when that mode is en-
abled, it aborts processing with a diagnostic message.

• Multiple line spacing is not supported. Use a larger vertical spacing instead.

• groff ms uses the same header and footer defaults in both nroff and troff modes as AT&T ms does in
troff mode; AT&T’s default in nroff mode is to put the date, in U.S. traditional format (e.g., “January 1,
2021”), in the center footer (the CF string).

• Many groff ms macros, including those for paragraphs, headings, and displays, cause a reset of para-
graph rendering parameters, and may change the indentation; they do so not by incrementing or decre-
menting it, but by setting it absolutely. This can cause problems for documents that define additional
macros of their own that try to manipulate indentation. Use .RS and .RE instead of the in request.

• AT&T ms interpreted the values of the registers PS and VS in points, and did not support the use of
scaling units with them. groff ms interprets values of the registers PS, VS, FPS, and FVS, equal to or
larger than 1,000 (one thousand) as decimal fractions multiplied by 1,000. (Register values are con-
verted to and stored as basic units. See “Measurements” in the groff Texinfo manual or in groff (7)).
This threshold makes use of a scaling unit with these parameters practical for high-resolution devices
while preserving backward compatibility. It also permits expression of non-integral type sizes. For ex-
ample, “groff -rPS=10.5p” at the shell prompt is equivalent to placing “.nr PS 10.5p” at the beginning
of the document.

• AT&T ms’s AU macro supported arguments used with some document types; groff ms does not.

• Right-aligned displays are available. The AT&T ms manual observes that “it is tempting to assume that
“.DS R” will right adjust lines, but it doesn’t work”. In groff ms, it does.

• To make groff ms use the default page offset (which also specifies the left margin), the PO register must
stay undefined until the first ms macro is called. This implies that \n[PO] should not be used early in
the document, unless it is changed also: accessing an undefined register automatically defines it.

• groff ms supports the PN register, but it is not necessary; you can access the page number via the usual
% register and invoke the af request to assign a different format to it if desired. (If you redefine the ms
PT macro and desire special treatment of certain page numbers—like “1”—you may need to handle a
non-Arabic page number format, as groff ms’s .PT does; see the macro package source. groff ms
aliases the PN register to %.)

• The AT&T ms manual documents registers CW and GW as setting the default column width and “in-
tercolumn gap”, respectively, and which applied when .MC was called with fewer than two arguments.
groff ms instead treats .MC without arguments as synonymous with .2C; there is thus no occasion for a
default column width register. Further, the MINGW register and the second argument to .MC specify a
minimum space between columns, not the fixed gutter width of AT&T ms.

• The AT&T ms manual did not document the QI register; Berkeley and groff ms do.

• The register GS is set to 1 by the groff ms macros, but is not used by the AT&T ms package. Docu-
ments that need to determine whether they are being formatted with groff ms or another implementation
should test this register.

groff 1.23.0 2 July 2023 356

groff_ms(7) Miscellaneous Information Manual groff_ms(7)

Unix Version 7 macros not implemented by groff ms
Several macros described in the Unix Version 7 ms documentation are unimplemented by groff ms because
they are specific to the requirements of documents produced internally by Bell Laboratories, some of which
also require a glyph for the Bell System logo that groff does not support. These macros implemented sev-
eral document type formats (EG, IM, MF, MR, TM, TR), were meaningful only in conjunction with the
use of certain document types (AT, CS, CT, OK, SG), stored the postal addresses of Bell Labs sites (HO,
IH, MH, PY, WH), or lacked a stable definition over time (UX).

Legacy features
groff ms retains some legacy features solely to support formatting of historical documents; contemporary
ones should not use them because they can render poorly. See groff_char(7) instead.

AT&T ms accent mark strings
AT&T ms defined accent mark strings as follows.

String Description
\∗['] Apply acute accent to subsequent glyph.
\∗[`] Apply grave accent to subsequent glyph.
\∗[:] Apply dieresis (umlaut) to subsequent glyph.
\∗[^] Apply circumflex accent to subsequent glyph.
\∗[~] Apply tilde accent to subsequent glyph.
\∗[C] Apply caron to subsequent glyph.
\∗[,] Apply cedilla to subsequent glyph.

Berkeley ms accent mark and glyph strings
Berkeley ms offered an AM macro; calling it redefined the AT&T accent mark strings (except for \∗C), ap-
plied them to the preceding glyph, and defined additional strings, some for spacing glyphs.

.AM Enable alternative accent mark and glyph-producing strings.

String Description
\∗['] Apply acute accent to preceding glyph.
\∗[`] Apply grave accent to preceding glyph.
\∗[:] Apply dieresis (umlaut) to preceding glyph.
\∗[^] Apply circumflex accent to preceding glyph.
\∗[~] Apply tilde accent to preceding glyph.
\∗[,] Apply cedilla to preceding glyph.
\∗[/] Apply stroke (slash) to preceding glyph.
\∗[v] Apply caron to preceding glyph.
\∗[_] Apply macron to preceding glyph.
\∗[.] Apply underdot to preceding glyph.
\∗[o] Apply ring accent to preceding glyph.

\∗[?] Interpolate inverted question mark.
\∗[!] Interpolate inverted exclamation mark.
\∗[8] Interpolate small letter sharp s.
\∗[q] Interpolate small letter o with hook accent (ogonek).
\∗[3] Interpolate small letter yogh.
\∗[d-] Interpolate small letter eth.
\∗[D-] Interpolate capital letter eth.
\∗[th] Interpolate small letter thorn.
\∗[TH] Interpolate capital letter thorn.
\∗[ae] Interpolate small ae ligature.
\∗[AE] Interpolate capital ae ligature.
\∗[oe] Interpolate small oe ligature.
\∗[OE] Interpolate capital oe ligature.

groff 1.23.0 2 July 2023 357

groff_ms(7) Miscellaneous Information Manual groff_ms(7)

Naming conventions
The following conventions are used for names of macros, strings, and registers. External names available
to documents that use the groff ms macros contain only uppercase letters and digits.

Internally, the macros are divided into modules. Conventions for identifier names are as follows.

• Names used only within one module are of the form module∗name.

• Names used outside the module in which they are defined are of the form module@name.

• Names associated with a particular environment are of the form environment:name; these are used only
within the par module.

• name does not have a module prefix.

• Constructed names used to implement arrays are of the form array!index.

Thus the groff ms macros reserve the following names:

• Names containing the characters ∗, @, and :.

• Names containing only uppercase letters and digits.

Files
/usr/share/groff/1.23.0/tmac/s.tmac

implements the package.

/usr/share/groff/1.23.0/tmac/refer-ms.tmac
implements refer(1) support for ms.

/usr/share/groff/1.23.0/tmac/ms.tmac
is a wrapper enabling the package to be loaded with “groff -m ms”.

Authors
The GNU version of the ms macro package was written by James Clark and contributors. This document
was written by Clark, Larry Kollar 〈lkollar@despammed.com〉, and G. Branden Robinson 〈g.branden
.robinson@gmail.com〉.

See also
A manual is available in source and rendered form. On your system, it may be compressed and/or available
in additional formats.

/usr/share/doc/groff-1.23.0/ms.ms
/usr/share/doc/groff-1.23.0/ms.ps

“Using groff with the ms Macro Package”; Larry Kollar and G. Branden Robinson.

/usr/share/doc/groff-1.23.0/msboxes.ms
/usr/share/doc/groff-1.23.0/msboxes.pdf

“Using PDF boxes with groff and the ms macros”; Deri James. BOXSTART and BOXSTOP
macros are available via the sboxes extension package, enabling colored, bordered boxes when the
pdf output device is used.

Groff: The GNU Implementation of troff , by Trent A. Fisher and Werner Lemberg, is the primary groff
manual. You can browse it interactively with “info groff”.

groff (1), troff (1), tbl(1), pic(1), eqn(1), refer(1)

groff 1.23.0 2 July 2023 358

groff_rfc1345(7) Miscellaneous Information Manual groff_rfc1345(7)

Name
groff_rfc1345 - special character names from RFC 1345 and Vim digraphs

Description
The file rfc1345.tmac defines special character escape sequences for groff (7) based on the glyph mnemon-
ics specified in RFC 1345 and the digraph table of the text editor Vim. Each escape sequence translates to a
Unicode code point, and will render correctly if the underlying font is a Unicode font that covers the code
point.

For example, “\[Rx]” is the “recipe” or “prescription take” symbol, and maps to the code point U+211E.
groff lets you write it as “\[u211E]”, but “\[Rx]” is more mnemonic.

For a list of the glyph names provided, please see the file rfc1345.tmac, which contains definitions of the
form

.char \[Rx] \[u211E] \" PRESCRIPTION TAKE
where .char’s first argument defines a groff special character escape sequence with a mnemonic glyph
name, its second argument is a special character escape sequence based on the code point, and the comment
describes the glyph defined.

The RFC 1345 glyph names cover a wide range of Unicode code points, including supplemental Latin,
Greek, Cyrillic, Hebrew, Arabic, Hiragana, Katakana, and Bopomofo letters, punctuation, math notation,
currency symbols, industrial and entertainment icons, and box-drawing symbols.

The Vim digraph table is practically a subset of RFC 1345 (being limited to two-character mnemonics), but,
as a newer implementation, adds four mnemonics not specified in the RFC (the horizontal ellipsis, the Euro
sign, and two mappings for the rouble sign). These have also been added to rfc1345.tmac.

rfc1345.tmac contains a total of 1,696 glyph names. It is not an error to load rfc1345.tmac if your font
does not have all the glyphs, as long as it contains the glyphs that you actually use in your document.

The RFC 1345 mnemonics are not identical in every case to the mappings for special character glyph
names that are built in to groff ; for example, “\[<<]” means the “much less than” sign (U+226A) when
rfc1345.tmac is not loaded and this special character is not otherwise defined by a document or macro
package. rfc1345.tmac redefines “\[<<]” to the “left-pointing double angle quotation mark” (U+00AB).
See groff_char(7) for the full list of predefined special character escape sequences.

Usage
Load the rfc1345.tmac file. This can be done by either adding “.mso rfc1345.tmac” to your document be-
fore the first use of any of the glyph names the macro file defines, or by using the troff (1) option “-m
rfc1345” from the shell.

Bugs
As the groff Texinfo manual notes, “[o]nly the current font is checked for ligatures and kerns; neither spe-
cial fonts nor entities defined with the char request (and its siblings) are taken into account.” Many of the
characters defined in rfc1345.tmac are accented Latin letters, and will be affected by this deficiency, pro-
ducing subpar typography 〈https://savannah.gnu.org/bugs/?59932〉.

Files
/usr/share/groff/1.23.0/tmac/rfc1345.tmac

implements the character mappings.

Authors
rfc1345.tmac was contributed by Dorai Sitaram 〈ds26gte@yahoo.com〉.

See also
RFC 1345 〈https://tools.ietf.org/html/rfc1345〉, by Keld Simonsen, June 1992.

The Vim digraph table can be listed using the vim(1) command “:help digraph-table”.

groff_char(7)

groff 1.23.0 2 July 2023 359

groff_trace(7) Miscellaneous Information Manual groff_trace(7)

Name
groff_trace - macros for debugging GNU roff documents

Synopsis
groff -m trace [option . . .] [file . . .]

Description
trace is a macro package for the groff (7) document formatting system, designed as an aid for debugging
documents written in its language. It issues a message to the standard error stream upon entry to and exit
from each macro call. This can ease the process of isolating errors in macro definitions.

Activate the package by specifying the command-line option “-m trace” to the formatter program (often
groff (1)). You can achieve finer control by including the macro file within the document; invoke the mso
request, as in “.mso trace.tmac”. Only macros that are defined after this invocation are traced. If the
trace-full register is set to a true value, as with the command-line option “-r trace-full=1”, register and
string assignments, along with some other requests, are traced also. If another macro package should be
traced as well, specify it after “-m trace” on the command line.

The macro file trace.tmac is unusual because it does not contain any macros to be called by a user. Instead,
groff ’s macro definition and alteration facilities are wrapped such that they display diagnostic messages.

Limitations
Because trace.tmac wraps the de request (and its cousins), macro arguments are expanded one level more.
This causes problems if an argument uses four or more backslashes to delay interpretation of an escape se-
quence. For example, the macro call

.foo \\\\n[bar]
normally passes “\\n[bar]” to macro “foo”, but with de redefined, it passes “\n[bar]” instead.

The solution to this problem is to use groff ’s \E escape sequence, an escape character that is not interpreted
in copy mode.

.foo \En[bar]

Examples
We will illustrate trace.tmac using the shell’s “here document” feature to supply groff with a document on
the standard input stream. Since we are interested only in diagnostic messages appearing on the standard
error stream, we discard the formatted output by redirecting the standard output stream to /dev/null.

Observing nested macro calls
Macro calls can be nested, even with themselves. Tracing recurses along with them; this feature can help to
detangle complex call stacks.

$ cat <<EOF | groff -m trace > /dev/null
.de countdown
. nop \\$1
. nr count (\\$1 - 1)
. if \\n[count] .countdown \\n[count]
..
.countdown 3
blastoff
EOF

∗∗∗ .de countdown
∗∗∗ de trace enter: .countdown "3"

∗∗∗ de trace enter: .countdown "2"
∗∗∗ de trace enter: .countdown "1"
∗∗∗ trace exit: .countdown "1"

∗∗∗ trace exit: .countdown "2"
∗∗∗ trace exit: .countdown "3"

groff 1.23.0 2 July 2023 360

groff_trace(7) Miscellaneous Information Manual groff_trace(7)

Tracing with the mso request
Now let us activate tracing within the document, not with a command-line option. We might do this when
using a macro package like ms or mom, where we may not want to be distracted by traces of macros we
didn’t write.

$ cat <<EOF | groff -ms > /dev/null
.LP
This is my introductory paragraph.
.mso trace.tmac
.de Mymac
..
.Mymac
.PP
Let us review the existing literature.
EOF

∗∗∗ .de Mymac
∗∗∗ de trace enter: .Mymac
∗∗∗ trace exit: .Mymac

As tracing was not yet active when the macros “LP” and “PP” were defined (by s.tmac), their calls were not
traced; contrast with the macro “Mymac”.

Files
/usr/share/groff/1.23.0/tmac/trace.tmac

implements the package.

Authors
trace.tmac was written by James Clark. This document was written by Bernd Warken 〈groff-bernd
.warken-72@web.de〉 and G. Branden Robinson 〈g.branden.robinson@gmail.com〉.

See also
Groff: The GNU Implementation of troff , by Trent A. Fisher and Werner Lemberg, is the primary groff
manual. You can browse it interactively with “info groff”.

groff (1)
gives an overview of the groff document formatting system.

troff (1) supplies details of the -m command-line option.

groff_tmac(5)
offers a survey of groff macro packages.

groff (7)
is a reference manual for the groff language.

groff 1.23.0 2 July 2023 361

groff_www(7) Miscellaneous Information Manual groff_www(7)

Name
groff_www - GNU roff macros for authoring web pages

Synopsis
groff -m www [option . . .] [file . . .]

Description
This manual page describes the GNU www macro package, which is part of the groff (7) document format-
ting system. This macro file is automatically loaded by the default troffrc file when the formatter (usually
groff (1)) is called with either of the options -Thtml or -Txhtml. To see hyperlinks in action, format this
man page using one of those options.

This document is a basic guide; the HTML output driver (grohtml) remains in an alpha state. It has been
included with the distribution to encourage testing.

Here is a summary of the functions found in this macro set.

.JOBNAME split output into multiple files

.HX automatic heading level cut off

.BCL specify colours on a web page

.BGIMG specify background image

.URL create a URL using two parameters

.FTP create an FTP reference

.MTO create an HTML email address

.TAG generate an HTML name

.IMG include an image file

.PIMG include PNG image

.MPIMG place PNG on the margin and wrap text around it

.HnS begin heading

.HnE end heading

.LK emit automatically collected links.

.HR produce a horizontal rule

.NHR suppress automatic generation of rules.

.HTL only generate HTML title

.HEAD add data to <head> block

.ULS unorder list begin

.ULE unorder list end

.OLS ordered list begin

.OLE ordered list end

.DLS definition list begin

.DLE definition list end

.LI insert a list item

.DC generate a drop capital

.HTML pass an HTML raw request to the device driver

.CDS code example begin

.CDE code example end

.ALN place links on left of main text.

.LNS start a new two-column table with links in the left.

.LNE end the two-column table.

.LINKSTYLE initialize default URL attributes.

Macros
.JOBNAME filename

Split output into multiple HTML files. A file is split whenever a .SH or .NH 1 is encountered. Its
argument is the file stem name for future output files. This option is equivalent to grohtml’s -j op-
tion.

groff 1.23.0 2 July 2023 362

groff_www(7) Miscellaneous Information Manual groff_www(7)

.HX n Specify the cut off depth when generating links from section headings. For example, a parameter
of 2 would cause grohtml to generate a list of links for .NH 1 and .NH 2 but not for .NH 3.
Whereas

.HX 0

tells grohtml that no heading links should be created at all. Another method for turning automatic
headings off is by issuing the command-line switch -P-l to groff .

.BCL foreground background active not-visited visited
This macro takes five parameters: foreground, background, active hypertext link, hypertext link
not yet visited, and visited hypertext link colour.

.BGIMG imagefile
the only parameter to this macro is the background image file.

.URL url [description] [after]
generates a URL using either one, two, or three arguments. The first parameter is the actual URL,
the second is the name of the link, and the third is optional stuff to be printed immediately after-
wards. If description and after are absent then the URL becomes the anchor text. Hyphenation
is disabled while printing the actual URL; explicit breakpoints should be inserted with the \: es-
cape sequence. Here is how to encode foo 〈http://foo.org/〉:

.URL http://\:foo\:.org/ foo :

If this is processed by a device other than -Thtml or -Txhtml it appears as:

foo 〈http://foo.org〉:

The URL macro can be of any type; for example, we can reference Eric Raymond’s pic guide 〈pic
.html〉 by:

.URL pic\:.html "Eric Raymond's pic guide"

.MTO address [description] [after]
Generate an email HTML reference. The first argument is mandatory as the email address. The
optional second argument is the text you see in your browser. If an empty argument is given, ad-
dress is used instead. An optional third argument is stuff printed immediately afterwards. Hy-
phenation is disabled while printing the actual email address. For example, Joe User 〈joe@user
.org〉 can be achieved by the following macro:

.MTO joe@user.org "Joe User"

All URLs currently are treated as consuming no textual space in groff . This could be considered
as a bug since it causes some problems. To circumvent this, www.tmac inserts a zero-width char-
acter which expands to a harmless space (only if run with -Thtml or -Txhtml).

.FTP url [description] [after]
indicates that data can be obtained via FTP. The first argument is the URL and the second is the
browser text. A third argument, similar to the macros above, is intended for stuff printed immedi-
ately afterwards. The second and the third parameter are optional. Hyphenation is disabled while
printing the actual URL. As an example, here is the location of the GNU FTP server 〈ftp://ftp.gnu
.org/〉. The macro example above can be specified as:

.FTP ftp://\:ftp\:.gnu\:.org/ "GNU FTP server" .

.TAG name
Generates an HTML name tag from its argument. This can then be referenced using the URL
〈#URL〉 macro. As you can see, you must precede the tag name with # since it is a local reference.
This link was achieved via placing a TAG in the URL description above; the source looks like this:

.TP

.B URL
generates
.TAG URL

groff 1.23.0 2 July 2023 363

groff_www(7) Miscellaneous Information Manual groff_www(7)

a URL using either two or three arguments.
...

.IMG [-R|-L|-C] filename [width] [height]
Include a picture into the document. The first argument is the horizontal location: right, left, or
center (-R, -L, or -C). Alignment is centered by default (-C). The second argument is the file-
name. The optional third and fourth arguments are the width and height. If the width is absent it
defaults to 1 inch. If the height is absent it defaults to the width. This maps onto an HTML img
tag. If you are including a PNG image then it is advisable to use the PIMG macro.

.PIMG [-R|-L|-C] filename [width [height]]
Include an image in PNG format. This macro takes exactly the same parameters as the IMG
macro; it has the advantage of working with PostScript and HTML devices also since it can auto-
matically convert the image into the EPS format, using the following programs of the netpbm
package: pngtopnm, pnmcrop, and pnmtops. If the document isn’t processed with -Thtml or
-Txhtml it is necessary to use the -U option of groff .

.MPIMG [-R|-L] [-G gap] filename [width [height]]
Place a PNG image on the margin and wrap text around it. The first parameters are optional. The
alignment: left or right (-L or -R) specifies the margin where the picture is placed at. The default
alignment is left (-L). Optionally, -G gap can be used to arrange a gap between the picture and
the text that wraps around it. The default gap width is zero.
The first non-optional argument is the filename. The optional following arguments are the width
and height. If the width is absent it defaults to 1 inch. If the height is absent it defaults to the
width. Example:

.MPIMG -L -G 2c foo.png 3c 1.5c

The height and width may also be given as percentages. The PostScript device calculates the
width from the .l register and the height from the .p register. For example:

.MPIMG -L -G 2c foo.png 15%

.HnS n Begin heading. The numeric heading level n is specified by the first parameter. Use this macro if
your headings contain URL, FTP or MTO macros. Example:

.HnS 1

.HR
GNU Troff
.URL https://\:www\:.gnu\:.org/\:software/\:groff/
\[em]a
.URL http://www\:.gnu\:.org/ GNU
project.
.HR
.HnE

In this case you might wish to disable automatic links to headings. This can be done via -P-l
from the command line.

.HnE End heading.

.LK Force grohtml to place the automatically generated links at this position.

.HR Generate a full-width horizontal rule for -Thtml and -Txhtml. No effect for all other devices.

.NHR Suppress generation of the top and bottom rules which grohtml emits by default.

.HTL Generate an HTML title only. This differs from the TL macro of the ms macro package which
generates both an HTML title and an <H1> heading. Use it to provide an HTML title as search
engine fodder but a graphic title in the document. The macro terminates when a space or break is
seen (.sp, .br).

groff 1.23.0 2 July 2023 364

groff_www(7) Miscellaneous Information Manual groff_www(7)

.HEAD
Add arbitrary HTML data to the <head> block. Ignored if not processed with -Thtml or -Tx-
html. Example:

.HEAD "<link \
rel=""icon"" \
type=""image/png"" \
href=""http://foo.org//bar.png""/>"

.HTML
All text after this macro is treated as raw HTML. If the document is processed without -Thtml or
-Txhtml then the macro is ignored. Internally, this macro is used as a building block for other
higher-level macros.

For example, the BGIMG macro is defined as

.de BGIMG

. HTML <body background=\\$1>

..

.DC l text [color]
Produce a drop capital. The first parameter is the letter to be dropped and enlarged, the second pa-
rameter text is the adjoining text whose height the first letter should not exceed. The optional
third parameter is the color of the dropped letter. It defaults to black.

.CDS Start displaying a code section in constant width font.

.CDE End code display

.ALN [color] [percentage]
Place section heading links automatically to the left of the main text. The color argument is op-
tional and if present indicates which HTML background color is to be used under the links. The
optional percentage indicates the amount of width to devote to displaying the links. The default
values are #eeeeee and 30 for color and percentage width, respectively. This macro should only be
called once at the beginning of the document. After calling this macro each section heading emits
an HTML table consisting of the links in the left and the section text on the right.

.LNS Start a new two-column table with links in the left column. This can be called if the document has
text before the first .SH and if .ALN is used. Typically this is called just before the first paragraph
and after the main title as it indicates that text after this point should be positioned to the right of
the left-hand navigational links.

.LNE End a two-column table. This should be called at the end of the document if .ALN was used.

.LINKSTYLE color [fontstyle [openglyph closeglyph]]
Initialize default URL attributes to be used if this macro set is not used with the HTML device.
The macro set initializes itself with the following call

.LINKSTYLE blue CR \[la] \[ra]

but these values will be superseded by a user call to LINKSTYLE.

Section heading links
By default grohtml generates links to all section headings and places these at the top of the HTML docu-
ment. (See LINKS 〈#LK〉 for details of how to switch this off or alter the position).

Limitations of grohtml
tbl(1) tables are rendered as PNG images. Paul DuBois’s approach with tblcvt(1), part of the troffcvt distri-
bution 〈http://www.snake.net/software/troffcvt/〉, should be explored.

Files
/usr/share/groff/1.23.0/tmac/www.tmac

groff 1.23.0 2 July 2023 365

groff_www(7) Miscellaneous Information Manual groff_www(7)

Authors
The www macro package was written by Gaius Mulley 〈gaius@glam.ac.uk〉, with additions by Werner
Lemberg 〈wl@gnu.org〉 and Bernd Warken 〈groff-bernd.warken-72@web.de〉.

See also
groff (1), troff (1), grohtml(1), netpbm(1)

groff 1.23.0 2 July 2023 366

roff (7) Miscellaneous Information Manual roff (7)

Name
roff - concepts and history of roff typesetting

Description
The term roff denotes a family of document formatting systems known by names like troff , nroff , and
ditroff . A roff system consists of an interpreter for an extensible text formatting language and a set of pro-
grams for preparing output for various devices and file formats. Unix-like operating systems often distrib-
ute a roff system. The manual pages on Unix systems (“man pages”) and bestselling books on software en-
gineering, including Brian Kernighan and Dennis Ritchie’s The C Programming Language and W. Richard
Stevens’s Advanced Programming in the Unix Environment have been written using roff systems. GNU
roff —groff —is arguably the most widespread roff implementation.

Below we present typographical concepts that form the background of all roff implementations, narrate the
development history of some roff systems, detail the command pipeline managed by groff (1), survey the
formatting language, suggest tips for editing roff input, and recommend further reading materials.

Concepts
roff input files contain text interspersed with instructions to control the formatter. Even in the absence of
such instructions, a roff formatter still processes its input in several ways, by filling, hyphenating, breaking,
and adjusting it, and supplementing it with inter-sentence space. These processes are basic to typesetting,
and can be controlled at the input document’s discretion.

When a device-independent roff formatter starts up, it obtains information about the device for which it is
preparing output from the latter’s description file (see groff_font(5)). An essential property is the length of
the output line, such as “6.5 inches”.

The formatter interprets plain text files employing the Unix line-ending convention. It reads input a charac-
ter at a time, collecting words as it goes, and fits as many words together on an output line as it can—this is
known as filling. To a roff system, a word is any sequence of one or more characters that aren’t spaces or
newlines. The exceptions separate words.

A roff formatter attempts to detect boundaries between sentences, and supplies additional inter-sentence
space between them. It flags certain characters (normally “!”, “?”, and “.”) as potentially ending a sen-
tence. When the formatter encounters one of these end-of-sentence characters at the end of an input line,
or one of them is followed by two (unescaped) spaces on the same input line, it appends an inter-word
space followed by an inter-sentence space in the output. The dummy character escape sequence \& can be
used after an end-of-sentence character to defeat end-of-sentence detection on a per-instance basis. Nor-
mally, the occurrence of a visible non-end-of-sentence character (as opposed to a space or tab) immediately
after an end-of-sentence character cancels detection of the end of a sentence. However, several characters
are treated transparently after the occurrence of an end-of-sentence character. That is, a roff does not can-
cel end-of-sentence detection when it processes them. This is because such characters are often used as
footnote markers or to close quotations and parentheticals. The default set is ", ',),], ∗, \[dg], \[dd], \[rq],
and \[cq]. The last four are examples of special characters, escape sequences whose purpose is to obtain
glyphs that are not easily typed at the keyboard, or which have special meaning to the formatter (like \).

When an output line is nearly full, it is uncommon for the next word collected from the input to exactly fill
it—typically, there is room left over only for part of the next word. The process of splitting a word so that
it appears partially on one line (with a hyphen to indicate to the reader that the word has been broken) with
its remainder on the next is hyphenation. Hyphenation points can be manually specified; groff also uses a
hyphenation algorithm and language-specific pattern files to decide which words can be hyphenated and
where. Hyphenation does not always occur even when the hyphenation rules for a word allow it; it can be
disabled, and when not disabled there are several parameters that can prevent it in certain circumstances.

Once an output line is full, the next word (or remainder of a hyphenated one) is placed on a different output
line; this is called a break. In this document and in roff discussions generally, a “break” if not further qual-
ified always refers to the termination of an output line. When the formatter is filling text, it introduces
breaks automatically to keep output lines from exceeding the configured line length. After an automatic
break, a roff formatter adjusts the line if applicable (see below), and then resumes collecting and filling text
on the next output line.

groff 1.23.0 2 July 2023 367

roff (7) Miscellaneous Information Manual roff (7)

Sometimes, a line cannot be broken automatically. This usually does not happen with natural language text
unless the output line length has been manipulated to be extremely short, but it can with specialized text
like program source code. groff provides a means of telling the formatter where the line may be broken
without hyphens. This is done with the non-printing break point escape sequence \:.

There are several ways to cause a break at a predictable location. A blank input line not only causes a
break, but by default it also outputs a one-line vertical space (effectively a blank output line). Macro pack-
ages may discourage or disable this “blank line method” of paragraphing in favor of their own macros. A
line that begins with one or more spaces causes a break. The spaces are output at the beginning of the next
line without being adjusted (see below). Again, macro packages may provide other methods of producing
indented paragraphs. Trailing spaces on text lines (see below) are discarded. The end of input causes a
break.

After the formatter performs an automatic break, it may then adjust the line, widening inter-word spaces
until the text reaches the right margin. Extra spaces between words are preserved. Leading and trailing
spaces are handled as noted above. Text can be aligned to the left or right margin only, or centered, using
requests.

A roff formatter translates horizontal tab characters, also called simply “tabs”, in the input into movements
to the next tab stop. These tab stops are by default located every half inch measured from the current posi-
tion on the input line. With them, simple tables can be made. However, this method can be deceptive, as
the appearance (and width) of the text in an editor and the results from the formatter can vary greatly, par-
ticularly when proportional typefaces are used. A tab character does not cause a break and therefore does
not interrupt filling. The formatter provides facilities for sophisticated table composition; there are many
details to track when using the “tab” and “field” low-level features, so most users turn to the tbl(1) pre-
processor to lay out tables.

Requests and macros
A request is an instruction to the formatter that occurs after a control character, which is recognized at the
beginning of an input line. The regular control character is a dot “.”. Its counterpart, the no-break control
character, a neutral apostrophe “ ' ”, suppresses the break implied by some requests. These characters were
chosen because it is uncommon for lines of text in natural languages to begin with them. If you require a
formatted period or apostrophe (closing single quotation mark) where the formatter is expecting a control
character, prefix the dot or neutral apostrophe with the dummy character escape sequence, “\&”.

An input line beginning with a control character is called a control line. Every line of input that is not a
control line is a text line.

Requests often take arguments, words (separated from the request name and each other by spaces) that
specify details of the action the formatter is expected to perform. If a request is meaningless without argu-
ments, it is typically ignored. Of key importance are the requests that define macros. Macros are invoked
like requests, enabling the request repertoire to be extended or overridden.

A macro can be thought of as an abbreviation you can define for a collection of control and text lines.
When the macro is called by giving its name after a control character, it is replaced with what it stands for.
The process of textual replacement is known as interpolation. Interpolations are handled as soon as they
are recognized, and once performed, a roff formatter scans the replacement for further requests, macro
calls, and escape sequences.

In roff systems, the “de” request defines a macro.

Page geometry
roff systems format text under certain assumptions about the size of the output medium, or page. For the
formatter to correctly break a line it is filling, it must know the line length, which it derives from the page
width. For it to decide whether to write an output line to the current page or wait until the next one, it must
know the page length. A device’s resolution converts practical units like inches or centimeters to basic
units, a convenient length measure for the output device or file format. The formatter and output driver use
basic units to reckon page measurements. The device description file defines its resolution and page dimen-
sions (see groff_font(5)).

groff 1.23.0 2 July 2023 368

roff (7) Miscellaneous Information Manual roff (7)

A page is a two-dimensional structure upon which a roff system imposes a rectangular coordinate system
with its upper left corner as the origin. Coordinate values are in basic units and increase down and to the
right. Useful ones are therefore always positive and within numeric ranges corresponding to the page
boundaries.

While the formatter (and, later, output driver) is processing a page, it keeps track of its drawing position,
which is the location at which the next glyph will be written, from which the next motion will be measured,
or where a geometric object will commence rendering. Notionally, glyphs are drawn from the text baseline
upward and to the right. (groff does not yet support right-to-left scripts.) The text baseline is a (usually in-
visible) line upon which the glyphs of a typeface are aligned. A glyph therefore “starts” at its bottom-left
corner. If drawn at the origin, a typical letter glyph would lie partially or wholly off the page, depending on
whether, like “g”, it features a descender below the baseline.

Such a situation is nearly always undesirable. It is furthermore conventional not to write or draw at the ex-
treme edges of the page. Therefore the initial drawing position of a roff formatter is not at the origin, but
below and to the right of it. This rightward shift from the left edge is known as the page offset. (groff ’s
terminal output devices have page offsets of zero.) The downward shift leaves room for a text output line.

Text is arranged on a one-dimensional lattice of text baselines from the top to the bottom of the page. Verti-
cal spacing is the distance between adjacent text baselines. Typographic tradition sets this quantity to
120% of the type size. The initial vertical drawing position is one unit of vertical spacing below the page
top. Typographers term this unit a vee.

Vertical spacing has an impact on page-breaking decisions. Generally, when a break occurs, the formatter
moves the drawing position to the next text baseline automatically. If the formatter were already writing to
the last line that would fit on the page, advancing by one vee would place the next text baseline off the
page. Rather than let that happen, roff formatters instruct the output driver to eject the page, start a new
one, and again set the drawing position to one vee below the page top; this is a page break.

When the last line of input text corresponds to the last output line that fits on the page, the break caused by
the end of input will also break the page, producing a useless blank one. Macro packages keep users from
having to confront this difficulty by setting “traps”; moreover, all but the simplest page layouts tend to have
headers and footers, or at least bear vertical margins larger than one vee.

Other language elements
Escape sequences start with the escape character, a backslash \, and are followed by at least one additional
character. They can appear anywhere in the input.

With requests, the escape and control characters can be changed; further, escape sequence recognition can
be turned off and back on.

Strings store character sequences. In groff , they can be parameterized as macros can.

Registers store numerical values, including measurements. The latter are generally in basic units; scaling
units can be appended to numeric expressions to clarify their meaning when stored or interpolated. Some
read-only predefined registers interpolate text.

Fonts are identified either by a name or by a mounting position (a non-negative number). Four styles are
available on all devices. R is “roman”: normal, upright text. B is bold, an upright typeface with a heavier
weight. I is italic, a face that is oblique on typesetter output devices and usually underlined instead on ter-
minal devices. BI is bold-italic, combining both of the foregoing style variations. Typesetting devices
group these four styles into families of text fonts; they also typically offer one or more special fonts that
provide unstyled glyphs; see groff_char(7).

groff supports named colors for glyph rendering and drawing of geometric objects. Stroke and fill colors
are distinct; the stroke color is used for glyphs.

Glyphs are visual representation forms of characters. In groff, the distinction between those two elements
is not always obvious (and a full discussion is beyond our scope). In brief, “A” is a character when we con-
sider it in the abstract: to make it a glyph, we must select a typeface with which to render it, and determine
its type size and color. The formatting process turns input characters into output glyphs. A few characters
commonly seen on keyboards are treated specially by the roff language and may not look correct in output

groff 1.23.0 2 July 2023 369

roff (7) Miscellaneous Information Manual roff (7)

if used unthinkingly; they are the (double) quotation mark ("), the neutral apostrophe ('), the minus sign
(-), the backslash (\), the caret or circumflex accent (^), the grave accent (`), and the tilde (~). All of
these and more can be produced with special character escape sequences; see groff_char(7).

groff offers streams, identifiers for writable files, but for security reasons this feature is disabled by default.

A further few language elements arise as page layouts become more sophisticated and demanding. Envi-
ronments collect formatting parameters like line length and typeface. A diversion stores formatted output
for later use. A trap is a condition on the input or output, tested automatically by the formatter, that is asso-
ciated with a macro, calling it when that condition is fulfilled.

Footnote support often exercises all three of the foregoing features. A simple implementation might work
as follows. A pair of macros is defined: one starts a footnote and the other ends it. The author calls the first
macro where a footnote marker is desired. The macro establishes a diversion so that the footnote text is
collected at the place in the body text where its corresponding marker appears. An environment is created
for the footnote so that it is set at a smaller typeface. The footnote text is formatted in the diversion using
that environment, but it does not yet appear in the output. The document author calls the footnote end
macro, which returns to the previous environment and ends the diversion. Later, after much more body text
in the document, a trap, set a small distance above the page bottom, is sprung. The macro called by the trap
draws a line across the page and emits the stored diversion. Thus, the footnote is rendered.

History
Computer-driven document formatting dates back to the 1960s. The roff system is intimately connected
with Unix, but its origins lie with the earlier operating systems CTSS, GECOS, and Multics.

The predecessor—RUNOFF
roff ’s ancestor RUNOFF was written in the MAD language by Jerry Saltzer to prepare his Ph.D. thesis on
the Compatible Time Sharing System (CTSS), a project of the Massachusetts Institute of Technology
(MIT). This program is referred to in full capitals, both to distinguish it from its many descendants, and be-
cause bits were expensive in those days; five- and six-bit character encodings were still in widespread us-
age, and mixed-case alphabetics in file names seen as a luxury. RUNOFF introduced a syntax of inlining
formatting directives amid document text, by beginning a line with a period (an unlikely occurrence in hu-
man-readable material) followed by a “control word”. Control words with obvious meaning like “.line
length n” were supported as well as an abbreviation system; the latter came to overwhelm the former in
popular usage and later derivatives of the program. A sample of control words from a RUNOFF manual of
December 1966 〈http://web.mit.edu/Saltzer/www/publications/ctss/AH.9.01.html〉 was documented as fol-
lows (with the parameter notation slightly altered). The abbreviations will be familiar to roff veterans.

Abbreviation Control word
.ad .adjust
.bp .begin page
.br .break
.ce .center
.in .indent n
.ll .line length n

.nf .nofill

.pl .paper length n
.sp .space [n]

In 1965, MIT’s Project MAC teamed with Bell Telephone Laboratories and General Electric (GE) to inau-
gurate the Multics 〈http://www.multicians.org〉 project. After a few years, Bell Labs discontinued its partic-
ipation in Multics, famously prompting the development of Unix. Meanwhile, Saltzer’s RUNOFF proved
influential, seeing many ports and derivations elsewhere.

In 1969, Doug McIlroy wrote one such reimplementation, adding extensions, in the BCPL language for a
GE 645 running GECOS at the Bell Labs location in Murray Hill, New Jersey. In its manual, the control
commands were termed “requests”, their two-letter names were canonical, and the control character was
configurable with a .cc request. Other familiar requests emerged at this time; no-adjust (.na), need (.ne),
page offset (.po), tab configuration (.ta, though it worked differently), temporary indent (.ti), character

groff 1.23.0 2 July 2023 370

roff (7) Miscellaneous Information Manual roff (7)

translation (.tr), and automatic underlining (.ul; on RUNOFF you had to backspace and underscore in the
input yourself). .fi to enable filling of output lines got the name it retains to this day. McIlroy’s program
also featured a heuristic system for automatically placing hyphenation points, designed and implemented
by Molly Wagner. It furthermore introduced numeric variables, termed registers. By 1971, this program
had been ported to Multics and was known as roff , a name McIlroy attributes to Bob Morris, to distinguish
it from CTSS RUNOFF .

Unix and roff
McIlroy’s roff was one of the first Unix programs. In Ritchie’s term, it was “transliterated” from BCPL to
DEC PDP-7 assembly language for the fledgling Unix operating system. Automatic hyphenation was man-
aged with .hc and .hy requests, line spacing control was generalized with the .ls request, and what later
roff s would call diversions were available via “footnote” requests. This roff indirectly funded operating
systems research at Murray Hill; AT&T prepared patent applications to the U.S. government with it. This
arrangement enabled the group to acquire a PDP-11; roff promptly proved equal to the task of formatting
the manual for what would become known as “First Edition Unix”, dated November 1971.

Output from all of the foregoing programs was limited to line printers and paper terminals such as the IBM
2471 (based on the Selectric line of typewriters) and the Teletype Corporation Model 37. Proportionally
spaced type was unavailable.

New roff and Typesetter roff
The first years of Unix were spent in rapid evolution. The practicalities of preparing standardized docu-
ments like patent applications (and Unix manual pages), combined with McIlroy’s enthusiasm for macro
languages, perhaps created an irresistible pressure to make roff extensible. Joe Ossanna’s nroff , literally a
“new roff”, was the outlet for this pressure. By the time of Unix Version 3 (February 1973)—and still in
PDP-11 assembly language—it sported a swath of features now considered essential to roff systems: defini-
tion of macros (.de), diversion of text thither (.di), and removal thereof (.rm); trap planting (.wh; “when”)
and relocation (.ch; “change”); conditional processing (.if); and environments (.ev). Incremental improve-
ments included assignment of the next page number (.pn); no-space mode (.ns) and restoration of vertical
spacing (.rs); the saving (.sv) and output (.os) of vertical space; specification of replacement characters for
tabs (.tc) and leaders (.lc); configuration of the no-break control character (.c2); shorthand to disable auto-
matic hyphenation (.nh); a condensation of what were formerly six different requests for configuration of
page “titles” (headers and footers) into one (.tl) with a length controlled separately from the line length
(.lt); automatic line numbering (.nm); interactive input (.rd), which necessitated buffer-flushing (.fl), and
was made convenient with early program cessation (.ex); source file inclusion in its modern form (.so;
though RUNOFF had an “.append” control word for a similar purpose) and early advance to the next file
argument (.nx); ignorable content (.ig); and programmable abort (.ab).

Third Edition Unix also brought the pipe(2) system call, the explosive growth of a componentized system
based around it, and a “filter model” that remains perceptible today. Equally importantly, the Bell Labs site
in Murray Hill acquired a Graphic Systems C/A/T phototypesetter, and with it came the necessity of ex-
panding the capabilities of a roff system to cope with a variety of proportionally spaced typefaces at multi-
ple sizes. Ossanna wrote a parallel implementation of nroff for the C/A/T, dubbing it troff (for “typesetter
roff”). Unfortunately, surviving documentation does not illustrate what requests were implemented at this
time for C/A/T support; the troff (1) man page in Fourth Edition Unix (November 1973) does not feature a
request list, unlike nroff (1). Apart from typesetter-driven features, Unix Version 4 roff s added string defin-
itions (.ds); made the escape character configurable (.ec); and enabled the user to write diagnostics to the
standard error stream (.tm). Around 1974, empowered with multiple type sizes, italics, and a symbol font
specially commissioned by Bell Labs from Graphic Systems, Kernighan and Lorinda Cherry implemented
eqn for typesetting mathematics. In the same year, for Fifth Edition Unix, Ossanna combined and reimple-
mented the two roff s in C, using that language’s preprocessor to generate both from a single source tree.

Ossanna documented the syntax of the input language to the nroff and troff programs in the “Troff User’s
Manual”, first published in 1976, with further revisions as late as 1992 by Kernighan. (The original version
was entitled “Nroff/Troff User’s Manual”, which may partially explain why roff practitioners have tended
to refer to it by its AT&T document identifier, “CSTR #54”.) Its final revision serves as the de facto speci-
fication of AT&T troff , and all subsequent implementors of roff systems have done so in its shadow.

groff 1.23.0 2 July 2023 371

roff (7) Miscellaneous Information Manual roff (7)

A small and simple set of roff macros was first used for the manual pages of Unix Version 4 and persisted
for two further releases, but the first macro package to be formally described and installed was ms by
Michael Lesk in Version 6. He also wrote a manual, “Typing Documents on the Unix System”, describing
ms and basic nroff /troff usage, updating it as the package accrued features. Sixth Edition additionally saw
the debut of the tbl preprocessor for formatting tables, also by Lesk.

For Unix Version 7 (January 1979), McIlroy designed, implemented, and documented the man macro pack-
age, introducing most of the macros described in groff_man(7) today, and edited volume 1 of the Version 7
manual using it. Documents composed using ms featured in volume 2, edited by Kernighan.

Meanwhile, troff proved popular even at Unix sites that lacked a C/A/T device. Tom Ferrin of the Univer-
sity of California at San Francisco combined it with Allen Hershey’s popular vector fonts to produce vtroff ,
which translated troff ’s output to the command language used by Versatec and Benson-Varian plotters.

Ossanna had passed away unexpectedly in 1977, and after the release of Version 7, with the C/A/T typeset-
ter becoming supplanted by alternative devices such as the Mergenthaler Linotron 202, Kernighan under-
took a revision and rewrite of troff to generalize its design. To implement this revised architecture, he de-
veloped the font and device description file formats and the page description language that remain in use to-
day. He described these novelties in the article “A Typesetter-independent TROFF”, last revised in 1982,
and like the troff manual itself, it is widely known by a shorthand, “CSTR #97”.

Kernighan’s innovations prepared troff well for the introduction of the Adobe PostScript language in 1982
and a vibrant market in laser printers with built-in interpreters for it. An output driver for PostScript, dpost,
was swiftly developed. However, AT&T’s software licensing practices kept Ossanna’s troff , with its tight
coupling to the C/A/T’s capabilities, in parallel distribution with device-independent troff throughout the
1980s. Today, however, all actively maintained troff s follow Kernighan’s device-independent design.

groff—a free roff from GNU
The most important free roff project historically has been groff , the GNU implementation of troff , devel-
oped by James Clark starting in 1989 and distributed under copyleft 〈http://www.gnu.org/copyleft〉 licenses,
ensuring to all the availability of source code and the freedom to modify and redistribute it, properties un-
precedented in roff systems to that point. groff rapidly attracted contributors, and has served as a replace-
ment for almost all applications of AT&T troff (exceptions include mv, a macro package for preparation of
viewgraphs and slides, and the ideal preprocessor, which produces diagrams from mathematical con-
straints). Beyond that, it has added numerous features; see groff_diff (7). Since its inception and for at least
the following three decades, it has been used by practically all GNU/Linux and BSD operating systems.

groff continues to be developed, is available for almost all operating systems in common use (along with
several obscure ones), and is free. These factors make groff the de facto roff standard today.

Other free roffs
In 2007, Caldera/SCO and Sun Microsystems, having acquired rights to AT&T Documenter’s Workbench
(DWB) troff (a descendant of the Bell Labs code), released it under a free but GPL-incompatible license.
This implementation 〈https://github.com/n-t-roff/DWB3.3〉 was made portable to modern POSIX systems,
and adopted and enhanced first by Gunnar Ritter and then Carsten Kunze to produce Heirloom Doctools
troff 〈https://github.com/n-t-roff/heirloom-doctools〉.

In July 2013, Ali Gholami Rudi announced neatroff 〈https://github.com/aligrudi/neatroff〉, a permissively
licensed new implementation.

Another descendant of DWB troff is part of Plan 9 from User Space 〈https://9fans.github.io/plan9port/〉.
Since 2021, this troff has been available under permissive terms.

Using roff
When you read a man page, often a roff is the program rendering it. Some roff implementations provide
wrapper programs that make it easy to use the roff system from the shell’s command line. These can be
specific to a macro package, like mmroff (1), or more general. groff (1) provides command-line options
sparing the user from constructing the long, order-dependent pipelines familiar to AT&T troff users. Fur-
ther, a heuristic program, grog(1), is available to infer from a document’s contents which groff arguments
should be used to process it.

groff 1.23.0 2 July 2023 372

roff (7) Miscellaneous Information Manual roff (7)

The roff pipeline
A typical roff document is prepared by running one or more processors in series, followed by a a formatter
program and then an output driver (or “device postprocessor”). Commonly, these programs are structured
into a pipeline; that is, each is run in sequence such that the output of one is taken as the input to the next,
without passing through secondary storage. (On non-Unix systems, pipelines may have to be simulated
with temporary files.)

$ preproc1 < input-file | preproc2 | ... | troff [option] ... \
| output-driver

Once all preprocessors have run, they deliver pure roff language input to the formatter, which in turn gener-
ates a document in a page description language that is then interpreted by a postprocessor for viewing,
printing, or further processing.

Each program interprets input in a language that is independent of the others; some are purely descriptive,
as with tbl(1) and roff output, and some permit the definition of macros, as with eqn(1) and roff input.
Most roff input files employ the macros of a document formatting package, intermixed with instructions for
one or more preprocessors, and seasoned with escape sequences and requests from the roff language.
Some documents are simpler still, since their formatting packages discourage direct use of roff requests;
man pages are a prominent example. Many features of the roff language are seldom needed by users; only
authors of macro packages require a substantial command of them.

Preprocessors
A roff preprocessor is a program that, directly or ultimately, generates output in the roff language. Typi-
cally, each preprocessor defines a language of its own that transforms its input into that for roff or another
preprocessor. As an example of the latter, chem produces pic input. Preprocessors must consequently be
run in an appropriate order; groff (1) handles this automatically for all preprocessors supplied by the GNU
roff system.

Portions of the document written in preprocessor languages are usually bracketed by tokens that look like
roff macro calls. roff preprocessor programs transform only the regions of the document intended for
them. When a preprocessor language is used by a document, its corresponding program must process it be-
fore the input is seen by the formatter, or incorrect rendering is almost guaranteed.

GNU roff provides several preprocessors, including eqn, grn, pic, tbl, refer, and soelim. See groff (1) for a
complete list. Other preprocessors for roff systems are known.

dformat depicts data structures;
grap constructs statistical charts; and
ideal draws diagrams using a constraint-based language.

Formatter programs
A roff formatter transforms roff language input into a single file in a page description language, described
in groff_out(5), intended for processing by a selected device. This page description language is specialized
in its parameters, but not its syntax, for the selected device; the format is device-independent, but not de-
vice-agnostic. The parameters the formatter uses to arrange the document are stored in device and font de-
scription files; see groff_font(5).

AT&T Unix had two formatters—nroff for terminals, and troff for typesetters. Often, the name troff is
used loosely to refer to both. When generalizing thus, groff documentation prefers the term “roff ”. In
GNU roff , the formatter program is always troff (1).

Devices and output drivers
To a roff system, a device is a hardware interface like a printer, a text or graphical terminal, or a standard-
ized file format that unrelated software can interpret. An output driver is a program that parses the output
of troff and produces instructions specific to the device or file format it supports. An output driver might
support multiple devices, particularly if they are similar.

The names of the devices and their driver programs are not standardized. Technological fashions evolve;
the devices used for document preparation when AT&T troff was first written in the 1970s are no longer
used in production environments. Device capabilities have tended to increase, improving resolution and

groff 1.23.0 2 July 2023 373

roff (7) Miscellaneous Information Manual roff (7)

font repertoire, and adding color output and hyperlinking. Further, to reduce file size and processing time,
AT&T troff ’s page description language placed low limits on the magnitudes of some quantities it could
represent. Its PostScript output driver, dpost(1), had a resolution of 720 units per inch; groff ’s grops(1)
uses 72,000.

roff programming
Documents using roff are normal text files interleaved with roff formatting elements. The roff language is
powerful enough to support arbitrary computation and it supplies facilities that encourage extension. The
primary such facility is macro definition; with this feature, macro packages have been developed that are
tailored for particular applications.

Macro packages
Macro packages can have a much smaller vocabulary than roff itself; this trait combined with their domain-
specific nature can make them easy to acquire and master. The macro definitions of a package are typically
kept in a file called name.tmac (historically, tmac.name). Find details on the naming and placement of
macro packages in groff_tmac(5).

A macro package anticipated for use in a document can be declared to the formatter by the command-line
option -m; see troff (1). It can alternatively be specified within a document using the mso request of the
groff language; see groff (7).

Well-known macro packages include man for traditional man pages and mdoc for BSD-style manual pages.
Macro packages for typesetting books, articles, and letters include ms (from “manuscript macros”), me
(named by a system administrator from the first name of its creator, Eric Allman), mm (from “memoran-
dum macros”), and mom, a punningly named package exercising many groff extensions. See
groff_tmac(5) for more.

The roff formatting language
The roff language provides requests, escape sequences, macro definition facilities, string variables, registers
for storage of numbers or dimensions, and control of execution flow. The theoretically minded will observe
that a roff is not a mere markup language, but Turing-complete. It has storage (registers), it can perform
tests (as in conditional expressions like “(\n[i] >= 1)”), its “ if ” and related requests alter the flow of con-
trol, and macro definition permits unbounded recursion.

Requests and escape sequences are instructions, predefined parts of the language, that perform formatting
operations, interpolate stored material, or otherwise change the state of the parser. The user can define their
own request-like elements by composing together text, requests, and escape sequences ad libitum. A docu-
ment writer will not (usually) note any difference in usage for requests or macros; both are found on control
lines. However, there is a distinction; requests take either a fixed number of arguments (sometimes zero),
silently ignoring any excess, or consume the rest of the input line, whereas macros can take a variable num-
ber of arguments. Since arguments are separated by spaces, macros require a means of embedding a space
in an argument; in other words, of quoting it. This then demands a mechanism of embedding the quoting
character itself, in case it is needed literally in a macro argument. AT&T troff had complex rules involving
the placement and repetition of the double quote to achieve both aims. groff cuts this knot by supporting a
special character escape sequence for the neutral double quote, “ \[dq]”, which never performs quoting in
the typesetting language, but is simply a glyph, ‘"’.

Escape sequences start with a backslash, “ \”. They can appear almost anywhere, even in the midst of text
on a line, and implement various features, including the insertion of special characters with “ \(xx” or
“ \[xxx]”, break suppression at input line endings with “ \c”, font changes with “ \f ”, type size changes with
“ \s”, in-line comments with “ \"”, and many others.

Strings store text. They are populated with the ds request and interpolated using the \∗ escape sequence.

Registers store numbers and measurements. A register can be set with the request nr and its value can be
retrieved by the escape sequence \n.

File naming conventions
The structure or content of a file name, beyond its location in the file system, is not significant to roff tools.
roff documents employing “full-service” macro packages (see groff_tmac(5)) tend to be named with a

groff 1.23.0 2 July 2023 374

roff (7) Miscellaneous Information Manual roff (7)

suffix identifying the package; we thus see file names ending in .man, .ms, .me, .mm, and .mom, for in-
stance. When installed, man pages tend to be named with the manual’s section number as the suffix. For
example, the file name for this document is roff.7 . Practice for “raw” roff documents is less consistent;
they are sometimes seen with a .t suffix.

Input conventions
Since troff fills text automatically, it is common practice in the roff language to avoid visual composition of
text in input files: the esthetic appeal of the formatted output is what matters. Therefore, roff input should
be arranged such that it is easy for authors and maintainers to compose and develop the document, under-
stand the syntax of roff requests, macro calls, and preprocessor languages used, and predict the behavior of
the formatter. Several traditions have accrued in service of these goals.

• Follow sentence endings in the input with newlines to ease their recognition. It is frequently convenient
to end text lines after colons and semicolons as well, as these typically precede independent clauses.
Consider doing so after commas; they often occur in lists that become easy to scan when itemized by
line, or constitute supplements to the sentence that are added, deleted, or updated to clarify it. Parenthet-
ical and quoted phrases are also good candidates for placement on text lines by themselves.

• Set your text editor’s line length to 72 characters or fewer; see the subsections below. This limit, com-
bined with the previous item of advice, makes it less common that an input line will wrap in your text ed-
itor, and thus will help you perceive excessively long constructions in your text. Recall that natural lan-
guages originate in speech, not writing, and that punctuation is correlated with pauses for breathing and
changes in prosody.

• Use \& after “!”, “?”, and “.” if they are followed by space, tab, or newline characters and don’t end a
sentence.

• In filled text lines, use \& before “.” and “'” if they are preceded by space, so that reflowing the input
doesn’t turn them into control lines.

• Do not use spaces to perform indentation or align columns of a table. Leading spaces are reliable when
text is not being filled.

• Comment your document. It is never too soon to apply comments to record information of use to future
document maintainers (including your future self). The \" escape sequence causes troff to ignore the re-
mainder of the input line.

• Use the empty request—a control character followed immediately by a newline—to visually manage sep-
aration of material in input files. Many of the groff project’s own documents use an empty request be-
tween sentences, after macro definitions, and where a break is expected, and two empty requests between
paragraphs or other requests or macro calls that will introduce vertical space into the document. You can
combine the empty request with the comment escape sequence to include whole-line comments in your
document, and even “comment out” sections of it.

An example sufficiently long to illustrate most of the above suggestions in practice follows. An arrow →
indicates a tab character.

.\" nroff this_file.roff | less

.\" groff -T ps this_file.roff > this_file.ps
→The theory of relativity is intimately connected with
the theory of space and time.
.
I shall therefore begin with a brief investigation of
the origin of our ideas of space and time,
although in doing so I know that I introduce a
controversial subject. \" remainder of paragraph elided
.
.

→The experiences of an individual appear to us arranged

groff 1.23.0 2 July 2023 375

roff (7) Miscellaneous Information Manual roff (7)

in a series of events;
in this series the single events which we remember
appear to be ordered according to the criterion of
\[lq]earlier\[rq] and \[lq]later\[rq], \" punct swapped
which cannot be analysed further.
.
There exists,
therefore,
for the individual,
an I-time,
or subjective time.
.
This itself is not measurable.
.
I can,
indeed,
associate numbers with the events,
in such a way that the greater number is associated with
the later event than with an earlier one;
but the nature of this association may be quite
arbitrary.
.
This association I can define by means of a clock by
comparing the order of events furnished by the clock
with the order of a given series of events.
.
We understand by a clock something which provides a
series of events which can be counted,
and which has other properties of which we shall speak
later.
.\" Albert Einstein, _The Meaning of Relativity_, 1922

Editing with Emacs
Official GNU doctrine holds that the best program for editing a roff document is Emacs; see emacs(1). It
provides an nroff major mode that is suitable for all kinds of roff dialects. This mode can be activated by
the following methods.

When editing a file within Emacs the mode can be changed by typing “M-x nroff-mode”, where M-x
means to hold down the meta key (often labelled “Alt”) while pressing and releasing the “x” key.

It is also possible to have the mode automatically selected when a roff file is loaded into the editor.

• The most general method is to include file-local variables at the end of the file; we can also configure the
fill column this way.

.\" Local Variables:

.\" fill-column: 72

.\" mode: nroff

.\" End:

• Certain file name extensions, such as those commonly used by man pages, trigger the automatic activa-
tion of the nroff mode.

• Technically, having the sequence

.\" -∗- nroff -∗-

in the first line of a file will cause Emacs to enter the nroff major mode when it is loaded into the buffer.
Unfortunately, some implementations of the man(1) program are confused by this practice, so we dis-
courage it.

groff 1.23.0 2 July 2023 376

roff (7) Miscellaneous Information Manual roff (7)

Editing with Vim
Other editors provide support for roff -style files too, such as vim(1), an extension of the vi(1) program.
Vim’s highlighting can be made to recognize roff files by setting the filetype option in a Vim modeline.
For this feature to work, your copy of vim must be built with support for, and configured to enable, several
features; consult the editor’s online help topics “auto-setting”, “filetype”, and “syntax”. Then put the fol-
lowing at the end of your roff files, after any Emacs configuration:

.\" vim: set filetype=groff textwidth=72:

Replace “groff” in the above with “nroff” if you want highlighting that does not recognize many of the
GNU extensions to roff , such as request, register, and string names longer than two characters.

Authors
This document was written by Bernd Warken 〈groff-bernd.warken-72@web.de〉 and G. Branden Robinson
〈g.branden.robinson@gmail.com〉.

See also
Much roff documentation is available. The Bell Labs papers describing AT&T troff remain available, and
groff is documented comprehensively.

Internet sites
Unix Text Processing 〈https://github.com/larrykollar/Unix-Text-Processing〉, by Dale Dougherty and Tim
O’Reilly, 1987, Hayden Books. This well-regarded text brings the reader from a state of no knowledge of
Unix or text editing (if necessary) to sophisticated computer-aided typesetting. It has been placed under a
free software license by its authors and updated by a team of groff contributors and enthusiasts.

“History of Unix Manpages” 〈http://manpages.bsd.lv/history.html〉, an online article maintained by the
mdocml project, provides an overview of roff development from Saltzer’s RUNOFF to 2008, with links to
original documentation and recollections of the authors and their contemporaries.

troff.org 〈http://www.troff.org/〉, Ralph Corderoy’s troff site, provides an overview and pointers to much
historical roff information.

Multicians 〈http://www.multicians.org/〉, a site by Multics enthusiasts, contains a lot of information on the
MIT projects CTSS and Multics, including RUNOFF ; it is especially useful for its glossary and the many
links to historical documents.

The Unix Archive 〈http://www.tuhs.org/Archive/〉, curated by the Unix Heritage Society, provides the
source code and some binaries of historical Unices (including the source code of some versions of troff and
its documentation) contributed by their copyright holders.

Jerry Saltzer’s home page 〈http://web.mit.edu/Saltzer/www/publications/pubs.html〉 stores some documents
using the original RUNOFF formatting language.

groff 〈http://www.gnu.org/software/groff〉, GNU roff ’s web site, provides convenient access to groff ’s
source code repository, bug tracker, and mailing lists (including archives and the subscription interface).

Historical roff documentation
Many AT&T troff documents are available online, and can be found at Ralph Corderoy’s site (see above) or
via Internet search.

Of foremost significance are two mentioned in section “History” above, describing the language and its de-
vice-independent implementation, respectively.

“Troff User’s Manual” by Joseph F. Ossanna, 1976 (revised by Brian W. Kernighan, 1992), AT&T Bell
Laboratories Computing Science Technical Report No. 54.

“A Typesetter-independent TROFF” by Brian W. Kernighan, 1982, AT&T Bell Laboratories Computing
Science Technical Report No. 97.

You can obtain many relevant Bell Labs papers in PDF from Bernd Warken’s “roff classical” GitHub repos-
itory 〈https://github.com/bwarken/roff_classical.git〉.

groff 1.23.0 2 July 2023 377

roff (7) Miscellaneous Information Manual roff (7)

Manual pages
As a system of multiple components, a roff system potentially has many man pages, each describing an as-
pect of it. Unfortunately, there is no consistent naming scheme for these pages among the different roff im-
plementations.

For GNU roff , the groff (1) man page enumerates all man pages distributed with the system, and individual
pages frequently refer to external resources as well as manuals distributed with groff on a variety of topics.

With other roff s, you are on your own, but troff (1) might be a good starting point.

groff 1.23.0 2 July 2023 378

	addftinfo(1)
	Name
	Synopsis
	Description
	Options
	See also

	afmtodit(1)
	Name
	Synopsis
	Description
	Options
	Files
	Diagnostics
	See also

	chem(1)
	Name
	Synopsis
	Description
	Language
	Setting variables
	Bonds
	Rings
	Moieties and strings
	Names
	Miscellaneous
	Wish list

	Files
	Authors
	See also

	eqn(1)
	Name
	Synopsis
	Description
	Anatomy of an equation
	Spacing and typeface
	Primitives
	New primitives
	Extended primitives
	Customization
	Macros
	Predefined macros
	Fonts

	Options
	Files
	MathML mode limitations
	Caveats
	Bugs
	Examples
	See also

	eqn2graph(1)
	Name
	Synopsis
	Description
	Options
	Environment
	Authors
	See also

	gdiffmk(1)
	Name
	Synopsis
	Description
	Options
	Bugs
	Authors
	See also

	glilypond(1)
	Name
	Synopsis
	Description
	Usage
	Option overview
	Options for building EPS files
	Directories and files
	Output
	Short option collections
	Handling of long options

	LilyPond regions in roff input
	Integrated LilyPond code
	Inclusion of .ly files

	Generated files
	Command-line options for directories

	Transformation processes for generating EPS files
	Mode pdf2eps
	Mode ly2eps

	Generated groff output
	Authors
	See also

	gperl(1)
	Name
	Synopsis
	Description
	Perl regions
	Starting Perl mode
	Ending Perl mode without storage
	Ending Perl mode with storage

	Example
	Authors
	See also

	gpinyin(1)
	Name
	Synopsis
	Description
	Pinyin sections
	Syllables
	Tones

	Authors
	See also

	grap2graph(1)
	Name
	Synopsis
	Description
	Options
	Environment
	Authors
	See also

	grn(1)
	Name
	Synopsis
	Description
	grn commands
	Usage with groff
	Gremlin file format
	Element specifications
	Coordinates
	Sun/X11 coordinates

	Options
	Files
	Authors
	See also

	grodvi(1)
	Name
	Synopsis
	Description
	Typefaces
	Font description files
	Drawing commands

	Options
	Environment
	Files
	Bugs
	See also

	groff(1)
	Name
	Synopsis
	Description
	Options
	groff-specific options
	Transparent options

	Usage
	Getting started
	Using groff as a REPL
	Paper format
	Front end
	Language
	Preprocessors
	Macro packages
	Formatters
	Output devices
	Postprocessors
	Utilities

	Exit status
	Environment
	Examples
	Limitations
	Installation directories
	groff macro directory
	groff device and font description directory

	Availability
	Authors
	See also

	grog(1)
	Name
	Synopsis
	Description
	Options
	Details
	Limitations

	Exit status
	Examples
	Authors
	See also

	grohtml(1)
	Name
	Synopsis
	Description
	Typefaces
	Font description files
	Dependencies

	Options
	Environment
	Files
	Bugs
	See also

	grolbp(1)
	Name
	Synopsis
	Description
	Typefaces
	Paper format, orientation, and device description file
	Font description files
	Drawing commands

	Options
	Environment
	Files
	See also

	grolj4(1)
	Name
	Synopsis
	Description
	Typefaces
	Paper format and device description file
	Font description files
	Drawing commands
	Fonts

	Options
	Environment
	Files
	Bugs
	See also

	gropdf(1)
	Name
	Synopsis
	Description
	Options
	Usage
	Macros
	Importing graphics
	TrueType and other font formats

	Font installation
	Environment
	Files
	Authors
	See also

	grops(1)
	Name
	Synopsis
	Description
	Options
	Usage
	Typefaces
	Device control commands
	Encapsulated PostScript
	TrueType and other font formats

	Font installation
	Old fonts
	Environment
	Files
	See also

	grotty(1)
	Name
	Synopsis
	Description
	SGR and OSC support in pagers
	Legacy output format
	Device control commands
	Device description files
	Typefaces

	Options
	Environment
	Files
	Limitations
	Examples
	See also

	hpftodit(1)
	Name
	Synopsis
	Description
	Options
	Files
	See also

	indxbib(1)
	Name
	Synopsis
	Description
	Options
	Files
	See also

	lkbib(1)
	Name
	Synopsis
	Description
	Options
	Environment
	Files
	See also

	lookbib(1)
	Name
	Synopsis
	Description
	Options
	Files
	See also

	mmroff(1)
	Name
	Synopsis
	Description
	Options
	Authors
	See also

	neqn(1)
	Name
	Synopsis
	Description
	See also

	nroff(1)
	Name
	Synopsis
	Description
	Exit status
	Environment
	Files
	Notes
	See also

	pdfmom(1)
	Name
	Synopsis
	Description
	Authors
	See also

	pdfroff(1)
	Name
	Synopsis
	Description
	Usage
	Options
	Environment
	Files
	Authors
	See also

	pfbtops(1)
	Name
	Synopsis
	Description
	See also

	pic(1)
	Name
	Synopsis
	Description
	Options
	Usage
	TEX mode
	Commands
	Expressions
	Other changes

	Conversion
	Files
	Bugs
	See also

	pic2graph(1)
	Name
	Synopsis
	Description
	Options
	Environment
	Authors
	See also

	preconv(1)
	Name
	Synopsis
	Description
	Coding tags
	iconv support
	Limitations

	Options
	See also

	refer(1)
	Name
	Synopsis
	Description
	Bibliographic databases
	Citations
	Commands
	Label expressions
	Macro interface

	Options
	Environment
	Files
	Bugs
	Examples
	See also

	soelim(1)
	Name
	Synopsis
	Description
	Options
	See also

	tbl(1)
	Name
	Synopsis
	Description
	Overview
	Region options
	Table format specification
	Column classifiers
	Column modifiers
	Table data
	Text blocks
	roff interface
	Interaction with eqn
	GNU tbl enhancements
	Using GNU tbl within macros

	Options
	Limitations
	Examples
	See also

	tfmtodit(1)
	Name
	Synopsis
	Description
	Options
	Files
	See also

	troff(1)
	Name
	Synopsis
	Description
	Options
	Warnings
	Environment
	Files
	Authors
	See also

	groff_font(5)
	Name
	Description
	DESC file format
	Font description file format
	Files
	See also

	groff_out(5)
	Name
	Description
	Language concepts
	Separation
	Argument units
	Document parts

	Command reference
	Comment command
	Simple commands
	Graphics commands
	Device control commands
	Obsolete command

	Postprocessing
	Example
	Compatibility
	Files
	Authors
	See also

	groff_tmac(5)
	Name
	Description
	Macro packages
	Man pages
	Full-service packages
	Localization packages
	Input encodings
	Auxiliary packages

	Naming
	Inclusion
	Writing macros
	Draft mode
	Tips for macro definitions
	Diversions

	Authors
	See also

	groff(7)
	Name
	Description
	Input format
	Syntax characters
	Tabs and leaders
	Line continuation
	Colors
	Measurements
	Motion quanta
	Default units

	Numeric expressions
	Identifiers
	Control characters
	Invoking requests
	Calling macros
	Using escape sequences
	Delimiters
	Dummy characters
	Control structures
	Conditional expressions

	Syntax reference conventions
	Request short reference
	Escape sequence short reference
	Drawing commands
	Device control commands

	Strings
	Registers
	Read-only registers
	Writable predefined registers

	Using fonts
	Hyphenation
	Localization
	Writing macros
	Parameters
	Copy mode

	Traps
	Page location traps
	The implicit page trap

	Diversions
	Punning names
	Environments
	Underlining
	Underlining without macro definitions
	Underlining by overstriking with (ul

	Compatibility mode
	Debugging
	Authors
	See also

	groff_char(7)
	Name
	Description
	Fundamental character set
	Eight-bit encodings and Latin-1 supplement
	Special character escape forms

	Glyph tables
	Basic Latin
	Supplementary Latin letters
	Ligatures and digraphs
	Accents
	Accented characters
	Quotation marks
	Punctuation
	Brackets
	Arrows
	Rules and lines
	Text markers
	Legal symbols
	Currency symbols
	Units
	Logical symbols
	Mathematical symbols
	Greek glyphs
	Playing card symbols

	History
	Files
	Authors
	See also

	groff_diff(7)
	Name
	Description
	Language
	Long names
	Font families, abstract styles, and translation
	Colors
	Fractional type sizes and new scaling units
	Numeric expressions
	Conditional expressions
	Drawing commands
	Escape sequences
	Restricted requests
	New requests
	Extended requests
	New registers
	Miscellaneous

	Formatter output
	Units
	Simple commands
	Extended drawing commands
	Device control syntax extension

	Debugging
	Implementation differences
	Formatter output incompatibilities

	Authors
	See also

	groff_hdtbl(7)
	Name
	Description
	Usage
	Macros and arguments
	Arguments common to .TBL, .TR, .TD, and .TH

	hdtbl customization
	Bugs and suggestions
	Authors
	See also

	groff_man(7)
	Name
	Synopsis
	Description
	Macro reference preliminaries
	Document structure macros
	Paragraphing macros
	Command synopsis macros
	Hyperlink macros
	Font style macros
	Horizontal and vertical spacing
	Registers
	Strings
	Hooks
	Deprecated features
	History

	Options
	Files
	Authors
	See also

	groff_man_style(7)
	Name
	Synopsis
	Description
	Fundamental concepts
	Macro reference preliminaries
	Document structure macros
	Paragraphing macros
	Command synopsis macros
	Hyperlink macros
	Font style macros
	Horizontal and vertical spacing
	Registers
	Strings
	Portability
	Hooks
	Deprecated features
	History

	Options
	Files
	Notes
	Authors
	See also

	groff_mdoc(7)
	Name
	Synopsis
	Description
	Getting started
	Usage
	Passing space characters in an argument
	Trailing space characters
	Formatting the backslash glyph
	Other possible pitfalls

	A man page template
	Conventions
	Title macros
	Introduction to manual and general text domains
	What's in a Name Ns ...
	General Syntax

	Manual domain
	Addresses
	Author Name
	Arguments
	Configuration Declaration (Section Four Only)
	Command Modifiers
	Defined Variables
	Errnos
	Environment Variables
	Flags
	Function Declarations
	Function Types
	Functions (Library Routines)
	Function Arguments
	Return Values
	Exit Status
	Interactive Commands
	Library Names
	Literals
	Names
	Options
	Pathnames
	Standards
	Variable Types
	Variables
	Manual Page Cross References

	General text domain
	AT&T Macro
	BSD Macro
	NetBSD Macro
	FreeBSD Macro
	DragonFly Macro
	OpenBSD Macro
	BSD/OS Macro
	Unix Macro
	Emphasis Macro
	Font Mode
	Enclosure and Quoting Macros
	Normal text macro
	No-Space Macro
	(Sub)section cross references
	Symbolics
	Mathematical Symbols
	References and Citations
	Trade Names or Acronyms
	Extended Arguments

	Page structure domain
	Section headings
	Subsection headings
	Paragraphs and Line Spacing
	Keeps
	Examples and Displays
	Lists and Columns

	Miscellaneous macros
	Predefined strings
	Diagnostics
	Options
	Files
	See also
	Bugs

	groff_me(7)
	Name
	Synopsis
	Description
	Name space
	Macros
	Registers
	Strings

	Files
	Notes
	See also

	groff_mm(7)
	Name
	Synopsis
	Description
	Document styles
	Localization
	Registers and strings
	Register format
	Fonts

	Macros
	Strings
	Registers
	Internals
	Files
	Authors
	See also

	groff_mmse(7)
	Namn
	Syntax
	Beskrivning
	Brev
	Skrivet av
	Filer
	Se också

	groff_mom(7)
	Name
	Synopsis
	Description
	Files
	Reference
	Escape sequences
	Macros

	Documentation of details
	Details of inline escape sequences in alphabetical order
	Details of macros in alphabetical order

	Authors
	See also

	groff_ms(7)
	Name
	Synopsis
	Description
	Usage
	Document control settings
	Document description macros
	Text settings
	Typographical symbols
	Paragraphs
	Headings
	Typeface and decoration
	Indented regions
	Keeps, boxed keeps, and displays
	Tables, figures, equations, and references
	Footnotes
	Language and localization
	Headers and footers
	Tab stops
	Margins
	Multiple columns
	Creating a table of contents

	Differences from AT&T ms
	Unix Version~7 macros not implemented by groff ms

	Legacy features
	AT&T ms accent mark strings
	Berkeley ms accent mark and glyph strings

	Naming conventions
	Files
	Authors
	See also

	groff_rfc1345(7)
	Name
	Description
	Usage
	Bugs

	Files
	Authors
	See also

	groff_trace(7)
	Name
	Synopsis
	Description
	Limitations

	Examples
	Observing nested macro calls
	Tracing with the mso request

	Files
	Authors
	See also

	groff_www(7)
	Name
	Synopsis
	Description
	Macros
	Section heading links
	Limitations of grohtml
	Files
	Authors
	See also

	roff(7)
	Name
	Description
	Concepts
	Requests and macros
	Page geometry
	Other language elements

	History
	The predecessor-RUNOFF
	Unix and roff
	New roff and Typesetter roff
	groff-a free roff from GNU
	Other free roffs

	Using roff
	The roff pipeline
	Preprocessors
	Formatter programs
	Devices and output drivers

	roff programming
	Macro packages
	The roff formatting language

	File naming conventions
	Input conventions
	Editing with Emacs
	Editing with Vim

	Authors
	See also
	Internet sites
	Historical roff documentation
	Manual pages

