C++ Programming

Wikibooks.org

April 22,2012

This PDF was generated by a program written by Dirk Hiinniger, which is freely
available under an open source license from HTTP://DE.WIKIBOOKS.ORG/WIKI/
BENUTZER:DIRK_HUENNIGER/WB2PDF. The list of contributors is included in chap-
ter Contributors on page 661. The licenses GPL, LGPL and GFDL are included in chapter
Licenses on page 679, since this book and/or parts of it may or may not be licensed under
one or more of these licenses, and thus require inclusion of these licenses. The licenses of
the figures are given in the list of figures on page 675.

http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf
http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf

Contents

1 ABOUT THE BOOK 3
1.1 FOREWORD ittt 3
1.2 GUIDETOREADERS v v v i i i it 3
1.3 READER COMMENTS o v v it et 4
2 C++ A MULTI-PARADIGM LANGUAGE 7
2.1 INTRODUCINGCH+o o s i 7
2.2 WHAT IS A PROGRAMMING LANGUAGE? 11
2.3 PROGRAMMING PARADIGMS v v v v i i 16
2.4 CHAPTER SUMMARY ¢ v ittt it e et e 40
3 FUNDAMENTALS FOR GETTING STARTED 41
3.1 THECODE ittt e 41
3.2 THECOMPILER o i i i ittt it 87
3.3 VARIABLES it it e e 121
3.4 OPERATORS o i i it i e e e et e e e 163
3.5 TYPECONVERSION i i .. 204
3.6 CONTROL FLOW STATEMENTS v v v .. 213
3.7 FUNCTIONS it et 229
3.8 DEBUGGING v v v v i it i i i i e e 367
3.9 CHAPTER SUMMARY o o v it ittt 383
4 OBJECT ORIENTED PROGRAMMING 385
4.1 STRUCTURES o i it it e et e 385
4.2 union . . .o e e 390
4.3 CLASSES o e e e 394
4.4 COPY CONSTRUCTOR v v v i i i i i e i i 436
4.5 EQUALITY OPERATOR v v v v v i i i i i e 436
4.6 INEQUALITY OPERATOR o v v v i i i it 437
4.7 OPERATOR OVERLOADING v v v v v .. 438
4.8 T/O . . . 451
4.9 CHAPTER SUMMARY v v v it i i i e i it 481

I

Contents

9

ADVANCED FEATURES

5.1 TEMPLATES o i it it ittt et e e e e
5.2 STANDARD TEMPLATE LIBRARY (STL)
5.3 SMARTPOINTERS it i it e e
5.4 SEMANTICS i it it i e e e e e e
5.5 EXCEPTION HANDLING v i
5.6 RUN-TIME TYPE INFORMATION (RTTI)
5.7 CHAPTER SUMMARY i i i ittt i

BEYOND THE STANDARD

6.1 RESOURCE ACQUISITION IS INITIALIZATION (RAII)
6.2 GARBAGE COLLECTION v vt i i it e i
6.3 PROGRAMMING PATTERNS
6.4 LIBRARIES v i ittt it e e e e e e e
6.5 BOOSTLIBRARY v i i ittt it it e e
6.6 CROSS-PLATFORM DEVELOPMENT
6.7 SOFTWARE INTERNATIONALIZATION
6.8 OPTIMIZATIONS v it et e e e e e e e e e e e
6.9 FURTHER READING v i v ittt
6.10 MODELING TOOLS i iii .
6.11 CHAPTER SUMMARY i i ittt ie e

APPENDIX A: INTERNAL REFERENCES

APPENDIX B: EXTERNAL REFERENCES

8.1 REFERENCESITES v vttt it et et e
8.2 COMPILERSANDIDES
8.3 MISC.C++TOOLS
8.4 LIBRARIES!
8.5 C++ CODING CONVENTIONS v v vt i i e
8.6 ONLINE C++ BOOKS, GUIDES AND GENERAL INFORMATION .
8.7 OTHER (DEAD TREE) BOOKSONC++

CONTRIBUTORS

LIST OF FIGURES

10 LICENSES

10.1 GNU GENERAL PUBLICLICENSE
10.2 GNU FREE DOCUMENTATION LICENSE

1

Chapter 6.3.3 on page 584

643

645
645
646
649
650
653
655
660

661

675

Contents

10.3 GNU LESSER GENERAL PUBLIC LICENSE

1 About the book

1.1 Foreword

This book covers the C++ programming language, its interactions with software
design and real life use of the language. It is presented as an introductory to ad-
vance course but can be used as reference book.

If you are familiar with programming in other languages you may just skim the
GETTING STARTED CHAPTER!. You should not skip the PROGRAMMING
PARADIGMS SECTION?, because C++ does have some particulars that should be
useful even if you already know another Object Oriented Programming language.

The LANGUAGE COMPARISONS SECTION? provides comparisons for some lan-
guage(s) you may already know, which may be useful for veteran programmers.

If this is your first contact with programming then read the book from the begin-
ning. Bear in mind that the Programming Paradigms section can be hard to digest
if you lack some experience. Do not despair, the relevant points will be extended
as other concepts are introduced. That section is provided so to give you a mental
framework, not only to understand C++, but to let you easily adapt to (and from)
other languages that may share concepts.

1.2 Guide to readers

This book is a WIKIBOOK* (EN.WIKIBOOKS.ORG)?, an up-to-date copy of the
work is hosted there.

Chapter 1.3 on page 5

Chapter 2.2.3 on page 16

Chapter 2.3.6 on page 22
HTTP://EN.WIKIPEDIA.ORG/WIKI/WIKIBOOK
HTTP://EN.WIKIBOOKS.ORG/WIKI/MAIN$20PAGE

WA W N =

http://en.wikipedia.org/wiki/wikibook
http://en.wikibooks.org/wiki/Main%20Page

About the book

It is organized into different parts, but as this is a work that is always evolving,
things may be missing or just not where they should be, you are free to become a
writer and contribute to fix things up...

1.3 Reader comments

If you have comments about the technical accuracy, content, or organization of
this document, please tell us (e.g. by using the "discussion" pages or by email). Be
sure to include the section/title of the document with your comments and the date
of your copy of the book. If you are really convinced of your point, information or
correction then become a writer (at Wikibooks) and do it, it can always be rolled
back if someone disagrees.

06

6 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

http://en.wikibooks.org/wiki/Category%3A

Reader comments

The following people are authors to this book:

PANICY, THENUB314°

You can verify who has contributed to this book by examining the history logs
at Wikibooks (http://en.wikibooks.org/).

Acknowledgment is given for using some contents from other works like
WIKIPEDIAS, the wikibooks JAVA PROGRAMMING? and C PROGRAMMING®
and the C++ REFERENCE' , as from the authors SCOTT WHEELERS,
STEPHEN FERG" and Ivor Horton .

The above authors release their work under the following license:

This work is licensed under the Creative Commons Attribution-Share Alike
3.0 Unported license. In short: you are free to share and to make derivatives
of this work under the conditions that you appropriately attribute it, and that
you only distribute it under the same, similar or a compatible license. Any of
the above conditions can be waived if you get permission from the copyright
holder. Unless otherwise noted, media and source code used in this book have
their own copyright, may use different licenses than the one used here, and
were not created by the above authors. The authors, contributors, and licenses
used should be acknowledged separately.

a HTTP://EN.WIKIBOOKS.ORG/WIKI/USER$3APANIC2K4

b HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATHENUB314

c HTTP://EN.WIKIPEDIA.ORG/WIKI/

d HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%$20PROGRAMMING
e HTTP://EN.WIKIBOOKS.ORG/WIKI/C%$20PROGRAMMING

f HTTP://WWW.CPPREFERENCE.COM

g HTTP://KTOWN.KDE.ORG/~{}WHEELER/BIO.HTML

h HTTP://WWW.FERG.ORG/INDEX.HTML

7

08

7 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3AC$2B%2B%20PROGRAMMING
8 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

http://en.wikibooks.org/wiki/User%3APanic2k4
http://en.wikibooks.org/wiki/User%3AThenub314
http://en.wikipedia.org/wiki/
http://en.wikibooks.org/wiki/Java%20Programming
http://en.wikibooks.org/wiki/C%20Programming
http://www.cppreference.com
http://ktown.kde.org/~{}wheeler/bio.html
http://www.ferg.org/index.html
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3A

About the book

2 C++ a multi-paradigm language

2.1 Introducing C++

G+

(pronounced "see plus plus") is a general-purpose, statically typed, free-
form, multi-paradigm PROGRAMMING LANGUAGE’ supporting procedural pro-
gramming, data abstraction, and generic programming. During the 199052, C++
became one of the most popular computer programming languages.

2.1.1 History and standardization

Figure 2: Photo of Bjarne Stroustrup, creator of the
programming language C++.

1 Chapter 2.1.3 on page 11
2 HTTP://EN.WIKIPEDIA.ORG/WIKI/1990s

http://en.wikipedia.org/wiki/1990s

C++ a multi-paradigm language

BJARNE STROUSTRUP?, a Computer Scientist from BELL LABS*, was the de-
signer and original implementer of C++ (originally named "C with Classes") dur-
ing the 1980s as an enhancement to the C PROGRAMMING LANGUAGE’. Enhance-
ments started with the addition OBJECT-ORIENTED® concepts like CLASSES’, fol-
lowed by, among many features, VIRTUAL FUNCTIONS®, OPERATOR OVERLOAD-
ING?, MULTIPLE INHERITANCE'?, TEMPLATES!!, and EXCEPTION HANDLING!Z.
These and other features are covered in detail along this book.

The C++ programming language is a standard recognized by the ANSI'? (The
American National Standards Institute), BSI (The British Standards Institute), DIN
(The German national standards organization), and several other national standards
bodies, and was ratified in 1998 by the ISO (The International Standards Organi-
zation) as ISO/IEC 1488274:1998, consists of two parts: the Core Language and
the Standard Library; the latter includes the STANDARD TEMPLATE LIBRARY "
and the STANDARD C LIBRARY'® (ANSI C 89).

Features introduced in C++ include declarations as statements, function-like casts,
new/delete, bool, reference types, const, inline functions, default arguments,
function overloading, NAMESPACES!’, classes (including all class-related features
such as inheritance, member functions, virtual functions, abstract classes, and con-
structors), operator overloading, templates, the :: operator, exception handling,
run-time type identification, and more type checking in several cases. Comments
starting with two slashes ("//") were originally part of BCPL!8, and were reintro-
duced in C++. Several features of C++ were later adopted by C, including const,
inline, declarations in for loops, and C++-style comments (using the // sym-
bol).

3 HTTP://EN.WIKIPEDIA.ORG/WIKI/BJARNE%20STROUSTRUP
4 HTTP://EN.WIKIPEDIA.ORG/WIKI/BELL%20LABS
5 HTTP://EN.WIKIBOOKS.ORG/WIKI/SUBJECT%$3AC%20PROGRAMMINGS

20LANGUAGE

6 Chapter 2.3.4 on page 19

7 Chapter 4.2.3 on page 393

8 Chapter 2.3.4 on page 21

9 Chapter 4.6 on page 438

10 Chapter 2.3.4 on page 20

11 Chapter 5 on page 483

12 Chapter 5.4 on page 517

13 HTTP://EN.WIKIPEDIA.ORG/WIKI/AMERICAN%20NATIONAL%20STANDARDSS
20INSTITUTE

14 HTTP://EN.WIKIPEDIA.ORG/WIKI/ISO%2FIEC%2014882

15 Chapter 5.1.5 on page 499

16 Chapter 3.7.10 on page 264

17 Chapter 3.1.10 on page 79

18 HTTP://EN.WIKIPEDIA.ORG/WIKI/BCPL

http://en.wikipedia.org/wiki/Bjarne%20Stroustrup
http://en.wikipedia.org/wiki/Bell%20Labs
http://en.wikibooks.org/wiki/Subject%3AC%20programming%20language
http://en.wikibooks.org/wiki/Subject%3AC%20programming%20language
http://en.wikipedia.org/wiki/American%20National%20Standards%20Institute
http://en.wikipedia.org/wiki/American%20National%20Standards%20Institute
http://en.wikipedia.org/wiki/ISO%2FIEC%2014882
http://en.wikipedia.org/wiki/BCPL

Introducing C++

The current version, which is the 2003 version, ISO/IEC 14882:2003 redefines the
standard language as a single item. The STL that pre-dated the standardization of
C++ and was originally implemented in Ada is now an integral part of the standard
and a requirement for a compliant implementation of the same. Many other C++
libraries exist which are not part of the Standard, such as BoosT!. Also, non-
Standard libraries written in C can generally be used by C++ programs.

Since 2004, the standards committee (which includes Bjarne Stroustrup) has been
busy working out the details of a new revision of the standard, temporarily titled
C++0x, due for publication in the end of 2011. Some implementations already
support some of the proposed alterations.

C++ source code example

// ’Hello World!’ program
#include <iostream>

int main()

{
std::cout << "Hello World!" << std::endl;
return 0;

}

Traditionally the first program people write in a new language is called "Hello
World." because all it does is print the words Hello World. HELLO WORLD EX-
PLAINED? (in the EXAMPLES APPENDIX?') offers a detailed explanation of this
code; the included source code is to give you an idea of a simple C++ program.

2.1.2 Overview

Before you begin your journey to understand how to write programs using C++, it
is important to understand a few key concepts that you may encounter. These con-
cepts are not unique to C++, but are helpful to understanding computer program-
ming in general. Readers who have experience in another programming language
may wish to skim through this section entirely.

There are many different kinds of programs in use today. From the operating sys-
tem you use that makes sure everything works as it should, to the video games and

19 Chapter 6.4.2 on page 588
20 Chapter 4.8.2 on page 457
21 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FEXAMPLES

http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FExamples

C++ a multi-paradigm language

music applications you use for fun, programs can fulfill many different purposes.
What all programs (also called software or applications) have in common is that
they all are made up of a sequence of instructions written in some form of pro-
gramming language. These instructions tell a computer what to do, and generally
how to do it. Programs can contain anything from instructions to solve math prob-
lems or send emails, to how to behave when a video game character is shot in a
game. The computer will follow the instructions of a program one instruction at a
time from start to finish.

2.1.3 Why learn C++ ?

Why not? This is the most clarifying approach to the decision to learn anything.
Although learning is always good, selecting what you learn is more important as
it is how you will prioritize tasks. Another side of this problem is that you will
be investing some time in getting a new skill set. You must decide how this will
benefit you. Check your objectives and compare similar projects or see what the
programming market is in need of. In any case, the more programming languages
you know, the better.

If you are approaching the learning process only to add another notch under your
belt, that is, willing only to dedicate enough effort to understand its major quirks
and learn something about its dark corners, then you would be best served in learn-
ing two other languages first. This will clarify what makes C++ special in its
approach to programming problems. You should select one imperative and one
object-oriented language. C will probably be the best choice for the former, as it
has a good market value and a direct relation to C++, although a good substitute
would be ASM. Java is a good choice for the other language, for similar reasons.

If you are willing to dedicate a more than passing interest in C++ then you can even
learn it as your first language. Make sure to dedicate some time understanding the
different paradigms and why C++ is a multi-paradigm, or hybrid, language.

Although learning C is not a requirement for understanding C++, you must know
how to use an imperative language. C++ will not make it easy for you to under-
stand and distinguish some of these deeper concepts, since in it you are free to
implement solutions with a greater range of freedom. Understanding which op-
tions to choose will become the cornerstone of mastering the language.

You should not learn C++ if you are only interested in learning Object-oriented
Programming, since the nomenclature used and some of the approaches taken to
problems will make it more difficult to learn and master those concepts. If you are
truly interested in Object-oriented programming, you should learn Smalltalk.

10

What is a programming language?

As with all languages, C++ has a specific scope of application where it can truly
shine. C++ is harder to learn than C and Java but more powerful than both. C++
enables you to abstract from the little things you have to deal with in C or other
lower level languages but will grant you more control and responsibility than Java.
As it will not provide the default features you can obtain in similar higher level lan-
guages, you will have to search and examine several external implementations of
those features and freely select those that best serve your purposes (or implement
your own solution).

2.2 What is a programming language?

In the most basic terms, a "PROGRAMMING LANGUAGE??" is a means of com-
munication between a human being (programmer) and a computer. A program-
mer uses this means of communication in order to give the computer instructions.
These instructions are called "programs".

Like the many languages we use to communicate with each other, there are many
languages that a programmer can use to communicate with a computer. Each lan-
guage has its own set of words and rules, called semantics. If you’re going to write
a program, you have to follow the semantics of the language you’re writing in, or
you won’t be understood.

Programming languages can basically be divided in to two categories: LOW-
LEVEL? and HIGH-LEVEL?*, next we will introduce you to these concepts and
their relevance to C++.

22 HTTP://EN.WIKIPEDIA.ORG/WIKI/PROGRAMMING%20LANGUAGE

23 HTTP://EN.WIKIPEDIA.ORG/WIKI/LOW-LEVEL%20PROGRAMMINGS
20LANGUAGE

24 HTTP://EN.WIKIPEDIA.ORG/WIKI/HIGH-LEVEL%20PROGRAMMINGS
20LANGUAGE

11

http://en.wikipedia.org/wiki/Programming%20language
http://en.wikipedia.org/wiki/Low-level%20programming%20language
http://en.wikipedia.org/wiki/Low-level%20programming%20language
http://en.wikipedia.org/wiki/High-level%20programming%20language
http://en.wikipedia.org/wiki/High-level%20programming%20language

C++ a multi-paradigm language

2.2.1 Low-level

1960 TRAC o]

_

Smaltall 30

[
193 ‘Sersda OO

i
1991
1
1592
1

,,L] D
" =] | ==][]
i~ Em

"

[w]

1
199 ECMASerpt

i
o =2 [min]

i - o]
Y]]

Figure 3: Image shows most programming languages and their relations from mid
18 hundreds up to 2003 (CLICK HERE FOR FULL SIZE?).

a HTTP://EN.WIKIBOOKS.ORG/WIKI/MEDIA$3ATAXONOMYOFPROGRAMMINGLANGUAGES.
PNG

The lower level in computer "languages" are:

12

http://en.wikibooks.org/wiki/Media%3ATaxonomyofProgrammingLanguages.png
http://en.wikibooks.org/wiki/Media%3ATaxonomyofProgrammingLanguages.png

What is a programming language?

Machine code (also called binary) is the lowest form of a low-level language.
Machine code consists of a string of Os and 1s, which combine to form meaningful
instructions that computers can take action on. If you look at a page of binary
it becomes apparent why binary is never a practical choice for writing programs;
what kind of person would actually be able to remember what a bunch of strings
of 1 and O mean?

Assembly language (also called ASM), is just above machine code on the scale
from low level to high level. It is a human-readable translation of the machine
language instructions the computer executes. For example, instead of referring to
processor instructions by their binary representation (0s and 1s), the programmer
refers to those instructions using a more memorable (mnemonic) form. These
mnemonics are usually short collections of letters that symbolize the action of the
respective instruction, such as "ADD" for addition, and "MOV" for moving values
from one place to another.

Note:

Assembly language is processor specific. This means that a program written
in assembly language will not work on computers with different processor
architectures.

Using ASM to optimize certain tasks is common for C++ programmers, but
will require special considerations, because ASM is not as portable.

You do not have to understand assembly language to program in C++, but it does
help to have an idea of what’s going on "behind-the-scenes". Learning about as-
sembly language will also allow you to have more control as a programmer and
help you in debugging and understanding code.

The advantages of writing in a high-level language format far outweigh any draw-
backs, due to the size and complexity of most programming tasks, those advantages
include:

* Advanced program structure: loops, functions, and objects all have limited us-
ability in low-level languages, as their existence is already considered a "high"
level feature; that is, each structure element must be further translated into low-
level language.

* Portability: high-level programs can run on different kinds of computers with
few or no modifications. Low-level programs often use specialized functions
available on only certain processors, and have to be rewritten to run on another
computer.

13

C++ a multi-paradigm language

* Ease of use: many tasks that would take many lines of code in assembly can
be simplified to several function calls from libraries in high-level programming
languages. For example, Java, a high-level programming language, is capable of
painting a functional window with about five lines of code, while the equivalent
assembly language would take at least four times that amount.

2.2.2 High-level

High-level languages do more with less code, although there is sometimes a loss
in performance and less freedom for the programmer. They also attempt to use
English language words in a form which can be read and generally interpreted by
the average person with little experience in them. A program written in one of
these languages is sometimes referred to as "human-readable code". In general,
more abstraction makes it easier for a language be learned.

No programming language is written in what one might call "plain English"
though, (although BASIC comes close). Because of this, the text of a program
is sometimes referred to as "code", or more specifically as "source code." This is
discussed in more detail in the THE CODE SECTION? of the book.

Higher-level languages partially solve the problem of abstraction to the hardware
(CPU, co-processors, number of registers etc...) by providing portability of code.

Keep in mind that this classification scheme is evolving. C++ is still considered a
high-level language, but with the appearance of newer languages (Java, C#, Ruby
etc...), C++ is beginning to be grouped with lower level languages like C.

2.2.3 Translating programming languages

Since a computer is only capable of understanding machine code, human-readable
code must be either interpreted or translated into machine code.

An INTERPRETER?® is a program (often written in a lower level language) that
interprets the instructions of a program one instruction at a time into commands
that are to be carried out by the interpreter as it happens. Typically each instruction
consists of one line of text or provides some other clear means of telling each in-
struction apart and the program must be reinterpreted again each time the program
is run.

25 Chapter 3 on page 41
26 HTTP://EN.WIKIPEDIA.ORG/WIKI/INTERPRETER%20%28COMPUTING%29

14

http://en.wikipedia.org/wiki/Interpreter%20%28computing%29

What is a programming language?

A COMPILER? is a program used to translate the source code, one instruction at
a time, into machine code. The translation into machine code may involve splitting
one instruction understood by the compiler into multiple machine instructions. The
instructions are only translated once and after that the machine can understand and
follow the instructions directly whenever it is instructed to do so. A complete
examination of the C++ compiler is given in the COMPILER SECTION?® of the
book.

The words and statements used to instruct the computer may differ, but no matter
what words and statements are used, just about every programming language will
include statements that will accomplish the following:

Input

Input is the act of getting information from a device such as a keyboard or mouse,
or sometimes another program.

Output

Output is the opposite of input; it gives information to the computer monitor or
another device or program.

MathlAlgorithm

All computer processors (the brain of the computer), have the ability to perform
basic mathematical computation, and every programming language has some way
of telling it to do so.

Testing

Testing involves telling the computer to check for a certain condition and to do
something when that condition is true or false. Conditionals are one of the most
important concepts in programming, and all languages have some method of test-
ing conditions.

Repetition
Perform some action repeatedly, usually with some variation.
An further examination is provided on the STATEMENTS SECTION?? of the book.

Believe it or not, that’s pretty much all there is to it. Every program you’ve ever
used, no matter how complicated, is made up of functions that look more or less

27 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPILER
28 Chapter 3.1.10 on page 87
29 Chapter 3.1.6 on page 56

15

http://en.wikipedia.org/wiki/Compiler

C++ a multi-paradigm language

like these. Thus, one way to describe programming is the process of breaking
a large, complex task up into smaller and smaller subtasks until eventually the
subtasks are simple enough to be performed with one of these simple functions.

C++ is mostly compiled rather than interpreted (there are some C++ interpreters),
and then "executed" later. As complicated as this may seem, later you will see how
easy it really is.

So as we have seen in the INTRODUCING C++ SECTION>?, C++ evolved from C
by adding some levels of abstraction (so we can correctly state that C++ is of a
higher level than C). We will learn the particulars of those differences in the PRO-
GRAMMING PARADIGMS SECTION?! of the book and for some of you that already
know some other languages should look into PROGRAMMING LANGUAGES COM-
PARISONS SECTION?2,

2.3 Programming paradigms

A PROGRAMMING PARADIGM?? is a model of programming based on distinct
concepts that shapes the way programmers design, organize and write programs. A
MULTI-PARADIGM PROGRAMMING LANGUAGE>* allows programmers to choose
a specific single approach or mix parts of different programming paradigms. C++
as a multi-paradigm programming language supports single or mixed approaches
using Procedural or Object-oriented programming and mixing in utilizations of
Generic and even Functional programming concepts.

2.3.1 Procedural programming

PROCEDURAL PROGRAMMING>® can be defined as a subtype of IMPERATIVE
PROGRAMMING?S as a programming paradigm based upon the concept of proce-
dure calls, in which STATEMENTS? are structured into procedures (also known

30 Chapter 2 on page 7

31 Chapter 2.2.3 on page 16

32 Chapter 2.3.6 on page 22

33 HTTP://EN.WIKIPEDIA.ORG/WIKI/PROGRAMMING320PARADIGM

34 HTTP://EN.WIKIPEDIA.ORG/WIKI/MULTIPARADIGM%320PROGRAMMINGS
20LANGUAGE

35 HTTP://EN.WIKIPEDIA.ORG/WIKI/PROCEDURAL%20PROGRAMMING

36 HTTP://EN.WIKIPEDIA.ORG/WIKI/IMPERATIVE%$20PROGRAMMING

37 Chapter 3.1.6 on page 56

16

http://en.wikipedia.org/wiki/programming%20paradigm
http://en.wikipedia.org/wiki/multiparadigm%20programming%20language
http://en.wikipedia.org/wiki/multiparadigm%20programming%20language
http://en.wikipedia.org/wiki/Procedural%20programming
http://en.wikipedia.org/wiki/Imperative%20programming

Programming paradigms

as subroutines or FUNCTIONS?®). Procedure calls are modular and are bound by
scope. A procedural program is composed of one or more MODULES>. Each
module is composed of one or more SUBPROGRAMS*’. Modules may consist of
procedures, functions, subroutines or methods, depending on the programming
language. Procedural programs may possibly have multiple levels or scopes, with
subprograms defined inside other subprograms. Each scope can contain names
which cannot be seen in outer scopes.

Procedural programming offers many benefits over simple sequential program-
ming since procedural code:

* is easier to read and more maintainable

* is more flexible

* facilitates the practice of good program design

« allows modules to be reused in the form of CODE LIBRARIES?/.

Note:
Nowadays it is very rare to see C++ strictly using the Procedural Programming
paradigm, mostly it is used only on small demonstration or test programs.

2.3.2 Statically typed

Typing refers to how a computer language handles its variables, how they are dif-
ferentiated by TYPE??. Variables are values that the program uses during execution.
These values can change; they are variable, hence their name. Static typing usually
results in compiled code that executes more quickly. When the compiler knows the
exact types that are in use, it can produce machine code that does the right thing
easier. In C++, variables need to be defined before they are used so that compilers
know what type they are, and hence is statically typed. Languages that are not
statically typed are called dynamically typed.

Static typing usually finds type errors more reliably at compile time, increasing the
reliability of compiled programs. Simply put, it means that "A round peg won’t
fit in a square hole", so the compiler will report it when a type leads to ambiguity
or incompatible usage. However, programmers disagree over how common type

38 Chapter 3.6.3 on page 229

39 HTTP://EN.WIKIPEDIA.ORG/WIKI/MODULE%20%28PROGRAMMING%29

40 HTTP://EN.WIKIPEDIA.ORG/WIKI/SUBPROGRAM%20%28PROGRAMMING%29
41 Chapter 6.3.3 on page 584

42 Chapter 3.3.3 on page 138

17

http://en.wikipedia.org/wiki/module%20%28programming%29
http://en.wikipedia.org/wiki/subprogram%20%28programming%29

C++ a multi-paradigm language

errors are and what proportion of bugs that are written would be caught by static
typing. Static typing advocates believe programs are more reliable when they have
been type checked, while dynamic typing advocates point to dynamic code that
has proved reliable and to small bug databases. The value of static typing, then,
presumably increases as the strength of the type system is increased.

A statically typed system constrains the use of powerful language constructs more
than it constrains less powerful ones. This makes powerful constructs harder to
use, and thus places the burden of choosing the "right tool for the problem" on
the shoulders of the programmer, who might otherwise be inclined to use the
most powerful tool available. Choosing overly powerful tools may cause addi-
tional performance, reliability or correctness problems, because there are THEO-
RETICAL LIMITS* on the properties that can be expected from powerful language
constructs. For example, indiscriminate use of RECURSION** or GLOBAL VARI-
ABLE®s may cause well-documented adverse effects.

Static typing allows construction of libraries which are less likely to be acciden-
tally misused by their users. This can be used as an additional mechanism for
communicating the intentions of the library developer.

2.3.3 Type checking

Type checking is the process of verifying and enforcing the constraints of types,
which can occur at either compile-time or run-time. Compile time checking, also
called static type checking, is carried out by the compiler when a program is com-
piled. Run time checking, also called dynamic type checking, is carried out by the
program as it is running. A programming language is said to be strongly typed
if the type system ensures that conversions between types must be either valid or
result in an error. A weakly typed language on the other hand makes no such guar-
antees and generally allows automatic conversions between types which may have
no useful purpose. C++ falls somewhere in the middle, allowing a mix of auto-
matic type conversion and programmer defined conversions, allowing for almost
complete flexibility in interpreting one type as being of another type. Converting
variables or expression of one type into another type is called TYPE CASTING?S.

43 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPUTATIONAL%20COMPLEXITYS
20THEORY

44 HTTP://EN.WIKIPEDIA.ORG/WIKI/RECURSION

45 HTTP://EN.WIKIPEDIA.ORG/WIKI/GLOBAL%20VARIABLE

46 Chapter 3.4.14 on page 204

18

http://en.wikipedia.org/wiki/Computational%20complexity%20theory
http://en.wikipedia.org/wiki/Computational%20complexity%20theory
http://en.wikipedia.org/wiki/recursion
http://en.wikipedia.org/wiki/global%20variable

Programming paradigms

2.3.4 Object-oriented programming

OBJECT-ORIENTED PROGRAMMING? can be seen as an extension of procedu-
ral programming in which programs are made up of collection of individual units
called objects that have a distinct purpose and function with limited or no depen-
dencies on IMPLEMENTATION*®. For example, a car is like an object; it gets you
from point A to point B with no need to know what type of engine the car uses
or how the engine works. Object-oriented languages usually provide a means of
DOCUMENTING* what an object can and cannot do, like instructions for driving a
car.

Objects and Classes

An object is composed of members and methods. The members (also called
data members, characteristics, attributes, or properties) describe the object. The
methods generally describe the actions associated with a particular object. Think
of an object as a noun, its members as adjectives describing that noun, and its
methods as the verbs that can be performed by or on that noun.

For example, a sports car is an object. Some of its members might be its height,
weight, acceleration, and speed. An object’s members just hold data about that
object. Some of the methods of the sports car could be "drive", "park", "race", etc.
The methods really do not mean much unless associated with the sports car, and

the same goes for the members.

The blueprint that lets us build our sports car object is called a class. A class does
not tell us how fast our sports car goes, or what color it is, but it does tell us that
our sports car will have a member representing speed and color, and that they will
be say, a number and a word, respectively. The class also lays out the methods for
us, telling the car how to park and drive, but these methods can not take any action
with just the blueprint - they need an object to have an effect.

Encapsulation

«No component in a complex system should depend on the internal details of any
other component. »

47 HTTP://EN.WIKIPEDIA.ORG/WIKI/OBJECT-ORIENTED%20PROGRAMMING
48 HTTP://EN.WIKIPEDIA.ORG/WIKI/IMPLEMENTATION
49 HTTP://EN.WIKIPEDIA.ORG/WIKI/DOCUMENTATION

19

http://en.wikipedia.org/wiki/Object-oriented%20programming
http://en.wikipedia.org/wiki/implementation
http://en.wikipedia.org/wiki/documentation

C++ a multi-paradigm language

--Dan Ingalls (Smalltalk Architect)

Encapsulation, the principle of INFORMATION HIDING> (from the user), is the
process of hiding the data structures of the class and allowing changes in the data
through a public interface where the incoming values are checked for validity, and
so not only it permits the hiding of data in an object but also of behavior. This pre-
vents clients of an interface from depending on those parts of the implementation
that are likely to change in future, thereby allowing those changes to be made more
easily, that is, without changes to clients. In modern programming languages, the
principle of information hiding manifests itself in a number of ways, including
encapsulation and polymorphism.

Inheritance

INHERITANCE®! describes a relationship between two (or more) types, or classes,
of objects in which one is said to be a "subtype" or "child" of the other, as result the
"child" object is said to inherit features of the parent, allowing for shared function-
ality, this lets programmers re-use or reduce code and simplifies the development
and maintenance of software.

Inheritance is also commonly held to include subtyping, whereby one type of ob-
ject is defined to be a more specialized version of another type (see LISKOV SUB-
STITUTION PRINCIPLE>?), though non sub-typing inheritance is also possible.

Inheritance is typically expressed by describing classes of objects arranged in an
inheritance hierarchy (also referred to as inheritance chain), a the tree like struc-
ture created by their inheritance relationships.

For example, one might create a variable class "Mammal" with features such as
eating, reproducing, etc.; then define a subtype "Cat" that inherits those features
without having to explicitly program them, while adding new features like "chasing
mice". This allows commonalities among different kinds of objects to be expressed
once and reused multiple times.

In C++ we can then have classes that are related to other classes (a class can be de-
fined by means of an older, pre-existing, class). This leads to a situation in which
a new class has all the functionality of the older class, and additionally introduces

50 HTTP://EN.WIKIPEDIA.ORG/WIKI/INFORMATION%20HIDING

51 HTTP://EN.WIKIPEDIA.ORG/WIKI/INHERITANCE%20%280BJECT-ORIENTEDS
20PROGRAMMING%29

52 HTTP://EN.WIKIPEDIA.ORG/WIKI/LISKOV%$20SUBSTITUTION%20PRINCIPLE

20

http://en.wikipedia.org/wiki/Information%20hiding
http://en.wikipedia.org/wiki/Inheritance%20%28object-oriented%20programming%29
http://en.wikipedia.org/wiki/Inheritance%20%28object-oriented%20programming%29
http://en.wikipedia.org/wiki/Liskov%20substitution%20principle

Programming paradigms

its own specific functionality. Instead of composition, where a given class contains
another class, we mean here derivation, where a given class is another class.

This OOP property will be explained further when we talk about Classes (and
Structures) inheritance in the CLASSES INHERITANCE SECTION>? of the book.

If one wants to use more than one totally orthogonal hierarchy simultaneously,
such as allowing "Cat" to inherit from "Cartoon character” and "Pet" as well as
"Mammal" we are using MULTIPLE INHERITANCE>?.

Multiple inheritance

Multiple inheritance is the process by which one class can inherit the properties
of two or more classes (variously known as its base classes, or parent classes, or
ancestor classes, or super-classes).

In some similar language, multiple inheritance is restricted in various ways to keep
the language simple, such as by allowing inheritance from only one real class and
a number of "interfaces", or by completely disallowing multiple inheritance. C++
places the full power of multiple inheritance in the hands of programmers, but
it is needed only rarely, and (as with most techniques) can complicate code if
used inappropriately. Because of C++’s approach to multiple inheritance, C++
has no need of separate language facilities for "interfaces"; C++’s classes can do
everything that interfaces do in some related languages.

This is shown more in more detail in the C++ CLASSES INHERITANCE SEC-
TION>? of the book.

Polymorphism
Polymorphism allows a single name to be reused for several related but different
purposes. The purpose of polymorphism is to allow one name to be used for a
general class. Depending on the type of data, a specific instance of the general
case is executed.

The concept of polymorphism is wider. Polymorphism exists every time we use
two functions that have the same name, but differ in the implementation. They
may also differ in their interface, e.g., by taking different arguments. In that case
the choice of which function to make is via overload resolution, and is performed
at compile time, so we refer to static polymorphism.

53 Chapter 4.3.2 on page 398
54 Chapter 2.3.4 on page 21
55 Chapter 4.3.2 on page 398

21

C++ a multi-paradigm language

Dynamic polymorphism will be covered deeply in the CLASSES SECTION’® where
we will address its use on redefining the method in the derived class.

2.3.5 Generic programming

GENERIC PROGRAMMING®? or POLYMORPHISM®? is a programming style that
emphasizes techniques that allow one value to take on different types as long as
certain contracts such as SUBTYPES®® and SIGNATURE®? are kept. In simpler terms
generic programming is based in finding the most abstract representations of ef-
ficient algorithms. TEMPLATES®!' popularized the notion of generics. Templates
allow code to be written without consideration of the TYPE®? with which it will
eventually be used. Templates are defined in the STANDARD TEMPLATE LIBRARY
(STL)®, where generic programming was introduced into C++.

2.3.6 Free-form

Free-form refers to how the programmer crafts the code. Basically, there are no
rules on how you choose to write your program, save for the semantic rules of
C++. Any C++ program should compile as long as it is legal C++.

The free-form nature of C++ is used (or abused, depending on your point of view)
by some programmers in crafting obfuscated C++ (C++ that is purposefully written
to be difficult to understand). The use of obfuscation is regarded by some as a
security mechanism, ensuring that the source code is more difficult to analyze by
the average user or to prevent the functionality from being duplicated.

2.3.7 Language comparisons

There is not a perfect language. It all depends on the resources (tools, people even
available time) and the objective. For a broader look on other languages and their

56 Chapter 4.3.5 on page 418

57 HTTP://EN.WIKIPEDIA.ORG/WIKI/GENERIC%20PROGRAMMING

58 HTTP://EN.WIKIPEDIA.ORG/WIKI/POLYMORPHISM%20%28COMPUTERS
20SCIENCE%29

59 HTTP://EN.WIKIPEDIA.ORG/WIKI/SUBTYPE

60 HTTP://EN.WIKIPEDIA.ORG/WIKI/SIGNATURE%20%28COMPUTERS
20SCIENCE%29

61 HTTP://EN.WIKIPEDIA.ORG/WIKI/TEMPLATE%20%28PROGRAMMING%29

62 HTTP://EN.WIKIPEDIA.ORG/WIKI/DATATYPE

63 Chapter 5.1.5 on page 499

22

http://en.wikipedia.org/wiki/Generic%20programming
http://en.wikipedia.org/wiki/polymorphism%20%28computer%20science%29
http://en.wikipedia.org/wiki/polymorphism%20%28computer%20science%29
http://en.wikipedia.org/wiki/subtype
http://en.wikipedia.org/wiki/signature%20%28computer%20science%29
http://en.wikipedia.org/wiki/signature%20%28computer%20science%29
http://en.wikipedia.org/wiki/template%20%28programming%29
http://en.wikipedia.org/wiki/datatype

Programming paradigms

evolution, a subject that falls outside of the scope of this book, there are many
other works available, including the COMPUTER PROGRAMMING®* wikibook.

This section is provided as a quick jump-start for people that already had some
experience in them, a way to edify notions about C++ language special character-
istics and what makes it distinct.

Ideal language

The ideal language depends on the specific problem. All programming languages
are designed to be general mechanisms for expressing problem solving algorithms.
In other words, it is a language - rather than simply an expression - because it is
capable of expressing solutions more than one specific problem.

The level of generality in a programming language varies. There are DOMAIN-
SPECIFIC LANGUAGES® (DSLs) such as regular expression syntax which is de-
signed specifically for pattern matching and string manipulation problems. There
are also general-purpose programming languages such as C++.

Ultimately, there is no perfect language. There are some languages that are more
suited to specific classes of problems than others. Each language makes trade-
offs, favoring efficiency in one area for inefficiencies in other areas. Furthermore,
efficiency may not only mean runtime performance but also includes factors such
as development time, code maintainability, and other considerations that affect
software development. The best language is dependent on the specific objectives
of the programmers.

Furthermore, another very practical consideration when selecting a language is the
number and quality of tools available to the programmer for that language. No
matter how good a language is in theory, if there is no set of reliable tools on the
desired platform, that language is not the best choice.

The optimal language (in terms of run-time performance) is machine code but
MACHINE CODE®® (binary) is the least efficient programming language in terms of
coder time. The complexity of writing large systems is enormous with high-level
languages, and beyond human capabilities with machine code. In the next sections

64 HTTP://EN.WIKIBOOKS.ORG/WIKI/COMPUTER%20PROGRAMMING
65 HTTP://EN.WIKIPEDIA.ORG/WIKI/DOMAIN-SPECIFIC_LANGUAGE
66 HTTP://EN.WIKIPEDIA.ORG/WIKI/MACHINE%20CODE

23

http://en.wikibooks.org/wiki/Computer%20Programming
http://en.wikipedia.org/wiki/Domain-specific_language
http://en.wikipedia.org/wiki/Machine%20code

C++ a multi-paradigm language

C++ will be compared with other closely related languages like C%7, JAVA®S, C#6%,
C++/CLI" and D",

«When someone says "l want a programming language in which I need only say
what I wish done,"” give him a lollipop.»

--published in SIGPLAN Notices Vol. 17, No. 9, September 1982

The quote above is shown to indicate that no programming language at present can
translate directly concepts or ideas into useful code, there are solutions that will
help. We will cover the use of COMPUTER-AIDED SOFTWARE ENGINEERING
(CASE)"? tools that will address part of this problem but its use does require
planning and some degree of complexity.

The intention of these sections is not to promote one language above another; each
has its applicability. Some are better in specific tasks, some are simpler to learn,
others only provide a better level of control to the programmer. This all may de-
pend also on the level of control the programmer has of a given language.

Garbage collection

In C++ garbage collection is optional rather than required. In the GARBAGE COL-
LECTION SECTION? of this book we will cover this issue deeply.

Why no finally keyword?

As we will see in the RESOURCE ACQUISITION IS INITIALIZATION (RAII) SEC-
TION’# of the book, RAII can be used to provide a better solution for most issues.
When finally is used to clean up, it has to be written by the clients of a class
each time that class is used (for example, clients of a fileClass class have to do
I/O in a try/catch/finally block so that they can guarantee that the fileClass is
closed). With RAII, the destructor of the fileClass can make that guarantee. Now

67 Chapter 2.3.7 on page 25

68 Chapter 2.3.7 on page 27

69 Chapter 2.3.7 on page 37

70 Chapter 2.3.7 on page 39

71 Chapter 2.3.7 on page 39

72 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPUTER—AIDED$20SOFTWARES

20ENGINEERING%20%28CASE%29
73 Chapter 6.1 on page 540
74 Chapter 6 on page 537

24

http://en.wikipedia.org/wiki/Computer-aided%20software%20engineering%20%28CASE%29
http://en.wikipedia.org/wiki/Computer-aided%20software%20engineering%20%28CASE%29

Programming paradigms

the cleanup code has to be coded only once — in the destructor of fileClass; the
users of the class don’t need to do anything.

Mixing languages

By default, the C++ compiler normally "mangles" the names of functions in order
to facilitate function overloading and generic functions. In some cases, you need to
gain access to a function that wasn’t created in a C++ compiler. For this to occur,
you need to use the extern keyword to declare that function as external:

extern "C" void LibraryFunction();

C 89/99

C7> was essentially the core language of C++ when Bjarne Stroustrup decided to
create a "better C". Many of the syntax conventions and rules still hold true, so we
can even state that C was a subset of C++. Most recent C++ compilers can also
compile C code, taking into consideration the small incompatibilities, since C9976
and C++ 2003 are not compatible any more. You can also check more information
about the C language on the C PROGRAMMING WIKIBOOK'’.

Note:
In practice, much C99 code will still compile with a C++ compiler, but the
language is no longer a proper subset. Compatibility is not guaranteed.

C++ as defined by the ANSI standard in 1998 (called C++98 at times) is very
nearly, but not quite, a superset of the C language as it was defined by its first
ANSI standard in 1989 (known as C89). There are a number of ways in which
C++ is not a strict superset, in the sense that not all valid C89 programs are valid
C++ programs, but the process of converting C code to valid C++ code is fairly
trivial (avoiding reserved words, getting around the stricter C++ type checking
with casts, declaring every called function, and so on).

In 1999, C was revised and many new features were added to it. As of 2004,
most of these new "C99" features are not in C++. Some (including Stroustrup
himself) have argued that the changes brought about in C99 have a philosophy

75 HTTP://EN.WIKIBOOKS.ORG/WIKI/SUBJECT$3AC%20PROGRAMMINGS
20LANGUAGE

76 HTTP://EN.WIKIPEDIA.ORG/WIKI/C99

77 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%20PROGRAMMING

25

http://en.wikibooks.org/wiki/Subject%3AC%20programming%20language
http://en.wikibooks.org/wiki/Subject%3AC%20programming%20language
http://en.wikipedia.org/wiki/C99
http://en.wikibooks.org/wiki/C%20Programming

C++ a multi-paradigm language

distinct from what C++98 adds to C89, and hence these C99 changes are directed
towards increasing incompatibility between C and C++.

The merging of the languages seems a dead issue, as coordinated actions by the C
and C++ standards committees leading to a practical result did not happen and it
can be said that the languages started to diverge.

Some of the differences are:

C++ supports function overloading, this is absent in C, especially in C89 (it can
be argued, depending on how loosely function overloading is defined, that it is
possible to some degree to emulate these capabilities using the C997® standard).
C++ supports INHERITANCE’® and POLYMORPHISM3.

C++ adds keyword class, but keeps struct from C, with compatible semantics.
C++ supports access control for class members.

C-++ supports generic programming through the use of TEMPLATESS!.

C++ extends the C89 standard library with its own standard library.

C++ and C99 offer different complex number facilities.

C++ has bool and wchar_t as primitive types, while in C they are typedefs.
C++ comparison operators returns bool, while C returns int.

C++ supports overloading of operators.

C++ character constants have type char, while C character constants have type
int.

C++ has specific CAST OPERATORS32 (static_cast, dynamic_cast, const_-
cast and reinterpret_cast).

C++ adds mutable keyword to address the imperfect match between physical
and logical constness.

C++ extends the type system with references.

C++ supports member functions, constructors and destructors for user-
defined types to establish invariants and to manage resources.

C++ supports RUNTIME TYPE IDENTIFICATION®® (RTTI), via typeid and
dynamic_cast.

C++ includes EXCEPTION HANDLING®*,

C++ has std: :vector as part of its standard library instead of variable-length
arrays as in C.

78
79
80
81
82
83
84

26

HTTP://EN.WIKIPEDIA.ORG/WIKI/C99
Chapter 2.3.4 on page 20

Chapter 2.3.4 on page 21

Chapter 5 on page 483

Chapter 3.4.14 on page 204

Chapter 5.5.5 on page 530

Chapter 5.4 on page 517

http://en.wikipedia.org/wiki/C99

Programming paradigms

* C++ treats sizeof operator as compile time operation, while C allows it be a
runtime operation.

* C++ has new and delete operators, while C uses malloc and free library func-
tions.

» C++ supports object-oriented programming without extensions.

* C++ does not require use of macros, unlike C, that uses them for careful
information-hiding and abstraction (especially important for C code portability).

* C++ supports per-line comments denoted by //. (C99 started official support for
this comment system, and most compilers support this as an extension.)

* C++ register keyword is semantically different to C’s implementation.

Choosing C or C++

It is not uncommon to find someone defending C over C++ (or vice versa) or com-
plaining about some features of these languages. There is no scientific evidence to
put a language above another in general terms; the only reason that does have some
traction is the possibility of deep changes or unknown bugs in a language that is
still very recent. In the case of C or C++ this is not the case, as both languages are
very mature. Though both are still evolving, the new features keep a high level of
compatibility with old code, making the use of those new constructs a program-
mer’s decision. It is not uncommon to establish rules in a project to limit the use of
parts of a language (such as RTTI, exceptions, or virtual-functions in inner loops),
depending on the proficiency of the programmers or the needs of the project. It
is also common for new hardware to support lower level languages first. Due to
C being less extensive and lower level than C++, it is easier to check and com-
ply with strict industry guidelines and automate those steps. Another benefit of C
is that it is easier for the programmer to do low level optimizations, though most
C++ compilers can guarantee near perfect optimizations automatically, a human
can still do more and C has less complex structures.

Any of the valid reasons to choose a language over another is mostly due to pro-
grammer’s choice that indirectly deals with choosing the best tool for the job and
having the resources needed to complete it. It would be hard to validate selecting
C++ for a project if the available programmers only knew C. Even though in the
reverse case it might be expected for a C++ programmer to produce functional C
code, the mindset and experience needed are not the same. The same rationale is
valid for C programmers and ASM. This is due to the close relations that exist in
the language’s structure and historic evolution.

One could argue that using the C subset of C++, in a C++ compiler, is the same
as using C, but in reality we find that it will generate slightly different results
depending on the compiler used.

27

C++ a multi-paradigm language

Java

This is a comparison of the JAVA PROGRAMMING LANGUAGE® with the C++
programming language. C++ and Java share many common traits. You can get a
better understanding of Java in the JAVA PROGRAMMING WIKIBOOK®.

Java was created initially to support NETWORK COMPUTING®’ on EMBEDDED
SYSTEM®®s. Java was designed to be extremely PORTABLE®®, SECURE®?, MULTI-
THREADED®! and DISTRIBUTED"?, none of which were design goals for C++. The
syntax of Java was chosen to be familiar to C programmers, but direct compatibility
with C was not maintained. Java also was specifically designed to be simpler than

C++ but it keeps evolving above that simplification.

C++ Java
Compeatibility backwards compati- backwards compati-
ble, including C bility with previous
versions
Focus execution efficiency developer productivity
Freedom trusts the programmer imposes some con-
straints to the pro-
grammer
Memory Management ~ ARBITRARY MEMORY memory access only
ACCESS POSSIBLE?® through objects

Code
TYPE SAFETY>*

PROGRAMMING
PARADIGM®?

concise expression
type casting is re-
stricted greatly
PROCEDURAL’® or
OBJECT-ORIENTED”’

8 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING

86 HTTP://EN.WIKIBOOKS.ORG/WIKI/PROGRAMMING%3AJAVA

87 HTTP://EN.WIKIPEDIA.ORG/WIKI/NETWORK%20COMPUTING

88 HTTP://EN.WIKIPEDIA.ORG/WIKI/EMBEDDED%20SYSTEM

89 &HTTP://EN.WIKIPEDIA.ORG/WIKI/PORTING

90 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPUTER%20SECURITY

91 HTTP://EN.WIKIPEDIA.ORG/WIKI/THREAD%20%28COMPUTER%20SCIENCE%29
92 HTTP://EN.WIKIPEDIA.ORG/WIKI/DISTRIBUTED%20COMPUTING
93 HTTP://EN.WIKIPEDIA.ORG/WIKI/POINTER

94 HTTP://EN.WIKIPEDIA.ORG/WIKI/TYPE$20SAFETY

95 HTTP://EN.WIKIPEDIA.ORG/WIKI/PROGRAMMING%20PARADIGM
96 HTTP://EN.WIKIPEDIA.ORG/WIKI/PROCEDURAL

97 HTTP://EN.WIKIPEDIA.ORG/WIKI/OBJECT—ORIENTED

28

explicit operation
only compatible types
can be cast
object-oriented

http://en.wikibooks.org/wiki/Java%20Programming
http://en.wikibooks.org/wiki/Programming%3AJava
http://en.wikipedia.org/wiki/network%20computing
http://en.wikipedia.org/wiki/embedded%20system
http://en.wikipedia.org/wiki/porting
http://en.wikipedia.org/wiki/computer%20security
http://en.wikipedia.org/wiki/thread%20%28computer%20science%29
http://en.wikipedia.org/wiki/distributed%20computing
http://en.wikipedia.org/wiki/pointer
http://en.wikipedia.org/wiki/type%20safety
http://en.wikipedia.org/wiki/programming%20paradigm
http://en.wikipedia.org/wiki/procedural
http://en.wikipedia.org/wiki/object-oriented

Programming paradigms

C++ Java

Operators OPERATOR OVER- meaning of operators
LOADING”® immutable

Main Advantage powerful capabilities feature-rich, easy to
of language use standard library

Differences between C++ and Java are:

C++ parsing is somewhat more complicated than with Java; for example,
Foo<1>(3); 1is a sequence of comparisons if Foo is a variable, but it creates
an object if Foo is the name of a class template.

C++ allows namespace level constants, variables, and functions. All such Java
declarations must be inside a class or INTERFACE®.

consT!% in C++ indicates data to be ‘read-only,” and is applied to types. final
in java indicates that the variable is not to be reassigned. For basic types such as
const int vs final int these are identical, but for complex classes, they are
different.

C++ doesn’t support constructor delegation.

C++ runs on the hardware, Java runs on a virtual machine so with C++ you have
greater power at the cost of portability.

C++, int main () is a function by itself, without a class.

C++ access specification (public, private) is done with labels and in groups.
C++ access to class members default to private, in Java it is package access.
C++ classes declarations end in a semicolon.

C++ lacks language level support for garbage collection while Java has built-in
garbage collection to handle memory deallocation.

C++ supports goto statements; Java does not, but its LABELED BREAK'"" and
LABELED CONTINUE!?? statements provide some structured got o-like function-
ality. In fact, Java enforces STRUCTURED CONTROL FLOW!'®, with the goal of
code being easier to understand.

C++ provides some low-level features which Java lacks. In C++, pointers can
be used to manipulate specific memory locations, a task necessary for writing

101

98
99
10
10
10
10

HTTP://EN.WIKIPEDIA.ORG/WIKI/OPERATOR%200VERLOADING
HTTP://EN.WIKIPEDIA.ORG/WIKI/INTERFACE%20%28JAVA%29

0 HTTP://EN.WIKIPEDIA.ORG/WIKI/CONST

1 HTTP://EN.WIKIPEDIA.ORG/WIKI/LABELLED%20BREAK

2 HTTP://EN.WIKIPEDIA.ORG/WIKI/LABELLED%20CONTINUE

3 HTTP://EN.WIKIPEDIA.ORG/WIKI/STRUCTURED%20CONTROL%20FLOW

29

http://en.wikipedia.org/wiki/operator%20overloading
http://en.wikipedia.org/wiki/interface%20%28Java%29
http://en.wikipedia.org/wiki/const
http://en.wikipedia.org/wiki/labelled%20break
http://en.wikipedia.org/wiki/labelled%20continue
http://en.wikipedia.org/wiki/structured%20control%20flow

C++ a multi-paradigm language

low-level OPERATING SYSTEM!® components. Similarly, many C++ compilers

support INLINE ASSEMBLER!?. In Java, assembly code can still be accessed as

libraries, through the JAVA NATIVE INTERFACE!?®. However, there is significant
overhead for each call.

C++ allows a range of implicit conversions between native types, and also al-

lows the programmer to define implicit conversions involving compound types.

However, Java only permits widening conversions between native types to be

implicit; any other conversions require explicit cast syntax.

* A consequence of this is that although loop conditions (if, while and the exit
condition in for) in Java and C++ both expect a boolean expression, code such
as if (a = 5) will cause a compile error in Java because there is no implicit
narrowing conversion from int to boolean. This is handy if the code were a
typo for if (a == 5), but the need for an explicit cast can add verbosity when
statements such as 1f (x) are translated from Java to C++.

For passing parameters to functions, C++ supports both true PASS-BY-

REFERENCE'?” and PASS-BY-VALUE!'®®. As in C, the programmer can simu-

late by-reference parameters with by-value parameters and INDIRECTION'®. In

Java, all parameters are passed by value, but object (non-primitive) parameters

are REFERENCE!!? values, meaning INDIRECTION!!! is built-in.

Generally, Java built-in types are of a specified size and range; whereas C++

types have a variety of possible sizes, ranges and representations, which may

even change between different versions of the same compiler, or be configurable
via compiler switches.

» In particular, Java characters are 16-bit UNICODE'!? characters, and strings
are composed of a sequence of such characters. C++ offers both narrow and
wide characters, but the actual size of each is platform dependent, as is the
character set used. Strings can be formed from either type.

* The rounding and precision of floating point values and operations in C++ is

platform dependent. Java provides a STRICT FLOATING-POINT MODEL!!? that

104
105
106
107
108
109
110

111

112
113

30

HTTP

HTTP:
HTTP:
HTTP:
HTTP:

HTTP

HTTP:

://EN.WIKIPEDIA.
//EN.WIKIPEDIA.
//EN.WIKIPEDIA.
//EN.WIKIPEDIA.
//EN.WIKIPEDIA.
://EN.WIKIPEDIA.
//EN.WIKIPEDIA.

20SCIENCE%29

HTTP:
HTTP:
HTTP:

//EN.WIKIPEDIA.
//EN.WIKIPEDIA.
//EN.WIKIPEDIA.

ORG/WIKI/OPERATING%20SYSTEM
ORG/WIKI/INLINE$20ASSEMBLER
ORG/WIKI/JAVAS20NATIVES20INTERFACE
ORG/WIKI/PASS—BY-REFERENCE
ORG/WIKI/PASS—BY—-VALUE
ORG/WIKI/INDIRECTION
ORG/WIKI/REFERENCE%20%28COMPUTERS

ORG/WIKI/INDIRECTION
ORG/WIKI/UNICODE
ORG/WIKI/STRICTFP

http://en.wikipedia.org/wiki/operating%20system
http://en.wikipedia.org/wiki/inline%20assembler
http://en.wikipedia.org/wiki/Java%20Native%20Interface
http://en.wikipedia.org/wiki/pass-by-reference
http://en.wikipedia.org/wiki/pass-by-value
http://en.wikipedia.org/wiki/indirection
http://en.wikipedia.org/wiki/reference%20%28computer%20science%29
http://en.wikipedia.org/wiki/reference%20%28computer%20science%29
http://en.wikipedia.org/wiki/indirection
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/strictfp

Programming paradigms

guarantees consistent results across platforms, though normally a more lenient
mode of operation is used to allow optimal floating-point performance.

In C++, POINTERS!!'* can be manipulated directly as memory address values.
Java does not have pointers—it only has object references and array references,
neither of which allow direct access to memory addresses. In C++ one can con-
struct pointers to pointers, while Java references only access objects.

In C++ pointers can point to functions or member functions (FUNCTION
POINTER s or FUNCTOR!!%s). The equivalent mechanism in Java uses object
or interface references.

C++ features programmer-defined OPERATOR OVERLOADING!!7. The only
overloaded operators in Java are the "+" and "+=" operators, which concatenate
strings as well as performing addition.

Java features standard API!''® support for REFLECTION!!” and DYNAMIC LOAD-
ING'? of arbitrary new code.

Java has generics. C++ has templates.

Both Java and C++ distinguish between native types (these are also known as
"fundamental” or "built-in" types) and user-defined types (these are also known
as "compound" types). In Java, native types have value semantics only, and
compound types have reference semantics only. In C++ all types have value
semantics, but a reference can be created to any object, which will allow the
object to be manipulated via reference semantics.

C++ supports MULTIPLE INHERITANCE'?! of arbitrary classes. Java supports
multiple inheritance of types, but only single inheritance of implementation. In
Java, a class can derive from only one class, but a class can implement multiple
INTERFACE!%%s,

Java explicitly distinguishes between interfaces and classes. In C++ multiple
inheritance and pure virtual functions makes it possible to define classes that
function just as Java interfaces do.

114
115
116
117
118

119
120

121
122

HTTP
HTTP
HTTP
HTTP
HTTP

://EN.
://EN.
://EN.
://EN.
://EN.

WIKIPEDIA.
WIKIPEDIA.
WIKIPEDIA.
WIKIPEDIA.
WIKIPEDIA.

20INTERFACE
HTTP://EN.WIKIPEDIA.
20SCIENCE%29
HTTP://EN.WIKIPEDIA.
HTTP://EN.WIKIPEDIA.
HTTP://EN.WIKIPEDIA.

ORG/WIKI/POINTERS
ORG/WIKI/FUNCTION%20POINTER
ORG/WIKI/FUNCTOR
ORG/WIKI/OPERATOR%200VERLOADING
ORG/WIKI/APPLICATION%20PROGRAMMINGS

ORG/WIKI/REFLECTION%20%28COMPUTERS
ORG/WIKI/DYNAMIC%20LOADING

ORG/WIKI/MULTIPLE%20INHERITANCE
ORG/WIKI/INTERFACE%20%28JAVA%29

31

http://en.wikipedia.org/wiki/pointers
http://en.wikipedia.org/wiki/function%20pointer
http://en.wikipedia.org/wiki/functor
http://en.wikipedia.org/wiki/operator%20overloading
http://en.wikipedia.org/wiki/Application%20programming%20interface
http://en.wikipedia.org/wiki/Application%20programming%20interface
http://en.wikipedia.org/wiki/Reflection%20%28computer%20science%29
http://en.wikipedia.org/wiki/Reflection%20%28computer%20science%29
http://en.wikipedia.org/wiki/dynamic%20loading
http://en.wikipedia.org/wiki/multiple%20inheritance
http://en.wikipedia.org/wiki/Interface%20%28Java%29

C++ a multi-paradigm language

+ Java has both language and standard library support for MULTI-THREADING'23.
The synchronized KEYWORD IN JAVA'?# provides simple and secure MUTEX
LOCK %5 to support multi-threaded applications. While mutex lock mechanisms
are available through libraries in C++, the lack of language semantics makes
writing THREAD SAFE'?% code more difficult and error prone.

Memory management

Java requires automatic GARBAGE COLLECTION'?’. Memory management in
C++ is usually done by hand, or through SMART POINTER!?%s. The C++ stan-
dard permits garbage collection, but does not require it; garbage collection is
rarely used in practice. When permitted to relocate objects, modern garbage
collectors can improve overall application space and time efficiency over using
explicit deallocation.

C++ can allocate arbitrary blocks of memory. Java only allocates memory

through object instantiation. (Note that in Java, the programmer can simulate

allocation of arbitrary memory blocks by creating an array of bytes. Still, Java

ARRAY %5 are objects.)

Java and C++ use different idioms for resource management. Java relies mainly

on garbage collection, while C++ relies mainly on the RAII (RESOURCE AcC-

QUISITION IS INITIALIZATION)!3Y idiom. This is reflected in several differ-

ences between the two languages:

* In C++ it is common to allocate objects of compound types as local stack-
bound variables which are destructed when they go OUT OF SCOPE’?/. In Java
compound types are always allocated on the heap and collected by the garbage
collector (except in virtual machines that use ESCAPE ANALYSIS!3? to convert
heap allocations to stack allocations).

123
124
125
126
127

128
129
130

131
132

32

HTTP://EN.WIKIPEDIA.ORG/WIKI/MULTI-THREADING
HTTP://EN.WIKIPEDIA.ORG/WIKI/JAVA%$20KEYWORDS
HTTP://EN.WIKIPEDIA.ORG/WIKI/MUTUAL%20EXCLUSION
HTTP://EN.WIKIPEDIA.ORG/WIKI/THREAD$20SAFE
HTTP://EN.WIKIPEDIA.ORG/WIKI/GARBAGE$20COLLECTION%20%
28COMPUTER%20SCIENCE%29
HTTP://EN.WIKIPEDIA.ORG/WIKI/SMART$20POINTER
HTTP://EN.WIKIPEDIA.ORG/WIKI/ARRAY
HTTP://EN.WIKIPEDIA.ORG/WIKI/RESOURCE%20ACQUISITIONS20IS%
20INITIALIZATION

Chapter 3.1.9 on page 78
HTTP://EN.WIKIPEDIA.ORG/WIKI/ESCAPE$20ANALYSIS

http://en.wikipedia.org/wiki/multi-threading
http://en.wikipedia.org/wiki/Java%20keywords
http://en.wikipedia.org/wiki/Mutual%20exclusion
http://en.wikipedia.org/wiki/thread%20safe
http://en.wikipedia.org/wiki/Garbage%20collection%20%28computer%20science%29
http://en.wikipedia.org/wiki/Garbage%20collection%20%28computer%20science%29
http://en.wikipedia.org/wiki/smart%20pointer
http://en.wikipedia.org/wiki/array
http://en.wikipedia.org/wiki/Resource%20Acquisition%20Is%20Initialization
http://en.wikipedia.org/wiki/Resource%20Acquisition%20Is%20Initialization
http://en.wikipedia.org/wiki/escape%20analysis

Programming paradigms

C++ has destructors, while Java has FINALIZER'3*s. Both are invoked prior to

an object’s deallocation, but they differ significantly. A C++ object’s destruc-
tor must be implicitly (in the case of stack-bound variables) or explicitly in-
voked to deallocate the object. The destructor executes SYNCHRONOUSLY '3
at the point in the program at which the object is deallocated. Synchronous,
coordinated uninitialization and deallocation in C++ thus satisfy the RAII id-
iom. In Java, object deallocation is implicitly handled by the garbage collector.
A Java object’s finalizer is invoked ASYNCHRONOUSLY!?> some time after it
has been accessed for the last time and before it is actually deallocated, which
may never happen. Very few objects require finalizers; a finalizer is only re-
quired by objects that must guarantee some clean up of the object state prior to
deallocation—typically releasing resources external to the JVM. In Java safe
synchronous deallocation of resources is performed using the try/finally con-
struct.

In C++ it is possible to have a DANGLING POINTER'?® — a REFERENCE!? to
an object that has been destructed; attempting to use a dangling pointer typi-
cally results in program failure. In Java, the garbage collector won’t destruct a
referenced object.

In C++ it is possible to have an object that is allocated, but unreachable. An
UNREACHABLE OBJECT!3® is one that has no reachable references to it. An
unreachable object cannot be destructed (deallocated), and results in a MEM-
ORY LEAK'?. By contrast, in Java an object will not be deallocated by the
garbage collector until it becomes unreachable (by the user program). (Note:
WEAK REFERENCE'#’s are supported, which work with the Java garbage col-
lector to allow for different strengths of reachability.) Garbage collection in
Java prevents many memory leaks, but leaks are still possible under some cir-
cumstances.

Libraries

133
134
135
136
137

138
139
140

HTTP://EN.WIKIPEDIA.ORG/WIKI/FINALIZER
HTTP://EN.WIKIPEDIA.ORG/WIKI/SYNCHRONIZATION
HTTP://EN.WIKIPEDIA.ORG/WIKI/ASYNCHRONY
HTTP://EN.WIKIPEDIA.ORG/WIKI/DANGLING%$20POINTER
HTTP://EN.WIKIPEDIA.ORG/WIKI/REFERENCE%20%28COMPUTERS
20SCIENCE%29
HTTP://EN.WIKIPEDIA.ORG/WIKI/UNREACHABLE%$200BJECT
HTTP://EN.WIKIPEDIA.ORG/WIKI/MEMORY$20LEAK
HTTP://EN.WIKIPEDIA.ORG/WIKI/WEAK$20REFERENCE

33

http://en.wikipedia.org/wiki/finalizer
http://en.wikipedia.org/wiki/Synchronization
http://en.wikipedia.org/wiki/Asynchrony
http://en.wikipedia.org/wiki/dangling%20pointer
http://en.wikipedia.org/wiki/reference%20%28computer%20science%29
http://en.wikipedia.org/wiki/reference%20%28computer%20science%29
http://en.wikipedia.org/wiki/unreachable%20object
http://en.wikipedia.org/wiki/memory%20leak
http://en.wikipedia.org/wiki/weak%20reference

C++ a multi-paradigm language

* C++ STANDARD LIBRARY

141 provides a limited set of basic and relatively gen-

eral purpose components. Java has a considerably larger standard library. This
additional functionality is available for C++ by (often free) third party libraries,
but third party libraries do not provide the same ubiquitous cross-platform func-
tionality as standard libraries.

C++ is mostly BACKWARD COMPATIBLE!#? with C, and C libraries (such as the
API'*s of most OPERATING SYSTEM!#44s) are directly accessible from C++.
In Java, the richer functionality its standard library is that it provides CROSS-
PLATFORM'# access to many features typically only available in platform-
specific libraries. Direct access from Java to native operating system and hard-
ware functions requires the use of the JAVA NATIVE INTERFACE'#S.

Runtime

C++ is normally compiled directly to MACHINE CODE'47 which is then exe-

cuted directly by the OPERATING SYSTEM!4®. Java is normally compiled to
BYTE-CODE!*® which the JAVA VIRTUAL MACHINE"®® (JVM) then either IN-
TERPRETS'! or JIT!>? compiles to machine code and then executes.

Due to the lack of constraints in the use of some C++ language features (e.g.
unchecked array access, raw pointers), programming errors can lead to low-level
BUFFER OVERFLOW!33s, PAGE FAULT'**s, and SEGMENTATION FAULT!s.
The STANDARD TEMPLATE LIBRARY!®, however, provides higher-level ab-
stractions (like vector, list and map) to help avoid such errors. In Java, such

141
142
143

144
145
146
147
148
149
150
151
152
153
154
155
156

34

Chapter 5.1.5 on page 499

HTTP://EN.WIKIPEDIA.
HTTP://EN.WIKIPEDIA.

20INTERFACE

HTTP

HTTP

HTTP

HTTP

HTTP

://EN.
HTTP:
://EN.
HTTP:
://EN.
HTTP:
://EN.
HTTP:
HTTP:
://EN.
HTTP:
HTTP:

//EN.

//EN.

//EN.

//EN.
//EN.

//EN.
//EN.

WIKIPEDIA

WIKIPEDIA

WIKIPEDIA

WIKIPEDIA
WIKIPEDIA

WIKIPEDIA

Chapter 5.1.5 on page 499

ORG/WIKI/BACKWARD%20COMPATIBLE
ORG/WIKI/APPLICATION%20PROGRAMMINGS

.ORG/WIKI/OPERATING%20SYSTEM
WIKIPEDIA.
.ORG/WIKI/JAVA%20NATIVE%20INTERFACE
WIKIPEDIA.
.ORG/WIKI/OPERATING$20SYSTEM
.ORG/WIKI/BYTE—CODE
.ORG/WIKI/JAVA%20VIRTUAL%20MACHINE
WIKIPEDIA.
WIKIPEDIA.

ORG/WIKI/CROSS—PLATFORM

ORG/WIKI/MACHINE%20CODE

ORG/WIKI/INTERPRETER%$20%28COMPUTINGS29
ORG/WIKI/JUST—IN-TIME%20COMPILATION

.ORG/WIKI/BUFFER%200VERFLOW
WIKIPEDIA.
WIKIPEDIA.

ORG/WIKI/PAGES20FAULT
ORG/WIKI/SEGMENTATION%20FAULT

http://en.wikipedia.org/wiki/backward%20compatible
http://en.wikipedia.org/wiki/Application%20programming%20interface
http://en.wikipedia.org/wiki/Application%20programming%20interface
http://en.wikipedia.org/wiki/operating%20system
http://en.wikipedia.org/wiki/cross-platform
http://en.wikipedia.org/wiki/Java%20Native%20Interface
http://en.wikipedia.org/wiki/machine%20code
http://en.wikipedia.org/wiki/operating%20system
http://en.wikipedia.org/wiki/byte-code
http://en.wikipedia.org/wiki/Java%20virtual%20machine
http://en.wikipedia.org/wiki/Interpreter%20%28computing%29
http://en.wikipedia.org/wiki/Just-in-time%20compilation
http://en.wikipedia.org/wiki/buffer%20overflow
http://en.wikipedia.org/wiki/page%20fault
http://en.wikipedia.org/wiki/segmentation%20fault

Programming paradigms

errors either simply cannot occur or are detected by the JVM'>7 and reported to
the application in the form of an EXCEPTION!3,

In Java, BOUNDS CHECKING'*? is implicitly performed for all array access oper-
ations. In C++, array access operations on native arrays are not bounds-checked,
and bounds checking for random-access element access on standard library col-
lections like std::vector and std::deque is optional.

Miscellaneous

Java and C++ use different techniques for splitting up code in multiple source
files. Java uses a package system that dictates the file name and path for all pro-
gram definitions. In Java, the compiler imports the executable CLASS FILES'%.
C++ uses a HEADER FILE'®' SOURCE CODE'®? inclusion system for sharing
declarations between source files. (See COMPARISON OF IMPORTS AND IN-
CLUDES'9))

Templates and macros in C++, including those in the standard library, can result
in duplication of similar code after compilation. Second, DYNAMIC LINKING!%4
with standard libraries eliminates binding the libraries at compile time.

C++ compilation features a textual PREPROCESSING!® phase, while Java does
not. Java supports many optimizations that mitigate the need for a preprocessor,
but some users add a preprocessing phase to their build process for better support
of conditional compilation.

In Java, arrays are container objects which you can inspect the length of at any
time. In both languages, arrays have a fixed size. Further, C++ programmers
often refer to an array only by a pointer to its first element, from which they
cannot retrieve the array size. However, C++ and Java both provide container
classes (std::vector and java.util. ArrayList respectively) which are re-sizable
and store their size.

157
158
159
160
161
162
163

164

165

HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP

://EN.
://EN.
://EN.
://EN.
://EN.
://EN.
://EN.
20INCLUDES
HTTP://EN.WIKIPEDIA.

WIKIPEDIA

WIKIPEDIA
WIKIPEDIA

WIKIPEDIA

.ORG/WIKI/JAVA%20VIRTUAL%20MACHINE
WIKIPEDIA.

ORG/WIKI/EXCEPTION%20HANDLING

.ORG/WIKI/BOUNDS%20CHECKING

.ORG/WIKI/CLASS%20%28FILE%20FORMAT%29
WIKIPEDIA.
.ORG/WIKI/SOURCE%20CODE
WIKIPEDIA.

ORG/WIKI/HEADER%20FILE

ORG/WIKI/COMPARISON%200F%20IMPORTS%20ANDS

ORG/WIKI/LIBRARY$20%28COMPUTER%20SCIENCES

29%23DYNAMICS20LINKING
Chapter 3.2.2 on page 98

35

http://en.wikipedia.org/wiki/Java%20virtual%20machine
http://en.wikipedia.org/wiki/exception%20handling
http://en.wikipedia.org/wiki/bounds%20checking
http://en.wikipedia.org/wiki/class%20%28file%20format%29
http://en.wikipedia.org/wiki/header%20file
http://en.wikipedia.org/wiki/source%20code
http://en.wikipedia.org/wiki/Comparison%20of%20imports%20and%20includes
http://en.wikipedia.org/wiki/Comparison%20of%20imports%20and%20includes
http://en.wikipedia.org/wiki/library%20%28computer%20science%29%23Dynamic%20linking
http://en.wikipedia.org/wiki/library%20%28computer%20science%29%23Dynamic%20linking

C++ a multi-paradigm language

* Java’s division and modulus operators are well defined to truncate to zero. C++
does not specify whether or not these operators truncate to zero or "truncate to
-infinity". -3/2 will always be -1 in Java, but a C++ compiler may return either
-1 or -2, depending on the platform. C99'% defines division in the same fashion
as Java. Both languages guarantee that (a/b)*b + (a%b) == a for all a and
b (b !=0). The C++ version will sometimes be faster, as it is allowed to pick
whichever truncation mode is native to the processor.

* The sizes of integer types is defined in Java (int is 32-bit, long is 64-bit), while
in C++ the size of integers and pointers is compiler-dependent. Thus, carefully-
written C++ code can take advantage of the 64-bit processor’s capabilities while
still functioning properly on 32-bit processors. However, C++ programs written
without concern for a processor’s word size may fail to function properly with
some compilers. In contrast, Java’s fixed integer sizes mean that programmers
need not concern themselves with varying integer sizes, and programs will run
exactly the same. This may incur a performance penalty since Java code cannot
run using an arbitrary processor’s word size.

Performance
Computing performance is a measure of resource consumption when a system of
hardware and software performs a piece of computing work such as an algorithm
or a transaction. Higher performance is defined to be "using fewer resources’.
Resources of interest include memory, bandwidth, persistent storage and CPU
cycles. Because of the high availability of all but the latter on modern desktop and
server systems, performance is colloquially taken to mean the least CPU cycles;
which often converts directly into the least wall clock time. Comparing the
performance of two software languages requires a fixed hardware platform and
(often relative) measurements of two or more software subsystems. This section
compares the relative computing performance of C++ and Java on common
operating systems such as Windows and Linux.

Early versions of Java were significantly outperformed by statically compiled
languages such as C++. This is because the program statements of these two
closely related languages may compile to a few machine instructions with C++,
while compiling into several byte codes involving several machine instructions
each when interpreted by a Java JVM'%7. For example:

Java/C++ statement C++ generated code Java generated byte
code

166 HTTP://EN.WIKIPEDIA.ORG/WIKI/C99
167 uTTP://EN.WIKIPEDIA.ORG/WIKI/JVM

36

http://en.wikipedia.org/wiki/C99
http://en.wikipedia.org/wiki/JVM

Programming paradigms

vector[i]++; mov edx,[ebp+4h] aload_1
mov eax,[ebp+1Ch] iload_2
inc dword ptr dup2
[edx+eax*4] iaload
iconst_1
iadd
iastore

While this may still be the case for EMBEDDED SYSTEMS'® because of the
requirement for a small footprint, advances in JUST IN TIME (JIT)'%° compiler
technology for long-running server and desktop Java processes has closed the
performance gap and in some cases given the performance advantage to Java. In
effect, Java byte code is compiled into machine instructions at run time, in a
similar manner to C++ static compilation, resulting in similar instruction
sequences.

C++ is still faster in most operations than Java at the moment, even at low-level
and numeric computation. For in-depth information you could check
PERFORMANCE OF JAVA VERSUS C++'7%. It’s a bit pro-Java but very detailed.

C#

C#!! (pronounced "See Sharp") is a multi-purpose computer PROGRAMMING
LANGUAGE!'"? catering to all development needs using MICROSOFT .NET
FRAMEWORK!73.

C#’s chief designer was Anders Hejlsberg. Before joining Microsoft in 1996, he
worked at Borland developing Turbo Pascal and Delphi. At Microsoft he worked
as an architect for J++ and he is still a key participant of the development of the
.NET framework.

C# is very similar to Java in that it takes the basic operators and style of C++ but
forces programs to be type safe, in that it executes the code in a controlled
sandbox called the virtual machine. As such, all code must be encapsulated inside

168 HTTP://EN.WIKIPEDIA.ORG/WIKI/EMBEDDED%20SYSTEMS

169 HTTP://EN.WIKIPEDIA.ORG/WIKI/JUST—IN-TIME%20COMPILATION

170 vtTP://WWW.IDIOM.COM/~{}2ILLA/COMPUTER/JAVACBENCHMARK.HTML

171 HTTP://EN.WIKIBOOKS.ORG/WIKI/SUBJECT%3AC%20SHARPS
20PROGRAMMING%20LANGUAGE

172 Chapter 2.1.3 on page 11

173 HTTP://EN.WIKIPEDIA.ORG/WIKI/.NET$20FRAMEWORK

37

http://en.wikipedia.org/wiki/embedded%20systems
http://en.wikipedia.org/wiki/Just-in-time%20compilation
http://www.idiom.com/~{}zilla/Computer/javaCbenchmark.html
http://en.wikibooks.org/wiki/Subject%3AC%20Sharp%20programming%20language
http://en.wikibooks.org/wiki/Subject%3AC%20Sharp%20programming%20language
http://en.wikipedia.org/wiki/.NET%20Framework

C++ a multi-paradigm language

an object, among other things. C# provides many additions to facilitate
interaction with MICROSOFT!74’s Windows, COM, and Visual Basic. C# is a
ECMA and ISO standard.

Issues C# vs C++

* Limitation: With C#, features like multiple inheritance from classes (C# im-
plements a different approach called Multiple Implementation, where a class
can implement more than one interface), declaring objects on the stack, deter-
ministic destruction (allowing RAII) and allowing default arguments as function
parameters (In C# versions < 4.0) will not be available.

» Performance (speed and size): Applications built in C# may not perform as well
when compared with native C++. C# has an intrusive garbage collector, refer-
ence tracking and other overheads with some of the framework services. The
.NET framework alone has a big runtime footprint ("30 Mb of memory), and
requires that several versions of the framework to be installed.

* Flexibility: Due to the dependency on the .NET framework, operating system
level functionality (system level APIs) are buffered by a generic set of functions
that will reduce some freedoms.

* Runtime Redistribution: Programs need to be distributed with the .NET frame-
work (pre-Windows XP or non Windows Machines), similar to the issue with
the Java language, with all the normal upgrade requirements attached.

 Portability: The .NET complete framework is only available on the Windows
OS, there is a open-source versions that provides most of the core function-
alities, that also supports the GNU-Linux OS, like MONO and Portable.NET
HTTP://GETDOTGNU.COM/PNET!”. There are ECMA and ISO .NET standards
for example for C# and the CLI extension to C++.

There are several shortcomings to C++ which are resolved in C#. One of the more
subtle ones is the use of reference variables as function arguments. When a code
maintainer is looking at C++ source code, if a called function is declared in a
header somewhere, the immediate code does not provide any indication that an
argument to a function is passed as a reference. An argument passed by reference
could be changed after calling the function whereas an argument passed by value
cannot be changed. A maintainer not be familiar with the function looking for the
location of an unexpected value change of a variable would additionally need to
examine the header file for the function in order to determine whether or not that
function could have changed the value of the variable. C# insists that the ref

174 uTTP://EN.WIKIPEDIA.ORG/WIKI/MICROSOFT
175 HTTP://GETDOTGNU.COM/PNET

38

http://en.wikipedia.org/wiki/Microsoft
http://getdotgnu.com/pnet

Programming paradigms

keyword be placed in the function call (in addition to the function declaration),
thereby cluing the maintainer in that the value could be changed by the function.

Managed C++ (C++/CLI)

Managed C++ is a shorthand notation for Managed Extensions for C++, which
are part of the .NET FRAMEWORK!® from MICROSOFT!”’. This extension of
the C++ language was developed to add functionality like automatic garbage
collection and heap management, automatic initialization of arrays, and support
for multidimensional arrays, simplifying all those details of programming in C++
that would otherwise have to be done by the programmer.

Managed C++ is not compiled to machine code. Rather, it is compiled to
COMMON INTERMEDIATE LANGUAGE'’8, which is an object-oriented machine
language and was formerly known as MSIL.

D

The D programming language, was developed in-house by DIGITAL MARS!”® a
small US software company, also known for producing a C compiler (known over
time as Datalight C compiler, Zorland C and Zortech C), the first C++ compiler
for Windows (originally known as Zortech C++, renamed to Symantec C++, and
now Digital Mars C++ (DMC++) and various utilities (such as an IDE!30 for
Windows that supports the MFC library).

On their web site, Digital Mars hosts the language specification and a
freely-distributable compiler (for Windows and Linux). The compiler back-end is
proprietary, only the compiler front-end is licensed under both the Artistic
License and the GNU GPL.

Although D originated as a re-engineering of C++ and is predominantly
influenced by it, D is not a variant of C++. D has redesigned some C++ features
and has been influenced by concepts used in other programming languages, such

as Java, C# and Eiffel.

176 HTTP://EN.WIKIPEDIA.ORG/WIKI/MICROSOFT%20.NET

177 uTTP://EN.WIKIPEDIA.ORG/WIKI/MICROSOFT

178 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMMON$20INTERMEDIATES20LANGUAGE

179 HTTP://EN.WIKIPEDIA.ORG/WIKI/DIGITAL%20MARS

180 HTTP://EN.WIKIPEDIA.ORG/WIKI/INTEGRATED%20DEVELOPMENTS
20ENVIRONMENT

39

http://en.wikipedia.org/wiki/Microsoft%20.NET
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Common%20Intermediate%20Language
http://en.wikipedia.org/wiki/Digital%20Mars
http://en.wikipedia.org/wiki/Integrated%20development%20environment
http://en.wikipedia.org/wiki/Integrated%20development%20environment

C++ a multi-paradigm language

Differences between D and C++:

* D does not support multiple inheritance.
* D does not support complex data types with value semantics.

See the D PROGRAMMING 8! book for more details.

2.4 Chapter summary

1. INTRODUCING C++!82
2. PROGRAMMING LANGUAGES!®3
a) PROGRAMMING PARADIGMS'®* - the versatility of C++ as a multi-
paradigm language, concepts of object-oriented programming (objects
and classes, INHERITANCE'®, POLYMORPHISM!86).
3. CoMPARISONS!®7 - to other languages, relation to other computer science
constructs and idioms.
a) with C'88
b) with JAVA!®?
¢) with C#'%°
d) with MANAGED C++ (C++/CLI)!"!
e) with D192

1193

1194

181
182
183
184
185
186
187
188
189
190
191
192
193
194

40

HTTP://EN.WIKIBOOKS.ORG/WIKI/D%$20PROGRAMMING

Chapter 2 on page 7

Chapter 2.1.3 on page 11

Chapter 2.2.3 on page 16

Chapter 2.3.4 on page 20

Chapter 2.3.4 on page 21

Chapter 2.3.6 on page 22

Chapter 2.3.7 on page 25

Chapter 2.3.7 on page 27

Chapter 2.3.7 on page 37

Chapter 2.3.7 on page 39

Chapter 2.3.7 on page 39
HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3AC%2B%2B%20PROGRAMMING
HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3ACS2B%$2B%20PROGRAMMING

http://en.wikibooks.org/wiki/D%20Programming
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

3 Fundamentals for getting started

3.1 The code

Code is the string of symbols interpreted by a computer in order to execute a given
objective. As with natural languages, code is the result of all the conventions
and rules that govern a language. It is what permits implementation of projects
in a standard, compilable way. Correctly written code is used to create projects
that serve as intermediaries for natural language in order to express meanings and
ideas. This, theoretically and actually, allows a computer program to solve any
explicitly-defined problem.

undefined behavior

It is also important to note that the language standard leaves some items unde-
fined. In this the C++ language is not alone, but it is at times most vexing to the
newcomer, since results may appear inconsistent, especially for the unaware. Of
course this becomes most evident when doing cross platform developing requiring
the use of different compilers, since the undefined behavior is left to the choices
made by each compiler implementor.

Note:
We will try to provide the relevant information as the information is presented,
take notice that when we do so we often point you to the documentation of the
compiler you are using or note the behavior in the compilers more commonly
used.

3.1.1 Programming
The task of programming, while not easy in its execution, is actually fairly simple

in its goals. A programmer will envision, or be tasked with, a specific goal. Goals
are usually provided in the form of "I want a program that will perform...fill in the

41

Fundamentals for getting started

blank..." The job of the programmer then is to come up with a "working model" (a
model that may consist of one or more ALGORITHMS'). That "working model" is
sort of an idea of how a program will accomplish the goal set out for it. It gives
a programmer an idea of what to write in order to turn the idea in to a working
program.

Once the programmer has an idea of the structure their program will need to take
in order to accomplish the goal, they set about actually writing the program itself,
using the selected PROGRAMMING LANGUAGE(S)? keywords, functions and syn-
tax. The code that they write is what actually implements the program, or causes
it to perform the necessary task, and for that reason, it is sometimes called "imple-
mentation code".

3.1.2 What is a program?

To restate the definition, a program is just a sequence of instructions, written in
some form of programming language, that tells a computer what to do, and gen-
erally how to do it. Everything that a typical user does on a computer is handled
and controlled by programs. Programs can contain anything from instructions to
solve math problems or send emails, to how to behave when a character is shot in
a video game. The computer will follow the instructions of a program one line at
a time from the start to the end.

Types of programs

There are all kinds of different programs used today, for all types of purposes. All
programs are written with some form of programming language and C++ can be
used for in any type of application. Examples of different types of programs, (also
called software), include:

Operating Systems

An operating system is responsible for making sure that everything on a computer
works the way that it should. It is especially concerned with making certain
that your computer’s "hardware", (i.e. disk drives, video card and sound card,
and etc.) interfaces properly with other programs you have on your computer.
Microsoft Windows and Linux are examples of PC operating systems.

1 HTTP://EN.WIKIPEDIA.ORG/WIKI/ALGORITHM
2 Chapter 2.1.3 on page 11

42

http://en.wikipedia.org/wiki/Algorithm

The code

Office Programs

This is a general category for a collection of programs that allow you to compose,
view, print or otherwise display different kinds of documents. Often such "suites"
come with a word processor for composing letters or reports, a spreadsheet ap-
plication and a slide-show creator of some kind among other things. Popular
examples of Office Suites are Microsoft Office and OpenOffice.org

Web Browsers & Email Clients

A web-browser is a program that allows you to type in an Internet address and
then displays that page for you. An email client is a program that allows you
to send, receive and compose email messages outside of a web-browser. Often
email clients have some capability as a web-browser as well, and some web-
browsers have integrated email clients. Well-known web-browsers are Internet
Explorer and Firefox, and Email Clients include Microsoft Outlook and Thun-
derbird. Most are programmed using C++, you can access some as Open-source
projects, for instance (HTTP://WWW.MOZILLA.ORG/PROJECTS/FIREFOX/)? will
help you download and compile Firefox.

Audio/Video Software

These types of software include media players, sound recording software, burn-
ing/ripping software, DVD players, etc. Many applications such as Windows
Media Player, a popular media player programmed by Microsoft, are examples
of audio/video software.

Computer Games

There are countless software titles that are either games or designed to assist with
playing games. The category is so wide that it would be impossible to get in to
a detailed discussion of all the different kinds of game software without creating
a different book! Gaming is one of the most popular activities to engage in on a
computer.

Development Software

Development software is software used specifically for programming. It includes
software for composing programs in a computer language (sometimes as simple
as a text editor like Notepad), for checking to make sure that code is stable and
correct (called a debugger), and for compiling that source code into executable
programs that can be run later (these are called compilers). Oftentimes, these
three separate programs are combined in to one bigger program called an IDE

3 HTTP://WWW.MOZILLA.ORG/PROJECTS/FIREFOX/)

43

http://www.mozilla.org/projects/firefox/)

Fundamentals for getting started

(Integrated Development Environment). There are all kinds of IDEs for every
programming language imaginable. A popular C++ IDE for Windows and Linux
is the CODE::BLOCKS* IDE (FREE AND OPEN SOURCE?). The one type of
software that you will learn the most about in this book is Development Software.

Types of instructions

As mentioned already, programs are written in many different languages, and for
every language, the words and statements used to tell the computer to execute
specific commands are different. No matter what words and statements are used
though, just about every programming language will include statements that will
accomplish the following:

Input

Input is the act of getting information from a keyboard or mouse, or sometimes
another program.

Output

Output is the opposite of input; it gives information to the computer monitor or
another device or program.

Mathl/Algorithm

All computer processors (the brain of the computer), have the ability to perform
basic mathematical computation, and every programming language has some way
of telling it to do so.

Testing

Testing involves telling the computer to check for a certain condition and to do
something when that condition is true or false. Conditionals are one of the most
important concepts in programming, and all languages have some method of test-
ing conditions.

Repetition
Perform some action repeatedly, usually with some variation.

Believe it or not, that’s pretty much all there is to it. Every program you’ve ever
used, no matter how complicated, is made up of functions that look more or less

4 HTTP://WWW.CODEBLOCKS.ORG/
5 HTTP://WWW.CODEBLOCKS.ORG/FEATURES.SHTML

44

http://www.codeblocks.org/
http://www.codeblocks.org/features.shtml

The code

like these. Thus, one way to describe programming is the process of breaking
a large, complex task up into smaller and smaller subtasks until eventually the
subtasks are simple enough to be performed with one of these simple functions.

Program execution

Execution starts on MAIN FUNCTIONS, the entry point of any (standard-compliant)
C++ program. We will cover it when we introduce FUNCTIONS.

Execution control or simply control, means the process and the location of execu-
tion of a program, this has a direct link to PROCEDURAL PROGRAMMING?®. You
will note the mention of control as we proceed, as it is necessary concept to explain
the order of execution of code and its interpretation by the computer.

Core vs Standard Library

The Core Library consists of the fundamental building blocks of the language it-
self. Made up of the basic statements that the C++ compiler inherently under-
stands. This includes basic looping constructs such as the if..else, do..while, and
for.. statements. The ability to create and modify variables, declare and call func-
tions, and perform basic arithmetic. The Core Library does not include I/O func-
tionality.

The STANDARD LIBRARY? is a set of modules that add extended functionality
to the language through the use of library or header files. Features such as In-
put/Output routines, advanced mathematics, and memory allocation functions fall
under this heading. All C++ compilers are responsible for providing a Standard
Library of functions as outlined by the ANSI/ISO C++ GUIDELINES'?. More
deeper understanding about each module will be provided on the STANDARD C
LIBRARY!!, STANDARD INPUT/OUTPUT STREAMS LIBRARY'Z and STANDARD
TEMPLATE LIBRARY (STL)'3 sections of this book.

Chapter 3.7 on page 229

Chapter 3.6.3 on page 229

Chapter 2.3.1 on page 16

9 HTTP://EN.WIKIPEDIA.ORG/WIKI/C%2B%2B%20STANDARD$20LIBRARY
10 HTTP://WWW.OPEN-STD.ORG/JTCl/sc22/wg2l/

11 Chapter 3.7.10 on page 264

12 Chapter 4.7.3 on page 451

13 Chapter 5.1.5 on page 499

[e<BEN o)

45

http://en.wikipedia.org/wiki/C%2B%2B%20Standard%20Library
http://www.open-std.org/jtc1/sc22/wg21/

Fundamentals for getting started

Program organization

How the instructions of a program are written out and stored is generally not a con-
cept determined by a programming language. Punch cards used to be in common
use, however under most modern operating systems the instructions are commonly
saved as plain text files that can be edited with any text editor. These files are the
source of the instructions that make up a program and so are sometimes referred to
as source files but a more exclusive definition is source code.

When referring to source code or just source, you are considering only the files
that contain code, the actual text that makes up the functions (actions) for computer
to execute. By referring to source files you are extending the idea to not only the
files with the instructions that make up the program but all the raw files resources
that together can build the program. The FILE ORGANIZATION SECTION'* will
cover the different files used in C++ programming and best practices on handling
them.

3.1.3 Keywords and identifiers

IDENTIFIERS’® are names given to variables, functions, objects, etc. to refer to
them in the program. C++ identifiers must start with a letter or an underscore
character "_", possibly followed by a series of letters, underscores or digits. None
of the C++ programming language keywords can be used as identifiers. Identi-
fiers with successive underscores are reserved for use in the header files or by the
compiler for special purpose, e.g. name mangling.

Some keywords exists to directly control the compiler’s behavior, these keywords
are very powerful and must be used with care, they may make a huge difference
on the program’s compile time and running speed. In the C++ Standard, these
keywords are called Specifiers.

Special considerations must be given when creating your own identifiers, this will
be covered in CODE STYLE CONVENTIONS SECTIONO.

3.1.4 ISO C++ (C++98) keywords

14 Chapter 3.1.5 on page 49
15 HTTP://EN.WIKIPEDIA.ORG/WIKI/IDENTIFIERS
16 Chapter 3.1.8 on page 67

46

http://en.wikipedia.org/wiki/identifiers

The code

* and double not this
* and_eq dynamic_- not_eq throw
e asm cast operator true
e auto else or try
* bitand enum or_eq typedef
* bitor explicit private typeid
* bool export protected typename
* break extern public union
¢ case false register unsigned
* catch float using
e char for reinterpret_-e virtual
» crAss! friend cast void
e compl goto return volatile
e const if short wchar_t
e const_cast inline signed while
* continue int sizeof xor
o default long static Xor_eq
¢ delete mutable static_cast
* do namespace STRUCT!®

new switch

template

Specific compilers may (in a non-standard compliant mode) also treat some other
words as keywords, including cdecl, far, fortran, huge, interrupt, near, pascal,
typeof. Old compilers may recognize the overload keyword, an anachronism that
has been removed from the language.

The next revision of C++, informally known as C++0x for now, is likely to add
some keywords, probably including at least:

 static_assert

* decltype

* nullptr

(These are being considered carefully to minimize
breakage to existing code; see HTTP://WWW.OPEN-

17 Chapter 4.2.3 on page 393
18 Chapter 4 on page 385

47

Fundamentals for getting started

STD.ORG/JITC1/8C22/WG21/DOCS/PAPERS/2006/N2105. HTML!? for some
details.)

Old compilers may not recognize some or all of the following keywords:

* and e dynamic_- * or * typeid
* and_eq cast * or_eq * typename
* bitand * explicit . * using
* bitor * export reinterpret_-< wchar_t
* bool * false cast * XOr
e catch ¢ mutable * static_cast e xor_eq
* compl * namespace * template
* const_cast * not throw

* not_eq * true

* try

3.1.5 C++ reserved identifiers

Some "nonstandard" identifiers are reserved for distinct uses, to avoid conflicts on
the naming of identifiers by vendors, library creators and users in general.

Reserved identifiers include keywords with two consecutive underscores (__), all
that start with an underscore followed by an uppercase letter and some other cate-
gories of reserved identifiers carried over from the C library specification.

A list of C reserved identifiers can be found
at the Internet Wayback Machine archived page:
http://web.archive.org/web/20040209031039/http://oakroadsystems.com/tech/c-
predef.htm#Reservedldentifiers

Source code

Source code is the halfway point between human language and machine code. As
mentioned before, it can be read by people to an extent, but it can also be parsed
(converted) into machine code by a computer. The machine code, represented by

19 #TTP://WWW.OPEN—-STD.ORG/JTCl/sc22/wG21/pocs/PAPERS/2006/N2105.
HTML

48

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2105.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2105.html

The code

a series of 1’s and O’s, is the only code that the computer can directly understand
and act on.

In a small program, you might have as little as a few dozen lines of code at the
most, whereas in larger programs, this number might stretch into the thousands or
even millions. For this reason, it is sometimes more practical to split large amounts
of code across many files. This makes it easier to read, as you can do it bit by bit,
and it also reduces compile time of each source file. It takes much less time to
compile a lot of small source files than it does to compile a single massive source
file.

Managing size is not the only reason to split code, though. Often, especially when
a piece of software is being developed by a large team, source code is split. Instead
of one massive file, the program is divided into separate files, and each individual
file contains the code to perform one particular set of tasks for the overall program.
This creates a condition known as Modularity. Modularity is a quality that allows
source code to be changed, added to, or removed a piece at a time. This has
the advantage of allowing many people to work on separate aspects of the same
program, thereby allowing it to move faster and more smoothly. Source code for
a large project should always be written with modularity in mind. Even when
working with small or medium sized projects, it is good to get in the habit of
writing code with ease of editing and use in mind.

C++ source code is CASE SENSITIVE?Y. This means that it distinguishes be-
tween lowercase and capital letters, so that it sees the words "hello," "Hello," and
"HeLlO" as being totally different things. This is important to remember and un-
derstand, it will be discussed further in the CODING STYLE CONVENTIONS SEC-
TION?!.

3.1.6 File organization

Most operating systems require files to be designated by a name followed by a
specific extension. The C++ standard does not impose any specific rules on how
files are named or organized.

The specific conventions for the file organizations has both technical reasons and
organizational benefits, very similar to the CODE STYLE CONVENTIONS?? we will

20 HTTP://EN.WIKIPEDIA.ORG/WIKI/CASE%20SENSITIVITY
21 Chapter 3.1.7 on page 59
22 Chapter 3.1.7 on page 59

49

http://en.wikipedia.org/wiki/Case%20sensitivity

Fundamentals for getting started

examine later. Most of the conventions governing files derive from historical pref-
erences and practices, that are especially related with lower level languages that
preceded C++. This is especially true when we take into consideration that C++
was built over the C89 ANSI standard, with compatibility in mind, this has lead to
most practices remaining static, except for the operating systems improved support
for files and greater ease of management of file resources.

One of the evolutions when dealing with filenames on the language standard was
that the default include files would have no extension. Most implementations still
provide the old C style headers that use C’s file extension ".h" for the C Stan-
dard Library, but C++-specific header filenames that were terminated in the same
fashion now have no extension (e.g. iostream.h is now iostream). This change to
old C++ headers was simultaneous with the implementation of NAMESPACES??, in
particular the std namespace.

Note:
Please note that file names and extensions do not include quotes; the quotes
were added for clarity in this text.

File names

Selecting a file name shares the same issues to naming variables, functions and in
general all things. A name is an identifier that eases not only communication but
how things are structured and organized.

Most of the considerations in naming files are commonsensical:

* Names should share the same language: in this, internationalization of the
project should be a factor.

* Names should be descriptive, and shared by the related header, the extension
will provide the needed distinction.

* Names will be case sensitive, remember to be consistent.

Do not reuse a standard header file name

23 Chapter 3.1.10 on page 79

50

The code

As you will see later, the C++ Standard defines a LIST OF HEADERS?*. The be-
havior is undefined if a file with the same name as a standard header is placed in
the search path for included source files.

Extensions

The extension serves one purpose: to indicate to the Operating System, the IDE
or the compiler what resides within the file. By itself an extension will not serve
as a guarantee for the content.

Since the C language sources usually have the extension ".c" and ".h", in the be-
ginning it was common for C++ source files to share the same extensions or use
a distinct variation to clearly indicate the C++ code file. Today this is the prac-
tice, most C++ implementation files will use the ".cpp" extension and ".h" for the
declaration or header files (the last one is still shared across most assembler and C
compilers).

There are other common extensions variations, such as, ".cc", ".C", ".cxx", and
".c++" for "implementation” code. For header files, the same extension variations
are used, but the first letter of the extension is usually replaced with an "h" as in,
"hh", ".H", ".hxx", "hpp", ".h++" etc...

Header files will be discussed with more detail later in the PREPROCESSOR SEC-
TION? when introducing the #include directive and the standard headers, but in
general terms a header file is a special kind of SOURCE CODE? file that is included
(by the PREPROCESSOR?”) by way of the #INCLUDE?® directive, traditionally used
at the beginning of a ".cpp" file.

Source code

C++ programs would be compilable even if using a single file, but any complex
project will benefit from being split into several source files in order to be manage-
able and permit re-usability of the code. The beginning programmer sees this as
an extra complication, where the benefits are obscure, especially since most of the
first attempts will probably result in problems. This section will cover not only the

24 Chapter 3.2.3 on page 100
25 Chapter 3.2.2 on page 98
26 Chapter 3 on page 41

27 Chapter 3.2.2 on page 98
28 Chapter 3.2.3 on page 98

51

Fundamentals for getting started

benefits and best practices but also explain how a standardized method will avoid
and reduce complexity.

Why split code into several files?

Simple programs will fit into a single source file or at least two, other than that
programs can be split across several files in order to:

* Increase organization and better code structure.

* Promote code reuse, on the same project and across projects.
* Facilitate multiple and often simultaneous edits.

* Improve compilation speed.

Source file types

Some authors will refer to files with a .cpp extension as "source files" and files with
the .h extension as "header files". However, both of those qualify as source code.
As a convention for this book, all code, whether contained within a .cpp extension
(where a programmer would put it), or within a .h extension (for headers), will
be called source code. Any time we’re talking about a .cpp file, we’ll call it an
"implementation file", and any time we’re referring to a header file, we’ll call it a
"declaration file". You should check the editor/IDE or alter the configuration to a
setup that best suits you and others that will read and use this files.

Declaration vs Definition

In general terms a declaration specifies for the linker, the identifier, type and other
aspects of language elements such as variables and functions. It is used to an-
nounce the existence of the element to the compiler which require variables to be
declared before use.

The definition assigns values to an area of memory that was reserved during the
declaration phase. For functions, definitions supply the function body. While a
variable or function may be declared many times, it is typically defined once.

This is not of much importance for now but is a particular characteristic that im-
pacts how the source code is distributed in files and how it is processed by the

52

The code

compiler subsystems. It is COVERED IN MORE DETAIL?® after we introduce you
to VARIABLE TYPES™.

.cpp
An implementation file includes the specific details, that is the definitions, for

what is done by the program. While the header file for the light declared what a
light could do, the light’s .cpp file defines how the light acts.

We will go into much more detail on class definition later; here is a preview:

S,

.Cpp

Figure 4: .cpp files

#include "light.h"

Light::Light () : on(false) ({
}

void Light::toggle() {
on = (!on);

}

bool Light::isOn() const {
return on;

}

.h

Header files contain mostly declarations, to be used in the rest of the program.
The skeleton of a class is usually provided in a header file, while an accompanying
implementation file provides the definitions to put the meat on the bones of it.
Header files are not compiled, but rather provided to other parts of the program
through the use of #include.

29 Chapter 3.3.4 on page 138
30 Chapter 3.3.3 on page 138

53

Fundamentals for getting started

H

Figure 5: .cpp files

A typical header file looks like the following:

// Inside sample.h
#ifndef SAMPLE_H
#define SAMPLE_H

// Contents of the header file are placed here.
#endif /* SAMPLE_H */

Since header files are included in other files, problems can occur if they are in-
cluded more than once. This often results in the use of "header guards" using the
PREPROCESSOR DIRECTIVES?! (#ifndef, #define, and #endif). #ifndef checks to
see if SAMPLE_H has appeared already, if it has not, the header becomes included
and SAMPLE_H is defined. If SAMPLE_H was originally defined, then the file
has already been included, and is not included again.

 ——

H

Figure 6: .cpp files

Classes are usually declared inside header files. We will go into much more detail
on class declaration later; here is a preview:

// Inside light.h
#ifndef LIGHT_H
#define LIGHT_H

31 Chapter 3.2.2 on page 98

54

The code

// A light which may be on or off.
class Light {

private:
bool on;
public:
Light (); // Makes a new light.
void toggle (); // If light is on, turn it off, if off, turn it on
bool isOn(); // Is the light on?

ti
#endif /* LIGHT_H - comment indicating which if this goes with #*/

This header file "light.h" declares that there is going to be a light class, and gives
the properties of the light, and the methods provided by it. Other programmers
can now include this file by typing #include "light.h" in their implementation
files, which allows them to use this new class. Note how these programmers do
not include the actual .cpp file that goes with this class that contains the details
of how the light actually works. We’ll return to this case study after we discuss
implementation files.

Object files

An object file is a temporary file used by the compiler as an intermediate step
between the source code and the final executable file.

All other source files that are not or resulted from source code, the support data
needed for the build (creation) of the program. The extensions of these files may
vary from system to system, since they depend on the IDE/Compiler and necessi-
ties of the program, they may include graphic files, or raw data formats.

Object code

The compiler produces machine code equivalent (object code) of the source code,
contain the BINARY?? language (machine language) instruction to be used by the
computer to do as was instructed in the source code, that can then be linked into
the final program. This step ensures that the code is valid and will sequence into
an executable program. Most object files have the file extension (.0) with the same
restrictions explained above for the (.cpp/.h) files.

32 HTTP://EN.WIKIPEDIA.ORG/WIKI/BINARY%20AND%20TEXT%20FILES

55

http://en.wikipedia.org/wiki/Binary%20and%20text%20files

Fundamentals for getting started

Libraries

Libraries are commonly distributed in binary form, using the (.lib) extension and
header (.h) that provided the interface for its utilization. Libraries can also be
dynamically linked and in that case the extension may depend on the target OS, for
instance windows libraries as a rule have the (.dll) extension, this will be covered
later on in the book in the LIBRARIES SECTION>? of this book.

Makefiles

It is common for source code to come with a specific script file named "Makefile"
(without a standard extension or a standard interpreter). This type of script files is
not covered by the C++ Standard, even though it is in common use.

In some projects, especially if dealing with a high level of external dependencies or
specific configurations, like supporting special hardware, there is need to automate
a vast number of incompatible compile sequences. This scripts are intended to
alleviate the task. Explaining in detail the myriad of variations and of possible
choices a programmer may make in using (or not) such a system goes beyond the
scope of this book. You should check the documentation of the IDE, make tool or
the information available on the source you are attempting to compile.

e The APACHE ANT>** Wikibook describes how to write and use a "build.xml",
one way to automate the build process.

e THE "MAKE" WIKIBOOK?>> describes how to write and use a "Makefile", an-
other way to automate the build process.

* ... many IDEs have a "build" button ...

3.1.7 Statements

Most, if not all, programming languages share the concept of a statement, also
referred to as an expression. A statement is a command the programmer gives to
the computer.

// Example of a single statement
cout << "Hi there!";

Each valid C++ statement is terminated by a semicolon (;). The above statement
will be examined in detail later on, for now consider that this statement has a

33 Chapter 6.3.3 on page 584
34 HTTP://EN.WIKIBOOKS.ORG/WIKI/APACHE%20ANT
35 HTTP://EN.WIKIBOOKS.ORG/WIKI/MAKE%20

56

http://en.wikibooks.org/wiki/Apache%20Ant
http://en.wikibooks.org/wiki/make%20

The code

subject (the noun "cout"), a verb ("<<", meaning "output" or "print"), and, in the
sense of English grammar, an object (what to print). In this case, the subject "cout"
means "the standard console output device", and the verb "<<" means "output the
object" — in other words, the command "cout" means "send to the standard output
stream," (in this case we assume the default, the console).

The programmer either enters the statement directly to the computer (by typing
it while running a special program, called interpreter), or creates a text file with
the command in it (you can use any text editor for that), that is latter used with a
COMPILER?®. You could create a file called "hi.txt", put the above command in it,
and save that file on the computer.

If one were to write multiple statements, it is recommended that each statement be
entered on a separate line.

cout << "Hi there!"; // a statement
cout << "Strange things are afoot..."; // another statement

However, there is no problem writing the code this way:

cout << "Hi there!"; cout << "Strange things are afoot...";

The former code gathers appeal in the developer circles. Writing statements as
in the second example only makes your code look more complex and incompre-
hensible. We will speak of this deeply in the CODING STYLE CONVENTIONS
SECTION?’ of the book.

If you have more than one statement in the file, each will be performed in order,
top to bottom.

The computer will perform each of these statements sequentially. It is invaluable
to be able to "play computer" when programming. Ask yourself, "If I were the
computer, what would I do with these statements?" If you’re not sure what the
answer is, then you are very likely to write incorrect code. Stop and check the lan-
guage standards and the specific compiler depended implementation if the standard
declares it as undefined.

In the above case, the computer will look at the first statement, determine that it
is a cout statement, look at what needs to be printed, and display that text on the
computer screen. It’ll look like this:

Hi there!

36 Chapter 3.1.10 on page 87
37 Chapter 3.1.7 on page 59

57

Fundamentals for getting started

Note that the quotation marks are not there. Their purpose in the program is to
tell the computer where the text begins and ends, just like in English prose. The
computer will then continue to the next statement, perform its command, and the
screen will look like this:

Hi there!Strange things are afoot...

When the computer gets to the end of the text file, it stops. There are many different
kinds of statements, depending on which programming language is being used. For
example, there could be a beep statement that causes the computer to output a beep
on its speaker, or a window statement that causes a new window to pop up.

Also, the way statements are written will vary depending on the programming
language. These differences are fairly superficial. The set of rules like the first two
is called a programming language’s syntax. The set of verbs is called its library.

cout << "Hi there!";

Compound statement

Also referred to as statement blocks or code blocks, consist of one or more state-
ments or commands that are contained between a pair of curly braces { }. Such a
block of statements can be named or be provided a condition for execution. Below
is how you’d place a series of statements in a block.

// Example of a compound statement
{

int a = 10;

int b = 20;

int result = a + b;

}

Blocks are used primarily in loops, conditionals and functions. Blocks can be
nested inside one another, for instance as an if structure inside of a loop inside of
a function.

Note:
Statement blocks also create a LOCAL SCOPE“.

a Chapter 3.1.9 on page 78

Program Control Flow

58

The code

As seen above the statements are evaluated in the order as they occur (sequen-
tially). The execution of flow begins at the top most statement and proceed down-
wards till the last statement is encountered. Any single statement can be substi-
tuted by a compound statement. There are special statements that can redirect the
execution flow based on a condition, those statements are called branching state-
ments, described in detail in the CONTROL FLOW CONSTRUCT STATEMENTS
SECTION? of the book.

3.1.8 Coding style conventions

The use of a guide or set of convention gives programmers a set of rules for code
normalization or coding style that establishes how to format code, name variables,
place comments or any other non language dependent structural decision that is
used on the code. This is very important, as you share a project with others.
Agreeing to a common set of coding standards and recommendations saves time
and effort, by enabling a greater understandings and transparency of the code base,
providing a common ground for undocumented structures, making for easy debug-
ging, and increasing code maintainability. These rules may also be referred to as
Source Code Style, Code Conventions, Coding Standards or a variation of those.

Many organizations have published C++ style guidelines. A list of different ap-
proaches can be found on the C++ CODING CONVENTIONS REFERENCE SEC-
TION*°. The most commonly used style in C++ programming is ANSI or Allman
while much C programming is still done in the Kernighan and Ritchie (K&R) style.
You should be warned that this should be one of the first decisions you make on a
project and in a democratic environment, a consensus can be very hard to achieve.

Programmers tend to stick to a coding style, they have it automated and any de-
viation can be very hard to conform with, if you don’t have a favorite style try to
use the smallest possible variation to a common one or get as broad a view as you
can get, permitting you to adapt easily to changes or defend your approach. There
is software that can help to format or beautify the code, but automation can have
its drawbacks. As seen earlier, indentation and the use of white spaces or tabs are
completely ignored by the compiler. A coding style should vary depending on the
lowest common denominator of the needs to standardize.

Another factor, even if yet to a minimal degree, for the selection of a coding style
convention is the IDE (or the code editor) and its capabilities, this can have for

38 Chapter 3.5.2 on page 213
39 Chapter 8.5 on page 653

59

Fundamentals for getting started

instance an influence in determining how verbose code should be, the maximum
the length of lines, etc. Some editors now have extremely useful features like word
completion, refactoring functionalities and other that can make some specifications
unnecessary or outright outdated. This will make the adoption of a coding style
dependent also on the target code user available software.

Field impacted by the selection of a Code Style are:

* Re-usability
* Self documenting code
* Internationalization
* Maintainability
* Portability
* Optimization
* Build process
* Error avoidance
» Security

Standardization is important

No matter which particular coding style you pick, once it is selected, it should
be kept throughout the same project. Reading code that follows different styles
can become very difficult. In the next sections we try to explain why some of the
options are common practice without forcing you to adopt a specific style.

Note:
Using a bad Coding Style is worse than having no Coding Style at all, since
you will be extending bad practices to all the code base.

25 lines 80 columns

This rule is a commonly recommended, but often countered with argument that
the rule is outdated. The rule originates from the time when text-based computer
terminals and dot-matrix printers often could display at most 80 columns of text.
As such, greater than 80-column text would either inconveniently wrap to the next
line, or worse, not display at all.

The physical limitations of the devices asides, this rule often still suggested under
the argument that if you are writing code that will go further than 80 columns
or 25 lines, it’s time to think about splitting the code into functions. Smaller

60

The code

chunks of encapsulated code helps in reviewing the code as it can be seen all at
once without scrolling up or down. This modularizes, and thus eases, the program-
mer mental representation of the project. This practice will save you precious time
when you have to return to a project you haven’t been working on for 6 months.

For example, you may want to split long output statements across multiple lines:

fprintf (stdout, "The quick brown fox jumps over the lazy dog. "
"The quick brown fox Jjumps over the lazy dog.\n"
"The quick brown fox jumps over the lazy dog - %d", 2);

This recommended practice relates also to the 0 means success*® convention for

functions, that we will cover on the FUNCTIONS SECTION*! of this book.

Whitespace and indentation

Note:

Spaces, tabs and newlines (line breaks) are called whitespace. Whitespace is
required to separate adjacent words and numbers; they are ignored everywhere
else except within quotes and preprocessor directives

Conventions followed when using whitespace to improve the readability of code
is called an indentation style. Every block of code and every definition should
follow a consistent indention style. This usually means everything within { and }.
However, the same thing goes for one-line code blocks.

Use a fixed number of spaces for indentation. Recommendations vary; 2, 3, 4,
8 are all common numbers. If you use tabs for indention you have to be aware
that editors and printers may deal with, and expand, tabs differently. The K&R
standard recommends an indentation size of 4 spaces.

The use of tab is controversial, the basic premise is that it reduces source code
portability, since the same source code loaded into different editors with distinct
setting will not look alike. This is one of the primary reasons why some program-
mers prefer the consistency of using spaces (or configure the editor to replace the
use of the tab key with the necessary number of spaces).

For example, a program could as well be written using as follows:

40 Chapter 3.7 on page 229
41 Chapter 3.6.3 on page 229

61

Fundamentals for getting started

// Using an indentation size of 2
if (a>5) { b=a; at+; }

However, the same code could be made much more readable with proper indenta-
tion:

// Using an indentation size of 2
if (a>5) {

b = a;

at+;

}

// Using an indentation size of 4
if (a>5)
{

b = a;

att;

Placement of braces (CURLY BRACKETS*?)

As we have seen early on the STATEMENTS SECTION®, compound statement are
very important in C++, they also are subject of different coding styles, that recom-
mend different placements of opening and closing braces ({ and }). Some recom-
mend putting the opening brace on the line with the statement, at the end (K&R*).
Others recommend putting these on a line by itself, but not indented (ANSI C++).
GNU recommends putting braces on a line by itself, and indenting them half-way.
We recommend picking one brace-placement style and sticking with it.

Examples:

if (a > 5) {
// This 1is K&R style
}

if (a > 95)
{

// This is ANSI C++ style
}

if (a > 5)
{

42 HBTTP://EN.WIKIPEDIA.ORG/WIKI/CURLY%20BRACKET$20PROGRAMMINGS
20LANGUAGE

43 Chapter 3.1.6 on page 56

44 HTTP://EN.WIKIPEDIA.ORG/WIKI/THE%20C%20PROGRAMMING%20LANGUAGES
20%28B00K%29

62

http://en.wikipedia.org/wiki/Curly%20bracket%20programming%20language
http://en.wikipedia.org/wiki/Curly%20bracket%20programming%20language
http://en.wikipedia.org/wiki/The%20C%20Programming%20Language%20%28book%29
http://en.wikipedia.org/wiki/The%20C%20Programming%20Language%20%28book%29

The code

// This is GNU style
}

Comments

Comments are portions of the code ignored by the compiler which allow the user
to make simple notes in the relevant areas of the source code. Comments come
either in block form or as single lines.

* Single-line comments (informally, C++ style), start with // and continue until
the end of the line. If the last character in a comment line is a \ the comment
will continue in the next line.

* Multi-line comments (informally, C style), start with /* and end with */.

Note:

Since the 1999 revision, C also allows C++ style comments, so the informal
names are largely of historical interest that serves to make a distinction of the
two methods of commenting.

We will now describe how a comment can be added to the source code, but not
where, how, and when to comment; we will get into that later.

C style comments
If you use this kind of comment try to use it like this... Commented
/*void EventLoop(); /**/

or for multiple lines

/%

void EventLoop();
void EventLoop () ;
/xx/

this opens you the option to do this... Uncommented

void EventLoop(); /#**/

or for multiple lines

void EventLoop();
void EventLoop();

/xx/

63

Fundamentals for getting started

Note:
Some compilers may generate errors/warnings.

Try to avoid using C style inside a function because of the non nesting facility
of C style (most editors now have some sort of coloring ability that prevents
this kind of error, but it was very common to miss it, and you shouldn’t make
assumptions on how the code is read).

... by removing only the start of comment and so activating the next one, you did
re-activate the commented code, because if you start a comment this way it will be
valid until it finds the close of comment */.

Note:
Remember that C-style comments /* like this */ do not "nest", i.e., you
can’t write

int function() /* This is a comment /#* { return 0; } and this 1is

the same comment #/ so this isn’t in the comment, and will give an error*/

because of the text so this is not in the comment */ at the end of the
line, which is not inside the comment; the comment ends at the first */ se-
quence it finds, ignoring any interim /* sequence, which might look to human
readers like the start of a nested comment.

C++ style comments
Examples:

// This is a single one line comment

or

if (expression) // This needs a comment
{
statements;

}
else

{
statements;

}

The backslash is a continuation character and will continue the comment to the
following line:

64

The code

// This comment will also comment the following line \

std::cout << "This line will not print" << std::endl;

Using comments to temporarily ignore code

Comments are also sometimes used to enclose code that we temporarily want the
compiler to ignore. This can be useful in finding errors in the program. If a pro-
gram does not give the desired result, it might be possible to track which particular
statement contains the error by commenting out code.

Example with C style comments

/+* This is a single line comment #*/

or

/ *
This 1is a multiple line comment

*/

C and C++ style

Combining multi-line comments (/* */) with c++ comments (//) to comment out
multiple lines of code:

Commenting out the code:

J *

void EventLoop();
void EventLoop();
void EventLoop();
void EventLoop();
void EventLoop () ;
//*/

uncommenting the code chunk

/) *

void EventLoop();
void EventLoop () ;
void EventLoop();
void EventLoop();

65

Fundamentals for getting started

void EventLoop();

V7424

This works because a //* is still a c++ comment. And //*/ acts as a c++ comment
and a multi-line comment terminator. However this doesn’t work if there are any
multi-line comments are used for function descriptions.

Note on doing it with preprocessor statements

Another way (considered bad practice) is to selectively enable disable sections of
code:

#if(0) // Change this to 1 to uncomments.
void EventLoop();
#endif

this is considered a bad practice because the code often becomes illegible when
several #if’s are mixed, if you use them don’t forget to add a comment at the
#endif saying what #if it correspond

#if (FEATURE_1 == 1)
do_something;
#endif //FEATURE_1 == 1

you can prevent illegibility by using inline functions (often considered better
than macros for legibility with no performance cost) containing only 2 sections in
#if #else #endif

inline do_test()
{
#if (Feature_l == 1)
do_something
#endif //FEATURE_1 == 1
}

and call

do_test();

in the program

66

The code

Note:

The use of one-line C-style comments should be avoided as they are considered
outdated. Mixing C and C++ style single-line comments is considered poor
practice. One exception, that is commonly used, is to disable a specific part of
code in the middle of a single line statement for test/debug purposes, in release
code any need for such action should be removed.

45

Naming identifiers

C++’s restriction about the names of IDENTIFIERS? and ITS keywords*” have al-
ready been covered, on the CODE SECTION*®. They leave a lot of freedom in
naming, one could use specific prefixes or suffixes, start names with an initial up-
per or lower case letter, keep all the letters in a single case or, with compound
words, use a word separator character like "_" or flip the case of the first letter of
each component word.

Note:

It is also important to remember to avoid collisions with the OS’s APIs (de-
pending on the portability requirements) or other standards. For instance
POSIX’s keywords terminate in "_t".

Hungarian notation

Hungarian notation, now also referred to as Apps Hungarian, was invented by
Charles Simonyi (a programmer who worked at Xerox PARC circa 1972-1981,
and who later became Chief Architect at Microsoft); and has been until recently
the preeminent naming convention used in most Microsoft code. It uses prefixes
(like "m_" to indicate member variables and "p" to indicate pointers), while the
rest of the identifier is normally written out using some form of mixed capitals.

We mention this convention because you will very probably find it in use, even

45 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
46 HTTP://EN.WIKIPEDIA.ORG/WIKI/IDENTIFIERS

47 Chapter 3.1.3 on page 46

48 Chapter 3 on page 41

67

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikipedia.org/wiki/identifiers

Fundamentals for getting started

more probable if you do any programming in Windows, if you are interested on
learning more you can check WIKIPEDIA’S ENTRY ON THIS NOTATION®.

This notation is considered outdated, since it is highly prone to errors and requires
some effort to maintain without any real benefit in today’s IDEs. Today refactoring
is an everyday task, the IDEs have evolved to provide help with identifier pop-ups
and the use of color schemes. All these informational aids reduce the need for this
notation.

Leading underscores

In most contexts, leading underscores are better avoided. They are reserved for the
compiler or internal variables of a library, and can make your code less portable
and more difficult to maintain. Those variables can also be stripped from a library
(i.e. the variable is not accessible anymore, it is hidden from external world) so
unless you want to override an internal variable of a library, do not do it.

Reusing existing names

Do not use the names of standard library functions and objects for your identifiers
as these names are considered reserved words and programs may become difficult
to understand when used in unexpected ways.

Sensible names
Always use good, unabbreviated, correctly-spelled meaningful names.

Prefer the English language (since C++ and most libraries already use English)
and avoid short cryptic names. This will make it easier to read and to type a name
without having to look it up.

49 HTTP://EN.WIKIPEDIA.ORG/WIKI/HUNGARIAN%20NOTATION

68

http://en.wikipedia.org/wiki/Hungarian%20notation

The code

Note:

It is acceptable to ignore this rule for loop variables and variables used within
a small scope ("20 lines), they may be given short names to save space if the
purpose of that variable is obvious enough. Historically the most commonly

nin

used variable name in this cases is "i".

The "i" may derive from the word "increment" or "index". The "i" is very commonly
found in for loops that does fit nicely the specification for the use of such variable
names.

In early Fortran compilers, the letters i through q represented integer variables - and

by convention the first few (i, j, k) were often used as loop counters.

Names indicate purpose

An identifier should indicate the function of the variable/function/etc. that it rep-
resents, e.g. foobar is probably not a good name for a variable storing the age of
a person.

Identifier names should also be descriptive. n might not be a good name for a
global variable representing the number of employees. However, a good medium
between long names and lots of typing has to be found. Therefore, this rule can
be relaxed for variables that are used in a SMALL SCOPE OR CONTEXT". Many
programmers prefer short variables (such as i) as loop iterators.

Capitalization

Conventionally, variable names start with a lower case character. In identifiers
which contain more than one natural language words, either underscores or capi-
talization is used to delimit the words, e.g. num_chars (K&R style) or numChars
(Java style). It is recommended that you pick one notation and do not mix them
within one project.

Constants

When naming #defines, constant variables, enum constants. and macros put in
all uppercase using ’_’ separators; this makes it very clear that the value is not
alterable and in the case of macros, makes it clear that you are using a construct
that requires care.

50 Chapter 3.1.9 on page 78

69

Fundamentals for getting started

Note:

There is a large school of thought that names LIKE_THIS should be used only
for macros, so that the name space used for macros (which do not respect C++
scopes) does not overlap with the name space used for other identifiers. As
is usual in C++ naming conventions, there is not a single universally agreed
standard. The most important thing is usually to be consistent.

Functions and member functions

The name given to functions and member functions should be descriptive and
make it clear what it does. Since usually functions and member functions perform
actions, the best name choices typically contain a mix of verbs and nouns in them
such as CheckForErrors() instead of ErrorCheck() and dump_data_to_file() instead
of data_file(). Clear and descriptive names for functions and member functions
can sometimes make guessing correctly what functions and member functions do
easier, aiding in making code more self documenting. By following this and other
naming conventions programs can be read more naturally.

People seem to have very different intuitions when using names containing abbre-
viations. It is best to settle on one strategy so the names are absolutely predictable.
Take for example NetworkABCKey. Notice how the C from ABC and K from key
are confused. Some people do not mind this and others just hate it so you’ll find
different policies in different code so you never know what to call something.

Prefixes and suffixes are sometimes useful:

* Min - to mean the minimum value something can have.
* Max - to mean the maximum value something can have.
* Cnt - the current count of something.

* Count - the current count of something.

* Num - the current number of something.

* Key - key value.

* Hash - hash value.

* Size - the current size of something.

* Len - the current length of something.

* Pos - the current position of something.

* Limit - the current limit of something.

* Is - asking if something is true.

* Not - asking if something is not true.

* Has - asking if something has a specific value, attribute or property.
* Can - asking if something can be done.

70

The code

* Get - get a value.
* Set - set a value.

Examples
In most contexts, leading underscores are also better avoided. For example, these
are valid identifiers:

* iloop value

* numberOfCharacters number of characters

* number_of_chars number of characters

* num_chars number of characters

» get_number_of_characters() get the number of characters
» get_number_of_chars() ger the number of characters
* is_character_limit() is this the character limit?

¢ is_char_limit() is this the character limit?

* character_max() maximum number of a character

» charMax() maximum number of a character

* CharMin() minimum number of a character

These are also valid identifiers but can you tell what they mean?:

* numl

* do_this()

* g0

* hxq

The following are valid identifiers but better avoided:

* _num as it could be used by the compiler/system headers

* num__chars as it could be used by the compiler/system headers
* main as there is potential for confusion

* cout as there is potential for confusion

The following are not valid identifiers:

e if as it is a keyword
* dnums as it starts with a digit
* number of characters as spaces are not allowed within an identifier

Explicitness or implicitness

This can be defended both ways. If defaulting to implicitness, this means less
typing but also may create wrong assumptions on the human reader and for the

71

Fundamentals for getting started

compiler (depending on the situation) to do extra work, on the other hand if you
write more keywords and are explicit on your intentions the resulting code will be
clearer and reduces errors (enabling hidden errors to be found), or more defined
(self documented) but this may also lead to added limitations to the code’s evolu-
tion (like we will see with the use of const). This is a thin line were an equilibrium
must be reached in accord to the projects nature, and the available capabilities of
the editor, code completion, syntax coloring and hovering tooltips reduces much
of the work. The important fact is to be consistent as with any other rule.

inline
The choice of using of inline even if the member function is implicitly inlined.

const

Unless you plan on modifying it, you’re arguably better off using const data types.
The compiler can easily optimize more with this restriction, and you’re unlikely to
accidentally corrupt the data. Ensure that your methods take const data types un-
less you absolutely have to modify the parameters. Similarly, when implementing
accessors for private member data, you should in most cases return a const. This
will ensure that if the object that you’re operating on is passed as const, methods
that do not affect the data stored in the object still work as they should and can
be called. For example, for an object containing a person, a getName() should
return a const data type where as walk() might be non-const as it might change
some internal data in the Person such as tiredness.

typedef

It is common practice to avoid using the typedef keyword since it can obfuscate
code if not properly used or it can cause programmers to accidentally misuse large
structures thinking them to be simple types. If used, define a set of rules for the
types you rename and be sure to document them.

volatile

This keyword informs the compiler that the variable it is qualifying as volatile
(can change at anytime) is excluded from any optimization techniques. Usage of
this variable should be reserved for variables that are known to be modified due
to an external influence of a program (whether it’s hardware update, third party
application, or another thread in the application).

72

The code

Since the volatile keyword impacts performance, you should consider a different
design that avoids this situation: most platforms where this keyword is necessary
provide an alternative that helps maintain scalable performance.

Note that using volatile was not intended to be used as a threading or synchroniza-
tion primitive, nor are operations on a volatile variable guaranteed to be atomic.

Pointer declaration

Due to historical reasons some programmers refer to a specific use as:

// C code style
int *z;

// C++ code style

int* z;

The second variation is by far the preferred by C++ programmers and will help
identify a C programmer or legacy code.

One argument against the C++ code style version is when chaining declarations of
more than one item, like:

// C code style
int *ptrA, *ptrB;

// C++ code style
int* ptrC, ptrD;

As you can see, in this case, the C code style makes it more obvious that ptrA and
ptrB are pointers to int, and the C++ code style makes it less obvious that ptrD is
an int, not a pointer to int.

It is rare to use chains of multiple objects in C++ code with the exception of the
basic types and even so it is a not often used and it is extremely rare to see it used

in pointers or other complex types, since it will make it harder to for a human to
visually parse the code.

// C++ code style
int* ptrC;
int D;

73

Fundamentals for getting started

References
3.1.9 Document your code

There are a number of good reasons to document your code, and a number of
aspects of it that can be documented. Documentation provides you with a shortcut
for obtaining an overview of the system or for understanding the code that provides
a particular feature.

"Good code is its own best documentation."”

—Steve McConnell

Why?

The purpose of comments is to explain and clarify the source code to anyone ex-
amining it (or just as a reminder to yourself). Good commenting conventions are
essential to any non-trivial program so that a person reading the code can under-
stand what it is expected to do and to make it easy to follow on the rest of the code.
In the next topics some of the most How? and When? rules to use comments will
be listed for you.

Documentation of programming is essential when programming not just in C++,
but in any programming language. Many companies have moved away from the
idea of "hero programmers" (i.e., one programmer who codes for the entire com-
pany) to a concept of groups of programmers working in a team. Many times pro-
grammers will only be working on small parts of a larger project. In this particular
case, documentation is essential because:

* Other programmers may be tasked to develop your project;

* Your finished project may be submitted to editors to assemble your code into
other projects;

* A person other than you may be required to read, understand, and present your
code.

Even if you are not programming for a living or for a company, documentation
of your code is still essential. Though many programs can be completed in a few
hours, more complex programs can take longer time to complete (days, weeks,
etc.). In this case, documentation is essential because:

* You may not be able to work on your project in one session;
* It provides a reference to what was changed the last time you programmed;

74

The code

* It allows you to record why you made the decisions you did, including why you
chose not to explore certain solutions;

* It can provide a place to document known limitations and bugs (for the latter a
defect tracking system may be the appropriate place for documentation);

* It allows easy searching and referencing within the program (from a non-
technical stance);

* Itis considered to be good programming practice.

For the appropriate audience

Comments should be written for the appropriate audience. When writing code
to be read by those who are in the initial stages of learning a new programming
language, it can be helpful to include a lot of comments about what the code does.
For "production” code, written to be read by professionals, it is considered unhelp-
ful and counterproductive to include comments which say things that are already
clear in the code. Some from the EXTREME PROGRAMMING’!' community say
that excessive commenting is indicative of CODE SMELL>? -- which is not to say
that comments are bad, but that they are often a clue that code would benefit from
REFACTORING>?. Adding comments as an alternative to writing understandable
code is considered poor practice.

What?

What needs to be documented in a program/source code can be divided into what
is documented before the specific program execution (that is before "main") and
what is executed ("what is in main").

Documentation before program execution:

* Programmer information and license information (if applicable)

* User defined function declarations

* Interfaces

* Context

» Relevant standards/specifications

* Algorithm steps

* How to convert the source code into executable file(s) (perhaps by using
MAKE)

51 HTTP://EN.WIKIPEDIA.ORG/WIKI/EXTREME%20PROGRAMMING
52 HTTP://EN.WIKIPEDIA.ORG/WIKI/CODE%20SMELL

53 HTTP://EN.WIKIPEDIA.ORG/WIKI/REFACTORING

54 HTTP://EN.WIKIBOOKS.ORG/WIKI/MAKE

75

http://en.wikipedia.org/wiki/Extreme%20Programming
http://en.wikipedia.org/wiki/code%20smell
http://en.wikipedia.org/wiki/refactoring
http://en.wikibooks.org/wiki/make

Fundamentals for getting started

Documentation for code inside main:

» Statements, Loops, and Cases

* Public and Private Sectors within Classes

* Algorithms used

* Unusual features of the implementation

» Reasons why other choices have been avoided
* User defined function implementation

If used carelessly comments can make source code hard to read and maintain and
may be even unnecessary if the code is self-explanatory -- but remember that what
seems self-explanatory today may not seem the same six months or six years from
now.

Document decisions

Comments should document decisions. At every point where you had a choice of
what to do place a comment describing which choice you made and why. Archae-
ologists will find this the most useful information.

Comment layout
Each part of the project should at least have a single comment layout, and it
would be better yet to have the complete project share the same layout if possible.

How?

Documentation can be done within the source code itself through the use of com-
ments (as seen above) in a language understandable to the intended audience. It
is good practice to do it in English as the C++ language is itself English based
and English being the current LINGUA FRANCA™ of international business, sci-
ence, technology and aviation, you will ensure support for the broadest audience
possible.

Comments are useful in documenting portions of an algorithm to be executed,
explaining function calls and variable names, or providing reasons as to why a
specific choice or method was used. Block comments are used as follows:

/%

55 HTTP://EN.WIKIPEDIA.ORG/WIKI/LINGUA%20FRANCA

76

http://en.wikipedia.org/wiki/Lingua%20franca

The code

get timepunch algorithm - this algorithm gets a time punch for use later
1. user enters their number and selects "in" or "out"

2. time is retrieved from the computer

3. time punch is assigned to user

*/

Alternately, line comments can be used as follows:

GetPunch (user_id, time, punch); //this function gets the time punch

An example of a full program using comments as documentation is:

/%

Chris Seedyk

BORD Technologies

29 December 2006

Test

*/

int main()

{

cout << "Hello world!"™ << endl; //predefined cout prints stuff in " " to screen
return 0;

}

It should be noted that while comments are useful for in-program documentation,
it is also a good idea to have an external form of documentation separate from the
source code as well, but remember to think first on how the source will be dis-
tributed before making references to external information on the code comments.

Commenting code is also no substitute for well-planned and meaningful variable,
function, and class names. This is often called "self-documenting code," as it
is easy to see from a carefully chosen and descriptive name what the variable,
function, or class is meant to do. To illustrate this point, note the relatively equal
simplicity with which the following two ways of documenting code, despite the
use of comments in the first and their absence in the second, are understood. The
first style is often encountered in very old C source by people who understood
well what they were doing and had no doubt anyone else might not comprehend
it. The second style is more "human-friendly" and while much easier to read is
nevertheless not as frequently encountered.

// Returns the area of a triangle cast as an int
int area_ftoi(float a, float b) { return (int) a * b / 2; }

int iTriangleArea(float fBase, float fHeight)
{

return (int) fBase * fHeight / 2;
}

77

Fundamentals for getting started

Both functions perform the same task, however the second has such practical
names chosen for the function and the variables that its purpose is clear even
without comments. As the complexity of the code increases, well-chosen nam-
ing schemes increase vastly in importance.

Regardless of what method is preferred, comments in code are helpful, save time
(and headaches), and ensure that both the author and others understand the layout
and purpose of the program fully.

Automatic documentation

Various tools are available to help with documenting C++ code; LITERATE PRO-
GRAMMING>® is a whole school of thought on how to approach this, but a very
effective tool is DOXYGEN> (also supports several languages), it can even use
hand written comments in order to generate more than the bare structure of the
code, bringing Javadoc-like documentation comments to C++ and can generate
documentation in HTML, PDF and other formats.

Comments should tell a story

Consider your comments a story describing the system. Expect your comments to
be extracted by a robot and formed into a manual page. Class comments are one
part of the story, method signature comments are another part of the story, method
arguments another part, and method implementation yet another part. All these
parts should weave together and inform someone else at another point of time just
exactly what you did and why.

Do not use comments for flowcharts or pseudo-code

You should refrain from using comments to do ASCII art or pseudo-code (some
programmers attempt to explain their code with an ASCII-art flowchart). If you
want to flowchart or otherwise model your design there are tools that will do a
better job at it using standardized methods. See for example: UML8,

56 HTTP://EN.WIKIPEDIA.ORG/WIKI/LITERATE%20PROGRAMMING
57 HTTP://WWW.DOXYGEN.ORG
58 HTTP://EN.WIKIPEDIA.ORG/WIKI/UNIFIED%20MODELING%20LANGUAGE

78

http://en.wikipedia.org/wiki/Literate%20Programming
http://www.doxygen.org
http://en.wikipedia.org/wiki/Unified%20Modeling%20Language

The code

3.1.10 Scope

In any language, scope (the context; what is the background) has a high impact on
a given action or statement validity. The same is true in a programming language.

In a program we may have various constructs, may they be objects, variables or
any other such. They come into existence from the point where you declare them
(before they are declared they are unknown) and then, at some point, they are
destroyed (as we will see there are many reasons to be so) and all are destroyed
when your program terminates.

We will see THAT VARIABLES HAVE A FINITE LIFE-TIME WHEN YOUR PROGRAM
EXECUTES>, that the scope of an object or variable is simply that part of a program
in which the variable name exists or is visible to the compiler.

Global scope

The default scope is defined as global scope, this is commonly used to define and
use global variables or other global constructs (classes, structure, functions, etc...),
this makes them valid and visible to the compiler at all times.

Note:

It is considered a good practice, if possible and as a way to reduce complexity
and name collisions, to use a namespace scope for hiding the otherwise global
elements, without removing their validity.

Local scope
A local scope relates to the scope created inside a COMPOUND STATEMENT®,
Note:

The only exceptional case is the for keyword. In that case the variables de-
clared on the for initialization section will be part of the local scope.

59 Chapter 3.3 on page 121
60 Chapter 3.1.7 on page 58

79

Fundamentals for getting started

namespace

The namespace keyword allows you to create a new scope. The name is op-
tional, and can be omitted to create an unnamed namespace. Once you create
a namespace, you’ll have to refer to it explicitly or use the using keyword. A
namespace is defined with a namespace block.

Syntax

namespace name {
declaration-list;

}

In many PROGRAMMING LANGUAGE®!s, a NAMESPACE® is a context for IDEN-
TIFIER®?s. C++ can handle multiple namespaces within the language. By using
namespace (or the using namespace keyword), one is offered a clean way to
aggregate code under a shared label, so as to prevent naming collisions or just to
ease recall and use of very specific scopes. There are other "name spaces" besides
"namespaces"; this can be confusing.

Name spaces (note the space there), as we will see, go beyond the concept of scope
by providing an easy way to differentiate what is being called/used. As we will see,
classes are also name spaces, but they are not namespaces.

Note:
Use namespace only for convenience or real need, like aggregation of related
code, do not use it in a way to make code overcomplicated for you and others

Example

namespace foo
int bar;

}

61 HTTP://EN.WIKIPEDIA.ORG/WIKI/PROGRAMMING%20LANGUAGE

62 HTTP://EN.WIKIPEDIA.ORG/WIKI/NAMESPACE%20%28COMPUTERS
20SCIENCE%29

63 HTTP://EN.WIKIPEDIA.ORG/WIKI/IDENTIFIER

80

http://en.wikipedia.org/wiki/programming%20language
http://en.wikipedia.org/wiki/Namespace%20%28computer%20science%29
http://en.wikipedia.org/wiki/Namespace%20%28computer%20science%29
http://en.wikipedia.org/wiki/identifier

The code

Within this block, identifiers can be used exactly as they are declared. Outside of
this block, the namespace specifier must be prefixed (that is, it must be qualified).
For example, outside of namespace foo, bar must be written foo: :bar.

C++ includes another construct which makes this verbosity unnecessary. By
adding the line using namespace foo; to a piece of code, the prefix foo:: isno
longer needed.

unnamed namespace

A namespace without a name is called an unnamed namespace. For such a
namespace, a unique name will be generated for each translation unit. It is not
possible to apply the using keyword to unnamed namespaces, so an unnamed
namespace works as if the using keyword has been applied to it.

Syntax

namespace {
declaration-list;

}

namespace alias
You can create new names (aliases) for namespaces, including nested names-
paces.

Syntax

namespace identifier = namespace-specifier;

using namespaces

using

using namespace std;

This using-directive indicates that any names used but not declared within the
program should be sought in the ‘standard (std)’ namespace.

81

Fundamentals for getting started

Note:

It is always a bad idea to use a using directive in a header file, as it affects
every use of that header file and would make difficult its use in other derived
projects; there is no way to "undo" or restrict the use of that directive. Also
don’t use it before an #include directive.

To make a single name from a namespace available, the following using-
declaration exists:

using foo::bar;

After this declaration, the name bar can be used inside the current namespace in-
stead of the more verbose version foo: :bar. Note that programmers often use the
terms declaration and directive interchangeably, despite their technically different
meanings.

It is good practice to use the narrow second form (using declaration), because the
broad first form (using directive) might make more names available than desired.
Example:

namespace foo {
int bar;
double pi;

}

using namespace foo;

int* pi;

pi = &bar; // ambiguity: pi or foo::pi?

In that case the declaration using foo::bar; would have made only foo: :bar
available, avoiding the clash of pi and foo::pi. This problem (the collision of
identically-named variables or functions) is called "namespace pollution" and as a
rule should be avoided wherever possible.

using-declarations can appear in a lot of different places. Among them are:

* namespaces (including the default namespace)
* functions

A using-declaration makes the name (or namespace) available in the scope of the
declaration. Example:

namespace foo {
namespace bar {
double pi;

82

The code

}

using bar::pi;
// bar::pi can be abbreviated as pi

}

// here, pi is no longer an abbreviation. Instead, foo::bar::pi must be used.

Namespaces are hierarchical. Within the hypothetical namespace food: :fruit,
the identifier orange refers to food: :fruit::orange if it exists, or if not, then
food: :orange if that exists. If neither exist, orange refers to an identifier in the
default namespace.

Code that is not explicitly declared within a namespace is considered to be in the
default namespace.

Another property of namespaces is that they are open. Once a namespace is de-
clared, it can be redeclared (reopened) and namespace members can be added.
Example:

namespace foo {
int bar;

}
VA

namespace foo {

double pi;
}
Namespaces are most often used to avoid naming collisions. Although namespaces
are used extensively in recent C++ code, most older code does not use this facility.
For example, the entire standard library is defined within namespace std, and in
earlier standards of the language, in the default namespace.

For a long namespace name, a shorter alias can be defined (a namespace alias
declaration). Example:

namespace ultra_cool_library_for_image_processing version_1_0 {
int foo;

}

namespace improcl = ultra_cool_library_ for_image_processing_version_1_0;
// from here, the above foo can be accessed as improcl::foo

There exists a special namespace: the unnamed namespace. This namespace is
used for names which are private to a particular source file or other namespace:

namespace {
int some_private_variable;

83

Fundamentals for getting started

}

// can use some_private variable here

In the surrounding scope, members of an unnamed namespace can be accessed
without qualifying, i.e. without prefixing with the namespace name and : : (since
the namespace doesn’t have a name). If the surrounding scope is a namespace,
members can be treated and accessed as a member of it. However, if the surround-
ing scope is a file, members cannot be accessed from any other source file, as
there is no way to name the file as a scope. An unnamed namespace declaration is
semantically equivalent to the following construct

namespace $$5 {
V2R

}

using namespace $$$;

where $$$ is a unique identifier manufactured by the compiler.

As you can nest an unnamed namespace in an ordinary namespace, and vice versa,
you can also nest two unnamed namespaces.

namespace {

namespace {
// ok
}

Note:

If you enable the use of a namespace in the code, all the code will use it (you
can’t define sections that will and exclude others), you can however use nested
namespace declarations to restrict its scope.

Because of space considerations, we cannot actually show the namespace com-
mand being used properly: it would require a very large program to show it work-
ing usefully. However, we can illustrate the concept itself easily.

// Namespaces Program, an example to illustrate the use of namespaces
#include <iostream>

namespace first
int firstl;
int x;

}

namespace second {
int secondl;

84

The code

int x;

}

namespace first {
int first2;

}

int main() {
//firstl = 1;

first::firstl 1;
using namespace first;
firstl = 1;

x = 1;

second::x = 1;
using namespace second;

//x = 1;
first::x = 1;
second::x = 1;
first2 = 1;

//cout << ’X’;
std::cout << ’'X’;
using namespace std;
cout << 'X’;

return 0;

}
64

We will examine the code moving from the start down to the end of the program,
examining fragments of it in turn.

#include <iostream>

This just includes the iostream library so that we can use std: : cout to print stuff
to the screen.

namespace first {
int firstl;
int x;

}

namespace second {
int secondl;
int x;

}

namespace first {
int first2;

}

64 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

85

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Fundamentals for getting started

We create a namespace called first and add to it two variables, first/ and x. Then
we close it. Then we create a new namespace called second and put two variables
init: secondl and x. Then we re-open the namespace first and add another variable
called first2 to it. A namespace can be re-opened in this manner as often as desired
to add in extra names.

main () {
1 //firstl = 1;
2 first::firstl = 1;

The first line of the main program is commented out because it would cause an
error. In order to get at a name from the first namespace, we must qualify the
variable’s name with the name of its namespace before it and two colons; hence
the second line of the main program is not a syntax error. The name of the variable
is in scope: it just has to be referred to in that particular way before it can be used
at this point. This therefore cuts up the list of global names into groups, each group
with its own prefixing name.

3 using namespace first;
4 firstl = 1;

5 x=1;

6

second::x = 1;

The third line of the main program introduces the using namespace command.
This commands pulls all the names in the first namespace into scope. They can
then be used in the usual way from there on. Hence the fourth and fifth lines of
the program compile without error. In particular, the variable x is available now:
in order to address the other variable x in the second namespace, we would call it
second::x as shown in line six. Thus the two variables called x can be separately
referred to, as they are on the fifth and sixth lines.

7 using namespace second;

8 //x = 1;

9 first::x = 1;

10 second::x = 1;

We then pull the declarations in the namespace called second in, again with the
using namespace command. The line following is commented out because it is
now an error (whereas before it was correct). Since both namespaces have been
brought into the global list of names, the variable x is now ambiguous, and needs
to be talked about only in the qualified manner illustrated in the ninth and tenth
lines.

11 first2 = 1;

86

The Compiler

The eleventh line of the main program shows that even though first2 was declared
in a separate section of the namespace called first, it has the same status as the
other variables in namespace first. A namespace can be re-opened as many times
as you wish. The usual rules of scoping apply, of course: it is not legal to try to
declare the same name twice in the same namespace.

12 //cout << ’X’;

13 std::cout << 'X’';

14 using namespace std;
15 cout << 'X’;

}

There is a namespace defined in the computer in special group of files. Its name is
std and all the system-supplied names, such as cout, are declared in that namespace
in a number of different files: it is a very large namespace. Note that the #include
statement at the very top of the program does not fully bring the namespace in:
the names are there but must still be referred to in qualified form. Line twelve has
to be commented out because currently the system-supplied names like cout are
not available, except in the qualified form std::cout as can be seen in line thirteen.
Thus we need a line like the fourteenth line: after that line is written, all the system-
supplied names are available, as illustrated in the last line of the program. At this
point we have the names of three namespace incorporated into the program.

As the example program illustrates, the declarations that are needed are brought in
as desired, and the unwanted ones are left out, and can be brought in in a controlled
manner using the qualified form with the double colons. This gives the greater
control of names needed for large programs. In the example above, we used only
the names of variables. However, namespaces also control, equally, the names of
procedures and classes, as desired.

3.2 The Compiler

A COMPILER® is a program that translates a COMPUTER PROGRAM® written in
one COMPUTER LANGUAGEY’ (the SOURCE CODE®®) into an equivalent program
written in the computer’s native MACHINE LANGUAGE®®. This process of transla-

65 &HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPILER

66 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPUTER%20PROGRAM

67 HTTP://EN.WIKIBOOKS.ORG/WIKI/PROGRAMMING%20LANGUAGESS
20BOOKSHELF

68 Chapter 3.1.2 on page 42

69 HTTP://EN.WIKIPEDIA.ORG/WIKI/MACHINE%20LANGUAGE

87

http://en.wikipedia.org/wiki/compiler
http://en.wikipedia.org/wiki/computer%20program
http://en.wikibooks.org/wiki/Programming%20languages%20bookshelf
http://en.wikibooks.org/wiki/Programming%20languages%20bookshelf
http://en.wikipedia.org/wiki/machine%20language

Fundamentals for getting started

tion, that includes several distinct steps is called compilation. Since the compiler
is a program, itself written in a computer language, the situation may seem a para-
dox akin to the CHICKEN AND EGG DILEMMA’?. A compiler may not be created
with the resulting compilable language but with a previous available language or
even in machine code.

3.2.1 Compilation

The compilation output of a compiler is the result from translating or compiling a
program. The most important part of the output is saved to a file called an OBJECT
FILE’/, it consists of the transformation of source files into object files.

Note:

Some files may be created/needed for a successful compilation, that data is not
part of the C++ language or may result from the compilation of external code
(an example would be a library), this may depend on the specific compiler you
use (MS Visual Studio for example adds several extra files to a project), in that
case you should check the documentation or it can part of a specific framework
that needs to be accessed. Be aware that some of this constructs may limit the
portability of the code.

The instructions of this compiled program can then be run (executed) by the com-
puter if the object file is in an executable format. However, there are additional
steps that are required for a compilation: preprocessing and linking.

Compile-time

Defines the time and operations performed by a compiler (i.e., compile-time oper-
ations) during a build (creation) of a program (executable or not). Most of the uses
of "static" on the C++ language is directly related to compile-time information.

The operations performed at compile time usually include lexical analysis, syntax
analysis, various kinds of SEMANTIC ANALYSIS’? (e.g., TYPE CHECKS’?, some

70 HTTP://EN.WIKIPEDIA.ORG/WIKI/CHICKEN$200R%20THE$20EGG

71 Chapter 3 on page 41

72 HTTP://EN.WIKIPEDIA.ORG/WIKI/SEMANTIC%20ANALYSIS%20%
28COMPUTER%20SCIENCE%29

73 HTTP://EN.WIKIPEDIA.ORG/WIKI/DATATYPE

88

http://en.wikipedia.org/wiki/Chicken%20or%20the%20egg
http://en.wikipedia.org/wiki/Semantic%20analysis%20%28computer%20science%29
http://en.wikipedia.org/wiki/Semantic%20analysis%20%28computer%20science%29
http://en.wikipedia.org/wiki/datatype

The Compiler

of the TYPE CASTS’#, and INSTANTIATION OF TEMPLATE’’) and CODE GENER-
76
ATION’.

The definition of a programming language will specify compile time requirements
that source code must meet to be successfully compiled.

Compile time occurs before LINK TIME’’ (when the output of one or more com-
piled files are joined together) and runtime (when a program is executed). In some
programming languages it may be necessary for some compilation and linking to
occur at runtime.

Run-time

Run-time, or execution time, starts at the moment the program starts to execute
and end as it exits. At this stage the compiler is irrelevant and has no control.
This is the most important location in regards to optimizations (a program will
only compile once but run many times) and debugging (tracing and interaction
will only be possible at this stage). But it is also in run-time that some of the TYPE
CASTING MAY OCCUR’® and that RUN-TIME TYPE INFORMATION (RTTI)”® has
relevance. The concept of runtime will be mentioned again when relevant.

Lexical analysis

This is alternatively known as scanning or tokenisation. It happens before syntax
analysis and converts the code into TOKENS®?, which are the parts of the code
that the program will actually use. The source code as expressed as characters
(arranged on lines) into a sequence of special tokens for each reserved keyword,
and tokens for data types and identifiers and values. The lexical analyzer is the part
of the compiler which removes whitespace and other non compilable characters
from the source code. It uses whitespace to separate different tokens, and ignores
the whitespace.

To give a simple illustration of the process:

74 Chapter 3.4.14 on page 204

75 HTTP://EN.WIKIPEDIA.ORG/WIKI/INSTANTIATION%200F%20TEMPLATE

76 HTTP://EN.WIKIPEDIA.ORG/WIKI/CODE%$20GENERATION%20%28COMPILERS
29

77 HTTP://EN.WIKIPEDIA.ORG/WIKI/LINK%20TIME

78 Chapter 3.4.14 on page 204

79 Chapter 5.5.5 on page 530

80 HTTP://EN.WIKIBOOKS.ORG/WIKI/COMPILER%20CONSTRUCTION$23WHATS
2015%202%20TOKEN

&9

http://en.wikipedia.org/wiki/instantiation%20of%20template
http://en.wikipedia.org/wiki/code%20generation%20%28compiler%29
http://en.wikipedia.org/wiki/code%20generation%20%28compiler%29
http://en.wikipedia.org/wiki/link%20time
http://en.wikibooks.org/wiki/Compiler%20Construction%23What%20is%20a%20token
http://en.wikibooks.org/wiki/Compiler%20Construction%23What%20is%20a%20token

Fundamentals for getting started

int main()

{
std::cout << "hello world" << std::endl;
return 0;

}

Depending on the lexical rules used it might be tokenized as:

= string "int"

string "main"

w N
I

= opening parenthesis

S
I

closing parenthesis
= opening brace

= string "std"
namespace operator

= string "cout"

©o o I3 o u
I

= << operator

10 = string ""hello world""
11 = string "endl"

12 = semicolon

13 = string "return"

14 = number 0

15 = closing brace

And so for this program the lexical analyzer might send something like:

1234567891096 71112 13 14 12 15

To the syntactical analyzer, which is talked about next, to be parsed. It is easier
for the syntactical analyzer to apply the rules of the language when it can work
with numerical values and can distinguish between language syntax (such as the
semicolon) and everything else, and knows what data type each thing has.

Syntax analysis

This step (also called sometimes syntax checking) ensures that the code is valid
and will sequence into an executable program. The syntactical analyzer applies
rules to the code, checking to make sure that each opening brace has a correspond-
ing closing brace, and that each declaration has a type, and that the type exists, and
that.... syntax analysis is more complicated than lexical analysis =).

90

The Compiler

As an example:

int main()

{

std::cout << "hello world" << std::endl;
return 0;

The syntax analyzer would first look at the string "int", check it against defined
keywords, and find that it is a type for integers. *The analyzer would then look
at the next token as an identifier, and check to make sure that it has used a valid
identifier name.

It would then look at the next token. Because it is an opening parenthesis it will
treat "main" as a function, instead of a declaration of a variable if it found a
semicolon or the initialization of an integer variable if it found an equals sign.
After the opening parenthesis it would find a closing parenthesis, meaning that
the function has 0 parameters.

Then it would look at the next token and see it was an opening brace, so it
would think that this was the implementation of the function main, instead of a
declaration of main if the next token had been a semicolon, even though you can
not declare main in c++. It would probably create a counter also to keep track of
the level of the statement blocks to make sure the braces were in pairs. *After
that it would look at the next token, and probably not do anything with it, but
then it would see the :: operator, and check that "std" was a valid namespace.
Then it would see the next token "cout" as the name of an identifier in the
namespace "std", and see that it was a template.

The analyzer would see the << operator next, and so would check that the <<
operator could be used with cout, and also that the next token could be used with
the << operator.

The same thing would happen with the next token after the ""hello world"" token.
Then it would get to the "std" token again, look past it to see the :: operator token
and check that the namespace existed again, then check to see if "endl" was in
the namespace.

Then it would see the semicolon and so it would see that as the end of the state-
ment.

Next it would see the keyword return, and then expect an integer value as the
next token because main returns an integer, and it would find 0, which is an
integer.

Then the next symbol is a semicolon so that is the end of the statement.

The next token is a closing brace so that is the end of the function. And there are
no more tokens, so if the syntax analyzer did not find any errors with the code,

91

Fundamentals for getting started

it would send the tokens to the compiler so that the program could be converted
to machine language.

This is a simple view of syntax analysis, and real syntax analyzers do not really
work this way, but the idea is the same.

Here are some keywords which the syntax analyzer will look for to make sure
you are not using any of these as identifier names, or to know what type you are
defining your variables as or what function you are using which is included in the
C++ language.

Compile speed

There are several factors that dictate how fast a compilation proceeds, like:

* Hardware
* Resources (Slow CPU, low memory and even a slow HDD can have an influ-
ence)

* Software
» The compiler itself, new is always better, but may depend on how portable you
want the project to be.
* The design selected for the program (structure of object dependencies, in-
cludes) will also factor in.

Experience tells that most likely if you are suffering from slow compile times, the
program you are trying to compile is poorly designed, take the time to structure
your own code to minimize re-compilation after changes. Large projects will al-
ways compile slower. Use pre-compiled headers and external header guards. We
will discuss ways to reduce compile time in the OPTIMIZATION®! Section of this
book.

3.2.2 Where to get a compiler
When you select your compiler you must take in consideration your system OS,
your personal preferences and the documentation that you can get on using it.

Most compilers today are free and many open source platforms already include
one (mostly GCC), there are also various IDEs available.

81 Chapter 6.8.3 on page 635

92

The Compiler

In case you don’t have, want or need a compiler installed on you machine,
you can use a WEB free compiler available at HTTP://IDEONE.COM3? (or
HTTP://CODEPAD.ORG®? but you will have to change the code not to require inter-
active input). You can always get one locally if you need it.

IDE (Integrated development environment)

gl VN

File Edit Tools Syntax Buffers Window Help

CHE & 8 ¢
J* virset [wim
. vimrc
* VIM - W vim_memset
3 vim tcl_init
vim_mem_profile_dump
“ Do ":he vimdiff
* Do ":he wvim_chdirfile
See REA vim_chdir
o7 viminfo
vim snprintf
#include " vim free
vim_isdigit
J* Structu vim_getenv *f
gui T gui; vim strsave
vimre_found 1,1-1
/* vi:set wvim_strsave_escaped_ext
o vim strsave_escaped

N
[t by Robert webb

usage conditions.
ople who contributed.

e
#
*
e
#
. rce code.

VIM - W vimconv_T
: vimconv

*
*#
* Do ":he wvim strsave_up usage conditions.
* Do ":he wim strchr ople who contributed.
* See REA vimmenu_T gui.c rce code.
*f vim iswhite qui.c
vim_regcomp gui.c
#1f define vim_regexec_nl gui.c _WING4)
include "vimfio.h" /* for close() and dup() */

#endif

#define EXTERN
#include "vim.h"

11,15-15
Scanning included file: arabic.c
-- Keyword completion (“N°P) match 1 of 64

D& »>¢ BE® 43 ek

-

=
Dl

ToplEd

Figure 7: Graphical Vim under GTK2¢

a HTTP://EN.WIKIPEDIA.ORG/WIKI/GTK%2B

INTEGRATED DEVELOPMENT ENVIRONMENT®* is a software development sys-
tem, that often includes an editor, compiler and debugger in an integrated package
that is distributed together. Some IDEs will require the user to make the integra-

82 HTTP://IDEONE.COM
83 HTTP://CODEPAD.ORG

84 HTTP://EN.WIKIPEDIA.ORG/WIKI/INTEGRATED$20DEVELOPMENTS

20ENVIRONMENT

93

http://en.wikipedia.org/wiki/GTK%2B
http://ideone.com
http://codepad.org
http://en.wikipedia.org/wiki/Integrated%20development%20environment
http://en.wikipedia.org/wiki/Integrated%20development%20environment

Fundamentals for getting started

tion of the components themselves, and others will refer as the IDE to the set of
separated tools they use for programming.

A good IDE is one that permits the programmer to use it to abstract and accelerate
some of the more common tasks and at the same time provide some help in reading
and managing the code. Except for the compiler the C++ Standard has no control
over the different implementations. Most IDEs are visually oriented, especially the
new ones, they will offer graphical debuggers and other visual aids, but some peo-
ple will still prefer the visual simplicity offered by potent text editors like VIm®>
or EMACs®®.

When selecting an IDE, remember that you are also investing time to become pro-
ficient in its use, completeness, stability and portability across OSs will be impor-
tant.

For Microsoft Windows, you have also the Microsoft Visual Studio Express, cur-
rently freely available (but with reduced functionalities), it includes a C++ com-
piler that can be used from the command line or the supplied IDE.

In the book APPENDIX B:EXTERNAL REFERENCES®’ you will find references to
other freely available compilers and IDEs you can use.

GCC3

One of most mature and compatible compilers is GCC. Also known as The GNU
Compiler Collection is a free set of compilers developed by the Free Software
Foundation, with RICHARD STALLMAN®? as one of the main architects.

There are many different pre-compiled GCC binaries on the Internet; some popular
choices are listed below (with detailed steps for installation).You can easily find
information on the GCC website on how to do it under another OS.

85 HTTP://EN.WIKIBOOKS.ORG/WIKI/LEARNING%20THE%20VI%20EDITORS
2FVIM

86 HTTP://EN.WIKIPEDIA.ORG/WIKI/EMACS

87 Chapter 8.2 on page 646

88 HTTP://EN.WIKIPEDIA.ORG/WIKI/GNU%20COMPILER%20COLLECTION

89 HTTP://EN.WIKIPEDIA.ORG/WIKI/RICHARD%20STALLMAN

94

http://en.wikibooks.org/wiki/Learning%20the%20vi%20Editor%2FVim
http://en.wikibooks.org/wiki/Learning%20the%20vi%20Editor%2FVim
http://en.wikipedia.org/wiki/Emacs
http://en.wikipedia.org/wiki/GNU%20Compiler%20Collection
http://en.wikipedia.org/wiki/Richard%20Stallman

The Compiler

Note:

Is often common that the implementation language of a compiler to be C (since
it is normally first the system language above assembly that new systems im-
plement). GCC has, since the end of May 2005, GOT THE GREEN LIGHT? to
start moving the core code-base to C++. Considering that this is the most com-
mon used compiler and an open source implementation, it was an extremely
positive step to the compiler and the language in general.

a

HTTP://ARTICLE.GMANE.ORG/GMANE.COMP.GCC.DEVEL/114407

On Windows
Cygwin:

1.

Go to HTTP://WWW.CYGWIN.COM? and click on the "Install Cygwin Now"
button in the upper right corner of the page.

Click "run" in the window that pops up, and click "next" several times, ac-
cepting all the default settings.

. Choose any of the Download sites ("ftp.easynet.be", etc.) when that window

comes up; press "next" and the Cygwin installer should start downloading.
When the "Select Packages" window appears, scroll down to the heading
"Devel" and click on the "+" by it. In the list of packages that now displays,
scroll down and find the "gcc-c++" package; this is the compiler. Click once
on the word "Skip", and it should change to some number like "3.4" etc. (the
version number), and an "X" will appear next to "gcc-core" and several other
required packages that will now be downloaded.

Click "next" and the compiler as well as the Cygwin tools should start
downloading; this could take a while. While you’re waiting, go to
HTTP://WWW.CRIMSONEDITOR.COM’! and download that free program-
mer’s editor; it’s powerful yet easy to use for beginners.

Once the Cygwin downloads are finished and you have clicked "next", etc.
to finish the installation, double-click the Cygwin icon on your desktop to
begin the Cygwin "command prompt". Your home directory will automat-
ically be set up in the Cygwin folder, which now should be at "C:\cygwin"
(the Cygwin folder is in some ways like a small Unix/Linux computer on
your Windows machine -- not technically of course, but it may be helpful to
think of it that way).

90
91

HTTP://WWW.CYGWIN.COM
HTTP://WWW.CRIMSONEDITOR.COM

95

http://article.gmane.org/gmane.comp.gcc.devel/114407
http://www.cygwin.com
http://www.crimsoneditor.com

Fundamentals for getting started

7. Type "g++" at the Cygwin prompt and press "enter"; if "g++: no input files"

or something like it appears you have succeeded and now have the gcc C++
compiler on your computer (and congratulations -- you have also just re-
ceived your first error message!).

MinGW + DevCpp-IDE

1. Go to HTTP://WWW.BLOODSHED.NET/DEVCPP.HTML,”? choose the ver-

sion you want (eventually scrolling down), and click on the appropriate
download link! For the most current version, you will be redirected to
http://www.bloodshed.net/dev/devcpp.html

. Scroll down to read the license and then to the download links. Download a

version with Mingw/GCC. It’s much easier than to do this assembling your-
self. With a very short delay (only some days) you will always get the most
current version of MinGW packaged with the devcpp IDE. It’s absolutely
the same as with manual download of the required modules.

. You get an executable that can be executed at user level under any WinNT

version. If you want it to be setup for all users, however, you need admin
rights. It will install devepp and mingw in folders of your wish.

. Start the IDE and experience your first project!

You will find something mostly similar to MSVC, including menu and but-
ton placement. Of course, many things are somewhat different if you were
familiar with the former, but it’s as simple as a handful of clicks to let your
first program run.

For DOS
DJGPP:

» Go to DELORIE SOFTWARE?? and download the GNU C++ compiler and other
necessary tools. The site provides a Zip Picker®* in order to help identify which
files you need, which is available from the main page.

* Use unzip32 or other extraction utility to place files into the directory of your
choice (i.e. C:\DJGPP).

» Set the envionment variables to configure DJIGPP for compilation, by either
adding lines to autoexec.bat or a custom batch file:

set PATH=C:\DJGPP\BIN; $PATH%
set DJGPP=C:\DJGPP\DJGPP.ENV

92
93
94

96

HTTP://WWW.BLOODSHED.NET/DEVCPP.HTML,
HTTP://WWW.DELORIE.COM
HTTP://WWW.DELORIE.COM/DJGPP/ZIP—PICKER.HTML

http://www.bloodshed.net/devcpp.html,
http://www.delorie.com
http://www.delorie.com/djgpp/zip-picker.html

The Compiler

If you are running MS-DOS or Windows 3.1, you need to add a few lines to
config.sys if they are not already present:

shell=c:\dos\command.com c:\dos /e:2048 /p
files=40
fcbs=40,0

Note: The GNU C++ compiler under DJGPP is named gpp.

For Linux

For GENTOO?, GCC C++ is part of the system core (since everything in Gentoo
is compiled)

For REDHAT®®, get a gcc-c++ RPM?’, e.g. using Rpmfind and then install (as
root) using rpm —-ivh gcc-c++-version-release.arch.rpm

For FEDORA CORE®, install the GCC C++ compiler (as root) by using v um’’
install gcc-c++

For MANDRAKE'®, install the GCC C++ compiler (as root) by using urpm1 0}
gcc-ctt

For DEBIAN!?? install the GCC C++ compiler (as root) by using Ap T-Ge 1'%
install g++

For UBUNTU!™, install the GCC C++ compiler by using sudo apt-get
install g++

For OPENSUSE!'% install the GCC C++ compiler (as root) by using zypp£r '
in gcc-c++

If you cannot become root, get the tarball from ftp://ftp.gnu.org/ and follow the
instructions in it to compile and install in your home directory.

95
96
97
98
99

HTTP://EN.WIKIPEDIA.ORG/WIKI/GENTO0%20LINUX
HTTP://EN.WIKIPEDIA.ORG/WIKI/REDHAT
HTTP://EN.WIKIPEDIA.ORG/WIKI/RPM%20PACKAGE$20MANAGER
HTTP://EN.WIKIPEDIA.ORG/WIKI/FEDORA%$20CORE
HTTP://EN.WIKIPEDIA.ORG/WIKI/YELLOW%20D0G%20UPDATERS$20MODIFIED

100 HTTP://EN.WIKIPEDIA.ORG/WIKI/MANDRAKE

10

1 #HTTP://EN.WIKIPEDIA.ORG/WIKI/URPMI

102 HTTP://EN.WIKIPEDIA.ORG/WIKI/DEBIAN

10

3 HTTP://EN.WIKIPEDIA.ORG/WIKI/APT

104 uvTTP://EN.WIKIPEDIA.ORG/WIKI/UBUNTU
105 HTTP://EN.WIKIPEDIA.ORG/WIKI/OPENSUSE
106 uTTP://EN.WIKIPEDIA.ORG/WIKI/ZYPP

97

http://en.wikipedia.org/wiki/Gentoo%20Linux
http://en.wikipedia.org/wiki/Redhat
http://en.wikipedia.org/wiki/RPM%20Package%20Manager
http://en.wikipedia.org/wiki/Fedora%20Core
http://en.wikipedia.org/wiki/Yellow%20Dog%20Updater%20Modified
http://en.wikipedia.org/wiki/Mandrake
http://en.wikipedia.org/wiki/urpmi
http://en.wikipedia.org/wiki/Debian
http://en.wikipedia.org/wiki/Apt
http://en.wikipedia.org/wiki/Ubuntu
http://en.wikipedia.org/wiki/OpenSUSE
http://en.wikipedia.org/wiki/ZYpp

Fundamentals for getting started

For Mac OS X
XcoDpE!"” has GCC C++ compiler bundled. It can be invoked from the Terminal
in the same way as Linux, but can also be compiled in one of XCode’s projects.

3.2.3 The Preprocessor

The PREPROCESSOR'® is either a separate program invoked by the COMPILER'??
or part of the compiler itself. It performs intermediate operations that modify the
original source code and internal compiler options before the compiler tries to
compile the resulting source code.

The instructions that the preprocessor PARSES ! are called directives and come in
two forms: preprocessor and compiler directives. Preprocessor directives direct
the preprocessor on how it should process the source code, and compiler direc-
tives direct the compiler on how it should modify internal compiler options. Direc-
tives are used to make writing source code easier (by making it more portable, for
instance) and to make the source code more understandable. They are also the only
valid way to make use of facilities (classes, functions, templates, etc.) provided by
the C++ Standard Library.

Note:

Check the documentation of your compiler/preprocessor for information on
how it implements the preprocessing phase and for any additional features
not covered by the standard that may be available. For in depth informa-
tion on the subject of parsing, you can read "COMPILER CONSTRUCTION*"
(http://en.wikibooks.org/wiki/Compiler_Construction)

a HTTP://EN.WIKIBOOKS.ORG/WIKI/COMPILER%20CONSTRUCTION

All directives start with *#’ at the beginning of a line. The standard directives are:

 #define * #error #include
o #elif o #if e #line

* #else o #ifdef * #pragma
o #endif #ifndef e #undef

107 HTTP://EN.WIKIPEDIA.ORG/WIKI/XCODE

108 HTTP://EN.WIKIPEDIA.ORG/WIKI/PREPROCESSOR
109 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPILER

110 HTTP://EN.WIKIPEDIA.ORG/WIKI/PARSING

98

http://en.wikibooks.org/wiki/Compiler%20Construction
http://en.wikipedia.org/wiki/Xcode
http://en.wikipedia.org/wiki/preprocessor
http://en.wikipedia.org/wiki/compiler
http://en.wikipedia.org/wiki/parsing

The Compiler

Inclusion of Header Files (#include)

The #include directive allows a programmer to include contents of one file inside
another file. This is commonly used to separate information needed by more than
one part of a program into its own file so that it can be included again and again
without having to re-type all the source code into each file.

C++ generally requires you to declare what will be used before using it. So, files
called HEADERS!!! usually include declarations of what will be used in order for
the compiler to successfully compile source code. This is further explained in
the FILE ORGANIZATION SECTION'!? of the book. The standard library (the
repository of code that is available with every standards-compliant C++ compiler)
and 3rd party libraries make use of headers in order to allow the inclusion of the
needed declarations in your source code, allowing you to make use of features or
resources that are not part of the language itself.

The first lines in any source file should usually look something like this:

#include <iostream>
#include "other.h"

The above lines cause the contents of the files iostream and other.h to be included
for use in your program. Usually this is implemented by just inserting into your
program the contents of iostream and other.h. When angle brackets (<>) are used
in the directive, the preprocessor is instructed to search for the specified file in a
compiler-dependent location. When double quotation marks (" ") are used, the
preprocessor is expected to search in some additional, usually user-defined, loca-
tions for the header file and to fall back to the standard include paths only if it is not
found in those additional locations. Commonly when this form is used, the prepro-
cessor will also search in the same directory as the file containing the #include
directive.

The iostream header contains various declarations for input/output (I/O) using
an abstraction of I/O mechanisms called streams. For example there is an output
stream object called std: : cout (where "cout" is short for "console output") which
is used to output text to the standard output, which usually displays the text on the
computer screen.

111 #TTP://EN.WIKIPEDIA.ORG/WIKI/HEADER%$20%28INFORMATIONS
20TECHNOLOGY%29
112 Chapter 3.1.5 on page 49

99

http://en.wikipedia.org/wiki/Header%20%28Information%20Technology%29
http://en.wikipedia.org/wiki/Header%20%28Information%20Technology%29

Fundamentals for getting started

Note:

When including standard libraries, compilers are allowed to make an exception
as to whether a header file by a given name actually exists as a physical file or is
simply a logical entity that causes the preprocessor to modify the source code,
with the same end result as if the entity existed as a physical file. Check the doc-
umentation of your preprocessor/compiler for any vendor-specific implemen-
tation of the #include directive and for specific search locations of standard and
user-defined headers. This can lead to portability problems and confusion.

A list of standard C++ header files is listed below:

Standard Template Library

100

The Compiler

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

HTTP://EN.WIKIBOOKS.

23ALGORITHM

HTTP://EN.WIKIBOOKS.

23BITSET

HTTP://EN.WIKIBOOKS.

23COMPLEX

HTTP://EN.WIKIBOOKS.

23DEQUE

HTTP://EN.WIKIBOOKS.

23EXCEPTION

HTTP://EN.WIKIBOOKS.

23FSTREAM

HTTP://EN.WIKIBOOKS.

23FUNCTIONAL

HTTP://EN.WIKIBOOKS.

23I0MANIP

HTTP://EN.WIKIBOOKS.

23108

HTTP://EN.WIKIBOOKS.

23I0SFWD

HTTP://EN.WIKIBOOKS.

23I0STREAM

HTTP://EN.WIKIBOOKS.

23ISTREAM

HTTP://EN.WIKIBOOKS.

23ITERATOR

HTTP://EN.WIKIBOOKS.

23LIMITS

HTTP://EN.WIKIBOOKS.

23LIST

HTTP://EN.WIKIBOOKS.

23LOCALE

HTTP://EN.WIKIBOOKS.

23MAP

HTTP://EN.WIKIBOOKS.

23MEMORY

HTTP://EN.WIKIBOOKS.

23NEW

HTTP://EN.WIKIBOOKS.

23NUMERIC

HTTP://EN.WIKIBOOKS.

230STREAM

HTTP://EN.WIKIBOOKS.

23QUEUE

HTTP://EN.WIKIBOOKS.

23SET

HTTP://EN.WIKIBOOKS.

23SSTREAM

HTTP://EN.WIKIBOOKS.

23STACK

ORG/WIKI/C%2B%2B%$20PROGRAMMINGS2FHEADERSS
ORG/WIKI/C%2B%2B%$20PROGRAMMINGS2FHEADERSS
ORG/WIKI/C%2B%2B%$20PROGRAMMINGS2FHEADERSS
ORG/WIKI/C%2B%2B%$20PROGRAMMINGS2FHEADERSS
ORG/WIKI/C%2B%2B%$20PROGRAMMINGS2FHEADERSS
ORG/WIKI/C%2B%2B%$20PROGRAMMINGS2FHEADERSS
ORG/WIKI/C%2B%2B%$20PROGRAMMINGS2FHEADERSS
ORG/WIKI/C%2B%2B%$20PROGRAMMINGS2FHEADERSS
ORG/WIKI/C%2B%2B%$20PROGRAMMINGS2FHEADERSS
ORG/WIKI/C%2B%2B%$20PROGRAMMINGS2FHEADERSS
ORG/WIKI/C%2B%2B%$20PROGRAMMINGS2FHEADERSS
ORG/WIKI/C%2B%2B%$20PROGRAMMINGS2FHEADERSS
ORG/WIKI/C%2B%2B%$20PROGRAMMINGS2FHEADERSS
ORG/WIKI/C%2B%2B%$20PROGRAMMINGS2FHEADERSS
ORG/WIKI/C%2B%2B%$20PROGRAMMINGS2FHEADERSS
ORG/WIKI/C%2B%2B%$20PROGRAMMING%$2FHEADERSS
ORG/WIKI/C%2B%2B%$20PROGRAMMINGS2FHEADERSS
ORG/WIKI/C%2B%2B%$20PROGRAMMINGS2FHEADERSS
ORG/WIKI/C%2B%2B%$20PROGRAMMING$2FHEADERSS
ORG/WIKI/C%2B%2B%$20PROGRAMMINGS2FHEADERSS
ORG/WIKI/C%2B%2B%$20PROGRAMMINGS2FHEADERSS
ORG/WIKI/C%2B%2B%$20PROGRAMMING%$2FHEADERSS
ORG/WIKI/C%2B%2B%$20PROGRAMMINGS2FHEADERSS
ORG/WIKI/C%2B%2B%$20PROGRAMMINGS2FHEADERSS

ORG/WIKI/C%2B%2B%$20PROGRAMMING$2FHEADERSS

101

http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23algorithm
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23algorithm
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23bitset
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23bitset
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23complex
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23complex
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23deque
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23deque
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23exception
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23exception
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23fstream
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23fstream
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23functional
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23functional
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23iomanip
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23iomanip
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23ios
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23ios
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23iosfwd
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23iosfwd
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23iostream
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23iostream
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23istream
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23istream
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23iterator
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23iterator
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23limits
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23limits
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23list
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23list
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23locale
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23locale
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23map
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23map
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23memory
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23memory
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23new
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23new
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23numeric
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23numeric
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23ostream
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23ostream
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23queue
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23queue
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23set
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23set
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23sstream
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23sstream
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23stack
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23stack

Fundamentals for getting started

* ATLGORTTHM! e TSTREAMI? o sET!®

e BTTSET!! e ITERATOR!?® o SSTREAM®

e cOMPLEX o LTMTTS!2® o sTack!?’

* DEQUE® e 15T e STDEXCEPT®

o ExcEPTTONY e LocaALE!® e STREAMBUF3?

e FSTREAM!!® o Mapl?? e sTrRING!C

e FUNCTIONATL? e MEMORY!? e STRSTREAM!

o TOMANTP?Y o NEW!! e TYPEINFOL*2

e 105! e NUMERTCI3? e UTTLITY™?

e 10sFwWDL2? e 0sTREAM®?S e VALARRAY!#

* 10sTREAM!?? e ourur e vECTOR!M®
and the

Standard C Library

138 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERSS
23STDEXCEPT

139 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMINGS2FHEADERSS
23STREAMBUF

140 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING$2FHEADERSS
23STRING

141 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERSS
23STRSTREAM

142 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMINGS2FHEADERSS
23TYPEINFO

143 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING$2FHEADERSS
23UTILITY

144 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERSS

23VALARRAY
145 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%$20PROGRAMMINGS2FHEADERSS
23VECTOR

102

http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23stdexcept
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23stdexcept
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23streambuf
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23streambuf
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23string
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23string
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23strstream
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23strstream
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23typeinfo
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23typeinfo
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23utility
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23utility
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23valarray
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23valarray
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23vector
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23vector

The Compiler

Everything inside C++’s standard library is kept in the std: :

CASSERT

146

147

CCTYPE
CERRNO
CFLOAT
c1so64

CLIMITS

148
149
6150
151

* CLOCALE?

e cMAaTH!?
* CSETJMP
* CSIGNAL
* CSTDARG
* CSTDDEF

154
155
156
157

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

HTTP://EN.

23CASSERT

HTTP://EN.

23CCTYPE

HTTP://EN.

23CERRNO

HTTP://EN.

23CFLOAT

HTTP://EN.

23Cc150646

HTTP://EN.

23CLIMITS

HTTP://EN.

23CLOCALE

HTTP://EN.

23CMATH

HTTP://EN.

23CSETJIMP

HTTP://EN.

23CSIGNAL

HTTP://EN.

23CSTDARG

HTTP://EN.

23CSTDDEF

HTTP://EN.

23CSTDIO

HTTP://EN.

23CSTDLIB

HTTP://EN.

23CSTRING

HTTP://EN.

23CTIME

HTTP://EN.

23CWCHAR

HTTP://EN.

23CWCTYPE

158
159
160

CSTDIO
CSTDLIB
CSTRING
cTIME!®!
CWCHAR'®?

cwcTypg'®

namespace.

WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERSS

WIKIBOOKS.

WIKIBOOKS.

WIKIBOOKS.

WIKIBOOKS

WIKIBOOKS.

WIKIBOOKS.

WIKIBOOKS

WIKIBOOKS.

WIKIBOOKS.

WIKIBOOKS.

WIKIBOOKS.

WIKIBOOKS

WIKIBOOKS.

WIKIBOOKS.

WIKIBOOKS.

WIKIBOOKS.

WIKIBOOKS

ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERSS

ORG/WIKI/C%2B%2B%$20PROGRAMMING%2FHEADERSS

ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERSS

.ORG/WIKI/C%2B%2B%20PROGRAMMING$2FHEADERSS

ORG/WIKI/C%2B%2B%$20PROGRAMMING%2FHEADERSS

ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERSS

.ORG/WIKI/C%2B%2B%20PROGRAMMING$2FHEADERSS

ORG/WIKI/C%2B%2B%20PROGRAMMING$2FHEADERSS

ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERSS

ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERSS

ORG/WIKI/C%2B%2B%$20PROGRAMMING$2FHEADERSS

.ORG/WIKI/C%2B%2B%20PROGRAMMINGS2FHEADERSS

ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERSS

ORG/WIKI/C%2B%2B%$20PROGRAMMING$2FHEADERSS

ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERSS

ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERSS

.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERSS

103

http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cassert
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cassert
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cctype
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cctype
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cerrno
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cerrno
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cfloat
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cfloat
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23ciso646
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23ciso646
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23climits
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23climits
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23clocale
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23clocale
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cmath
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cmath
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23csetjmp
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23csetjmp
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23csignal
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23csignal
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cstdarg
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cstdarg
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cstddef
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cstddef
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cstdio
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cstdio
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cstdlib
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cstdlib
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cstring
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cstring
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23ctime
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23ctime
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cwchar
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cwchar
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cwctype
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23cwctype

Fundamentals for getting started

Old compilers may include headers with a .h suffix (e.g. the non-standard
<iostream.h> vs. the standard <iostream>) instead of the standard headers.
These names were common before the standardization of C++ and some compil-
ers still include these headers for backwards compatibility. Rather than using the
std: : namespace, these older headers pollute the global namespace and may oth-
erwise only implement the standard in a limited way.

Some vendors use the SGI'® STL!% headers. This was the first implementation
of the standard template library.

Non-standard but somewhat common C++ libraries

166,167 168,169 170,171

®* STDIOSTREAM.H ®* STREAM.H ®* STRSTREAM.H

Note:

Before standardization of the headers, they were presented as separated files,
like <iostream.h> and so on. This is probably still a requirement on very
old (non-standards-compliant) compilers, but newer compilers will accept both
methods. There is also no requirement in the standard that headers should exist
in a file form. The old method of referring to standard libraries as separate files
is obsolete.

#pragma

The pragma (pragmatic information) directive is part of the standard, but the
meaning of any pragma directive depends on the software implementation of the
standard that is used.

Pragma directives are used within the source program.

164 uTTP://EN.WIKIPEDIA.ORG/WIKI/SILICON%20GRAPHICS

165 Chapter 5.1.5 on page 499

166 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERSS
23STDIOSTREAM.H

167 Streams based on FILE* from stdio.h.

168 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FHEADERSS
23STREAM.H

169 Precursor to iostream. Old stream library mostly included for backwards compatibility even
with old compilers.

170 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING$2FHEADERSS
23STRSTREAM. H

171 Uses char* whereas sstream uses string. Prefer the standard library sstream.

104

http://en.wikipedia.org/wiki/Silicon%20Graphics
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23stdiostream.h
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23stdiostream.h
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23stream.h
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23stream.h
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23strstream.h
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2Fheaders%23strstream.h

The Compiler

#pragma token(s)

You should check the software implementation of the C++ standard you intend to
use for a list of the supported tokens.

For example, one of the most widely used preprocessor pragma directives,
#pragma once, when placed at the beginning of a header file, indicates that the
file where it resides will be skipped if included several times by the preprocessor.

Note:
Another method exists, commonly referred to as include guards, that provides
this same functionality but uses other include directives.

In the GCC documentation, #pragma once has been described as an obsolete
preprocessor directive.

Macros

The C++ preprocessor includes facilities for defining "macros"”, which roughly
means the ability to replace a use of a named macro with one or more tokens. This
has various uses from defining simple constants (though const is more often used
for this in C++), conditional compilation, code generation and more -- macros are
a powerful facility, but if used carelessly can also lead to code that is hard to read
and harder to debug!

Note:

Macros do not depend only on the C++ Standard or your actions. They may
exist due to the use of external frameworks, libraries or even due the compiler
you are using and the specific OS. We will not cover that information on this
book but you may find more information in the Pre-defined C/C++ Compiler
Macros page at (HTTP://PREDEF.SOURCEFORGE.NET/“) the project main-
tains a complete list of macros that are compiler and OS agnostic.

a HTTP://PREDEF.SOURCEFORGE.NET/

#define and #undef
The #define directive is used to define values or macros that are used by the
preprocessor to manipulate the program source code before it is compiled:

105

http://predef.sourceforge.net/

Fundamentals for getting started

#define USER_MAX (1000)

The #undef directive deletes a current macro definition:

#undef USER_MAX

It is an error to use #define to change the definition of a macro, but it is not an
error to use #undef to try to undefine a macro name that is not currently defined.
Therefore, if you need to override a previous macro definition, first #undef it, and
then use #define to set the new definition.

Note:

Because preprocessor definitions are substituted before the compiler acts on the
source code, any errors that are introduced by #define are difficult to trace.
For example using value or macro names that are the same as some existing
identifier can create subtle errors, since the preprocessor will substitute the
identifier names in the source code.

Today, for this reason, #define is primarily used to handle compiler and plat-
form differences. E.g, a define might hold a constant which is the appropriate
error code for a system call. The use of #define should thus be limited unless
absolutely necessary; typedef statements, constant variables, enums, templates
and INLINE FUNCTIONS“ can often accomplish the same goal more efficiently
and safely.

By convention, values defined using #define are named in uppercase with "_"
separators, this makes it clear to readers that the values is not alterable and in
the case of macros, that the construct requires care. Although doing so is not
a requirement, it is considered very bad practice to do otherwise. This allows
the values to be easily identified when reading the source code.

Try to use const and inline instead of #define.

a Chapter 3.7 on page 229

\ (line continuation)
If for some reason it is needed to break a given statement into more than one line,
use the \ (backslash) symbol to "escape” the line ends. For example,

#define MULTIPLELINEMACRO \
will use what you write here \
and here etc...

106

The Compiler

is equivalent to

#define MULTIPLELINEMACRO will use what you write here and here etc...

because the preprocessor joins lines ending in a backslash ("\") to the line after
them. That happens even before directives (such as #define) are processed, so it
works for just about all purposes, not just for macro definitions. The backslash
is sometimes said to act as an "escape" character for the newline, changing its
interpretation.

In some (fairly rare) cases macros can be more readable when split across multiple
lines. Good modern C++ code will use macros only sparingly, so the need for
multi-line macro definitions will not arise often.

It is certainly possible to overuse this feature. It is quite legal but entirely indefen-
sible, for example, to write

int ma\

in//ma/

() /+ma/

in/*/{}

That is an abuse of the feature though: while an escaped newline can appear in
the middle of a token, there should never be any reason to use it there. Do not
try to write code that looks like it belongs in the International Obfuscated C Code
Competition.

Warning: there is one occasional "gotcha" with using escaped newlines: if there
are any invisible characters after the backslash, the lines will not be joined, and
there will almost certainly be an error message produced later on, though it might
not be at all obvious what caused it.

Function-like Macros
Another feature of the #define command is that it can take arguments, making it
rather useful as a pseudo-function creator. Consider the following code:

#define ABSOLUTE_VALUE(x) (((x) < 0) 2 —(x) : (x))
/).

int x = -1;

while (ABSOLUTE_VALUE(x)) {

/)

}

107

Fundamentals for getting started

Note:
It is generally a good idea to use extra parentheses for macro parameters, it
avoids the parameters from being parsed in a unintended ways. But there are
some exceptions to consider:
1. Since comma operator have lower precedence than any other, this re-
moves the possibility of problems, no need for the extra parentheses.
2. When concatenating tokens with the ## operator, converting to strings
using the # operator, or concatenating adjacent string literals, parameters
cannot be individually parenthesized.

Notice that in the above example, the variable "X" is always within its own set of
parentheses. This way, it will be evaluated in whole, before being compared to 0 or
multiplied by -1. Also, the entire macro is surrounded by parentheses, to prevent it
from being contaminated by other code. If you’re not careful, you run the risk of
having the compiler misinterpret your code.

Macros replace each occurrence of the macro parameter used in the text with the
literal contents of the macro parameter without any validation checking. Badly
written macros can result in code which will not compile or creates hard to dis-
cover bugs. Because of side-effects it is considered a very bad idea to use macro
functions as described above. However as with any rule, there may be cases where
macros are the most efficient means to accomplish a particular goal.

int z = -10;

int y = ABSOLUTE_VALUE (z++);

If ABSOLUTE_VALUE() was a real function ’z’ would now have the value of
’-9°, but because it was an argument in a macro z++ was expanded 3 times (in
this case) and thus (in this situation) executed twice, setting z to -8, and y to 9. In
similar cases it is very easy to write code which has "undefined behavior", meaning
that what it does is completely unpredictable in the eyes of the C++ Standard.

// ABSOLUTE_VALUE (z++); expanded
(((z++) <0) 2 =(z++) : (z++));

108

The Compiler

Note:

With the GCC compiler extension called "statement expression" (not standard
C++), it is allowed to use statements in an expression, please consult the com-
piler manual for other considerations, it becomes then possible to only evaluate
it once:

define ABSOLUTE_VALUE(x) ({ typeof (x) temp = (x); (temp < 0) ? -temp : temp; })

Using inlined templated functions may then be an alternative to macros, re-
moving the problem of side effects inside the argument to the macro.

It is generally good idea to stay away from compiler specific extensions, unless
the dependency is planed for.

and

// An example on how to use a macro correctly
#include <iostream>

#define SLICES 8
#define PART(x) ((x) / SLICES) // Note the extra parentheses around ’’’x’’’

int main() {
int b = 10, ¢ = 6;

int a = PART (b + c);
std::cout << a;

return 0;

}

-- the result of "a" should be "2" (b + ¢ passed to PART -> ((b + ¢) / SLICES) ->
result is "2")

109

Fundamentals for getting started

Note:
Variadic Macros

A variadic macro is a feature of the preprocessor whereby a macro is declared
to accept a varying number of arguments (similar to a variadic function).
They are currently not part of the C++ programming language, though many
recent C++ implementations support variable-argument macros as an extension
(ie: GCC, MS Visual Studio C++), and it is expected that variadic macros may
be added to C++ at a later date.

Variable-argument macros were introduced in the ISO/IEC 9899:1999 (C99)
revision of the C Programming Language standard in 1999.

and
The # and ## operators are used with the #define macro. Using # causes the first
argument after the # to be returned as a string in quotes. For example

#define as_string(s) # s

will make the compiler turn

std::cout << as_string(Hello World!) << std::endl;

into

std::cout << "Hello World!" << std::endl;

Note:

Observe the leading and trailing whitespace from the argument to # is removed,
and consecutive sequences of whitespace between tokens are converted to sin-
gle spaces.

Using ## concatenates what’s before the ## with what’s after it; the result must be
a well-formed preprocessing token. For example

110

The Compiler

#define concatenate(x, v) x ## vy

int xy = 10;

will make the compiler turn

std::cout << concatenate(x, y) << std::endl;

into

std::cout << xy << std::endl;

which will, of course, display 10 to standard output.

String literals cannot be concatenated using ##, but the good news is that this is
not a problem: just writing two adjacent string literals is enough to make the pre-
processor concatenate them.

The dangers of macros
To illustrate the dangers of macros, consider this naive macro

#define MAX(a,b) a>b?a:b

and the code

i = MAX(2,3)+5;
§ = MAX(3,2)+5;

Take a look at this and consider what the value after execution might be. The
statements are turned into

int 1 2>3?2:3+5;
int j = 3>2723:2+5;

Thus, after execution i=8 and j=3 instead of the expected result of i=9=8! This
is why you were cautioned to use an extra set of parenthesis above, but even with
these, the road is fraught with dangers. The alert reader might quickly realize that
if a, b contains expressions, the definition must parenthesize every use of a,b in
the macro definition, like this:

#define MAX(a,b) ((a)>(b)?(a): (b))

111

Fundamentals for getting started

This works, provided a, b have no side effects. Indeed,

i
j
k

2;
3;
MAX (i++, J++);

would result in k=4, i=3 and j=5. This would be highly surprising to anyone
expecting MAX () to behave like a function.

So what is the correct solution? The solution is not to use macro at all. A global,
inline function, like this inline max(int a, int b) { return a>b?a:b }
has none of the pitfalls above, but will not work with all types. A template (see
below) takes care of this template<typename T> inline max(const T& a,
const T& b) { return a>b?a:b } Indeed, this is (a variation of) the definition
used in STL library for std::max(). This library is included with all conforming
C++ compilers, so the ideal solution would be to use this.

std::max(3,4);

Another danger on working with macro is that they are excluded form type check-
ing. In the case of the MAX macro, if used with a string type variable, it will not
generate a compilation error.

MAX ("hello", "world")

It is then preferable to use a inline function, which will be type checked. Permitting
the compiler to generate a meaningful error message if the inline function is used
as stated above.

String literal concatenation

One minor function of the preprocessor is in joining strings together, "string literal
concatenation" -- turning code like

std::cout << "Hello " "World!\n";

into

std::cout << "Hello World!\n";

Apart from obscure uses, this is most often useful when writing long messages,
as it is not legal in C++ (at this time) to have a string literal which spans multiple
lines in your source code (i.e., one which has a newline character inside it). It also

112

The Compiler

helps to keep program lines down to a reasonable length; we can write

function_name ("This is a very long string literal, which would not fit "
"onto a single line very nicely -- but with string literal "
"concatenation, we can split it across multiple lines and "
"the preprocessor will glue the pieces together");

Note that this joining happens before compilation; the compiler sees only one
string literal here, and there’s no work done at runtime, i.e., your program will
not run any slower at all because of this joining together of strings.

Concatenation also applies to wide string literals (which are prefixed by an L):

L"this " L"and " L"that"

is converted by the preprocessor into

L"this and that".

Note:

For completeness, note that C99 has different rules for this than C++98, and
that C++0x seems almost certain to match C99’s more tolerant rules, which
allow joining of a narrow string literal to a wide string literal, something which
was not valid in C++98.

Conditional compilation

Conditional compilation is useful for two main purposes:

* To allow certain functionality to be enabled/disabled when compiling a program
* To allow functionality to be implemented in different ways, such as when com-
piling on different platforms

It is also used sometimes to temporarily "comment-out" code, though using a ver-
sion control system is often a more effective way to do so.

* Syntax:

#1f condition
statement(s)
#elif condition2

113

Fundamentals for getting started

statement(s)

#elif condition
statement(s)
#else
statement(s)
#endif

#ifdef defined-value
statement(s)
#else
statement(s)
#endif

#ifndef defined-value
statement(s)

felse
statement(s)

#endif

#if

The #if directive allows compile-time conditional checking of preprocessor values
such as created with #DEFINE!'72. If condition is non-zero the preprocessor will
include all statement(s) up to the #else, #elif or #endif directive in the output for
processing. Otherwise if the #if condition was false, any #elif directives will be
checked in order and the first condition which is true will have its statement(s)
included in the output. Finally if the condition of the #if directive and any present
#elif directives are all false the statement(s) of the #else directive will be included
in the output if present; otherwise, nothing gets included.

The expression used after #if can include boolean and integral constants and arith-
metic operations as well as macro names. The allowable expressions are a subset
of the full range of C++ expressions (with one exception), but are sufficient for
many purposes. The one extra operator available to #if is the defined operator,
which can be used to test whether a macro of a given name is currently defined.

#ifdef and #ifndef

The #ifdef and #ifndef directives are short forms of *#if defined(defined-value)’
and ’#if !defined(defined-value)’ respectively. defined(identifier) is valid in any
expression evaluated by the preprocessor, and returns true (in this context, equiva-
lent to 1) if a preprocessor variable by the name identifier was defined with #define

172 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23%23DEFINE%$20AND%20%23UNDEF

114

http://en.wikibooks.org/wiki/%23%23define%20and%20%23undef

The Compiler

and false (in this context, equivalent to 0) otherwise. In fact, the parentheses are
optional, and it is also valid to write defined identifier without them.

(Possibly the most common use of #ifndef is in creating "include guards" for
header files, to ensure that the header files can safely be included multiple times.
This is explained in the section on header files.)

#endif

The #endif directive ends #if, #ifdef, #ifndef, #elif and #else directives.
* Example:

#if defined(__BSD_) || defined(__ _LINUX_)

#include <unistd.h>

#endif

This can be used for example to provide multiple platform support or to have one
common source file set for different program versions. Another example of use is
using this instead of the (non-standard) #pragma once.

* Example:

foo.hpp:

#'77ifndef’’’ FOO_HPP
''"define’’’ FOO_HPP

// code here...

#'7’endif’’’ // FOO_HPP

bar.hpp:

#''"include’’’ "foo.h"

// code here. ..

foo.cpp:
#’7"include’’’ "foo.hpp"
#’7"include’’’ "bar.hpp"

// code here

When we compile foo.cpp, only one copy of foo.hpp will be included due to the
use of include guard. When the preprocessor reads the line #include "foo.hpp",
the content of foo.hpp will be expanded. Since this is the first time which foo.hpp
is read (and assuming that there is no existing declaration of macro FOO_HPP)
FOO_HPP will not yet be declared, and so the code will be included normally.

115

Fundamentals for getting started

When the preprocessor read the line #include "bar.hpp" in foo.cpp, the content
of bar.hpp will be expanded as usual, and the file foo.h will be expanded again.
Owing to the previous declaration of FOO_HPP, no code in foo.hpp will be in-
serted. Therefore, this can achieve our goal - avoiding the content of the file being
included more than one time.

Compile-time warnings and errors
¢ Syntax:

#warning message
#error message

#error and #warning

The #error directive causes the compiler to stop and spit out the line number
and a message given when it is encountered. The #warning directive causes the
compiler to spit out a warning with the line number and a message given when it
is encountered. These directives are mostly used for debugging.

Note:
#error is part of Standard C++, whereas #warning is not (though it is widely
supported).

* Example:

#if defined(__BSD__)
#warning Support for BSD is new and may not be stable yet
#endif

#1f defined(__WIN95_)
#error Windows 95 is not supported
#endif

Source file names and line numbering macros

The current filename and line number where the preprocessing is being performed
can be retrieved using the predefined macros __FILE__and __LINE__. Line num-
bers are measured before any escaped newlines are removed. The current values
of __FILE__and __LINE__can be overridden using the #line directive; it is very

116

The Compiler

rarely appropriate to do this in hand-written code, but can be useful for code gen-
erators which create C++ code base on other input files, so that (for example) error
messages will refer back to the original input files rather than to the generated C++
code.

3.2.4 Linker

The linker is a program that makes executable files. The linker resolves linkage
issues, such as the use of symbols or identifiers which are defined in one translation
unit and are needed from other translation units. Symbols or identifiers which
are needed outside a single translation unit have external linkage. In short, the
linker’s job is to resolve references to undefined symbols by finding out which
other object defines a symbol in question, and replacing placeholders with the
symbol’s address. Of course, the process is more complicated than this; but the
basic ideas apply.

Linkers can take objects from a collection called a library. Depending on the li-
brary (system or language or external libraries) and options passed, they may only
include its symbols that are referenced from other object files or libraries. Libraries
for diverse purposes exist, and one or more system libraries are usually linked in
by default. We will take a closer look into libraries on the LIBRARIES SECTION!73
of this book.

Linking

The process of connecting or combining object files produced by a compiler with
the libraries necessary to make a working executable program (or a library) is
called linking. Linkage refers to the way in which a program is built out of a
number of TRANSLATION UNITSI74.

C++ programs can be compiled and linked with programs written in other lan-
guages, such as C, Fortran, assembly language, and Pascal.

* The appropriate compiler compiles each module separately. A C++ compiler
compiles each ".cpp" file into a ".0" file, an assembler assembles each ".asm"
file into a ".0" file, a Pascal compiler compiles each ".pas" file into a ".0" file,
etc.

173 Chapter 6.3.3 on page 584
174 uTTP://EN.WIKIPEDIA.ORG/WIKI/TRANSLATION%20UNIT%20%
28PROGRAMMING%29

117

http://en.wikipedia.org/wiki/translation%20unit%20%28programming%29
http://en.wikipedia.org/wiki/translation%20unit%20%28programming%29

Fundamentals for getting started

* The linker links all the ".0" files together in a separate step, creating the final
executable file.

Linkage

Every function has either external or internal linkage.

A function with internal linkage is only visible inside one translation unit. When
the compiler compiles a function with internal linkage, the compiler writes the
machine code for that function at some address and puts that address in all calls to
that function (which are all in that one translation unit), but strips out all mention
of that function in the ".0" file. If there is some call to a function that apparently
has internal linkage, but doesn’t appear to be defined in this translation unit, the
compiler can immediately tell the programmer about the problem (error). If there
is some function with internal linkage that never gets called, the compiler can do
"dead code elimination" and leave it out of the ".0" file.

The linker never hears about those functions with internal linkage, so it knows
nothing about them.

A function declared with external linkage is visible inside several translation units.
When a compiler compiles a call to that function in one translation unit, it does
not have any idea where that function is, so it leaves a placeholder in all calls
to that function, and instructions in the ".0" file to replace that placeholder with
the address of a function with that name. If that function is never defined, the
compiler can’t possibly know that, so the programmer doesn’t get a warning about
the problem (error) until much later.

When a compiler compiles (the definition of) a function with external linkage (in
some other translation unit), the compiler writes the machine code code of that
function at some address, and puts that address and the name of the function in the
".0" file where the linker can find it. The compiler assumes that the function will
be called from some other translation unit (some other ".0" file), and must leave
that function in this ".0" file, even if it ends up that the function is never called
from any translation unit.

Most code conventions specify that header files contain only declarations, not def-
initions. Most code conventions specify that implementation files (".cpp" files)
contain only definitions and local declarations, not external declarations.

This results in the "extern" keyword being used only in header files, never in imple-
mentation files. This results in internal linkage being indicated only in implemen-
tation files, never in header files. This results in the "static" keyword being used

118

The Compiler

only in implementation files, never in header files, except when "static" is used in-
side a class definition inside a header file, where it indicates something other than
internal linkage.

We discuss header files and implementation files in more detail later in the FILE
ORGANIZATION SECTION!?S of the book.

Internal

static

The static keyword can be used in four different ways:

e TO CREATE PERMANENT STORAGE FOR LOCAL VARIABLES IN A FUNC-
TION!76,

e TO SPECIFY INTERNAL LINKAGE!”".

e TO DECLARE MEMBER FUNCTIONS THAT ACT LIKE NON-MEMBER FUNC-
TIONS!8.

e TO CREATE A SINGLE COPY OF A DATA MEMBER!"’.

Internal linkage

When used on a free function, a global variable, or a global constant, it specifies
internal linkage (as opposed to extern, which specifies external linkage). Internal
linkage limits access to the data or function to the current file.

Examples of use outside of any function or class:
static int apples = 15;

defines a "static global" variable named apples, with initial value 15, only visible
from this translation unit.

static int bananas;

175 Chapter 3.1.5 on page 49

176 Chapter 3.3.4 on page 156
177 Chapter 3.2.4 on page 119
178 Chapter 4.3.5 on page 415
179 Chapter 4.3.4 on page 406

119

Fundamentals for getting started

defines a "static global" variable named bananas, with initial value 0, only visible
from this translation unit.

int g_fruit;

defines a global variable named g_fruit, with initial value 0, visible from every
translation unit. Such variables are often frowned on as poor style.

static const int muffins_per_pan=12;

defines is a variable named muffins_per_pan, visible only in this translation
unit. The static keyword is redundant here.

const int hours_per_day=24;

defines a variable named hours_per_day, only visible in this translation unit.
(This acts the same as static const int hours_per_day=24;).

static void f();

declares that there is a function f taking no arguments and with no return value
defined in this translation unit. Such a forward declaration is often used when
defining mutually recursive functions.

static void £(){;}

defines the function £ () declared above. This function can only be called from
other functions and members in this translation unit; it is invisible to other trans-
lation units.

External
All entities in the C++ Standard Library have external linkage.

extern

The extern keyword tells the compiler that a variable is declared in another source
module (outside of the current scope). The linker then finds this actual declaration
and sets up the extern variable to point to the correct location. Variables described
by extern statements will not have any space allocated for them, as they should
be properly defined elsewhere. If a variable is declared extern, and the linker finds
no actual declaration of it, it will throw an "Unresolved external symbol" error.

Examples:

extern int i;

120

Variables

declares that there is a variable named 1 of type int, defined somewhere in
the program.

extern int j = 0;
defines a variable j with external linkage; the extern keyword is redundant here.
extern void f();

declares that there is a function f taking no arguments and with no return value
defined somewhere in the program; extern is redundant, but sometimes consid-
ered good style.

extern void f£() {;}

defines the function £ () declared above; again, the extern keyword is technically
redundant here as external linkage is default.

extern const int k = 1;

defines a constant int k with value 1 and external linkage; extern is required
because const variables have internal linkage by default.

extern statements are frequently used to allow data to span the scope of multiple
files.

When applied to function declarations, the additional "C" or "C++" string literal
will change name mangling when compiling under the opposite language. That is,
extern "C" int plain_c_func(int param); allows C++ code to execute a C
library function plain_c_func.

3.3 Variables

Much like a person has a name that distinguishes him or her from other people, a
variable assigns a particular instance of an object type, a name or label by which
the instance can be referred to. The variable is the most important concept in
programming, it is how the code can manipulate data. Depending on its use in the
code a variable has a specific locality in relation to the hardware and based on the
structure of the code it also has a specific scope where the compiler will recognize
it as valid. All these characteristics are defined by a programmer.

121

Fundamentals for getting started

3.3.1 Internal storage

We need a way to store data that can be stored, accessed and altered on the hard-
ware by programming. Most computer systems operate using binary logic. The
computer represents value using two voltage levels, usually OV for logic 0 and ei-
ther +3.3 V or +5V for logic 1. These two voltage levels represent exactly two
different values and by convention the values are zero and one. These two values,
coincidentally, correspond to the two digits used by the binary number system.
Since there is a correspondence between the logic levels used by the computer and
the two digits used in the binary numbering system, it should come as no surprise
that computers employ the binary system.

The Binary Number System

The binary number system uses base 2 which requires therefore only the digits 0
and /.

Bits and bytes

We typically write binary numbers as a sequence of bits (bits is short for binary
digits). Itis also a normal convention that these bit sequences, to make binary num-
bers more easier to read and comprehend, be added spaces in a specific relevant
boundary, to be selected from the context that the number is being used. Much like
we use a comma (UK and most ex-colonies) or a point to separated every three dig-
its in larger decimal numbers. For example, the binary value 1010111110110010
could be written 1010 1111 1011 0010.

These are defined boundaries for specific bit sequences.

Name Size (bits) Example

Bit 1 1

Nibble 4 0101

Byte 8 0000 0101

Word 16 0000 0000 0000 0101

Double Word 32 0000 0000 0000 0000
0000 0000 0000 0101

The bit

122

Variables

The smallest unit of data on a binary computer is a single bit. Since a single bit is
capable of representing only two different values (typically zero or one) you may
get the impression that there are a very small number of items you can represent
with a single bit. Not true! There are an infinite number of items you can represent
with a single bit.

With a single bit, you can represent any two distinct items. Examples include zero
or one, true or false, on or off, male or female, and right or wrong. However, by
using more than one bit, you will not be limited to representing binary data types
(that is, those objects which have only two distinct values).

To confuse things even more, different bits can represent different things. For
example, one bit might be used to represent the values zero and one, while an
adjacent bit might be used to represent the colors red or black. How can you tell
by looking at the bits? The answer, of course, is that you can’t. But this illustrates
the whole idea behind computer data structures: data is what you define it to be.

If you use a bit to represent a boolean (true/false) value then that bit (by your
definition) represents true or false. For the bit to have any true meaning, you must
be consistent. That is, if you’re using a bit to represent true or false at one point in
your program, you shouldn’t use the true/false value stored in that bit to represent
red or black later.

Since most items you will be trying to model require more than two different val-
ues, single bit values aren’t the most popular data type. However, since everything
else consists of groups of bits, bits will play an important role in your programs.
Of course, there are several data types that require two distinct values, so it would
seem that bits are important by themselves. however, you will soon see that indi-
vidual bits are difficult to manipulate, so we’ll often use other data types to repre-
sent boolean values.

The nibble

A nibble is a collection of bits on a 4-bit boundary. It would not be a particularly
interesting data structure except for two items: BCD (binary coded decimal) num-
bers and hexadecimal (base 16) numbers. It takes four bits to represent a single
BCD or hexadecimal digit.

With a nibble, we can represent up to 16 distinct values. In the case of hexadecimal
numbers, the values 0, 1, 2, 3,4,5,6,7,8,9, A, B, C, D, E, and F are represented
with four bits.

123

Fundamentals for getting started

BCD uses ten different digits (0, 1, 2, 3,4, 5, 6, 7, 8, 9) and requires four bits. In
fact, any sixteen distinct values can be represented with a nibble, but hexadecimal
and BCD digits are the primary items we can represent with a single nibble.

The byte

The byte is the smallest individual piece of data that we can access or modify
on a computer, it is without question, the most important data structure used by
microprocessors today. Main memory and I/O addresses in the PC are all byte
addresses.

A byte consists of eight bits and is the smallest addressable datum (data item) in
the microprocessor, this is why processors only works on bytes or groups of bytes,
never on bits. To access anything smaller requires that you read the byte containing
the data and mask out the unwanted bits.

Since the computer is a byte addressable machine, it turns out to be more efficient
to manipulate a whole byte than an individual bit or nibble. For this reason, most
programmers use a whole byte to represent data types that require no more than
256 items, even if fewer than eight bits would suffice. For example, we will often
represent the boolean values true and false by 00000001 and 00000000 (respec-
tively).

Note:
This is why the ASCII CODE¢, is used in in most computers, it is based in a
7-bit non-weighted binary code, that takes advantage of the byte boundary.

a Chapter 4.8.1 on page 452

Probably the most important use for a byte is holding a character code. Characters
typed at the keyboard, displayed on the screen, and printed on the printer all have
numeric values.

124

Variables

BIT#: 7 6 §5 4 3 2 1 0

ofof qopopijos

T 1] & 4 3 2 1]
VALUE:E 20 2% 24 20 22 20 2
128 64 32 16 8 4 2 1

Figure 8: A byte contains 8 bits

A byte (usually) contains 8 bits. A bit can only have the value of O or 1. If all bits
are setto 1, 11111111 in binary equals to 255 decimal.

The bits in a byte are numbered from bit zero (b0) through seven (b7) as follows:
b7 b6 b5 b4 b3 b2 bl b0

Bit 0 (b0) is the low order bit or least significant bit (Isb), bit 7 is the high order
bit or most significant bit (msb) of the byte. We’ll refer to all other bits by their
number.

A byte also contains exactly two nibbles. Bits b0 through b3 comprise the low
order nibble, and bits b4 through b7 form the high order nibble.

Since a byte contains eight bits, exactly two nibbles, byte values require two hex-
adecimal digits. It can represent 2”8, or 256, different values. Generally, we’ll use
a byte to represent:

1. unsigned numeric values in the range 0 => 255

2. signed numbers in the range -128 => +127

3. ASCII character codes

4. other special data types requiring no more than 256 different values. Many
data types have fewer than 256 items so eight bits is usually sufficient.

In this representation of a computer byte, a bit number is used to label each bit in
the byte. The bits are labeled from 7 to 0 instead of 0 to 7 or even 1 to 8, because
processors always start counting at 0. It is simply more convenient to use O for
computers as we shall see. The bits are also shown in descending order because,
like with decimal numbers (normal base 10), we put the more significant digits to
the left.

125

Fundamentals for getting started

Consider the number 254 in decimal. The 2 here is more significant than the other
digits because it represents hundreds as opposed to tens for the 5 or singles for the
4. The same is done in binary. The more significant digits are put towards the left.
In binary, there are only 2 digits, instead of counting from 0 to 9, we only count
from O to 1, but counting is done by exactly the same principles as counting in
decimal. If we want to count higher than 1, then we need to add a more significant
digit to the left. In decimal, when we count beyond 9, we need to add a 1 to the
next significant digit. It sometimes may look confusing or different only because
humans are used to counting with 10 digits.

Note:

The most significant digit in a byte is bit#7 and the least significant digit is
bit#0. These are otherwise known as "msb" and "Isb" respectively in lowercase.
If written in uppercase, MSB will mean most significant BYTE. You will see
these terms often in programming or hardware manuals. Also, Isb is always
bit#0, but msb can vary depending on how many bytes we use to represent
numbers. However, we won’t look into that right now.

In decimal, each digit represents multiple of a power of 10. So, in the decimal
number 254.

* The 4 represents four multiples of one (4 x 10° since 107 = 1).

* Since we’re working in decimal (base 10), the 5 represents five multiples of 10
(5 x 101

» Finally the 2 represents two multiples of 100 (2 x 10%)

All this is elementary. The key point to recognize is that as we move from right to
left in the number, the significance of the digits increases by a multiple of 10. This
should be obvious when we look at the following equation:

(2% 10%) 4 (5 x 101) + (4 x 10°) = 254

In binary, each digit can only be one of two possibilities (0 or 1), therefore when
we work with binary we work in base 2 instead of base 10. So, to convert the
binary number 1101 to decimal we can use the following base 10 equation, which
is very much like the one above:

(Ix2)+(1x22)+O0x2) +(1x2°) =84+4+0+1=13

126

Variables

BIT#: 7 6 §5 4 3 2 1 0

ofof qopopijos

T 1] & 4 3 2 1]
VALUE: 27 2% 27 24 20 28 202
128 64 32 16 8 4 2 1

Figure 9: A byte contains 8 bits

To convert the number we simply add the bit values (2") where a 1 shows up. Let’s
take a look at our example byte again, and try to find its value in decimal.

First off, we see that bit #5 is a 1, so we have 2° = 32 in our total. Next we have
bit#3, so we add 2° = 8. This gives us 40. Then next is bit#2, so 40 + 4 is 44. And
finally is bit#0 to give 44 + 1 = 45. So this binary number is 45 in decimal.

As can be seen, it is impossible for different bit combinations to give the same
decimal value. Here is a quick example to show the relationship between counting
in binary (base 2) and counting in decimal (base 10).

002 =019, 015 = 149, 102 =219, 112 =319

The bases that these numbers are in are shown in subscript to the right of the
number.

Carry bit

127

Fundamentals for getting started

BIT#: 7 6 5 4 3 2 1 0

il |01 101 19 |1 103 0)

L] T L] 5 4 3 2 1 a
VAL%E:Z 20 2 24 2 20 20 2
256 128 64 32 16 8 4 2 1

Figure 10

As a side note. What would happen if you added 1 to 255? No combination will
represent 256 unless we add more bits. The next value (if we could have another
digit) would be 256. So our byte would look like this.

But this 9" bit (bit#8) doesn’t exist. So where does it go? To be precise it actually
goes into the carry bit. The carry bit resides in the processor of the computer, has
an internal bit used exclusively for carry operations such as this. So if one adds 1
to 255 stored in a byte, the result would be 0 with the carry bit set in the CPU. Of
course, a C++ programmer, never gets to use this bit directly. You’ll would need
to learn assembly to do that.

Endianness

After examining a single byte, it is time to look at ways to represent numbers larger
than 255. This is done by grouping bytes together, we can represent numbers that
are much larger than 255. If we use 2 bytes together, we double the number of bits
in our number. In effect, 16 bits allows the representation numbers up to 65535
(unsigned), and 32 bits allows the representation of numbers above 4 billion.

128

Variables

7 0
BYTE CHAR
15 8 7 0

31 16 15 0

Figure 11: 3 basic primitive types char,short int,long int.

Here are a few basic primitive types:

* char (1 byte (by definition), max unsigned value: at least 255)

* short int (at least 16 bits, max unsigned value: at least 65535)

* long int (at least 32 bits, max unsigned value: at least 4294967295)
* float (typically 4 bytes, floating point)

* double (typically 8 bytes, floating point)

Note:

When using ’short int’ and ’long int’, you can leave out the ’int’ as the compiler
will know what type you want. You can also use ’int’ by itself and it will default
to whatever your compiler is set at for an int. On most recent compilers, int
defaults to a 32-bit type.

All the information already given about the byte is valid for the other primitive
types. The difference is simply the number of bits used is different and the msb is
now bit#15 for a short and bit#31 for a long (assuming a 32-bit long type).

In a short (16-bit), one may think that in memory the byte for bits 15 to 8 would
be followed by the byte for bits 7 to 0. In other words, byte #0 would be the high
byte and byte #1 would be the low byte. This is true for some other systems. For
example, the Motorola 68000 series CPUs do use this byte ordering. However, on
PCs (with 8088/286/386/486/Pentiums) this is not so. The ordering is reversed so
that the low byte comes before the high byte. The byte that represents bits 0 to 7

129

Fundamentals for getting started

always comes before all other bytes on PCs. This is called little-endian ordering.
The other ordering, such as on the M68000, is called big-endian ordering. This is
very important to remember when doing low level byte operations that aim to be
portable across systems.

For big-endian computers, the basic idea is to keep the higher bits on the left or
in front. For little-endian computers, the idea is to keep the low bits in the low
byte. There is no inherent advantage to either scheme except perhaps for an oddity.
Using a little-endian long int as a smaller type of int is theoretically possible as the
low byte(s) is/are always in the same location (first byte). With big-endian the low
byte is always located differently depending on the size of the type. For example
(in big-endian), the low byte is the 4" byte in a long int and the 2" byte in a short
int. So a proper cast must be done and low level tricks become rather dangerous.

To convert from one endianness to the other, one reverses the values of the bytes,
putting the highest bytes value in the lowest byte and the lowest bytes value in
the highest byte, and swap all the values for the in between bytes, so that if you
had a 4 byte little-endian integer 0OxXOAOBOCOD (the Ox signifies that the value is
hexadecimal) then converting it to big-endian would change it to 0OxXODOCOBOA.

Bit endianness, where the bit order inside the bytes changes, is rarely used in data
storage and only really ever matters in serial communication links, where the hard-
ware deals with it.

Understanding two’s complement

Two’s complement is a way to store negative numbers in a pure binary represen-
tation. The reason that the two’s complement method of storing negative numbers
was chosen is because this allows the CPU to use the same add and subtract in-
structions on both signed and unsigned numbers.

To convert a positive number into its negative two’s complement format, you begin
by flipping all the bits in the number (1°s become 0’s and 0’s become 1’s) and then
add 1. (This also works to turn a negative number back into a positive number Ex:
-34 into 34 or vice-versa).

130

Variables

BIT#: 7 6 §5 4 3 2 1 0

ofof qopopijos

T 1] & 4 3 2 1]
VA[JIE:E 20 2% 24 20 22 20 2
128 64 32 16 8 4 2 1

Figure 12: A byte contains 8 bits

Let’s try to convert our number 45.

BIT#: 7 6 § 4 3 2 1 0

Sl ofofigogoyago

T 1] 5 4 3 2 1 1]
VA[JIE:Z 20 2° 2 2° 2 202
128 64 32 16 8 4 2 1

Figure 13: A byte contains 8 bits

First, we flip all the bits...

131

Fundamentals for getting started

BIT#: 7 6 5§ 4 3 2 1 0

HANAfNEAan

T L] 5 4 3 2 1 a
VALUE:Z 20 2% 24 2 20 20 2
128 64 32 16 8 4 2 1

Figure 14: A byte contains 8 bits

And add 1. Now if we add up the values for all the one bits, we get...
1284+64+16+2+1=211? What happened here? Well, this number actually is 211. It
all depends on how you interpret it. If you decide this number is unsigned, then
it’s value is 211. But if you decide it’s signed, then it’s value is -45. It is completely
up to you how you treat the number.

If and only if you decide to treat it as a signed number, then look at the msb (most
significant bit [bit#7]). If it’s a 1, then it’s a negative number. If it’s a 0, then it’s
positive. In C++, using unsigned in front of a type will tell the compiler you want
to use this variable as an unsigned number, otherwise it will be treated as signed
number.

Now, if you see the msb is set, then you know it’s negative. So convert it back to a
positive number to find out it’s real value using the process just described above.

Let’s go through a few examples.

Treat the following number as an unsigned byte. What is it’s value in decimal?

EEEEI

128 64 32 16

Figure 15: A byte contains 8 bits

132

Variables

Since this is an unsigned number, no special handling is needed. Just add up all
the values where there’s a 1 bit. 128+64+32+4=228. So this binary number is 228
in decimal.

Now treat the number above as a signed byte. What is its value in decimal?

Since this is now a signed number, we first have to check if the msb is set. Let’s
look. Yup, bit #7 is set. So we have to do a two’s complement conversion to get its
value as a positive number (then we’ll add the negative sign afterwards).

MMMEEMEE

128 64 32 16

Figure 16: A byte contains 8 bits

Ok, so let’s flip all the bits...

EEEEEEMI

128 64 32 16

Figure 17: A byte contains 8 bits

And add 1. This is a little trickier since a carry propagates to the third bit. For
bit#0, we do 141 = 10 in binary. So we have a 0 in bit#0. Now we have to add the
carry to the second bit (bit#1). 1+1=10. bit#1 is 0 and again we carry a 1 over to
the 3" bit (bit#2). 0+1 = 1 and we’re done the conversion.

Now we add the values where there’s a one bit. 16+8+4 = 28. Since we did a
conversion, we add the negative sign to give a value of -28. So if we treat 11100100
(base 2) as a signed number, it has a value of -28. If we treat it as an unsigned
number, it has a value of 228.

Let’s try one last example.

133

Fundamentals for getting started

Give the decimal value of the following binary number both as a signed and
unsigned number.

EE

128 64 32 16

Figure 18: A byte contains 8 bits

First as an unsigned number. So we add the values where there’s a 1 bit set. 4+1
= 5. For an unsigned number, it has a value of 5.

Now for a signed number. We check if the msb is set. Nope, bit #7 is 0. So for a
signed number, it also has a value of 5.

As you can see, if a signed number doesn’t have its msb set, then you treat it exactly
like an unsigned number.

Note:

A special case of two’s complement is where the sign bit (msb or bit#7 in a
byte) is set to one and all other bits are zero, then its two’s complement will
be itself. It is a fact that two’s complement notation (signed numbers) have
1 extra number than can be negative than positive. So for bytes, you have a
range of -128 to +127. The reason for this is that the number zero uses a bit
pattern (all zeros). Out of all the 256 possibilities, this leaves 255 to be split
between positive and negative numbers. As you can see, this is an odd number
and cannot be divided equally. If you were to try and split them, you would be
left with the bit pattern described above where the sign bit is set (to 1) and all
other bits are zeros. Since the sign bit is set, it has to be a negative number.

If you see this bit pattern of a sign bit set with everything else a zero, you cannot
convert it to a positive number using two’s complement conversion. The way
you find out its value is to figure out the maximum number of bit patterns the
value or type can hold. For a byte, this is 256 possibilities. Divide that number
by 2 and put a negative sign in front. So -128 is this number for a byte. The
following will be discussed below, but if you had 16 bits to work with, you
have 65536 possibilities. Divide by 2 and add the negative sign gives a value
of -32768.

134

Variables

Floating point representation
A generic real number with a decimal part can also be expressed in binary format.
For instance 110.01 in binary corresponds to:

Ix224+1x214+0x204+0x2 1 +1x22=224214+22=6.25

Exponential notation (also known as scientific notation, or standard form, when
used with base 10, as in 3 x 10%) can be also used and the same number expressed
as:

1.1001 x 22 (=11.001 x 2! = 110.01)

When there is only one non-zero digit on the left of the decimal point, the notation
is termed normalized.

In computing applications a real number is represented by a sign bit (S) an expo-
nent (e) and a mantissa (M). The exponent field needs to represent both positive
and negative exponents. To do this, a bias E is added to the actual exponent in
order to get the stored exponent, and the sign bit (S), which indicates whether or
not the number is negative, is transformed into either +1 or -1, giving s. A real
number is thus represented as:

f=sxMx2¢E

S, e and M are concatenated one after the other in a 32-bit word to create a single
precision floating point number and in a 64-bit doubleword to create a double
precision one. For the single float type, 8 bits are used for the exponent and 23 bits
for the mantissa, and the exponent offset is E=127. For the double type 11 bits are
used for the exponent and 52 for the mantissa, and the exponent offset is E=1023.

There are two types of floating point numbers. Normalized and denormalized.
A normalized number will have an exponent e in the range O<e<2® - 1 (between
00000000 and 11111111, non-inclusive) in a single precision float, and an expo-
nent e in the range O<e<2!' - 1 (between 00000000000 and 11111111111, non-
inclusive) for a double float. Normalized numbers are represented as sign times
1.Mantissa times 2°°E. Denormalized numbers are numbers where the exponent is
0. They are represented as sign times 0.Mantissa times 2'"F. Denormalized num-
bers are used to store the value 0, where the exponent and mantissa are both 0.
Floating point numbers can store both +0 and -0, depending on the sign. When
the number isn’t normalized or denormalized (it’s exponent is all 1s) the number
will be plus or minus infinity if the mantissa is zero and depending on the sign, or
plus or minus NaN (Not a Number) if the mantissa isn’t zero and depending on the
sign.

For instance the binary representation of the number 5.0 (using float type) is:

135

Fundamentals for getting started

0 10000001 01000000000000000000000

The first bit is 0, meaning the number is positive, the exponent is 129-127=2, and
the mantissa is 1.01 (note the leading one is not included in the binary representa-
tion). 1.01 corresponds to 1.25 in decimal representation. Hence 1.25%4=5.

Floating point numbers are not always exact representations of values. a number
like 1010110110001110101001101 couldn’t be represented by a single precision
floating point number because, disregarding the leading 1 which isn’t part of the
mantissa, there are 24 bits, and a single precision float can only store 23 numbers
in its mantissa, so the 1 at the end would have to be dropped because it is the least
significant bit. Also, there are some value which simply cannot be represented
in binary which can be easily represented in decimal, E.g. 0.3 in decimal would
be 0.0010011001100110011... or something. A lot of other numbers cannot be
exactly represented by a binary floating point number, no matter how many bits it
use for it’s mantissa, just because it would create a repeating pattern like this.

3.3.2 Locality (hardware)

Variables have two distinct characteristics: those that are created on the stack (local
variables), and those that are accessed via a hard-coded memory address (global
variables).

Globals

Typically a variable is bound to a particular address in COMPUTER MEMORY '8
that is automatically assigned to at runtime, with a fixed number of bytes deter-
mined by the size of the object type of a variable and any operations performed
on the variable effects one or more VALUES'3! stored in that particular memory
location.

All global defined variables will have static lifetime. Only those not defined as
const will permit external linkage by default.

180 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPUTER%20MEMORY%20
181 HTTP://EN.WIKIPEDIA.ORG/WIKI/VALUE%20%28COMPUTER%20SCIENCE%29

136

http://en.wikipedia.org/wiki/computer%20memory%20
http://en.wikipedia.org/wiki/value%20%28computer%20science%29

Variables

Locals

If the size and location of a variable is unknown beforehand, the location in mem-
ory of that variable is stored in another variable instead, and the size of the original
variable is determined by the size of the type of the second value storing the mem-
ory location of the first. This is called REFERENCING 32, and the variable holding
the other variables memory location is called a pointer.

3.3.3 ScopPg!83

Variables also reside in a specific SCOPE!®*. The scope of a variable is the most
important factor to determines the life-time of a variable. Entrance into a scope
begins the life of a variable and leaving scope ends the life of a variable. A variable
is visible when in scope unless it is hidden by a variable with the same name inside
an enclosed scope. A variable can be in global scope, namespace scope, file scope
or compound statement scope.

As an example, in the following fragment of code, the variable ’i’ is in scope only
in the lines between the appropriate comments:

int i; /#71i’ is now in scope #*/

i=25;
i=1+1;
cout << 1i;

}/* 7i’ is now no longer in scope */

There are specific keywords that extend the life-time of a variable, and COMPOUND
STATEMENT’® define their own local SCOPE!86,

// Example of a compound statement defining a local scope

{

{
int i = 10; //inside a statement block

}

i =2; //error, variable does not exist outside of the above compound statement

}

182 HTTP://EN.WIKIPEDIA.ORG/WIKI/REFERENCE%20%28COMPUTERS
20SCIENCE%29

183 Chapter 3.1.9 on page 78

184 Chapter 3.1.9 on page 78

185 Chapter 3.1.7 on page 58

186 Chapter 3.1.9 on page 78

137

http://en.wikipedia.org/wiki/reference%20%28computer%20science%29
http://en.wikipedia.org/wiki/reference%20%28computer%20science%29

Fundamentals for getting started

It is an error to declare the same variable twice within the same level of scope.

The only SCOPE!®7 that can be defined for a global variable is a namespace, this
deals with the visibility of variable not its validity, being the main purpose to avoid
name collisions.

The concept of scope in relation to variables becomes extremely important when
we get to classes, as the constructors are called when entering scope and the de-
structors are called when leaving scope.

Note:
Variables should be declared as local and as late as possible, and initialized
immediately.

3.3.4 Type

So far we explained that internally data is stored in a way the hardware can read as
zeros and ones, bits. That data is conceptually divided and labeled in accordance to
the number of bits in each set. We must explain that since data can be interpreted
in a variety of sets according to established formats as to represent meaningful in-
formation. This ultimately required that the programmer is capable of differentiate
to the compiler what is needed, this is done by using the different types.

A variable can refer to simple values like integers called a primitive type or to a
set of values called a composite type that are made up of PRIMITIVE TYPES'® and
other COMPOSITE TYPES!®?. Types consist of a set of valid values and a set of
valid operations which can be performed on these values. A variable must declare
what type it is before it can be used in order to enforce value and operation safety
and to know how much space is needed to store a value.

Major functions that type systems provide are:

» Safety - types make it impossible to code some operations which cannot be
valid in a certain context. This mechanism effectively catches the majority of
common mistakes made by programmers. For example, an expression "Hello,
Wikipedia"/1 is invalid because a STRING LITERAL!?® cannot be divided by

187 Chapter 3.1.9 on page 78

188 HTTP://EN.WIKIPEDIA.ORG/WIKI/PRIMITIVES20TYPES
189 urTP://EN.WIKIPEDIA.ORG/WIKI/COMPOSITE%20TYPES
190 HTTP://EN.WIKIPEDIA.ORG/WIKI/STRING%20LITERAL

138

http://en.wikipedia.org/wiki/primitive%20types
http://en.wikipedia.org/wiki/composite%20types
http://en.wikipedia.org/wiki/string%20literal

Variables

an INTEGER!®! in the usual sense. As discussed below, strong typing offers

more safety, but it does not necessarily guarantee complete safety (see TYPE-
SAFETY'?? for more information).

* Optimization - static type checking might provide useful information to a com-
piler. For example, if a type says a value is aligned at a multiple of 4, the memory
access can be optimized.

* Documentation - using types in languages also improves DOCUMENTATIO
of code. For example, the declaration of a variable as being of a specific type
documents how the variable is used. In fact, many languages allow programmers
to define semantic types derived from PRIMITIVE TYPE'%*s; either composed
of elements of one or more primitive types, or simply as aliases for names of
primitive types.

* Abstraction - types allow programmers to think about programs in higher level,
not bothering with low-level implementation. For example, programmers can
think of strings as values instead of a mere array of bytes.

* Modularity - types allow programmers to express the interface between two
subsystems. This localizes the definitions required for interoperability of the
subsystems and prevents inconsistencies when those subsystems communicate.

N193

Data types

191 HTTP://EN.WIKIPEDIA.ORG/WIKI/INTEGER

192 HTTP://EN.WIKIPEDIA.ORG/WIKI/TYPE—SAFETY

193 uTTP://EN.WIKIPEDIA.ORG/WIKI/DOCUMENTATION
194 HTTP://EN.WIKIPEDIA.ORG/WIKI/PRIMITIVE%20TYPE

139

http://en.wikipedia.org/wiki/integer
http://en.wikipedia.org/wiki/type-safety
http://en.wikipedia.org/wiki/documentation
http://en.wikipedia.org/wiki/primitive%20type

Fundamentals for getting started

Type Size in Bits Alternate Names
Primitive Types

Type Size in Bits Alternate Names
Primitive Types
char 238 —

¢ sizeof gives the size in units
of chars. These "BYTES!®"
need not be 8-bit bytes (though
commonly they are); the number
of bits is given by the CHAR_BIT
macro in the climits header.

« Signedness is implementation-
defined.

« Any encoding of 8 bits or less
(e.g. ASCII) can be used to store
characters.

* Integer operations can be per-
formed portably only for the
range 0~ 127.

« All bits contribute to the value of
the char, i.e. there are no "holes"
or "padding" bits.

signed char same as char —
¢ Characters stored like for type
char.
¢ Can store integers in the range
-127~ 127 portably! 11"

unsigned char same as char —
¢ Characters stored like for type
char.
* Can store integers in the range 0
=255 portably.

short > 16, > size of short int, signed
char ¢ Can store integers in the range short, signed
32767 ~ 32767 portably 2" short int
¢ Used to reduce memory usage
(although the resulting exe-
cutable may be larger and proba-
bly slower as compared to using
int.

195 uHTTP://EN.WIKIPEDIA.ORG/WIKI/BYTE
196 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23TABLE%200Fr%20TYPES%20F00TNOTES
197 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23TABLE%200F%20TYPES%$20F00TNOTES

140

http://en.wikipedia.org/wiki/Byte
http://en.wikibooks.org/wiki/%23Table%20of%20Types%20Footnotes
http://en.wikibooks.org/wiki/%23Table%20of%20Types%20Footnotes

Variables

Type Size in Bits

Primitive Types

unsigned short same as short

int > 16, > size of
short

unsigned int same as int

long > 32, > size of
int

unsigned long same as long

bool > size of char, <
size of long

wchar_t > size of char, <

size of long

Alternate Names

« Can store integers in the range 0
~ 65535 portably.

¢ Used to reduce memory usage
(although the resulting exe-
cutable may be larger and proba-
bly slower as compared to using
int.

* Represents the "normal" size of
data the processor deals with (the
word-size); this is the integral
data-type used normally.

¢ Can store integers in the range

32767 ~ 32767 portably!2'”*.

* Can store integers in the range 0
~ 65535 portably.

* Can store integers in the range
-21474836]492 ~ 2147483647
portably31™"

* Can store integers in the range 0
74294967295 portably.

* Can store the constants true and
false.

 Signedness is implementation-
defined.

¢ Can store "wide" (multi-byte)
characters, which include those
stored in a char and probably
many more, depending on the
implementation.

 Integer operations are better not
performed with wchar_ts. Use
int or unsigned int instead.

unsigned short
int

signed, signed
int

unsigned

long int, signed
long, signed
long int

unsigned long
int

198 #HTTP://EN.WIKIBOOKS.ORG/WIKI/%$23TABLE%200F%20TYPES$20F0OOTNOTES
199 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23TABLE%200F%20TYPES%20F00TNOTES

141

http://en.wikibooks.org/wiki/%23Table%20of%20Types%20Footnotes
http://en.wikibooks.org/wiki/%23Table%20of%20Types%20Footnotes

Fundamentals for getting started

Type Size in Bits Alternate Names
Primitive Types
float > size of char

¢ Used to reduce memory usage
when the values used do not vary
widely.

* The floating-point format used is
implementation defined and need
not be the IEEE single-precision
format.

¢ unsigned cannot be specified.

double > size of float

* Represents the "normal” size of
data the processor deals with;
this is the floating-point data-
type used normally.

¢ The floating-point format used is
implementation defined and need
not be the IEEE double-precision
format.

¢ unsigned cannot be specified.

long double > size of double
¢ unsigned cannot be specified.

User Defined Types
struct or class > sum of size of
each member ¢ Default access modifier for
structs for members and base
classes is public.
¢ For classes the default is private.
+ The CONVENTION?Y is to use
struct only for Plain Old Data

types.
¢ Said to be a compound type.

union > size of the
largest member ¢ Default access modifier for mem-
bers and base classes is public.
* Said to be a compound type.

enum > size of char
¢ Enumerations are a distinct type
from ints. ints are not implicitly
converted to enums, unlike in C.
Also ++/-- cannot be applied to
enums unless overloaded.

typedef same as the type
being given a ¢ Syntax similar to a storage class

name like static, register or extern.

template > size of char —

200 Chapter 3.1.7 on page 59

142

Variables

Type Size in Bits
Primitive Types

Derived Types[“]201

type& > size of char
(reference)

type* > size of char
(pointer)

type [integer]
(array) of type

> integer X size

Alternate Names

References (unless optimized
out) are usually internally imple-
mented using pointers and hence
they do occupy extra space sepa-
rate from the locations they refer
to.

0 always represents the null
pointer (an address where no data
can be placed), irrespective of
what bit sequence represents the
value of a null pointer.

Pointers to different types may
have different representations,
which means they could also be
of different sizes. So they are not
convertible to one another.

Even in an implementation which
guarantess all data pointers to

be of the same size, function
pointers and data pointers are in
general incompatible with each
other.

For functions taking variable
number of arguments, the argu-
ments passed must be of appro-
priate type, so even 0 must be
cast to the appropriate type in
such function-calls.

The brackets ([1) follow the
identifier name in a declaration.
In a declaration which also ini-
tializes the array (including a
function parameter declaration),
the size of the array (the integer)
can be omitted.

type [] is not the same as type*.
Only under some circumstances
one can be converted to the other.

201 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23TABLE%200F%20TYPES%20F00TNOTES

143

http://en.wikibooks.org/wiki/%23Table%20of%20Types%20Footnotes

Fundamentals for getting started

Type Size in Bits
Primitive Types
type (comma-
delimited list of .
types/declara-

tions)

(function)

type aggregate_- > size of char
type: : * .
(member pointer)

Alternate Names

The parentheses (()) follow the
identifier name in a declaration,
e.g. a 2-arg function pointer:
int (* fptr) (int argl, int
arg2).

Functions declared without any
storage class are extern.

0 always represents the null
pointer (a value which does

not point to any member of the
aggregate type), irrespective of
what bit sequence represents the
value of a null pointer.

Pointers to different types may
have different representations,
which means they could also be
of different sizes. So they are not
convertible to one another.

[11-128 can be stored in two’s-complement machines (i.e. most machines in

existence).

(21 32768 can be stored in two’s-complement machines (i.e. most machines

in existence).

(31 _2147483648 can be stored in two’s-complement machines (i.e. most ma-

chines in existence).
(4] The precedences in

a declaration are: tive)

&, *, ::* (right asso-

ciative)

Note:

[1, () (left associa-

— Highest

— Lowest

Many compilers also support the (non-standard) long long and unsigned long
long data types. These can be expected to be added to the next revision of the

C++ Standard (in fact, they are in
been standard in C since 1999).

the current draft for that standard, and have

Until the C++98 (and C99) standard adoption that defines char as signed, be-
fore the type was undefined in regard to the use of the sign. This information
is important if you are using old compilers or reviewing old code.

144

Variables

Standard types

There are five basic primitive types called standard types, specified by particular
keywords, that store a single value. These types stand isolated from the complexi-
ties of class type variables, even if the syntax of utilization at times brings them all
in line, standard types do not share class properties (i.e.: don’t have a constructor).

The type of a variable determines what kind of values it can store:

* bool - a boolean value: true; false

* int - Integer: -5; 10; 100

* char - a character in some encoding, often something like ASCII, ISO-8859-1
("Latin 1") or ISO-8859-15: ’a’, ’=",°G’, ’2’.

* float - floating-point number: 1.25; -2.35%10"23

* double - double-precision floating-point number: like float but more decimals

Note:

A char variable cannot store sequences of characters (strings), such as "C++"
’C,’+’, ’+’,°\0’ }); it takes 4 char variables (including the null-terminator)
to hold it. This is a common confusion for beginners. There are several types
in C++ that store string values, but we will discuss them later.

The float and double primitive data types are called 'floating point’ types and
are used to represent real numbers (numbers with decimal places, like 1.435324
and 853.562). Floating point numbers and floating point arithmetic can be very
tricky, due to the nature of how a computer calculates floating point numbers.

Note:

Don’t use floating-point variables where discrete values are needed. Using a
float for a loop counter is a great way to shoot yourself in the foot. Always test
floating-point numbers as <= or >=, never use an exact comparison (== or !=).

Definition vs. declaration

There is an important concept, the distinction between the declaration of a variable
and its definition, two separated steps involved in the use of variables. The declara-
tion announces the properties (the type, size, etc.), on the other hand the definition
causes storage to be allocated in accordance to the declaration.

145

Fundamentals for getting started

Variables as function, classes and other constructs that require declarations may be
declared many times, but each may only be defined one time.

Note:

There are ways around the definition limitation but uses and circumstances
that may require it are vary rare or too specific that forgetting to interiorize the
general rule is a quick way to get into errors that may be hard to resolve.

This concept will be further explained and with some particulars noted (such as
inline) as we introduce other components. Here are some examples, some in-
clude concepts not yet introduced, but will give you a broader view:

int an_integer; // defines an_integer
extern const int a = 1; // defines a
int function(int b) { return b+an_integer; } // defines function and
defines b
struct a_struct { int a; int b; }; // defines a_struct,
a_struct::a, and a_struct::b
struct another_struct { // defines another_struct
int a; // defines nonstatic data
member a
static int b; // declares static data
member b
another_struct(): a(0) { } }; // defines a constructor of
another_struct
int another_struct::b = 1; // defines another_struct::b
enum { right, left }; // defines right and left
namespace FirstNamespace { int a; } // defines FirstNamespace
and FirstNamespace::a
namespace NextNamespace = FirstNamespace ; // defines NextNamespace
another_struct MySruct; // defines MySruct
extern int b; // declares b
extern const int c; // declares c
int another_function(int); // declares another_function
struct aStruct; // declares aStruct
typedef int Mylnt; // declares MyInt
extern another_struct yet_another_struct; // declares
yet_another_struct
using NextNamespace::a; // declares NextNamespace::a
Declaration

C++ is a statically typed language. Hence, any variable cannot be used without
specifying its type. This is why the type figures in the declaration. This way
the compiler can protect you from trying to store a value of an incompatible type
into a variable, e.g. storing a string in an integer variable. Declaring variables
before use also allows spelling errors to be easily detected. Consider a variable

146

Variables

used in many statements, but misspelled in one of them. Without declarations,
the compiler would silently assume that the misspelled variable actually refers to
some other variable. With declarations, an "Undeclared Variable" error would be
flagged. Another reason for specifying the type of the variable is so the compiler
knows how much space in memory must be allocated for this variable.

The simplest variable declarations look like this (the parts in []s are optional):

[specifier(s)] type variable_name [= initial_value];

To create an integer variable for example, the syntax is

int sum;

where sum is the name you made up for the variable. This kind of statement is
called a declaration. It declares sum as a variable of type int, so that sum can store
an integer value. Every variable has to be declared before use and it is common
practice to declare variables as close as possible to the moment where they are
needed. This is unlike languages, such as C, where all declarations must precede
all other statements and expressions.

In general, you will want to make up variable names that indicate what you plan to
do with the variable. For example, if you saw these variable declarations:

char firstLetter;
char lastLetter;
int hour, minute;

you could probably make a good guess at what values would be stored in them.
This example also demonstrates the syntax for declaring multiple variables with
the same type in the same statement: hour and minute are both integers (inf type).
Notice how a comma separates the variable names.

int a = 123;
int b (456);

Those lines also declare variables, but this time the variables are initialized to some
value. What this means is that not only is space allocated for the variables but the
space is also filled with the given value. The two lines illustrate two different but
equivalent ways to initialize a variable. The assignment operator ’=’ in a declara-
tion has a subtle distinction in that it assigns an initial value instead of assigning a
new value. The distinction becomes important especially when the values we are
dealing with are not of simple types like integers but more complex objects like
the input and output streams provided by the iostream class.

147

Fundamentals for getting started

The expression used to initialize a variable need not be constant. So the lines:

int sum;
sum = a + b;

can be combined as:

int sum = a + b;

or:

int sum (a + b);

Declare a floating point variable ’f’ with an initial value of 1.5:

float £ = 1.5 ;

Floating point constants should always have a ’." (decimal point) somewhere in
them. Any number that does not have a decimal point is interpreted as an integer,
which then must be converted to a floating point value before it is used.

For example:

double a =5 / 2;

will not set a to 2.5 because 5 and 2 are integers and integer arithmetic will apply
for the division, cutting off the fractional part. A correct way to do this would be:
double a = 5.0 / 2.0;

You can also declare floating point values using scientific notation. The constant
.05 in scientific notation would be 5 x 1072, The syntax for this is the base, fol-
lowed by an e, followed by the exponent. For example, to use .05 as a scientific
notation constant:

double a = 5e-2;

148

Variables

Note:

Single letters can sometimes be a bad choice for variable names when their
purpose cannot be determined. However, some single-letter variable names are
so commonly used that they’re generally understood. For example i, j, and
k are commonly used for loop variables and iterators; n is commonly used to
represent the number of some elements or other counts; s, and t are commonly
used for strings (that don’t have any other meaning associated with them, as in
utility routines); c and d are commonly used for characters; and x and y are
commonly used for Cartesian co-ordinates.

Below is a program storing two values in integer variables, adding them and dis-
playing the result:

// This program adds two numbers and prints their sum.
#include <iostream>

int main()

{
int a = 123;
int b (456);
int sum;
sum = a + b;

std::cout << "The sum of " << a << " and " << b << " is " << sum << "\n";

return 0;

}
6202

or, if you like to save some space, the same above statement can be written as:

// This program adds two numbers and prints their sum, variation 1
#include <iostream>
#include <ostream>
using namespace std;
int main()
{
int a = 123, b (456), sum = a + b;

cout << "The sum of " << a << " and " << b << " is " << sum << endl;

return 0;

202 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

149

http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

203

register

The register keyword is a request to the compiler that the specified variable is to
be stored in a register of the processor instead of memory as a way to gain speed,
mostly because it will be heavily used. The compiler may ignore the request.

The keyword fell out of common use when compilers became better at most code
optimizations than humans. Any valid program that uses the keyword will be se-
mantically identical to one without it, unless they appear in a stringized macro (or
similar context), where it can be useful to ensure that improper usage of the macro
will cause a compile-time error. This keywords relates closely to auto.

register int x=99;

Note:

Register has different semantics between C and C++. In C it is possible to
forbid the array-to-pointer conversion by making an array register declaration:
register int af[l];.

Modifiers

There are several modifiers that can be applied to data types to change the range of
numbers they can represent.

const

A variable declared with this specifier cannot be changed (as in read only). Either
local or class-level variables (scope) may be declared const indicating that you
don’t intend to change their value after they’re initialized. You declare a variable
as being constant using the const keyword. Global const variables have static
linkage. If you need to use a global constant across multiple files the best option is
to use a special header file that can be included across the project.

const unsigned int DAYS_IN_WEEK = 7 ;

declares a positive integer constant, called DAYS_IN_WEEK, with the value 7. Be-
cause this value cannot be changed, you must give it a value when you declare it. If

203 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

150

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Variables

you later try to assign another value to a constant variable, the compiler will print
an error.

int main() {
const int i = 10;

i=3; // ERROR — we can’t change "i"

int &3 = i; // ERROR - we promised not to
// change "i" so we can’t
// create a non-const reference
// to it

const int &x = i; // fine - "x" is a const

// reference to "i"

return 0;

}

The full meaning of const is more complicated than this; when working through
pointers or references, const can be applied to mean that the object pointed (or
referred) to will not be changed via that pointer or reference. There may be other
names for the object, and it may still be changed using one of those names so long
as it was not originally defined as being truly const.

It has an advantage for programmers over #define command because it is under-
stood by the compiler, not just substituted into the program text by the preproces-
sor, so any error messages can be much more helpful.

With pointer it can get messy...

T const *p; // p 1s a pointer to a const T
T *const p; // p 1s a const pointer to T
T const *const p; // p 1s a const pointer to a const T

If the pointer is a local, having a const pointer is useless. The order of T and const
can be reversed:

const T *p;

is the same as

T const *p;

151

Fundamentals for getting started

Note:

const can be used in the declaration of variables (arguments, return values and
methods) - some of which we will mention later on.

Using const has several advantages:

To users of the class, it is immediately obvious that the const methods will
not modify the object.

* Many accidental modifications of objects will be caught at compile time.

» Compilers like const since it allows them to do better optimization.

volatile
A hint to the compiler that a variable’s value can be changed externally; therefore
the compiler must avoid aggressive optimization on any code that uses the variable.

Unlike in Java, C++’s volatile specifier does not have any meaning in relation
to multi-threading. Standard C++ does not include support for multi-threading
(though it is a common extension) and so variables needing to be synchronized
between threads need a synchronization mechanisms such as mutexes to be em-
ployed, keep in mind that volatile implies only safety in the presence of implicit
or unpredictable actions by the same thread (or by a signal handler in the case of a
volatile sigatomic_t object). Accesses to mutable volatile variables and fields
are viewed as synchronization operations by most compilers and can affect control
flow and thus determine whether or not other shared variables are accessed, this
implies that in general ordinary memory operations cannot be reordered with re-
spect to a mutable volatile access. This also means that mutable volatile accesses
are sequentially consistent. This is not (as yet) part of the standard, it is under
discussion and should be avoided until it gets defined.

mutable
This specifier may only be applied to a non-static, non-const member variables. It
allows the variable to be modified within const member functions.

mutable is usually used when an object might be logically constant, i.e., no outside
observable behavior changes, but not bitwise const, i.e. some internal member
might change state.

The canonical example is the proxy pattern. Suppose you have created an image
catalog application that shows all images in a long, scrolling list. This list could be
modeled as:

class image {

152

Variables

public:
// construct an image by loading from disk
image (const char* const filename);

// get the image data

char const * data() const;
private:

// The image data

char* m_data;

}

class scrolling_images {
image const* images[1000];

}i

Note that for the image class, bitwise const and logically const is the same: If
m_data changes, the public function data() returns different output.

At a given time, most of those images will not be shown, and might never be
needed. To avoid having the user wait for a lot of data being loaded which might
never be needed, the proxy pattern might be invoked:

class image_proxy {
public:
image_proxy (char const * const filename)
: m_filename(filename),
m_image(0
{}

~image_proxy() { delete m_image; }
char const * data() const {
if ('m_image) {

m_image = new image(m_filename);
}
return m_image->data();
}
private:
char const* m_filename;
mutable image* m_image;
i

class scrolling_images {

image_proxy const* images[1000];
bi
Note that the image_proxy does not change observable state when data () is in-
voked: it is logically constant. However, it is not bitwise constant since m_image
changes the first time data () is invoked. This is made possible by declaring m_-
image mutable. If it had not been declared mutable, the image_proxy: :data ()
would not compile, since m_image is assigned to within a constant function.

153

Fundamentals for getting started

Note:

Like exceptions to most rules, the mutable keyword exists for a reason, but
should not be overused. If you find that you have marked a significant number
of the member variables in your class as mutable you should probably consider
whether or not the design really makes sense.

short

The short specifier can be applied to the int data type. It can decrease the
number of bytes used by the variable, which decreases the range of numbers that
the variable can represent. Typically, a short int is half the size of a regular int
-- but this will be different depending on the compiler and the system that you use.
When you use the short specifier, the int type is implicit. For example:

short aj;

is equivalent to:
short int a;

Note:

Although short variables may take up less memory, they can be slower than
regular int types on some systems. Because most machines have plenty of
memory today, it is rare that using a short int is advantageous.

long

The long specifier can be applied to the int and double data types. It can increase
the number of bytes used by the variable, which increases the range of numbers
that the variable can represent. A long int is typically twice the size of an int,
and a long double can represent larger numbers more precisely. When you use
long by itself, the int type is implied. For example:

long a;

is equivalent to:

long int a;

The shorter form, with the int implied rather than stated, is more idiomatic (i.e.,
seems more natural to experienced C++ programmers).

154

Variables

Use the long specifier when you need to store larger numbers in your variables.
Be aware, however, that on some compilers and systems the long specifier may not
increase the size of a variable. Indeed, most common 32-bit platforms (and one
64-bit platform) use 32 bits for int and also 32 bits for long int.

Note:

C++ does not yet allow long long int like modern C does, though it is likely
to be added in a future C++ revision, and then would be guaranteed to be at
least a 64-bit type. Most C++ implementations today offer 1ong long or an
equivalent as an extension to standard C++.

unsigned

The unsigned keyword is a data type specifier, that makes a variable only repre-
sent positive numbers and zero. It can be applied only to the char, short,int and
long types. For example, if an int typically holds values from -32768 to 32767, an
unsigned int will hold values from O to 65535. You can use this specifier when
you know that your variable will never need to be negative. For example, if you
declared a variable *'myHeight’ to hold your height, you could make it unsigned
because you know that you would never be negative inches tall.

Note:

unsigned types use MODULAR ARITHMETICY. The default overflow behavior
is to wrap around, instead of raising an exception or saturating. This can be
useful, but can also be a source of bugs to the unwary.

a HTTP://EN.WIKIPEDIA.ORG/WIKI/MODULARS20ARITHMETIC

signed

The signed specifier makes a variable represent both positive and negative num-
bers. It can be applied only to the char, int and long data types. The signed
specifier is applied by default for int and long, so you typically will never use it
in your code.

155

http://en.wikipedia.org/wiki/modular%20arithmetic

Fundamentals for getting started

Note:

Plain char is a distinct type from both signed char and unsigned char al-
though it has the same range and representation as one or the other. On some
platforms plain char can hold negative values, on others it cannot. char should
be used to represent a character; for a small integral type, use signed char, or
for a small type supporting MODULAR ARITHMETIC” use unsigned char.

a HTTP://EN.WIKIPEDIA.ORG/WIKI/MODULAR%20ARITHMETIC

static

The static keyword can be used in four different ways:

e TO CREATE PERMANENT STORAGE FOR LOCAL VARIABLES IN A FUNC-
TIONZ04,

* TO SPECIFY INTERNAL LINKAGE?®.

e TO DECLARE MEMBER FUNCTIONS THAT ACT LIKE NON-MEMBER FUNC-
TIONS2%,

* TO CREATE A SINGLE COPY OF A DATA MEMBER?",

Permanent storage

Using the static modifier makes a variable have static lifetime and on global
variables makes them require internal linkage (variables will not be accessible from
code of the same project that resides in other files).

static lifetime

Means that a static variable will need to be initialized in the file scope and at run
time, will exist and maintain changes across until the program’s process is closed,
the particular order of destruction of static variables is undefined.
static variables instances share the same memory location. This means that they
keep their value between function calls. For example, in the following code, a static

variable inside a function is used to keep track of how many times that function
has been called:

204 Chapter 3.3.4 on page 156
205 Chapter 3.2.4 on page 119
206 Chapter 4.3.5 on page 415
207 Chapter 4.3.4 on page 406

156

http://en.wikipedia.org/wiki/modular%20arithmetic

Variables

void foo() {
static int counter = 0;
cout << "foo has been called " << ++counter << " times\n";

}

int main() {
for(int 1 = 0; 1 < 10; ++i) foo();
}

Enumerated data type

In programming it is often necessary to deal with data types that describe a fixed
set of alternatives. For example, when designing a program to play a card game it
is necessary to keep track of the suit of an individual card.

One method for doing this may be to create unique constants to keep track of the
suit. For example one could define

const int Clubs=0;
const int Diamonds=1;
const int Hearts=2;
const int Spades=3;

int current_card_suit=Diamonds;

Unfortunately there are several problems with this method. The most minor prob-
lem is that this can be a bit cumbersome to write. A more serious problem is that
this data is indistinguishable from integers. It becomes very easy to start using the
associated numbers instead of the suits themselves. Such as:

int current_card_suit=1;

...and worse to make mistakes that may be very difficult to catch such as a typo...

current_card_suit=11;

...which produces a valid expression in C++, but would be meaningless in repre-
senting the card’s suit.

One way around these difficulty is to create a new data type specifically designed
to keep track of the suit of the card, and restricts you to only use valid possibili-
ties. We can accomplish this using an enumerated data type using the C++ enum
keyword.

The enum keyword is used to create an enumerated type named name that consists
of the elements in name-list. The var-list argument is optional, and can be used to
create instances of the type along with the declaration.

157

Fundamentals for getting started

Syntax

enum name {name-list} var-list;

For example, the following code creates the desired data type:

enum card_suit {Clubs,Diamonds,Hearts, Spades};

card_suit first_cards_suit=Diamonds;

card_suit second_cards_suit=Hearts;

card_suit third_cards_suit=0; //Would cause an error, 0 is an "integer" not a
"card_suit"

card_suit forth_cards_suit=first_cards_suit; //OK, they both have the same type.

The line of code creates a new data type "card_suit" that may take on only one of
four possible values: "Clubs", "Diamonds", "Hearts", and "Spades". In general
the enum command takes the form:

enum new_type_name { possible_value_1,
possible_value_1,
Jr e, x/
possible_value_n
} Optional_Variable_With_This_Type;

While the second line of code creates a new variable with this data type and ini-

tializes it to value to Diamonds". The other lines create new variables of this new
type and show some initializations that are (and are not) possible.

Internally enumerated types are stored as integers, that begin with 0 and increment
by 1 for each new possible value for the data type.

enum apples { Fuji, Macintosh, GrannySmith };

enum oranges { Blood, Navel, Persian };

apples pie_filling = Navel; //error can’t make an apple pie with oranges.
apples my_fav_apple = Macintosh;

oranges my_fav_orange = Navel; //This has the same internal integer value as
my_favorite_apple

//Many compilers will produce an error or warning letting you know your comparing
two different quantities.
if (my_fav_apple == my_fav_orange)

std::cout << "You shouldn’t compare apples and oranges" << std::endl;

While enumerated types are not integers, they are in some case converted into
integers. For example, when we try to send an enumerated type to standard output.

For example:

enum color {Red, Green, Blue};
color hair=Red;
color eyes=Blue;

158

Variables

color skin=Green;
std::cout << "My hair color is " << hair << std::endl;
std::cout << "My eye color is " << eyes << std::endl;
std::cout << "My skin color is " << skin << std::endl;
if (skin==Green)

std::cout << "I am seasick!" << std::endl;

Will produce the output:
My hair color is 0
My eye color is 2

My skin color is 1

I am seasick!

We could improve this example by introducing an array that holds the names of
our enumerated type such as:

std::string color_names[3]={"Red", "Green", "Blue"};

enum color {Red, Green, Blue};

color hair=Red;

color eyes=Blue;

color skin=Green;

std::cout << "My hair color is " << color_nameslhair] << std::endl;
std::cout << "My eye color is " << color_names[eyes] << std::endl;
std::cout << "My skin color is " << color_names[skin] << std::endl;

In this case hair is automatically converted to an integer when it is index arrays.
This technique is intimately tied to the fact that the color Red is internally stored
as "0", Green is internally stored as "1", and Blue is internally stored as "2". Be
Careful! One may override these default choices for the internal values of the
enumerated types.

This is done by simply setting the value in the enum such as:

enum color {Red=2, Green=4, Blue=6};

In fact it is not necessary to an integer for every value of an enumerated type. In the
case the value, the compiler will simply increase the value of the previous possible
value by one.

Consider the following example:

enum colour {Red=2, Green, Blue=6, Orange};

Here the internal value of "Red" is 2, "Green" is 3, "Blue" is 6 and "Orange is 7.
Be careful to keep in mind when using this that the internal values do not need to
be unique.

159

Fundamentals for getting started

Enumerated types are also automatically converted into integers in arithmetic ex-
pressions. Which makes it useful to be able to choose particular integers for the
internal representations of an enumerated type.

One may have enumerated for the width and height of a standard computer screen.

This may allow a program to do meaningful calculations, while still maintaining
the benefits of an enumerated type.

enum screen_width {SMALL=800, MEDIUM=1280};

enum screen_height {SMALL=600, MEDIUM=768};

screen_width MyScreenW=SMALL;

screen_height MyScreenH=SMALL;

std::cout << "The number of pixels on my screen is " << MyScreenW*MyScreenH <<
std::endl;

It should be noted that the internal values used in an enumerated type are constant,
and cannot be changed during the execution of the program.

It is perhaps useful to notice that while the enumerated types can be converted to
integers for the purpose arithmetic, they cannot be iterated through.

For example:

enum month { JANUARY=1, FEBRUARY, MARCH, APRIL, MAY, JUNE, JULY, AUGUST,
SEPTEMBER, OCTOBER, NOVEMBER, DECEMBER};

for(month cur_month = JANUARY; cur_month <= DECEMBER; cur_month=cur_month+1)
{

std::cout << cur_month << std::endl;

}

This will fail to compile. The problem is with the for loop. The first two state-
ments in the loop are fine. We may certainly create a new month variable and
initialize it. We may also compare two months, where they will be compared as in-
tegers. We may not increment the cur_month variable. "cur_month+1" evaluates
to an integer which may not be stored into a "month" data type.

In the code above we might try to fix this by replacing the for loop with:

for(int monthcount = JANUARY; monthcount <= DECEMBER; monthcount++)
{
std::cout << monthcount << std::endl;

}

This will work because we can increment the integer "mounthcount"”.

160

Variables

typedef

typedef keyword is used to give a data type a new alias.

typedef existing-type new-alias;

The intent is to make it easier the use of an awkwardly labeled data type, make
external code conform to the coding styles or increase the comprehension of source
code as you can use typedef to create a shorter, easier-to-use name for that data
type. For example:

typedef int Apples;
typedef int Oranges;
Apples coxes;
Oranges jaffa;

The syntax above is a simplification. More generally, after the word "typedef", the
syntax looks exactly like what you would do to declare a variable of the existing
type with the variable name of the new type name. Therefore, for more compli-
cated types, the new type name might be in the middle of the syntax for the existing
type. For example:

typedef char (*pa)[3]; // "pa" is now a type for a pointer to an array of 3
chars
typedef int (*pf) (float); // "pf" is now a type for a pointer to a function
which

// takes 1 float argument and returns an int

This keyword also covered in the CODING STYLE CONVENTIONS SECTION?"8,
Note:

You will only need to redeclare a typedef, if you want to redefine the same
keyword.

Derived types
Type conversion

Type conversion or typecasting refers to changing an entity of one data type into
another.

208 Chapter 3.1.8 on page 61

161

Fundamentals for getting started

Implicit type conversion

Implicit type conversion, also known as coercion, is an automatic and temporary
type conversion by the compiler. In a mixed-type expression, data of one or more
subtypes can be converted to a supertype as needed at runtime so that the program
will run correctly.

For example:

double d;
long L;
int i;
if (d > i) d=1i;
if (1 > 1) 1 =1
if (d == 1) d *= 2;

As you can see d, 1 and i belong to different data types, the compiler will then
automatically and temporarily converted the original types to equal data types each
time a comparison or assignment is executed.

Note:

This behavior should be used with caution, and most modern compiler will
provide a warning, as unintended consequences can arise.

Data can be lost when floating-point representations are converted to integral
representations as the fractional components of the floating-point values will be
truncated (rounded down). Conversely, converting from an integral representa-
tion to a floating-point one can also lose precision, since the floating-point type
may be unable to represent the integer exactly (for example, float might be an
IEEE 754 single precision type, which cannot represent the integer 16777217
exactly, while a 32-bit integer type can). This can lead to situations such as
storing the same integer value into two variables of type int and type single
which return false if compared for equality.

Explicit type conversion
Explicit type conversion manually converts one type into another, and is used in
cases where automatic type casting doesn’t occur.

double d = 1.0;

printf ("$d\n", (int)d);

162

Operators

In this example, d would normally be a double and would be passed to the
PRINTF??® function as such. This would result in unexpected behavior, since
PRINTF?'? would try to look for an int. The typecast in the example corrects this,
and passes the integer to PRINTF?!! as expected.

Note:
Explicit type casting should only be used as required. It should not be used if
implicit type conversion would satisfy the requirements.

3.4 Operators

Now that we have covered the VARIABLES?/? and DATA TYPES?/? it becomes pos-
sible to introduce operators. Operators are special symbols that are used to rep-
resent and direct simple computations, this is significative importance in program-
ming, since they serve to define, in a very direct, non-abtractive way and simple
way, actions and simple interaction with data.

Since computers are mathematical devices, COMPILERS?'* and INTERPRETERS?!?
require a full syntactic theory of all operations in order to parse formulas involv-
ing any combinations correctly. In particular they depend on OPERATOR PRECE-
DENCEZ2!® rules, on ORDER OF OPERATIONSZ!7, that are tacitly assumed in math-
ematical writing and the same applies to programming languages. Conventionally,
the computing usage of operator also goes beyond the MATHEMATICAL USAGE>!®
(for functions).

C++ like all PROGRAMMING LANGUAGES?!? uses a set of operators, they are sub-
divided into several groups:

* arithmetic operators (like addition and multiplication).

209 Chapter 3.7.11 on page 290

210 Chapter 3.7.11 on page 290

211 Chapter 3.7.11 on page 290

212 Chapter 3.2.4 on page 121

213 Chapter 3.3.3 on page 138

214 Chapter 3.1.10 on page 87

215 HTTP://EN.WIKIPEDIA.ORG/WIKI/INTERPRETER

216 HTTP://EN.WIKIPEDIA.ORG/WIKI/OPERATOR%20PRECEDENCE
217 HTTP://EN.WIKIPEDIA.ORG/WIKI/ORDER%200F%200PERATIONS
218 HTTP://EN.WIKIPEDIA.ORG/WIKI/OPERATOR

219 Chapter 2.1.3 on page 11

163

http://en.wikipedia.org/wiki/interpreter
http://en.wikipedia.org/wiki/operator%20precedence
http://en.wikipedia.org/wiki/order%20of%20operations
http://en.wikipedia.org/wiki/operator

Fundamentals for getting started

* boolean operators.

« string operators (used to manipulate STRINGS OF TEXT>2?).

* pointer operators.

* named operators (operators such as sizeof, new, and delete defined by al-
phanumeric names rather than a punctuation character).

Most of the operators in C++ do exactly what you would expect them to do, be-
cause most are common mathematical symbols. For example, the operator for
adding two integers is +. C++ does allows the re-definition of some operators
(OPERATOR OVERLOADING??!) on more complex types, this be covered later on.

Expressions can contain both variables names and integer values. In each case the
name of the variable is replaced with its value before the computation is performed.

3.4.1 Order of operations

When more than one operator appears in an expression the order of evaluation
depends on the rules of precedence. A complete explanation of precedence can get
complicated, but just to get you started:

Multiplication and division happen before addition and subtraction. So 2*3-1
yields 5, not 4, and 2/3-1 yields -1, not 1 (remember that in integer division 2/3
is 0). If the operators have the same precedence they are evaluated from left to
right. So in the expression minute*100/60, the multiplication happens first, yield-
ing 5900/60, which in turn yields 98. If the operations had gone from right to
left, the result would be 59*1 which is 59, which is wrong. Any time you want to
override the rules of precedence (or you are not sure what they are) you can use
parentheses. Expressions in parentheses are evaluated first, so 2 * (3-1) is 4. You
can also use parentheses to make an expression easier to read, as in (minute * 100)
/ 60, even though it doesn’t change the result.

3.4.2 PRECEDENCE??? (Composition)

At this point we have looked at some of the elements of a programming language
like variables, expressions, and statements in isolation, without talking about how
to combine them.

220 HTTP://EN.WIKIPEDIA.ORG/WIKI/LITERAL%20STRING
221 Chapter 4.6 on page 438
222 HTTP://EN.WIKIPEDIA.ORG/WIKI/OPERATOR%20PRECEDENCE

164

http://en.wikipedia.org/wiki/literal%20string
http://en.wikipedia.org/wiki/Operator%20precedence

Operators

One of the most useful features of programming languages is their ability to take
small building blocks and compose them (solving big problems by taking small
steps at a time). For example, we know how to multiply integers and we know
how to output values; it turns out we can do both at the same time:

std::cout << 17 * 3;

Actually, I shouldn’t say "at the same time," since in reality the multiplication
has to happen before the output, but the point is that any expression, involving
numbers, characters, and variables, can be used inside an output statement. We’ve
already seen one example:

std::cout << hour * 60 + minute << std::endl;

You can also put arbitrary expressions on the right-hand side of an assignment
statement:

int percentage;

percentage = (minute * 100) / 60;

This ability may not seem so impressive now, but we will see other examples where
composition makes it possible to express complex computations neatly and con-
cisely.

Note:

There are limits on where you can use certain expressions; most notably, the
left-hand side of an assignment statement (normally) has to be a variable name,
not an expression. That’s because the left side indicates the storage location
where the result will go. Expressions do not represent storage locations, only
values.

The following is illegal:minute+1 = hour;

The exact rule for what can go on the left-hand side of an assignment expression is
not so simple as it was in C; as OPERATOR OVERLOADING??? and reference types
can complicate the picture.

223 HTTP://EN.WIKIPEDIA.ORG/WIKI/OPERATOR%200VERLOADING

165

http://en.wikipedia.org/wiki/operator%20overloading

Fundamentals for getting started

3.4.3 Chaining

std::cout << "The sum of " << a << " and " << b << " is " << sum
<< ll\nll,.

The above line illustrates what is called chaining of insertion operators to print
multiple expressions. How this works is as follows:

1. The leftmost insertion operator takes as its operands, std::cout and the
string "The sum of ", it prints the latter using the former, and returns a
reference to the former.

2. Now std::cout << ais evaluated. This prints the value contained in the
location a, i.e. 123 and again returns std: : cout.

3. This process continues. Thus, successively the expressions std::cout

<< " and ", std::cout << b, std::cout << " is ", std::cout <<

sum ", std::cout << "\n" are evaluated and the whole series of
chained values is printed.

224

3.4.4 Table of operators

Operators in the same group have the same precedence and the order of evalua-
tion is decided by the associativity (left-to-right or right-to-left). Operators in a
preceding group have higher precedence than those in a subsequent group.

Note:

Binding of operators actually cannot be completely described by "precedence"”
rules, and as such this table is an approximation. Correct understanding of the
rules requires an understanding of the grammar of expressions.

Operators Description Example Usage Associativity
Scope Resolution Operator
B unary scope resolution ::NUM_ELEMENTS —

operator

for globals

binary scope resolu- std::cout

tion operator
for class and
namespace members

224 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

166

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Operators

Function Call, Member Access, Post-Increment/Decrement Opera-
tors, RTTI and C++ Casts

0
[]

typeid ()

static_cast<>()
dynamic_cast<> ()
const_cast<>()
reinterpret_-
cast<>()

type ()

Unary Operators
!, not
~, compl

&, bitand

*

function call operator
array index operator
member access opera-
tor

for an object of
class/union type

or a reference to it
member access opera-
tor

for a pointer to an
object of

class/union type

post-
increment/decrement
operators

run time type identifi-
cation operator

for an object or type
C++ style cast opera-
tors

for compile-time type
conversion

See TYPE CAST-
ING?? for more
info

functional cast opera-
tor

(static_castis
preferred

for conversion to a
primitive type)

also used as a con-
structor call

for creating a tempo-
rary object, esp.

of a class type

logical not operator
bitwise not operator
unary plus/minus
operators

pre-
increment/decrement
operators

address-of operator
indirection operator

225 Chapter 3.4.14 on page 204

swap (%, y)
arr [1i]
obj.member

ptr—>member

num++

typeid (std::cout)
typeid (std::iostream)

static_cast<float>
(1)

dynamic_-
cast<std::istream>
(stream)
const_cast<char*>
("Hello, World!")
reinterpret_-
cast<const long*>
("c++|l>

float (i)

std::string
("Hello, world!",
0, 5)

leof_reached
“mask
-num

++num

Left to right

Right to left

167

Fundamentals for getting started

new new operators

new /(] for single objects or

new () arrays

new () []

delete delete operator

delete [] for pointers to single
objects or arrays

sizeof sizeof operator

sizeof () for expressions or
types

(type) C-style cast operator
(deprecated)

Member Pointer Operators
X member pointer ac-
cess operator
for an object of
class/union type
or a reference to it
—>* member pointer ac-
cess operator
for a pointer to an
object of
class/union type

Multiplicative Operators

/% multiplication, divi-
sion and
modulus operators

Additive Operators
+ - addition and subtrac-
tion operators

Bitwise Shift Operators
<< left and right shift
>> operators

Relational Inequality Operators

<> <= >= less-than, greater-
than, less-than or
equal-to, greater-than
or equal-to

Relational Equality Operators
== !=,not_eq equal-to, not-equal-to

Bitwise And Operator

168

new std::string
(5, r*r)

new int [100]
new (raw_mem) int
new (argl, arg2)
int [100]

delete ptr

delete[] arr

sizeof 123
sizeof (int)

(float) 1

obj.*memptr

ptr->*memptr

celsius_diff * 9

/5

end - start + 1

bits << shift_len

bits >> shift_len

1 < num_elements

choice != 'n’

Right to left

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Operators

&, bitand bits & clear_-
mask_complement

Bitwise Xor Operator

", Xor bits * invert - Left to right
mask
Bitwise Or Operator)
i . Lefi h
I, bitor bits | set_mask eft to right
Logical And Operator Left to right
&&, and arr !'= 0 &&
arr->len != 0
Logical Or Operator Loft o sight
I, or arr == ||
arr->len == 0

Conditional Operator

?: size >= 0 ? size Right to left
0
Assignment Operators
= assignment operator i=0 Right to left
t= -= *= /= §= shorthand assignment num /= 10
&=, and_eq operators
I=, or_eq (foo op= barrepre-
"=, Xor_eq <<= >>= sents
foo = foo op bar)
Exceptions
throw throw "Array o
index out of
bounds"
Comma Operator . ‘ ‘ Left to right
, i=0,3j=1+1,
k=20

226

226 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

169

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Fundamentals for getting started

3.4.5 Assignment

The most basic assignment operator is the "=" operator. It assigns one variable to
have the value of another. For instance, the statement x = 3 assigns x the value
of 3, and y = x assigns whatever was in x to be in y. When the "=" operator is
used to assign a class or struct, it acts like using the "=" operator on every single
element. For instance:

//Example to demonstrate default "=" operator behavior.

struct A
{
int i;
float f;
A * next_a;
}i

//Inside some function

{

A al, a2; // Create two A objects.

al.i = 3; // Assign 3 to i1 of al.

al.f = 4.5; // Assign the value of 4.5 to f in al

al.next_a = &a2; // al.next_a now points to a2

a2.next_a = NULL; // aZ2.next_a 1s guaranteed to point at nothing now.
a2.i = al.i; // Copy over al.i, so that a2.i is now 3.

al.next_a = a2.next_a; // Now al.next_a is NULL

a2 = al; // Copy a2 to al, so that now a2.f is 4.5. The other two
are unchanged, since they were the same.

}

Assignments can also be chained since the assignment operator returns the value it
assigns. But this time the chaining is from right to left. For example, to assign the
value of z to y and assign the same value (which is returned by the = operator) to
X you use:

X =y = z;

When the "=" operator is used in a declaration, it has special meaning. It tells the
COMPILER?? to directly initialize the variable from whatever is on the right-hand
side of the operator. This is called defining a variable, in the same way that you
define a class or a function. With classes, this can make a difference, especially
when assigning to a function call:

class A { /* ... */};

227 Chapter 3.1.10 on page 87

170

Operators

A foo () { /* ... x/};

// In some function
{
A a;
a = foo();

A a2 = foo();
}

In the first case, a is constructed, then is changed by the operator. In the
second statement, a2 is constructed directly from the return value of foo (). In
many cases, the COMPILER??® can save a lot of time by constructing foo () ’s return
value directly into a2’s memory, which makes the program run faster.

Whether or not you define can also matter in a few cases where a definition can re-
sult in different linkage, making the variable more or less available to other source
files.

3.4.6 Arithmetic operators

Arithmetic operations that can be performed on integers (also common in many
other languages) include:

* Addition, using the + operator
 Subtraction, using the - operator

e Multiplication, using the * operator
* Division, using the / operator

* Remainder, using the % operator

Consider the next example, it will perform an addition and show the result:

#include<iostream>

using namespace std;

int main()

{
int a =3, b =5;
cout << a << '+’ << b << '=" << (atb);
return 0;

}

The line relevant for the operatio is where the + operator adds the values stored in
the locations a and b. a and b are said to be the operands of +. The combination

228 Chapter 3.1.10 on page 87

171

Fundamentals for getting started

a + Db is called an expression, specifically an arithmetic expression since + is an
arithmetic operator.

Addition, subtraction and multiplication all do what you expect, but you might be
surprised by division. For example, the following program:

int hour, minute;

hour = 11;

minute = 59;

std::cout << "Number of minutes since midnight: ";
std::cout << hour*60 + minute << std::endl;

std::cout << "Fraction of the hour that has passed: ";
std::cout << minute/60 << std::endl;

would generate the following output:

Number of minutes since midnight: 719

Fraction of the hour that has passed: 0

The first line is what we expected, but the second line is odd. The value of the
variable minute is 59, and 59 divided by 60 is 0.98333, not 0. The reason for the
discrepancy is that C++ is performing integer division.

When both of the operands are integers (operands are the things operators operate
on), the result must also be an integer, and by definition integer division always
rounds down, even in cases like this where the next integer is so close.

A possible alternative in this case is to calculate a percentage rather than a fraction:

std::cout << "Percentage of the hour that has passed: ";
std::cout << minute*100/60 << std::endl;

The result is:
Percentage of the hour that has passed: 98

Again the result is rounded down, but at least now the answer is approximately
correct. In order to get an even more accurate answer, we could use a different
type of variable, called floating-point, that is capable of storing fractional values.

This next example:

#include<iostream>

using namespace std;
int main()
{

int a = 33, b = 5;

172

Operators

cout << "Quotient = " << a / b << endl;
cout << "Remainder = "<< a % b << endl;
return 0;

}

will return:

Quotient = 6
Remainder = 3

The multiplicative operators *, / and % are always evaluated before the additive op-
erators + and -. Among operators of the same class, evaluation proceeds from left
to right. This order can be overridden using grouping by parentheses, (and) ; the
expression contained within parentheses is evaluated before any other neighboring
operator is evaluated. But note that some COMPILERS?? may not strictly follow
these rules when they try to optimize the code being generated, unless violating
the rules would give a different answer.

For example the following statements convert a temperature expressed in degrees
Celsius to degrees Fahrenheit and vice versa:

deg_f = deg_c * 9 / 5 + 32;
deg_c = (deg_f -32) *5/ 9;

3.4.7 Compound assignment

One of the most common patterns in software with regards to operators is to update
a value:

a =
b =
c =

’

’

Q o w
~ * +
EN

’

Since this pattern is used many times, there is a shorthand for it called compound
assignment operators. They are a combination of an existing arithmetic operator
and assignment operator:

° 4—
* _—

o H—

o /=

229 Chapter 3.1.10 on page 87

173

Fundamentals for getting started

o Op=
. <<=
o« >>=

Thus the example given in the beginning of the section could be rewritten as

a +=1; // Equivalent to (a = a + 1)
b *= 2; // Equivalent to (b = b * 2)
c /= 4; // Equivalent to (c = c / 4)

3.4.8 Character operators

Interestingly, the same mathematical operations that work on integers also work
on characters.

char letter;
letter = "a’ + 1;
std::cout << letter << std::endl;

For the above example, outputs the letter b (on most systems -- note that C++
doesn’t assume use of ASCII, EBCDIC, Unicode etc. but rather allows for all
of these and other CHARSETS?Y). Although it is syntactically legal to multiply
characters, it is almost never useful to do it.

Earlier I said that you can only assign integer values to integer variables and char-
acter values to character variables, but that is not completely true. In some cases,
C++ converts automatically between types. For example, the following is legal.

int number;
number = ’a’;
std::cout << number << std::endl;

On most mainstream desktop computers the result is 97, which is the number that
is used internally by C++ on that system to represent the letter "a’. However, it is
generally a good idea to treat characters as characters, and integers as integers, and
only convert from one to the other if there is a good reason. Unlike some other
languages, C++ does not make strong assumptions about how the underlying plat-
form represents characters; ASCII, EBCDIC and others are possible, and portable

230 HTTP://EN.WIKIPEDIA.ORG/WIKI/CHARSET

174

http://en.wikipedia.org/wiki/charset

Operators

code will not make assumptions (except that ’0’, ’1°, ..., ’9’ are sequential, so that
e.g.’9-’0’ ==9).

Automatic type conversion is an example of a common problem in designing a
programming language, which is that there is a conflict between formalism, which
is the requirement that formal languages should have simple rules with few excep-
tions, and convenience, which is the requirement that programming languages be
easy to use in practice.

More often than not, convenience wins, which is usually good for expert program-
mers, who are spared from rigorous but unwieldy formalism, but bad for beginning
programmers, who are often baffled by the complexity of the rules and the number
of exceptions. In this book I have tried to simplify things by emphasizing the rules
and omitting many of the exceptions.

3.4.9 Bitwise operators

These operators deal with a bitwise operations. Bit operations needs the under-
standing of binary numeration since it will deal with on one or two bit patterns
or binary numerals at the level of their individual bits. On most microprocessors,
bitwise operations are sometimes slightly faster than addition and subtraction oper-
ations and usually significantly faster than multiplication and division operations.

Bitwise operations especially important for much low-level programming from op-
timizations to writing device drivers, low-level graphics, communications protocol
packet assembly and decoding.

Although machines often have efficient built-in instructions for performing arith-
metic and logical operations, in fact all these operations can be performed just by
combining the bitwise operators and zero-testing in various ways.

The bitwise operators work bit by bit on the operands. The operands must be of
integral type (one of the types used for integers).

For this section, recall that a number starting with 0x is hexadecimal (hexa, or hex
for short or referred also as base-16). Unlike the normal decimal system using
powers of 10 and the digits 0123456789, hex uses powers of 16 and the symbols
0123456789abcdef. In the examples remember that Oxc equals 1100 in binary and
12 in decimal. C++ does not directly support binary notation, which would hamper
readability of the code.

NOT

175

Fundamentals for getting started

a

bitwise complement of a.

“Oxc produces the value -1-0xc (in binary, 1100 produces ...11110011 where "..."
may be many more 1 bits)

The negation operator is a unary operator which precedes the operand, This oper-
ator must not be confused with the "logical not" operator, "!" (exclamation point),
which treats the entire value as a single BOOLEAN?}!—changing a true value to
false, and vice versa. The "logical not" is not a bitwise operation.

These others are binary operators which lie between the two operands. The prece-
dence of these operators is lower than that of the relational and equivalence opera-
tors; it is often required to parenthesize expressions involving bitwise operators.

AND

a&b

bitwise boolean and of a and b

Oxc & Oxa produces the value 0x8 (in binary, 1100 & 1010 produces 1000)

The TRUTH TABLEZ32 of a AND b:

a b A
1 1 1
1 0 0
0 1 0
0 0 0
OR
alb

bitwise boolean or of a and b

231 HTTP://EN.WIKIPEDIA.ORG/WIKI/BOOLEAN%20DATATYPE
232 HTTP://EN.WIKIPEDIA.ORG/WIKI/TRUTH$20TABLE

176

http://en.wikipedia.org/wiki/Boolean%20datatype
http://en.wikipedia.org/wiki/truth%20table

Operators

Oxc | Oxa produces the value Oxe (in binary, 1100 | 1010 produces 1110)

The TRUTH TABLEZ?? of a OR b is:

a b \Y,
1 1
1 0 1
0 1 1
0 0 0
XOR
a’b

bitwise xor of a and b

Oxc " Oxa produces the value 0x6 (in binary, 1100 “ 1010 produces 0110)

The TRUTH TABLE®* of a XOR b:

a b ®
1 1 0
1 0 1
0 1 1
0 0 0
Bit shifts
a<<b

shift a left by b (multiply a by 2°)

Oxc << 1 produces the value 0x18 (in binary, 1100 << 1 produces the value 11000)

a>>b

233 HTTP://EN.WIKIPEDIA.ORG/WIKI/TRUTH%20TABLE
234 HTTP://EN.WIKIPEDIA.ORG/WIKI/TRUTH$20TABLE

177

http://en.wikipedia.org/wiki/truth%20table
http://en.wikipedia.org/wiki/truth%20table

Fundamentals for getting started

shift a right by b (divide a by 2°)

Oxc >> 1 produces the value 0x6 (in binary, 1100 >> 1 produces the value 110)

3.4.10 Derived types operators

There are three data types known as pointers, references, and arrays, that have their
own operators for dealing with them. Those are *, &, [], ->, . *, and ->*.

Pointers, references, and arrays are fundamental data types that deal with accessing
other variables. Pointers are used to pass around a variables address (where it is
in memory), which can be used to have multiple ways to access a single variable.
References are aliases to other objects, and are similar in use to pointers, but still
very different. Arrays are large blocks of contiguous memory that can be used to
store multiple objects of the same type, like a sequence of characters to make a
string.

Subscript operator []

This operator is used to access an object of an array. It is also used when declaring
array types, allocating them, or deallocating them.

Arrays

An ARRAY?? stores a constant-sized sequential set of blocks, each block contain-
ing a value of the selected type under a single name. Arrays often help organize
collections of data efficiently and intuitively.

It is easiest to think of an array as simply a list with each value as an item of the
list. Where individual elements are accessed by their position in the array called
its index, also known as subscript. Each item in the array has an index from O to
(the size of the array) -1, indicating its position in the array.

Advantages of arrays include:

 Random access in O(1) (BIG O NOTATION?36)
* Ease of use/port: Integrated into most modern languages

235 HTTP://EN.WIKIPEDIA.ORG/WIKI/ARRAY
236 HTTP://EN.WIKIPEDIA.ORG/WIKI/BIG%200%20NOTATION

178

http://en.wikipedia.org/wiki/array
http://en.wikipedia.org/wiki/Big%20o%20notation

Operators

Disadvantages include:

* Constant size

* Constant data-type

» Large free sequential block to accommodate large arrays

* When used as non-static data members, the element type must allow default
construction

* Arrays do not support copy assignment (you cannot write arraya = arrayb)

* Arrays cannot be used as the value type of a standard container

* Syntax of use differs from standard containers

* Arrays and inheritance don’t mix (an array of Derived is not an array of Base,
but can too easily be treated like one)

Note:

If complexity allows you should consider the use of containers (as in the C++
Standard Library). You should and can use for example std: : vector which
are as fast as arrays in most situations, can be dynamically resized, support
iterators, and lets you treat the storage of the vector just like an array.
(Modern C allows VLAs, variable length arrays, but these are not used in C++,
which already had a facility for re-sizable arrays in std: :vector.)

The pointer operator as you will see is similar to the array operator.

For example, here is an array of integers, called List with 5 elements, numbered
0 to 4. Each element of the array is an integer. Like other integer variables, the
elements of the array start out uninitialized. That means it is filled with unknown
values until we initialize it by assigning something to it. (Remember primitive
types in C are not initialized to 0.)

Index Data

00 unspecified
01 unspecified
02 unspecified
03 unspecified
04 unspecified

Since an array stores values, what type of values and how many values to store
must be defined as part of an array declaration, so it can allocate the needed space.
The size of array must be a const integral expression greater than zero. That
means that you cannot use user input to declare an array. You need to allocate
the memory (with operator new[]), so the size of an array has to be known at
compile time. Another disadvantage of the sequential storage method is that there

179

Fundamentals for getting started

has to be a free sequential block large enough to hold the array. If you have an array
of 500,000,000 blocks, each 1 byte long, you need to have roughly 500 megabytes
of sequential space to be free; Sometimes this will require a defragmentation of
the memory, which takes a long time.

To declare an array you can do:

int numbers([30]; // creates an array of 30 integers

or

char letters([4]; // create an array of 4 characters
and so on...

to initialize as you declare them you can use:

int vector[6]={0,0,1,0,0,0};

this will not only create the array with 6 int elements but also initialize them to the
given values.

Assigning and accessing data
You can assign data to the array by using the name of the array, followed by the
index.

For example to assign the number 200 into the element at index 2 in the array

List[2] = 200;

will give
Index Data
00 unspecified
01 unspecified
02 200
03 unspecified
04 unspecified

You can access the data at an element of the array the same way.

std::cout << List[2] << std::endl;

This will print 200.

180

Operators

Basically working with individual elements in an array is no different then working
with normal variables.

As you see accessing a value stored in an array is easy. Take this other example:

int x;

x = vector([2];

The above declaration will assign x the valued store at index 2 of variable vector
which is 1.

Arrays are indexed starting at 0, as opposed to starting at 1. The first element of
the array above is vector [0]. The index to the last value in the array is the array
size minus one. In the example above the subscripts run from 0 through 5. C++
does not do bounds checking on array accesses. The compiler will not complain
about the following:

char y;
int z = 9;
char vector([6] = { 1, 2, 3, 4, 5, 6 };

// examples of accessing outside the array. A compile error 1s not raised
y = vector[1l5];

y = vector([-4];

y = vector([z];

During program execution, an out of bounds array access does not always cause a
run time error. Your program may happily continue after retrieving a value from
vector[-1]. To alleviate indexing problems, the sizeof expression is commonly
used when coding loops that process arrays.

int ix;
short anArrayl[]= { 3, 6, 9, 12, 15 };
for (ix=0; ix< (sizeof (anArray)/sizeof (short)); ++ix) {

DoSomethingWith (anArray[ix]);
}

Notice in the above example, the size of the array was not explicitly specified.
The compiler knows to size it at 5 because of the five values in the initializer list.
Adding an additional value to the list will cause it to be sized to six, and because
of the sizeof expression in the for loop, the code automatically adjusts to this
change.

You can also use multi-dimensional arrays. The simplest type is a two dimensional
array. This creates a rectangular array - each row has the same number of columns.
To get a char array with 3 rows and 5 columns we write...

181

Fundamentals for getting started

char two_d[3][5];

To access/modify a value in this array we need two subscripts:

char ch;
ch = two_d[2][4];

or

two_d[0] [0] = "x";

There are also weird notations possible:

int a[100];
int 1 = 0;
if (a[i]l==i[a])
printf ("Hello World!\n");
a[i] and i[a] point to the same location. You will understand this better after
knowing about pointers.

To get an array of a different size, you must explicitly deal with memory using
realloc, malloc, memcpy, €etc.

Why start at 0?

Most programming languages number arrays from 0. This is useful in languages
where arrays are used interchangeably with a pointer to the first element of the
array. In C++ the address of an element in the array can be computed from (address
of first element) + i, where i is the index starting at O (a[1] == *(a + 1)). Notice
here that "(address of the first element) + i" is not a literal addition of numbers.
Different types of data have different sizes and the compiler will correctly take this
into account. Therefore, it is simpler for the pointer arithmetic if the index started
at 0.

Why no bounds checking on array indexes?

C++ does allow for, but doesn’t force, bounds-checking implementations, in prac-
tice little or no checking is done. It affects storage requirements (needing "fat
pointers") and impacts runtime performance. However, the std: : vector template
class as we will see is an object representing an array, and it provides the at ()
method, which does enforce bounds checking. Also in many implementations, the
standard containers include particularly complete bounds checking in debug mode.

182

Operators

They might not support these checks in release builds, as any performance reduc-
tion in container classes relative to built-in arrays might prevent programmers from
migrating from arrays to the more modern, safer container classes.

address-of operator &

To get the address of a variable so that you can assign a pointer, you use the "ad-
dress of" operator, which is denoted by the ampersand & symbol. The "address of"
operator does exactly what it says, it returns the "address of" a variable, a symbolic
constant, or a element in an array, in the form of a pointer of the corresponding
type. To use the "address of" operator, you tack it on in front of the variable that
you wish to have the address of returned. It is also used when declaring reference

types.

Now, do not confuse the "address of" operator with the declaration of a reference.
Because use of operators is restricted to expression, the COMPILER?®’ knows that
&sometype is the "address of" operator being used to denote the return of the
address of sometype as a POINTER?3,

References

References are a way of assigning a "handle" to a variable. References can also
be thought of as "aliases"; they’re not real objects, they’re just alternative names
for other objects.

Assigning References

This is the less often used variety of references, but still worth noting as an intro-
duction to the use of references in function arguments. Here we create a reference
that looks and acts like a standard variable except that it operates on the same data
as the variable that it references.

int tZoo = 3; // tZoo == 3
int &refZoo = tZoo; // tZoo == 3
refZoo = 5; // tZoo == 5

refZoo is a reference to tZoo. Changing the value of refZoo also changes the
value of tZoo.

237 Chapter 3.1.10 on page 87
238 Chapter 3.4.10 on page 184

183

Fundamentals for getting started

Note:
One use of variable references is to pass function arguments using references.
This allows the function to update / change the data in the variable being refer-
enced

For example say we want to have a function to swap 2 integers

void swap (int &a, int &b){
int temp = a;

a = b;
b = temp;
}
int main() {
int x = 5;
int y = 6;

int &refx = x;

int &refy = y;

swap (refx, refy); // now x = 6 and y = 5

swap(x, y); // and now x = 5 and y = 6 again
}

References cannot be null as they refer to instantiated objects, while pointers can
be null. References cannot be reassigned, while pointers can be.

int main() {
int x = 5;
int y = 6;

int &refx = x;
srefx = y; // won’t compile

}

As references provide strong guarantees when compared with pointers, using ref-
erences makes the code simpler. Therefore using references should usually be
preferred over using pointers. Of course, pointers have to be used at the time of
dynamic memory allocation (new) and deallocation (delete).

Pointers, Operator *

The * operator is used when declaring pointer types but it is also used to get the
variable pointed to by a pointer.

184

Operators

1464
1463
—» b 17 1462
1461
1460

876
875
— a| 1462 |874
873
872

Figure 19: Pointer a pointing
variable b. Note that b stores
number, whereas a stores address of
b in memory (1462)

Pointers are important data types due to special characteristics. They may be used
to indicate a variable without actually creating a variable of that type. They can
be a difficult concept to understand, some special effort should be spent on under-
standing the power they give to programmers.

Pointers have a very descriptive name. Pointers variables only store memory ad-
dresses, usually the addresses of other variables. Essentially, they point to another
variable memory location, a reserved location on the computer memory. You can
use a pointer to PASS THE LOCATION OF A VARIABLE TO A FUNCTION?%| this
enables the function’s pointer to use the variable space, so that it can retrieve or
modify its data. You can even have pointers to pointers, and pointers to pointers to
pointers and so on and so forth.

Declaring
Pointers are declared by adding a * before the variable name in the declaration, as
in the following example:

239 Chapter 3.7 on page 229

185

Fundamentals for getting started

int* x; // pointer to int.
int * y; // pointer to int. (legal, but rarely used)
int *z; // pointer to int.
int*i; // pointer to int. (legal, but rarely used)

Note:
As always whitespace does not matter, so the position of the * doesn’t matter
only the order of the use.

Due to historical reasons some programmers refer to a specific use as:
// C codestyle int *z;

// C++ codestyle int* z;

As seen before on the CODING STYLE CONVENTIONS SECTION? adherence
to a single style is preferred.

a Chapter 3.1.7 on page 59

Watch out, though, because the * associates to the following declaration only:

int* i, j; // CAUTION! i is pointer to int, j is int.
int *i, *j; // i and j are both pointer to int.

You can also have multiple pointers chained together, as in the following example:

int **i; // Pointer to pointer to int.
int ***i; // Pointer to pointer to pointer to int (rarely used).

Assigning values

Everyone gets confused about pointers as assigning values to pointers may be a bit
tricky but if you know the basic you can proceed more easily. By carefully going
through the examples rather than a simple description, try to understand the points
as they are presented to you.

Assigning values to pointers (non-char type)

double vValue = 25.0;// declares and initializes a vValue as type double
double* pValue = &vValue;
cout << *pValue << endl;

The second statement uses "&" the reference operator and "*" to tell the compiler
this is a pointer variable and assign vValue variable’s address to it. In the last

186

Operators

statement, it outputs the value from the vvalue variable by de-referencing the
pointer using the "*" operator.

Assigning values to pointers (char type)

char pArray[20] = {"Namel"};

char* pValue (pArray);// or 0 in old compilers, nullptr is a part of C++0X
pValue = "Valuel";

cout << pValue << endl ;// this will return the Valuel;

So as mentioned early, a pointer is a variable which stores the address of another
variable, as you need to initialize an array because you can not directly assign
values to it. You will need to use pointers directly or a pointer to array in a mixed
context, to use pointers alone, examine the next example.

char* pValue ("Stringl");

pValue = "String2";

cout << pValue << endl ;

Remember you can’t leave the pointer alone or initialize it as nullptr cause it will
case an error. The compiler thinks it is as a memory address holder variable since
you didn’t point to anything and will try to assign values to it, that will cause an
error since it does not point to anywhere.

Dereferencing
This is the * operator. It is used to get the variable pointed to by a pointer. It is
also used when declaring pointer types.

When you have a pointer, you need some way to access the memory that it points
to. When it is put in front of a pointer, it gives the variable pointed to. This is an
lvalue, so you can assign values to it, or even initialize a reference from it.

#include <iostream>

int main()

{

int i;
int * p = &i;
i=3;

std::cout<<*p<<std::endl; // prints "3"

return 0;

}

Since the result of an & operator is a pointer, *&1 is valid, though it has absolutely
no effect.

187

Fundamentals for getting started

Now, when you combine the <Tt>* operator with classes, you may notice a prob-
lem. It has lower precedence than .! See the example:

struct A { int num; };

A a;
int i;
A% pj

p = &aj
a.num = 2;

i *p.num; // Error! "p" isn’t a class, so you can’t use "."

(*p) .num;

i

non

The error happens because the compiler looks at p.num first ("." has higher prece-
dence than "*") and because p does not have a member named num the compiler
gives you an error. Using grouping symbols to change the precedence gets around
this problem.

It would be very time-consuming to have to write (*p).num a
lot, especially when you have a lot of classes. Imagine writing
(* (* (* (*MyPointer) .Member) .SubMember) .Value) .What IWant! As a
result, a special operator, ->, exists. Instead of (*p).num, you can write
p->num, which is completely identical for all purposes. Now you can write
MyPointer->Member->SubMember->Value->What IWant. It’s a lot easier on the
brain!

Null pointer

The null pointer is a special status of pointers. It means that the pointer points
to absolutely nothing. It is an error to attempt to dereference (using the * or ->
operators) a null pointer. A null pointer can be referred to using the constant zero,
as in the following example:

int i;
int *p;

0; //Null pointer.
&i; //Not the null pointer.

o lise}
o

Note that you can’t assign a pointer to an integer, even if it’s zero. It has to be the
constant. The following code is an error:

int 1 = 0;
int *p = i; //Error: 0 only evaluates to null if it’s a pointer

188

Operators

There is an old macro, defined in the standard library, derived from the C language
that inconsistently has evolved into #define NULL ((void *)0), this makes NULL,
always equal to a null pointer value (essentially, 0).

Note:

It is considered as good practice to avoid the use of macros and defines as
much as possible. In the particular case at hand the NULL isn’t type-safe. Any
rational to use it for visibility of the use of a pointer can be addressed by the
proper naming of the pointer variable.

Since a null pointer is 0, it will always compare to 0. Like an integer, if you use it
in a true/false expression, it will return false if it is the null pointer, and true if it’s
anything else:

#include <iostream>

void IsNull (int * p)
{
if (p)
std::cout<<"Pointer is not NULL"<<std::endl;
else
std::cout<<"Pointer is NULL"<<std::endl;
}

int main()

{

int * p;
int i;

p = NULL;
IsNull(p);
p = &i;
IsNull (&1);

IsNull(p);
IsNull (NULL) ;

return 0;

}

This program will output that the pointer is NULL, then that it isn’t NULL twice,
then again that it is.

Pointers and multi-dimensional arrays

Pointers and Multi-Dimensional non-Char Arrays

189

Fundamentals for getting started

This is tricky part and might be hard but relatively than next part we are going
to talk about ,first of all you need to know at least how to use Two Dimensional
Arrays /Assign Values to Arrays / Return Values from Arrays ,since this is reserved
for Pointer I am not going to mention about Arrays separately but when Arrays
needed it will mixed up with pointer

The main objects are

Assign Values to Multi Dimensional Pointers

How to use Pointers with Multi Dimensional Arrays
Return Values

Initialize Pointers and Arrays

How to Arrange Values in them

A A

p—

Assign Values to Multi Dimensional Pointers.

In non-Char Type you need to involve arrays with Pointers cause since Pointers
treat char* type to in special way and other type to another way like only refer the
address or get the address and get the value by indirect method.

If you declare it like this way:

double (*pDVal) [2] = {{1,2},{1,2}};

It will probably generate an error! Because pointers used in non-Char type only
directly, in char types refer the address of another variable by assigning a variable
first then you can get its(that assigned variable)value by indirect way.!

double ArrayVal([5][5] = {

double (*pArray) [5] = ArrayVal;

) [
((pArray+0)+0) = 10;
((pArray+0)+1) = 20;
((pArray+0)+2) = 30;
((pArray+0)+3) = 40;
((pArray+0)+4) = 50;
((pArray+1)+0) = 60;
((pArray+l)+1) = 70;
((pArray+1l)+2) = 80;
((pArray+1l)+3) = 90;
((pArray+l)+4) = 100;
((pArray+2)+0) = 110;
((pArray+2)+1) = 120;

190

Operators

* (* (pArray+2)+2) = 130;
((pArray+2)+3) = 140;
* (* (pArray+2)+4) = 150;
((pArray+3)+0) = 160;
((pArray+3)+1) = 170;
* (* (pArray+3)+2) = 180;
* (* (pArray+3)+3) = 190;
* (* (pArray+3)+4) = 200;
* (* (pArray+4)+0) = 210;
* (* (pArray+4)+1) = 220;
* (* (pArray+4)+2) = 230;
* (* (pArray+4)+3) = 240;
* (* (pArray+4)+4) = 250;

There is another way instead
((pArray+0) +0)

it’s

* (pArray[0]+0)

You can use one of them to assign value to Array through the pointer to return
values you can use either the appropriate Array or Pointer.

Pointers and multi-dimensional char arrays

This is bit hard and even hard to remember so I suggest keep practice until you get
the spirit Pointers only.! You can’t use Pointers + Multi Dimensional Arrays with
Char Type. Only for non-char type.

Multi-dimensional pointer with char type

char* pVar[5] = { "Namel" , "Name2" , "Name3", "Named", "Name5" }

pVar[0] = "XName0Ol";
cout << pVar[0] << endl ; //this will return the XName(Ol instead Namel which was
replaced with Namel.

in here the 5 means of the first statement is the number of rows (there are no
columns need to be specified in pointer it’s only in Arrays) the next statement
assigns another string to position O which is the position of first place of first state-
ment. finally return the answer

Dynamic memory allocation

191

Fundamentals for getting started

In your system memory each memory block got an address so whenever you com-
pile the code at the beginning all variable reserve some space in the memory but in
Dynamic Memory Allocation it only reserve when it needed it means at execution
time of that statement this allocates memory in your free space area(unused space)
so it means if there is no space or no contiguous blocks then the compiler will
generate and error message

Dynamic memory allocation and pointer non-char type

This is same as assign non-char 1 dimensional Array to Pointer

double* pVal = new double[5];

//or double* pVal = new double; // this line leaves out the necessary memory
allocation

(pval+0) = 10;

(pVal+l) 20;

(pval+2) 30;

(pval+3) 40;

(pval+d) = 50;

*
*
*
*
*

cout << *(pVal+0) << endl;

The first statement’s Lside(left side) declares an variable and Rside request a space
for double type variable and allocate it in free space area in your memory. So next
and so fourth you can see it increases the integer value that means *(pVal+0) pVal
-> if this uses alone it will return the address corresponding to first memory block.
(that used to store the 10) and 0 means move 0 block ahead but it’s 0 it means don’t
move stay in current memory block, and you use () parenthesis cause + < * < ()
consider the priority so you need to use parenthesis avoid to calculating the * fist

¢ is called INDIRECT Operator which DE-REFERENCE THE Pointer and return
the value corresponding to the memory block.

(Memory Block Address+steps)
* -> De-reference.

Dynamic memory allocation and pointer char type

char* pVal = new char;

pval = "Namel";

cout << pVal << endl;

delete pval; //this will delete the allocated space
pval = nullptr //null the pointer

192

Operators

You can see this is the same as static memory declaration, in static declaration it
goes:

char* pVal ("Namel");

Dynamic memory allocation and pointer non-char array type

double (*pVal2) [2]= new double([2][2]; //this will add 2x2 memory blocks to type
double pointer

((pval2+0)+0) = 10;
((pval2+0)+1) = 10;
((pval2+0)+2) = 10;
((pval2+0)+3) = 10;
((pval2+0)+4) = 10;
((pval2+1)+0) = 10;
((pval2+1)+1) = 10;
((pval2+1)+2) = 10;
((pval2+1)+3) = 10;
((pvVal2+1)+4) = 10;
delete [] pVal; //it doesn’t matter the dimension you only need to mention []

pval = nullptr

Note:

Never use a multi-dimensional pointer array with char type, as it will generate
an error.

char (*pVal)[5] ;// this is different from pointer of array

// which is char* pval[5] ;

But both are different.

Pointers to classes

Indirection operator ->
This pointer indirection operator is used to access a member of a class pointer.

Member dereferencing operator .*
This pointer-to-member dereferencing operator is used to access the variable as-
sociated with a specific class instance, given an appropriate pointer.

193

Fundamentals for getting started

Member indirection operator ->*

This pointer-to-member indirection operator is used to access the variable asso-
ciated with a class instance pointed to by one pointer, given another pointer-to-
member that’s appropriate.

Pointers to functions

When used to point to functions, pointers can be exceptionally powerful. A call
can be made to a function anywhere in the program, knowing only what kinds
of parameters it takes. POINTERS TO FUNCTIONS?* are used several times in
the standard library, and provide a powerful system for other libraries which need
to adapt to any sort of user code. This case is examined more in depth in the
FUNCTIONS SECTION?*! of this book.

242

3.4.11 sizeof

The sizeof keyword refers to an operator that works at compile time to report
on the size of the storage occupied by a TYPE?* of the argument passed to it
(equivalently, by a variable of that type). That size is returned as a multiple of the
size of a char, which on many personal computers is 1 byte (or 8 bits). The number
of bits in a char is stored in the CHAR_BIT constant defined in the <climits>
header file. This is one of the operators for which OPERATOR OVERLOADING>#*
is not allowed.

//Examples of sizeof use

int int_size(sizeof(int));// Might give 1, 2, 4, 8 or other values.
// or

int answer(42);

int answer_size(sizeof(answer));// Same value as sizeof(int)

int answer_size(sizeof answer); // Equivalent syntax

For example, the following code uses sizeof to display the sizes of a number of
variables:

struct EmployeeRecord {
int ID;

240 Chapter 3.7.7 on page 255

241 Chapter 3.7 on page 229

242 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3AC%2B%2B%20PROGRAMMING
243 Chapter 3.3.3 on page 138

244 Chapter 4.6 on page 438

194

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Operators

int age;

double salary;

EmployeeRecord* boss;
}i

YV
cout << "sizeof (int): " << sizeof (int) << endl
<< "sizeof (float): " << sizeof(float) << endl
<< "gizeof (double): " << sizeof (double) << endl
<< "sizeof (char): " << sizeof (char) << endl
<< "sizeof (EmployeeRecord): " << sizeof (EmployeeRecord) << endl;
int 1i;
float f;
double d;
char c;

EmployeeRecord er;

cout << "sizeof(i): " << sizeof (i) << endl
<< "sizeof (f): " << sizeof (f) << endl
<< "sizeof(d): " << sizeof(d) << endl
<< "sizeof(c): " << sizeof(c) << endl
<< "sizeof (er): " << sizeof (er) << endl;

On most machines (considering the size of char), the above code displays this
output:

sizeof (int): 4

sizeof (float): 4

sizeof (double): 8

sizeof (char): 1

sizeof (EmployeeRecord): 20
sizeof (i 4

sizeof (
sizeof (
sizeof (c
sizeof (er): 20

)
): 4
): 8
) 1

It is also important to note that the sizes of various types of variables can change
depending on what system you’re on. Check the DATA TYPES PAGE** for more
information.

Syntactically, sizeof appears like a function call when taking the size of a type,
but may be used without parentheses when taking the size of a variable type (e.g.
sizeof (int)). Parentheses can be left out if the argument is a variable or array
(e.g. sizeof x, sizeof myArray). Style guidelines vary on whether using the
latitude to omit parentheses in the latter case is desirable.

Consider the next example:

245 Chapter 3.3.4 on page 139

195

Fundamentals for getting started

#include <cstdio>

short func(short x)
{
printf("&d", x);
return x;

}

int main()
{

printf("%d", sizeof(sizeof(func(256))));

}

Since sizeof does not evaluate anything at run time, the func () function is never
called. All information needed is the return type of the function, the first sizeof
will return the size of a short (the return type of the function) as the value 2 (in
size_t, an integral type defined in the include file STDDEF.H) and the second
sizeof will return 4 (the size of size_t returned by the first sizeof).

sizeof measures the size of an object in the simple sense of a contiguous area
of storage; for types which include pointers to other storage, the indirect storage
is not included in the value returned by sizeof. A common mistake made by
programming newcomers working with C++ is to try to use sizeof to determine
the length of a string; the std::strlen or std::string::length functions are
more appropriate for that task.

sizeof has also found new life in recent years in template meta programming,
where the fact that it can turn types into numbers, albeit in a primitive manner,
is often useful, given that the TEMPLATE METAPROGRAMMING?*® environment
typically does most of its calculations with types.

3.4.12 Dynamic memory allocation

Dynamic memory allocation is the allocation of MEMORY?*’ storage for use in
a COMPUTER PROGRAM?® during the RUNTIME?* of that program. It is a way
of distributing ownership of limited memory resources among many pieces of data
and code. Importantly, the amount of memory allocated is determined by the pro-
gram at the time of allocation and need not be known in advance. A dynamic
allocation exists until it is explicitly released, either by the programmer or by a

246 HTTP://EN.WIKIPEDIA.ORG/WIKI/TEMPLATE%20METAPROGRAMMING
247 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPUTER%20STORAGE

248 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPUTER%20PROGRAM

249 HTTP://EN.WIKIPEDIA.ORG/WIKI/RUNTIME

196

http://en.wikipedia.org/wiki/template%20metaprogramming
http://en.wikipedia.org/wiki/computer%20storage
http://en.wikipedia.org/wiki/computer%20program
http://en.wikipedia.org/wiki/runtime

Operators

GARBAGE COLLECTOR?*” implementation; this is notably different from AUTO-
MATIC®! and STATIC MEMORY ALLOCATION??, which require advance knowl-
edge of the required amount of memory and have a fixed duration. It is said that
an object so allocated has dynamic lifetime.

The task of fulfilling an allocation request, which involves finding a block of un-
used memory of sufficient size, is complicated by the need to avoid both internal
and external FRAGMENTATION?>? while keeping both allocation and deallocation
EFFICIENT®*. Also, the allocator’s METADATAZS can inflate the size of (individ-
ually) small allocations; CHUNKING?® attempts to reduce this effect.

Usually, memory is allocated from a large pool of unused memory area called the
heap (also called the free store). Since the precise location of the allocation is
not known in advance, the memory is accessed indirectly, usually via a REFER-
ENCE?’. The precise algorithm used to organize the memory area and allocate
and deallocate chunks is hidden behind an abstract interface and may use any of
the methods described below.

You have probably wondered how programmers allocate memory efficiently with-
out knowing, prior to running the program, how much memory will be necessary.
Here is when the fun starts with dynamic memory allocation.

new and delete

For dynamic memory allocation we use the new and delete keywords, the old mal-
loc from C functions can now be avoided but are still accessible for compatibility
and low level control reasons.

As covered before, we assign values to pointers using the "address of" operator
because it returns the address in memory of the variable or constant in the form of
a pointer. Now, the "address of" operator is NOT the only operator that you can
use to assign a pointer. You have yet another operator that returns a pointer, which
is the new operator. The new operator allows the programmer to allocate memory

250 HTTP://EN.WIKIPEDIA.ORG/WIKI/GARBAGE%20COLLECTION%20%
28COMPUTER%20SCIENCE%29

251 HTTP://EN.WIKIPEDIA.ORG/WIKI/AUTOMATIC%20MEMORY%20ALLOCATION

252 HTTP://EN.WIKIPEDIA.ORG/WIKI/STATIC%$20MEMORY$20ALLOCATION

253 HTTP://EN.WIKIPEDIA.ORG/WIKI/FRAGMENTATION%20%28COMPUTERS29

254 HTTP://EN.WIKIPEDIA.ORG/WIKI/ALGORITHMIC_EFFICIENCY

255 HTTP://EN.WIKIPEDIA.ORG/WIKI/METADATA%20%28COMPUTING%29

256 HTTP://EN.WIKIPEDIA.ORG/WIKI/CHUNKING%20%28COMPUTING%29

257 HTTP://EN.WIKIPEDIA.ORG/WIKI/REFERENCE%20%28COMPUTER%
20SCIENCE%29

197

http://en.wikipedia.org/wiki/garbage%20collection%20%28computer%20science%29
http://en.wikipedia.org/wiki/garbage%20collection%20%28computer%20science%29
http://en.wikipedia.org/wiki/automatic%20memory%20allocation
http://en.wikipedia.org/wiki/static%20memory%20allocation
http://en.wikipedia.org/wiki/fragmentation%20%28computer%29
http://en.wikipedia.org/wiki/Algorithmic_efficiency
http://en.wikipedia.org/wiki/metadata%20%28computing%29
http://en.wikipedia.org/wiki/chunking%20%28computing%29
http://en.wikipedia.org/wiki/reference%20%28computer%20science%29
http://en.wikipedia.org/wiki/reference%20%28computer%20science%29

Fundamentals for getting started

for a specific data type, struct, class, etc., and gives the programmer the address of
that allocated sect of memory in the form of a pointer. The new operator is used
as an rvalue, similar to the "address of" operator. Take a look at the code below to
see how the new operator works.

By assigning the pointers to an allocated sector of memory, rather than having to
use a variable declaration, you basically override the "middleman" (the variable
declaration). Now, you can allocate memory dynamically without having to know
the number of variables you should declare.

int n = 10;
SOMETYPE *parray, *pS;
int *pint;

parray = new SOMETYPE([n];

pS = new SOMETYPE;

pint = new int;

If you looked at the above piece of code, you can use the new operator to allocate
memory for arrays too, which comes quite in handy when we need to manipulate
the sizes of large arrays and or classes efficiently. The memory that your pointer
points to because of the new operator can also be "deallocated," not destroyed but
rather, freed up from your pointer. The delete operator is used in front of a pointer
and frees up the address in memory to which the pointer is pointing.

delete [] parray;// note the use of [] when destroying an array allocated with
new
delete pint;

The memory pointed to by parray and pint have been freed up, which is a very
good thing because when you’re manipulating multiple large arrays, you try to
avoid losing the memory someplace by leaking it. Any allocation of memory
needs to be properly deallocated or a leak will occur and your program won’t
run efficiently. Essentially, every time you use the new operator on something,
you should use the delete operator to free that memory before exiting. The delete
operator, however, not only can be used to delete a pointer allocated with the new
operator, but can also be used to "delete" a null pointer, which prevents attempts to
delete non-allocated memory (this action compiles and does nothing).

You must keep in mind that new T and new T () are not equivalent. This will be
more understandable after you are introduced to more complex types like classes,
but keep in mind that when using new T () it will initialize the T memory location
("zero out") before calling the constructor (if you have non-initialized members
variables, they will be initialized by default).

198

Operators

The new and delete operators do not have to be used in conjunction with each
other within the same function or block of code. It is proper and often advised to
write functions that allocate memory and other functions that deallocate memory.
Indeed, the currently favored style is to release resources in object’s destructors,
using the so-called RESOURCE ACQUISITION IS INITIALIZATION?® (RAII) id-
iom.

As we will see when we get to the Classes, a class destructor is the ideal location
for its deallocator, it is often advisable to leave memory allocators out of classes’
constructors. Specifically, using new to create an array of objects, each of which
also uses new to allocate memory during its construction, often results in run-
time errors. If a class or structure contains members which must be pointed at
dynamically-created objects, it is best to sequentially initialize arrays of the parent
object, rather than leaving the task to their constructors.

Note:
If possible you should use new and delete instead of malloc and free.

// Example of a dynamic array

const int b = 5;
int *a = new int[b];

//to delete
delete[] a;

The ideal way is to not use arrays at all, but rather the STL’s vector type (a container
similar to an array). To achieve the above functionality, you should do:

const int b = 5;
std::vector<int> a;
a.resize(b);

//to delete
a.clear();

Vectors allow for easy insertions even when "full." If, for example, you filled up a,

you could easily make room for a 6th element like so:

int new_number = 99;
a.push_back (new_number);//expands the vector to fit the 6th element

258 HTTP://EN.WIKIPEDIA.ORG/WIKI/RAII

199

http://en.wikipedia.org/wiki/RAII

Fundamentals for getting started

You can similarly dynamically allocate a rectangular multidimensional array (be
careful about the type syntax for the pointers):

const int d = 5;
int (*two_d_array)[4] = new int[d][4]

//to delete
delete[] two_d_array;

You can also emulate a ragged multidimensional array (sub-arrays not the same
size) by allocating an array of pointers, and then allocating an array for each of the
pointers. This involves a loop.

const int dl =5, d2 = 4;

int **two_d_array = new int*[dl];

for(int 1 = 0; 1 < dl; ++i
two_d_array[i] = new int[d2];

//to delete
for(int i = 0; i < dl; ++1i)
delete[] two_d_array[i];

delete[] two_d_array;

3.4.13 Logical operators

The operators and (can also be written as &&) and or (can also be written as II)
allow two or more conditions to be chained together. The and operator checks
whether all conditions are true and the or operator checks whether at least one of
the conditions is true. Both operators can also be mixed together in which case
the order in which they appear from left to right, determines how the checks are
performed. Older versions of the C++ standard used the keywords && and Il in
place of and and or. Both operators are said to short circuit. If a previous and
condition is false, later conditions are not checked. If a previous or condition is
true later conditions are not checked.

200

Operators

Note:

The is0646.h header file is part of the C standard library, since 1995, as an
amendment to the C90 standard. It defines a number of macros which al-
low programmers to use C language bitwise and logical operators in textual
form, which, without the header file, cannot be quickly or easily typed on
some international and non-QWERTY keyboards. These symbols are key-
words in the ISO C++ programming language and do not require the inclusion
of a header file. For consistency, however, the C++98 standard provides the
header <ciso646>. On MS Visual Studio that historically implements nonstan-
dard language extensions this is the only way to enable these keywords (via
macros) without disabling the extensions.

The not (can also be written as !) operator is used to return the inverse of one or
more conditions.

* Syntax:

conditionl andcondition2
conditionl orcondition2
not condition

* Examples:

When something should not be true. It is often combined with other conditions. If
x>5 but not x = 10, it would be written:

if ((x > 5) and not (x == 10)) // if (x greater than 5) and (not (x equal to 10)
)
{
//...code. ..
}

When all conditions must be true. If X must be between 10 and 20:

if (x > 10 and x < 20) // if x greater than 10 and x less than 20
{

//....code. ..
}

When at least one of the conditions must be true. If X must be equal to 5 or equal

to 10 or less than 2:

if (x == 5 or x == 10 or x < 2) // if x equal to 5 or x equal to 10 or x less
than 2
{

201

Fundamentals for getting started

//...code. ..
}

When at least one of a group of conditions must be true. If x must be between 10
and 20 or between 30 and 40.

if ((x >= 10 and x <= 20) or (x >= 30 and x <= 40)) // >= -> greater or equal
etc...

{
//...code. ..
}

Things get a bit more tricky with more conditions. The trick is to make sure the
parenthesis are in the right places to establish the order of thinking intended. How-
ever, when things get this complex, it can often be easier to split up the logic into
nested if statements, or put them into bool variables, but it is still useful to be able
to do things in complex boolean logic.

Parenthesis around x > 10 and around x < 20 are implied, as the < operator has
a higher precedence than and. First x is compared to 10. If x is greater than 10, x
is compared to 20, and if x is also less than 20, the code is executed.

and (& &)
statement statement?2 and
T T T
T F F
F T F
F F F

The logical AND operator, and, compares the left value and the right value. If both
statementl and statement?2 are true, then the expression returns TRUE. Otherwise,
it returns FALSE.

if ((varl > var2) and (var2 > var3))

{

std::cout << varl " is bigger than " << var2 << " and " << var3 << std::endl;

}

In this snippet, the if statement checks to see if varl is greater than var2. Then,
it checks if var2 is greater than var3. If it is, it proceeds by telling us that var/ is
bigger than both var2 and var3.

202

Operators

Note:

The logical AND operator and is sometimes written as &&, which is not the
same as the address operator and the bitwise AND operator, both of which are
represented with &

or (Il
statement 1 statement?2 or
T T T
T F T
F T T
F F F

The logical OR operator is represented with or. Like the logical AND operator, it
compares statementl and statement2. If either statementl or statement?2 are true,
then the expression is true. The expression is also true if both of the statements are
true.

if ((varl > var2) or (varl > var3))
{
std::cout << varl " is either bigger than " << var2 << " or " << var3 <<
std::endl;
}

Let’s take a look at the previous expression with an OR operator. If var/ is bigger
than either var2 or var3 or both of them, the statements in the if expression are
executed. Otherwise, the program proceeds with the rest of the code.

not ()

The logical NOT operator, not, returns TRUE if the statement being compared is
not true. Be careful when you’re using the NOT operator, as well as any logical
operator.

not x > 10

The logical expressions have a higher precedence than normal operators. There-
fore, it compares whether "not x" is greater than 10. However, this statement

always returns false, no matter what "x" is. That’s because the logical expressions
only return boolean values(1 and 0).

203

Fundamentals for getting started

3.4.14 Conditional Operator

Conditional operators (also known as ternary operators) allow a programmer to
check: if (x is more than 10 and eggs is less than 20 and x is not equal to a...).

Most operators compare two variables; the one to the left, and the one to the right.
However, C++ also has a ternary operator (sometimes known as the conditional
operator), ?: which chooses from two expressions based on the value of a
condition expression. The basic syntax is:

condition-expression ? expression-if-true : expression-if-false

If condition-expression is true, the expression returns the value of expression-if-
true. Otherwise, it returns the value of expression-if-false. Because of this, the
ternary operator can often be used in place of the if expression.

Note:

The use of the ternary operator versus the if expression often depends on the
level of complexity and overall impact of the logical decision tree, using the if
expression in convoluted or less than obvious situations should be preferred as
it can not only be more clearly written but easier to understand, thus avoiding
simple logical errors that would otherwise be hard to perceive.

For example:

int foo = §;
std::cout << "foo is " << (foo < 10 ? "smaller than" : "greater than or equal
to") << " 10." << std::endl;

The output will be "foo is smaller than 10.".

3.5 Type Conversion

Type conversion (often a result of type casting) refers to changing an entity of
one DATA TYPE?, expression, function argument, or return value into another.
This is done to take advantage of certain features of type hierarchies. For instance,
values from a more limited set, such as integers, can be stored in a more compact

259 Chapter 3.3.4 on page 139

204

Type Conversion

format and later converted to a different format enabling operations not previously
possible, such as division with several decimal places’ worth of accuracy. In the
OBJECT-ORIENTED?®? programming paradigm, type conversion allows programs
also to treat objects of one type as one of another. One must do it carefully as type
casting can lead to loss of data.

Note:

The Wikipedia article about STRONGLY TYPED“ suggests that there is not
enough consensus on the term "strongly typed" to use it safely. So you should
re-check the intended meaning carefully, the above statement is what C++ pro-
grammers refer as strongly typed in the language scope.

a HTTP://EN.WIKIPEDIA.ORG/WIKI/STRONGLY-TYPED_PROGRAMMING_
LANGUAGE

3.5.1 Automatic type conversion

Automatic type conversion (or standard conversion) happens whenever the com-
piler expects data of a particular type, but the data is given as a different type,
leading to an automatic conversion by the compiler without an explicit indication
by the programmer.

Note:
This is not "casting" or explicit type conversions. There is no such thing as an
"automatic cast".

When an expression requires a given type that cannot be obtained through an im-
plicit conversion or if more than one standard conversion creates an ambiguous
situation, the programmer must explicitly specify the target type of the conversion.
If the conversion is impossible it will result in an error or warning at compile time.
Warnings may vary depending on the compiler used or compiler options.

This type of conversion is useful and relied upon to perform integral promo-
tions, integral conversions, floating point conversions, floating-integral conver-
sions, arithmetic conversions, pointer conversions.

260 HTTP://EN.WIKIPEDIA.ORG/WIKI/OBJECT—ORIENTED

205

http://en.wikipedia.org/wiki/Strongly-typed_programming_language
http://en.wikipedia.org/wiki/Strongly-typed_programming_language
http://en.wikipedia.org/wiki/object-oriented

Fundamentals for getting started

In the example above, in the first case an expression of type float is given and
automatically interpreted as an integer. In the second case (more subtle), an integer
is given and automatically interpreted as a float.

There are two types of automatic type conversions between numeric types: promo-
tion and conversion. Numeric promotion causes a simple type conversion when-
ever a value is used, while more complex numeric conversions can take place if the
context of the expression requires it.

Any automatic type conversion is an implicit conversion if not done explicitly
in the source code.

Automatic type conversions (implicit conversions) can also occur in the implicit
"decay" from an array to a corresponding pointer type based or as a USER DEFINED
BEHAVIOR?®!. We will cover that after we introduce classes (user defined types)
as the automatic type conversions of references (derived class reference to base
class reference) and pointer-to-member (from pointing to member of a base class
to pointing to member of a derived class).

Promotion

A numeric promotion is the conversion of a value to a type with a wider range that
happens whenever a value of a narrower type is used. Values of integral types nar-
rower than int (char, signed char, unsigned char, short int and unsigned
short) will be promoted to int if possible, or unsigned int if int can’t repre-
sent all the values of the source type. Values of bool type will also be converted
to int, and in particular t rue will get promoted to 1 and false to 0.

// promoting short to int
short left = 12;
short right = 23;

short total = left + right;

In the code above, the values of left and right are both of type short and could
be added and assigned as such. However, in C++ they will each be promoted to int
before being added, and the result converted back to short afterwards. The reason
for this is that the int type is designed to be the most natural integer representation
on the machine architecture, so requiring that the compiler do its calculations with
smaller types may cause an unnecessary performance hit.

261 Chapter 4.3.1 on page 394

206

Type Conversion

Since the C++ standard guarantees only the minimum sizes of the data types, the
sizes of the types commonly vary between one architecture and another (and may
even vary between one compiler and another). This is the reason why the compiler
is allowed the flexibility to promote to int or unsigned int as necessary.

Promotion works in a similar way on floating-point values: a float value will be
promoted to a double value, leaving the value unchanged.

Since promotion happens in cases where the expression does not require type con-
version in order to be compiled, it can cause unexpected effects, for example in
overload resolution:

void do_something(short arg)

{

cout << "Doing something with a short" << endl;

}

void do_something(int arg)

{

cout << "Doing something with an int" << endl;

}

int main(int argc, char **argv)
{
short val = 12;

do_something(val); // Prints "Doing something with a short"
do_something(val * val); // Prints "Doing something with an int"

}

Since val is a short, you might expect that the expression val * val would also
be a short, but in fact val is promoted to int, and the int overload is selected.

Numeric conversion

After any numeric promotion has been applied, the value can then be converted to
another numeric type if required, subject to various constraints.

Note:

The standard guarantees that some conversions are possible without specifying
what the exact result will be. This means that certain conversions that are legal
can unexpectedly give different results using different compilers.

A value of any integer type can be converted to any other integer type, and a value
of an enumeration type can be converted to an integer type. This only gets com-
plicated when overflow is possible, as in the case where you convert from a larger

207

Fundamentals for getting started

type to a smaller type. In the case of conversion to an unsigned type, overflow
works in a nice predictable way: the result is the smallest unsigned integer congru-
ent to the value being converted (modulo 2", where n is the number of bits in the
destination type).

When converting to a signed integer type where overflow is possible, the result of
the conversion depends on the compiler. Most modern compilers will generate a
warning if a conversion occurs where overflow could happen. Should the loss of
information be intended, the programmer may do explicit type casting to suppress
the warning; bit masking may be a superior alternative.

Floating-point types can be converted between each other, but are even more prone
to platform-dependence. If the value being converted can be represented exactly
in the new type then the exact conversion will happen. Otherwise, if there are two
values possible in the destination type and the source value lies between them, then
one of the two values will be chosen. In all other cases the result is implementation-
defined.

Floating-point types can be converted to integer types, with the fractional part
being discarded.

double a = 12.5;
int b = a;

cout << b; // Prints "12"

Note:

If a floating-point value is converted to an integer and the result can’t be ex-
pressed in the destination type, behavior is undefined by the C++ standard,
meaning that your program may crash.

A value of an integer type can be converted to a floating point type. The result is
exact if possible, otherwise it is the next lowest or next highest representable value
(depending on the compiler).

3.5.2 Explicit type conversion (casting)

Explicit type conversion (casting) is the use of direct and specific notation in the
source code to request a conversion or to specify a member from an overloaded
class. There are cases where no automatic type conversion can occur or where
the compiler is unsure about what type to convert to, those cases require explicit
instructions from the programmer or will result in error.

208

Type Conversion

Specific type casts

A set of casting operators have been introduced into the C++ language to address
the shortcomings of the old C-style casts, maintained for compatibility purposes.
Bringing with them a clearer syntax, improved semantics and type-safe conver-
sions.

All of the casting operators share a similar syntax and as we will see are used in
a manner similar to TEMPLATES??, with these new keywords casting becomes
easier to understand, find, and maintain.

The basic form of type cast

The basic explicit form of typecasting is the static cast.

A static cast looks like this:

static_cast<target type>(expression)

The compiler will try its best to interpret the expression as if it would be of type
type. This type of cast will not produce a warning, even if the type is demoted.

int a = static_cast<int>(7.5);

The cast can be used to suppress the warning as shown above. static_cast can-
not do all conversions; for example, it cannot remove const qualifiers, and it cannot
perform "cross-casts" within a class hierarchy. It can be used to perform most nu-
meric conversions, including conversion from a integral value to an enumerated

type.

static_cast

The static_cast keyword can be used for any normal conversion between types.
Conversions that rely on static (compile-time) type information. This includes any
casts between numeric types, casts of pointers and references up the hierarchy,
conversions with unary constructor, conversions with conversion operator. For
conversions between numeric types no runtime checks if data fits the new type is
performed. Conversion with unary constructor would be performed even if it is
declared as explicit.

Syntax

262 Chapter 5 on page 483

209

Fundamentals for getting started

TYPE static_cast<TYPE> (object);

It can also cast pointers or references down and across the hierarchy as long as
such conversion is available and unambiguous. For example, it can cast void* to
the appropriate pointer type or vice-versa. No runtime checks are performed.

BaseClass* a = new DerivedClass();
static_cast<DerivedClass*>(a)->derivedClassMethod();

Common usage of type casting

Performing arithmetical operations with varying types of data type without an ex-
plicit cast means that the compiler has to perform an implicit cast to ensure that
the values it uses in the calculation are of the same type. Usually, this means that
the compiler will convert all of the values to the type of the value with the highest
precision.

The following is an integer division and so a value of 2 is returned.

float a = 5/ 2;

To get the intended behavior, you would either need to cast one or both of the
constants to a float.

float a = static_cast<float>(5) / static_cast<float>(2);

Or, you would have to define one or both of the constants as a float.

float a = 5f / 2f;

const_cast

The const_cast keyword can be used to remove the const or volatile property
from an object. The target data type must be the same as the source type, except
(of course) that the target type doesn’t have to have the same const qualifier. The
type TYPE must be a pointer or reference type.

Syntax

TYPE const_cast<TYPE> (object);

210

Type Conversion

For example, the following code uses const_cast to remove the const qualifier
from a object:

class Foo {
public:

void func() {} // a non-const member function
bi

void someFunction(const Foo& f) {
f.func(); // compile error: cannot call a non-const
// function on a const reference
Foo &fRef = const_cast<Foo&> (f);
fRef.func(); // okay
}

dynamic_cast

The dynamic_cast keyword is used to casts a datum from one pointer or reference
a of polymorphic type to another, similar to static_cast but performing a type
safety check at runtime to ensure the validity of the cast. Generally for the purpose
of casting a pointer or reference up or down an inheritance chain (INHERITANCE
HIERARCHY?%3) in a safe way, including performing so-called cross casts.

Syntax

TYPE& dynamic_cast<TYPE&> (object);
TYPE* dynamic_cast<IYPE*> (object);

The target type must be a pointer or reference type, and the expression must eval-
uate to a pointer or reference.

If you attempt to cast to a pointer type, and that type is not an actual type of the
argument object, then the result of the cast will be NULL.

If you attempt to cast to a reference type, and that type is not an actual type of the
argument object, then the cast will throw a std: :bad_cast exception.

When it doesn’t fail, dynamic cast returns a pointer or reference of the target type
to the object to which expression referred.

struct A {
virtual void £() { }
i
struct B : public A { };

263 Chapter 2.3.4 on page 20

211

Fundamentals for getting started

struct C { };
void £ () {
A a;
B b;
A* ap = &b;
B* bl = dynamic_cast<B*> (&a); // NULL, because ’a’ is not a ’B’
B* b2 = dynamic_cast<B*> (ap); // ’b’
C* ¢ = dynamic_cast<C*> (ap); // NULL.
Ag ar = dynamic_cast<As> (*ap); // Ok.

Bs& br = dynamic_cast<B&> (*ap); // Ok.
C& cr = dynamic_cast<Cs> (*ap); // std::bad _cast

reinterpret_cast

The reinterpret_cast keyword is used to simply cast one type bitwise to another.
Any pointer or integral type can be casted to any other with reinterpret cast, easily
allowing for misuse. For instance, with reinterpret cast one might, unsafely, cast an
integer pointer to a string pointer. It should be used to cast between incompatible
pointer types.

Syntax

TYPE reinterpret_cast<TYPE> (object);

The reinterpret_cast<>() is used for all non portable casting operations. This
makes it simpler to find these non portable casts when porting an application from
one OS to another.

The reinterpret_cast<T> () will change the type of an expression without al-

tering its underlying bit pattern. This is useful to cast pointers of a particular type
into a void* and subsequently back to the original type.

int a = 0xffe38024;
int* b = reinterpret_cast<int*>(a);

Old C-style casts

Other common type casts exist, they are of the form type (expression) (a func-
tional, or function-style, cast) or (type)expression (often known simply as a
C-style cast). The format of (type)expression is more common in C (where it
is the only cast notation). It has the basic form:

int 1 = 10;

212

Control flow statements

long 1;

1 = (long)i; //C programming style cast

1 = long(i); //C programming style cast in functional form (preferred by some C++

programmers)

//note: initializes a new long to i, this is not an explicit cast as

in the example above
//however an implicit cast does occur. i = long((long)i);

A C-style cast can, in a single line of source code, make two conversions. For
instance remove a variable consteness and alter its type. In C++, the old C-style
casts are retained for backwards compatibility.

const char string[]="1234";
function((unsigned char*) string); //remove const, add unsigned

There are several shortcomings in the old C-style casts:

1. They allows casting practically any type to any other type. Leading to lots
of unnecessary trouble, even to creating source code that will compile but
not to the intended result.

2. The syntax is the same for every casting operation. Making it impossible for
the compiler and users to tell the intended purpose of the cast.

3. Hard to identify in the source code.

The C++ specific cast keyword are more controlled. Some will make the code
safer since they will enable to catch more errors at compile-time, and all are easier
to search, identify and maintain in the source code. Performance wise they are
the same with the exception of dynamic_cast, for which there is no C equivalent.
This makes them generally preferred. 264

3.6 Control flow statements

Usually a program is not a linear sequence of instructions. It may repeat code or
take decisions for a given path-goal relation. Most programming languages have
control flow statements (constructs) which provide some sort of control structures
that serve to specify order to what has to be done to perform our program that allow
variations in this sequential order:

* statements may only be obeyed under certain conditions (conditionals),
* statements may be obeyed repeatedly under certain conditions (loops),
* a group of remote statements may be obeyed (subroutines).

264 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

213

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Fundamentals for getting started

Logical Expressions as conditions

Logical expressions can use logical operators in loops and conditional statements
as part of the conditions to be met.

3.6.1 Exceptional and unstructured control flow

Some instructions have no particular structure but will have an exceptional use-
fulness in shaping how other control flow statements are structured, a special care
must be taken to prevent unstructured and confusing programming.

break

A break will force the exiting of the present loop iteration into the next statement
outside of the loop. It has no usefulness outside of a loop structure except for the
switch control statement.

continue

The continue instruction is used inside loops where it will stop the current loop
iteration, initiating the next one.

goto

The goto keyword is discouraged as it makes it difficult to follow the program
logic, this way inducing to errors. The goto statement causes the current thread of
execution to jump to the specified label.

Syntax

label:
statement (s);

goto label;

In some rare cases, the goto statement allows to write uncluttered code, for exam-
ple, when handling multiple exit points leading to the cleanup code at a function

214

Control flow statements

exit (and neither exception handling or object destructors are better options). Ex-
cept in those rare cases, the use of unconditional jumps is a frequent symptom of a
complicated design, as the presence of many levels of nested statements.

In exceptional cases, like heavy optimization, a programmer may need more con-
trol over code behavior; a goto allows the programmer to specify that execution
flow jumps directly and unconditionally to a desired label. A label is the name
given to a label statement elsewhere in the function.

Note:

There is a classic paper in software engineering by W. A. WULF“ called "A
CASE AGAINST THE GOTO"?, presented in the 25th ACM¢ National Con-
ference in October 1972, a time when the debate about goto statements was
reaching its peak. In this paper Wulf defends that goto statements should be
regarded as dangerous. Wulf is also known by one of his comments regard-
ing efficiency: "More computing sins are committed in the name of efficiency
(without necessarily achieving it) than for any other single reason -- including
blind stupidity.".

a HTTP://EN.WIKIPEDIA.ORG/WIKI/WILLIAM%20WULF
HTTP://PORTAL.ACM.ORG/CITATION.CFM?ID=1241523

c HTTP://EN.WIKIPEDIA.ORG/WIKI/ASSOCIATION$20FOR%20COMPUTINGS
20MACHINERY

A goto can, for example, be used to break out of two nested loops. This example
breaks after replacing the first encountered non-zero element with zero.

for (int 1 = 0; 1 < 30; ++i)
for (int j = 0; j < 30; ++j
if (a[i]l[]] !'=0) |
ali][3] = 0;
goto done;
}
}
}
done:
/% rest of program */

{
) Ao

Although simple, they quickly lead to illegible and unmaintainable code.

// snarled mess of gotos

int 1 = 0;

goto test_it;
body:

ali++] = 0;
test_it:

if (a[i])

215

http://en.wikipedia.org/wiki/William%20Wulf
http://portal.acm.org/citation.cfm?id=1241523
http://en.wikipedia.org/wiki/Association%20for%20Computing%20Machinery
http://en.wikipedia.org/wiki/Association%20for%20Computing%20Machinery

Fundamentals for getting started

goto body;
/* rest of program */

is much less understandable than the equivalent:
for (int i = 0; a[i]; ++1) {

/* rest of program */

Gotos are typically used in functions where performance is critical or in the output
of machine-generated code (like a parser generated by YACC?%)

The goto statement should almost always be avoided, there are rare cases when it
enhances the readability of code. One such case is an "error section".

Example

#include <new>
#include <iostream>

int *my_allocated_1;
char *my_allocated_2, *my_allocated_3;
my_allocated_1 = new (std::nothrow) int[500];

if (my_allocated_1 == NULL)

{
std::cerr << "error in allocated_1" << std::endl;
goto error;

}
my_allocated_2 = new (std::nothrow) char[1000];

if (my_allocated_2 == NULL)

{
std::cerr << "error in allocated_2" << std::endl;
goto error;

}
my_allocated_3 = new (std::nothrow) char[1000];

if (my_allocated_3 == NULL)

{
std::cerr << "error in allocated_3" <<std::endl;
goto error;

}

return 0;

error:
if (my_allocated_l) delete [] my_allocated_1;
if (my_allocated_2) delete [] my_allocated_2;
if (my_allocated_3) delete [] my_allocated_ 3;
return 1;

265 HTTP://EN.WIKIPEDIA.ORG/WIKI/YACC

216

http://en.wikipedia.org/wiki/yacc

Control flow statements

This construct avoids hassling with the origin of the error and is cleaner than an
equivalent construct with control structures. It is thus less error prone.

Note:

While the above example shows a reasonable use of gotos, it is uncommon in
practice. Exceptions handle such cases in a clearer, more effective and more
organized way. This will be discussed in "Exception Handling" in detail. Using
RAII to manage resources such as memory also avoids the need for most of the
explicit cleanup code that is shown above.

abort(), exit() and atexit()

As we will see later the STANDARD C LIBRARY?%® that is included in C++ also
supplies some useful functions that can alter the flow control. Some will permit
you to terminate the execution of a program, enabling you to set up a return value
or initiate special tasks upon the termination request. You will have to jump ahead
into the ABORT()%%7 - EXIT()?%® - ATEXIT()*% sections for more information.

3.6.2 Conditionals

There is likely no meaningful program written in which a computer does not
demonstrate basic decision-making skills based upon certain set conditions. It
can actually be argued that there is no meaningful human activity in which no
decision-making, instinctual or otherwise, takes place. For example, when driving
a car and approaching a traffic light, one does not think, "I will continue driving
through the intersection.”" Rather, one thinks, "I will stop if the light is red, go if
the light is green, and if yellow go only if I am traveling at a certain speed a certain
distance from the intersection." These kinds of processes can be simulated using
conditionals.

A conditional is a statement that instructs the computer to execute a certain block
of code or alter certain data only if a specific condition has been met.

The most common conditional is the if-else statement, with conditional expres-
sions and switch-case statements typically used as more shorthanded methods.

266 Chapter 3.7.10 on page 264
267 Chapter 3.7.11 on page 356
268 Chapter 3.7.11 on page 358
269 Chapter 3.7.11 on page 357

217

Fundamentals for getting started

if (Fork branching)

The if-statement allows one possible path choice depending on the specified con-
ditions.

Syntax

if (condition)
{

statement;

}
Semantic
First, the condition is evaluated:

* if condition is true, statement is executed before continuing with the body.
* if condition is false, the program skips statement and continues with the rest of
the program.

Note:

The condition in an if statement can be any code that resolves in any expression
that will evaluate to either a boolean, or a null/non-null value; you can declare
variables, nest statements, etc. This is true to other flow control conditionals
(ie: while), but is generally regarded as bad style, since it only benefit is ease
of typing by making the code less readable.

This characteristic can easily lead simple errors, like tipping a=b (assign a
value) in place of a a==b (condition). This has resulted in the adoption of a
coding practice that would automatically put the errors in evidence, by invert-
ing the expression (or using constant variables) the compiler will generate an
error.

Recent compilers support the detection of such events and generate compilation
warnings.

Example

if (condition)
{
int x; // Valid code
for(x = 0; x < 10; ++x) // Also valid.
{
statement;

}

218

Control flow statements

condition ?

statement;

\

+43%

Figure 20: flowchart from the example

219

Fundamentals for getting started

Note:

If you wish to avoid typing std::cout, std::cin, or std::endl; all the time, you may
include using namespace std at the beginning of your program since cout, cin,
and endl are members of the std namespace.

Sometimes the program needs to choose one of two possible paths depending on a
condition. For this we can use the if-else statement.

if (user_age < 18)
{

std::cout << "People under the age of 18 are not allowed." << std::endl;
}

else
{
std::cout << "Welcome to Caesar’s Casino!" << std::endl;

}

Here we display a message if the user is under 18. Otherwise, we let the user in.
The if part is executed only if "user_age’ is less than 18. In other cases (when
‘user_age’ is greater than or equal to 18), the else part is executed.

if conditional statements may be chained together to make for more complex con-
dition branching. In this example we expand the previous example by also check-
ing if the user is above 64 and display another message if so.

if (user_age < 18)
{
std::cout << "People under the age of 18 are not allowed." << std::endl;

}
else if (user_age > 64)

{

std::cout << "Welcome to Caesar’s Casino! Senior Citizens get 50% off." <<
std::endl;

}
else

{

std::cout << "Welcome to Caesar’s Casino!" << std::endl;

}

220

Control flow statements

gt cout << "People under
the age of 18 are not
gllowed." == std: endl;

st cout <= "Welcome to ste: cout == "Weleome o
Caesar's Casinol Senior Caesar's Casinol <<

Citizens get S0% off " <= . .
std: end; std-end

L

Figure 21: flowchart from the example

Note:

* break and continue do not have any relevance to an if or else.

* Although you can use multiple else if statements, when handling many re-
lated conditions it is recommended that you use the switch statement, which
we will be discussing next.

221

Fundamentals for getting started

switch (Multiple branching)

The switch statement branches based on specific integer values.

switch (integer expression) {
case labell :
statement(s)
break;
case label2:
statement(s)
break;
VA
default:
statement(s)
}

As you can see in the above scheme the case and default have a "break;" statement
at the end of block. This expression will cause the program to exit from the switch,
if break is not added the program will continue execute the code in other cases even
when the integer expression is not equal to that case. This can be exploited in some
cases as seen in the next example.

We want to separate an input from digit to other characters.

char ch = cin.get(); //get the character
switch (ch) {

case '0':
// do nothing fall into case 1
case '1’:
// do nothing fall into case 2
case '2':
// do nothing fall into case 3
VA V4
case '8':
// do nothing fall into case 9
case '9':
std::cout << "Digit" << endl; //print into stream out
break;
default:

std::cout << "Non digit" << endl; //print into stream out

}

In this small piece of code for each digit below ’9’ it will propagate through the
cases until it will reach case ’9’ and print "digit".

If not it will go straight to the default case there it will print "Non digit"

222

Control flow statements

Note:

* Be sure to use break commands unless you want multiple conditions to have
the same action. Otherwise, it will "fall through" to the next set of com-
mands.

* break can only break out of the innermost level. If for example you are
inside a switch and need to break out of a enclosing for loop you might well
consider adding a boolean as a flag, and check the flag after the switch block
instead of the alternatives available. (Though even then, refactoring the code
into a separate function and returning from that function might be cleaner
depending on the situation, and with inline functions and/or smart compilers
there need not be any runtime overhead from doing so.)

* continue is not relevant to switch block. Calling continue within a switch
block will lead to the "continue" of the loop which wraps the switch block.

3.6.3 Loops (iterations)

A loop (also referred to as an iteration or repetition) is a sequence of statements
which is specified once but which may be carried out several times in succession.
The code "inside" the loop (the body of the loop) is obeyed a specified number of
times, or once for each of a collection of items, or until some condition is met.

ITERATION?"? is the repetition of a process, typically within a computer program.
Confusingly, it can be used both as a general term, synonymous with repetition,
and to describe a specific form of repetition with a MUTABLE?"! state.

When used in the first sense, RECURSION?"? is an example of iteration.

However, when used in the second (more restricted) sense, iteration describes the
style of programming used in imperative programming languages. This contrasts
with recursion, which has a more declarative approach.

Due to the nature of C++ there may lead to an even bigger problems when differ-
entiating the use of the word, so to simplify things use "loops" to refer to simple
recursions as described in this section and use iteration or iterator*’® (the "one"

270 HTTP://EN.WIKIPEDIA.ORG/WIKI/ITERATION
271 HTTP://EN.WIKIPEDIA.ORG/WIKI/MUTABLE$200BJECT
272 HTTP://EN.WIKIPEDIA.ORG/WIKI/RECURSION
273 HTTP://EN.WIKIPEDIA.ORG/WIKI/ITERATOR

223

http://en.wikipedia.org/wiki/iteration
http://en.wikipedia.org/wiki/Mutable%20object
http://en.wikipedia.org/wiki/Recursion
http://en.wikipedia.org/wiki/iterator

Fundamentals for getting started

that performs an iferation) to class iterator (or in relation to objects/classes) as
used in the STL.

Infinite Loops

Sometimes it is desirable for a program to loop forever, or until an exceptional
condition such as an error arises. For instance, an event-driven program may be
intended to loop forever handling events as they occur, only stopping when the
process is killed by the operator.

More often, an infinite loop is due to a programming error in a condition-controlled
loop, wherein the loop condition is never changed within the loop.

// as we will see, these are infinite loops...
while (1) { }

// or

for (;;) {}

Note:

When the compiler optimizes the source code, all statement after the detected
infinite loop (that will never run), will be ignored. A compiler warning is gen-
erally given on detecting such cases.

Condition-controlled loops

Most programming languages have constructions for repeating a loop until some
condition changes.

Condition-controlled loops are divided into two categories Preconditional or Entry-
Condition that place the test at the start of the loop, and Postconditional or Exit-
Condition iteration that have the test at the end of the loop. In the former case
the body may be skipped completely, while in the latter case the body is always
executed at least once.

In the condition controlled loops, the keywords break and continue take signifi-
cance. The break keyword causes an exit from the loop, proceeding with the rest
of the program. The continue keyword terminates the current iteration of the loop,
the loop proceeds to the next iteration.

224

Control flow statements

while (Preconditional loop)
Syntax

while ('’condition’’) ’’statement’’; '’statement2’’;

Semantic First, the condition is evaluated:

1. if condition is true, statement is executed and condition is evaluated again.
2. if condition is false continues with statement2

Remark: statement can be a block of code { ... } with several instructions.

What makes *while’ statements different from the ’if” is the fact that once the body
(referred to as statement above) is executed, it will go back to *while’ and check
the condition again. If it is true, it is executed again. In fact, it will execute as
many times as it has to until the expression is false.

Example 1

#include <iostream>
using namespace std;

int main()
{
int 1=0;
while (i<10) {
cout << "The value of i is " << i << endl;
i++;
}
cout << "The final value of i is : " << 1 << endl;
return 0;

}

Execution

The value of i is
The value of
The value of
The value of

i
iis
i
i

The value of i is
i
i
i
i

is
is
The value of i is
The value of i is
is
is

The value of
The value of
The value of i is
The final value of i is 10

© W —d oUW N O

Example 2

225

Fundamentals for getting started

// validation of an input
#include <iostream>
using namespace std;

int main()
{
int aj
bool ok=false;
while (!ok) {
cout << "Type an integer from 0 to 20 : ";
cin >> a;
ok = ((a>=0) && (a<=20));
if (!ok) cout << "ERROR - ";
}
return 0;

}

Execution

Type an integer from 0 to 20 : 30

ERROR - Type an integer from 0 to 20 : 40
ERROR - Type an integer from 0 to 20 : -6
ERROR - Type an integer from 0 to 20 : 14

do-while (Postconditional loop)
Syntax

do {
statement (s)
} while (condition);

statement2;
Semantic

statement(s) are executed.

condition is evaluated.

if condition is true goes to 1).

if condition is false continues with statement2

Ll

The do - while loop is similar in syntax and purpose to the while loop. The con-
struct moves the test that continues condition of the loop to the end of the code
block so that the code block is executed at least once before any evaluation.

Example

#include <iostream>

226

Control flow statements

using namespace std;

int main()

{

int i=0;

do {

cout << "The value of i is " << i << endl;
it++;

} while

(i<10);

cout << "The final
return 0;

}

Execution

value of i is : " << i << endl;

The
The
The
The
The
The
The
The
The
The
The

value
value
value
value
value
value
value
value
value
value
final

of
of
of
of
of
of
of
of
of
of

I T S e O

i

is
is
is
is
is
is
is
is
is
is

O 0 d oUW N O

value of i is 10

for (Preconditional and counter-controlled loop)

The for keyword is used as special case of a pre-conditional loop that supports
constructors for repeating a loop only a certain number of times in the form of a
step-expression that can be tested and used to set a step size (the rate of change) by
incrementing or decrementing it in each loop.

Syntax

for (initialization ; condition; step-expression)
statement (s);

The for construct is a general looping mechanism consisting of 4 parts:

1.

. the initialization, which consists of O or more comma-delimited variable
initialization statements

227

Fundamentals for getting started

2. . the test-condition, which is evaluated to determine if the execution of the
for loop will continue

3. . the increment, which consists of O or more comma-delimited statements
that increment variables

4. . and the statement-list, which consists of 0 or more statements that will be
executed each time the loop is executed.

Note:
Variables declared and initialized in the loop initialization (or body) are only
valid in the SCOPE® of the loop itself.

a Chapter 3.1.10 on page 79

The for loop is equivalent to next while loop:

initialization
while(condition)
{
statement (s);
step-expression;

}

Note:

Each step of the loop (initialization, condition, and step-expression) can have
more than one command, separated by a , (comma operator). initializa-
tion,condition, and step expression are all optional arguments. In C++ the
comma is very rarely used as an operator. It is mostly used as a separator
(de. int x, y;).

Example 1

// a unbounded loop structure
for (;;)
{
statement (s);
if(statement (s))
break;
}

Example 2

// calls doSomethingWith() for 0,1,2,..9
for (int i = 0; 1 != 10; ++i)

{

228

Functions

doSomethingWith (1) ;
}

can be rewritten as:

// calls doSomethingWith() for 0,1,2,..9
int 1 = 0;
while(i != 10)
{

doSomethingWith (i) ;

++1i;
}
The for loop is a very general construct, which can run unbounded loops (Example
1) and does not need to follow the rigid iteration model enforced by similarly
named constructs in a number of more formal languages. C++ (just as modern
C) allows variables (Example 2) to be declared in the initialization part of the for
loop, and it is often considered good form to use that ability to declare objects
only when they can be initialized, and to do so in the smallest scope possible.
Essentially, the for and while loops are equivalent. Most for statements can also be

rewritten as while statements.

3.7 Functions

A FUNCTION?7, which can also be referred to as SUBROUTINEZ7Y, procedure,
subprogram or even METHOD?’®, carries out tasks defined by a sequence of state-
ments called a STATEMENT BLOCK?”/ that need only be written once and called
by a program as many times as needed to carry out the same task.

Functions may depend on variables passed to them, called ARGUMENTS?”S, and
may pass results of a task on to the caller of the function, this is called the RETURN
VALUE?”.

It is important to note that a function that exists in the GLOBAL SCOPE®*’ can also
be called global function and a function that is defined inside a class is called a
member function. (The term method is commonly used in other programming
languages to refer to things /ike member functions, but this can lead to confusion in

274 HTTP://EN.WIKIPEDIA.ORG/WIKI/SUBROUTINE

275 HTTP://EN.WIKIPEDIA.ORG/WIKI/SUBROUTINE

276 HTTP://EN.WIKIPEDIA.ORG/WIKI/METHOD_ _%28COMPUTER_SCIENCE%29
277 Chapter 3.1.6 on page 56

278 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23PARAMETERS%20AND%20ARGUMENTS
279 HTTP://EN.WIKIPEDIA.ORG/WIKI/RETURN%20STATEMENT

280 Chapter 3.1.9 on page 78

229

http://en.wikipedia.org/wiki/subroutine
http://en.wikipedia.org/wiki/subroutine
http://en.wikipedia.org/wiki/Method_%28computer_science%29
http://en.wikibooks.org/wiki/%23Parameters%20and%20arguments
http://en.wikipedia.org/wiki/Return%20statement

Fundamentals for getting started

dealing with C++ which supports both virtual and non-virtual dispatch of member
functions.)

Note:

When talking or reading about programming, you must consider the language
background and the topic of the source. It is very rare to see a C++ program-
mer use the words procedure or subprogram, this will vary from language to
language. In many programming languages the word function is reserved for
subroutines that return a value, this is not the case with C++.

3.7.1 Declarations

A function must be declared before being used, with a name to identify it, what
type of value the function returns and the types of any arguments that are to be
passed to it. Parameters must be named and declare what type of value it takes.
Parameters should always be passed as const if their arguments are not modified.
Usually functions performs actions, so the name should make clear what it does.
By using verbs in function names and following other naming conventions pro-
grams can be read more naturally.

The next example we define a function named main that returns an integer value
int and takes no parameters. The content of the function is called the body of
the function. The word int is a keyword. C++ keywords are reserved words, i.e.,
cannot be used for any purpose other than what they are meant for. On the other
hand main is not a keyword and you can use it in many places where a keyword
cannot be used (though that is not recommended, as confusion could result).

int main()

{
// code
return 0;

}

inline

The inline keyword declares an inline function, the declaration is a (non-binding)
request to the compiler that a particular function be subjected to IN-LINE EXPAN-
SION?8!; that is, it suggests that the compiler insert the complete body of the func-
tion in every context where that function is used and so it is used to avoid the
overhead implied by making a CPU jump from one place in code to another and

281 HTTP://EN.WIKIPEDIA.ORG/WIKI/INLINE%20EXPANSION

230

http://en.wikipedia.org/wiki/inline%20expansion

Functions

back again to execute a subroutine, as is done in naive implementations of subrou-
tines.

inline swap(int& a, int& b) { int const tmp(b); b=a; a=tmp; }

When a function definition is included in a class/struct definition, it will be an im-
plicit inline, the compiler will try to automatically inline that function. No inline
keyword is necessary in this case; it is legal, but redundant, to add the inline

keyword in that context, and GOOD STYLE?®? is to omit it.

Example:

struct length
{

explicit length(int metres) : m_metres(metres) {}
operator int&() { return m metres; }
private:

int m_metres;

bi

Inlining can be an optimization, or a pessimization. It can increase code size (by
duplicating the code for a function at multiple call sites) or can decrease it (if the
code for the function, after optimization, is less than the size of the code needed to
call a non-inlined function). It can increase speed (by allowing for more optimiza-
tion and by avoiding jumps) or can decrease speed (by increasing code size and
hence cache misses).

One important side-effect of inlining is that more code is then accessible to the
optimizer.

Marking a function as inline also has an effect on linking: multiple definitions of
an inline function are permitted (so long as each is in a different translation unit)
so long as they are identical. This allows inline function definitions to appear in
header files; defining non-inlined functions in header files is almost always an error
(though function templates can also be defined in header files, and often are).

Mainstream C++ compilers like MICROSOFT VISUAL C++%83 and GCC?8* sup-
port an option that lets the compilers automatically inline any suitable function,
even those that are not marked as inline functions. A compiler is often in a better
position than a human to decide whether a particular function should be inlined;
in particular, the compiler may not be willing or able to inline many functions that
the human asks it to.

282 Chapter 3.1.7 on page 59
283 HTTP://EN.WIKIPEDIA.ORG/WIKI/VISUAL%20C%20PLUS%20PLUS
284 HTTP://EN.WIKIPEDIA.ORG/WIKI/GNU%20COMPILER%$20COLLECTION

231

http://en.wikipedia.org/wiki/Visual%20C%20Plus%20Plus
http://en.wikipedia.org/wiki/GNU%20Compiler%20Collection

Fundamentals for getting started

Excessive use of inlined functions can greatly increase coupling/dependencies and
compilation time, as well as making header files less useful as documentation of
interfaces.

Normally when calling a function, a program will evaluate and store the argu-
ments, and then call (or branch to) the function’s code, and then the function will
later return back to the caller. While function calls are fast (typically taking much
less than a microsecond on modern processors), the overhead can sometimes be
significant, particularly if the function is simple and is called many times.

One approach which can be a performance optimization in some situations is to use
so-called inline functions. Marking a function as inline is a request (sometimes
called a hint) to the compiler to consider replacing a call to the function by a copy
of the code of that function.

The result is in some ways similar to the use of the #define macro, but as MEN-
TIONED BEFORE?®>, macros can lead to problems since they are not evaluated by
the PREPROCESSOR?®, inline functions do not suffer from the same problems.

If the inlined function is large, this replacement process (known for obvious rea-
sons as "inlining") can lead to "code bloat", leading to bigger (and hence usually
slower) code. However, for small functions it can even reduce code size, particu-
larly once a compiler’s optimizer runs.

Note that the inlining process requires that the function’s definition (including the
code) must be available to the compiler. In particular, inline headers that are used
from more than one source file must be completely defined within a header file
(whereas with regular functions that would be an error).

The most common way to designate that a function is inline is by the use of the
inline keyword. One must keep in mind that compilers can be configured to
ignore this keyword and use their own optimizations.

Further considerations are given when dealing with INLINE MEMBER FUNC-
TIONZ®, this will be covered on the OBJECT-ORIENTED PROGRAMMING
CHAPTERZ88

285 Chapter 3.2.3 on page 98
286 Chapter 3.2.2 on page 98
287 Chapter 4.3.5 on page 409
288 Chapter 3.9 on page 384

232

Functions

3.7.2 Parameters and arguments

The function declaration defines its parameters. A parameter is a variable which
takes on the meaning of a corresponding argument passed in a call to a function.

An argument represents the value you supply to a function parameter when you
call it. The calling code supplies the arguments when it calls the function.

The part of the function declaration that declares the expected parameters is called
the parameter list and the part of function call that specifies the arguments is
called the argument list.

//Global functions declaration
int subtraction_function(int parameterl, int parameter2) { return (parameterl
- parameter2); }

//Call to the above function using 2 extra variables so the relation becomes more
evident

int argumentl = 4;

int argument2 = 3;

int result = subtraction_function(argumentl, argument2);

// will have the same result as

int result = subtraction_function(4, 3);

Many programmers use parameter and argument interchangeably, depending on
context to distinguish the meaning. In practice, distinguishing between the two
terms is usually unnecessary in order to use them correctly or communicate their
use to other programmers. Alternatively, the equivalent terms formal parameter
and actual parameter may be used instead of parameter and argument.

3.7.3 Parameters

You can define a function with no parameters, one parameter, or more than one,
but to use a call to that function with arguments you must take into consideration
what is defined.

Empty parameter list

//Global functions with no parameters

void function() { /*...x/}
//empty parameter declaration equivalent the use of void
void function(void) (/#*...x/ }

233

Fundamentals for getting started

Note:
This is the only valid case were void can be used as a parameter type, you can
only derived types from void (ie: void*).

Multiple parameters

The syntax for declaring and invoking functions with multiple parameters can be
a source of errors. When you write the function definition, you must declare the
type of each and every parameter.

// Example - function using two int parameters by value
void printTime (int hour, int minute) {

std::cout << hour;

std::cout << ":";

std::cout << minute;

}

It might be tempting to write (int hour, minute), but that format is only legal for
variable declarations, not for parameter declarations.

However, you do not have to declare the types of arguments when you call a func-
tion. (Indeed, it is an error to attempt to do so).

Example

int main void(){

int hour = 11;
int minute = 59;
printTime(int hour, int minute); // WRONG!
printTime (hour, minute); // Right!

}

In this case, the compiler can tell the type of hour and minute by looking at their

declarations. It is unnecessary and illegal to include the type when you pass them
as arguments..

by pointer

A function may use pass by pointer when the object pointed to might not exist,
that is, when you are giving either the address of a real object or NULL. Passing
a pointer is not different to passing anything else. Its a parameter the same as any
other. The characteristics of the pointer type is what makes it a worth distinguish-
ing.

234

Functions

The passing a pointer to a function is very similar to passing it as a reference. It is
used to avoid the overhead of copying, and the slicing problem (since child classes
have a bigger memory footprint that the parent) that can occur when passing base
class objects by value. This is also the preferred method in C (for historical rea-
sons), were passing by pointer signifies that wanted to modify the original variable.
In C++ it is preferred to use references to pointers and guarantee that the function
before dereferencing it, verifies the pointer for validity.

#include <iostream>

void MyFunc(int *x)
{
std::cout << *x << std::endl; // See next section for explanation

}

int main()

{
int 1i;
MyFunc(&1);

return 0;

}

Since a reference is just an alias, it has exactly the same address as what it refers
to, as in the following example:

#include <iostream>

void ComparePointers (int * a, int * D)
{
if (a == b)
std::cout<<"Pointers are the same!"<<std::endl;
else
std::cout<<"Pointers are different!"<<std::endl;

}

int main()

{
int i, J;
ints r = i;

ComparePointers (&1, &i
ComparePointers (&1,
ComparePointers (&1,
ComparePointers (&7,

a2
[

)
ol

return 0;

}

This schizophrenic program will tell you that the pointers are the same, then that
they are different, then the same, then different again.

235

Fundamentals for getting started

Arrays are similar to pointers, remember?

Now might be a good time to reread the section on arrays. If you do not feel like
flipping back that far, though, here’s a brief recap: Arrays are blocks of memory
space.

int my_array[5];

In the statement above, my_array is an area in memory big enough to hold five
ints. To use an element of the array, it must be dereferenced. The third element
in the array (remember they’re zero-indexed) is my_array[2]. When you write
my_array[2], you're actually saying "give me the third integer in the array my_-
array". Therefore, my_array is an array, but my_array[2] is an int.

Passing a single array element

So let’s say you want to pass one of the integers in your array into a function. How
do you do it? Simply pass in the dereferenced element, and you’ll be fine.

Example

#include <iostream>

void printInt (int printable) {
std::cout << "The int you passed in has value " << printable << std::endl;

}
int main(){
int my_array[5];

// Reminder: always initialize your array values!
for(int 1 = 0; 1 < 5; 1i++)
my_array[i] =1 * 2;

for(int i = 0; i < 5; i++)

printInt (my_array([i]); // <-— We pass in a dereferenced array element

}

This program outputs the following:

The int you passed in has value
The int you passed in has value
The int you passed in has value
The int you passed in has value
The int you passed in has value

0 o N O

236

Functions

This passes array elements just like normal integers, because array elements like
my_array [2] are integers.

Passing a whole array

Well, we can pass single array elements into a function. But what if we want to
pass a whole array? We can not do that directly, but you can treat the array as a
pointer.

Example

#include <iostream>

void printIntArr(int *array_arg, int array_len) {
std::cout << "The length of the array is " << array_len << std::endl;
for(int i = 0; 1 < array_len; i++)
std::cout << "Array[" << i1 << "] = " << array_arg[i] << std::endl;

}

int main() {
int my_array[5];

// Reminder: always initialize your array values!
for(int 1 = 0; 1 < 5; i++)
my_array[i] =1 * 2;

printIntArr (my_array, 5);
}

Note:

Due to array-pointer interchangeability in the context of parameter declara-
tions only, we can also declare pointers as arrays in function parameter lists. It
is treated identically. For example, the first line of the function above can also
be written as

void printIntArr (int array_arg[], int array_len)

It is important to note that even if it is written as int array_arg[], the pa-
rameter is still a pointer of type int *. It is not an array; an array passed to the
function will still be automatically converted to a pointer to its first element.

This will output the following:

The length of the array is 5
Array[0] =0
Array[l] = 2
Array[2] = 4

237

Fundamentals for getting started

Array[3]
Array[4]

As you can see, the array in main is accessed by a pointer. Now here’s some
important points to realize:

* Once you pass an array to a function, it is converted to a pointer so that function
has no idea how to guess the length of the array. Unless you always use arrays
that are the same size, you should always pass in the array length along with the
array.

* You’ve passed in a POINTER. my_array is an array, not a pointer. If you change
array_arg within the function, my_array does not change (i.e., if you set
array_arg to point to a new array). But if you change any element of array_-
arg, you're changing the memory space pointed to by array_arg, which is the
array my_array.

by reference

The same concept of references is used when passing variables.

Example

void foo(int &i)
{
++i;

}

int main()

{
int bar = 5; // bar == 5
foo(bar); // bar == 6
foo(bar); // bar == 7
return 0;

}

Here we display one of the two common uses of references in function arguments
-- they allow us to use the conventional syntax of passing an argument by value but
manipulate the value in the caller.

Note:

If the parameter is a non-const reference, the caller expects it to be modified.
If the function does not want to modify the parameter, a const reference should
be used instead.

238

Functions

However there is a more common use of references in function arguments -- they
can also be used to pass a handle to a large data structure without making multiple
copies of it in the process. Consider the following:

void foo(const std::string & s) // const reference, explained below
{

std::cout << s << std::endl;

}

void bar(std::string s)
{
std::cout << s << std::endl;

}

int main()
{
std::string const text = "This is a test.";
foo(text); // doesn’t make a copy of "text"

bar(text); // makes a copy of "text"

return 0;

}
In this simple example we’re able to see the differences in pass by value and pass

by reference. In this case pass by value just expends a few additional bytes, but
imagine for instance if text contained the text of an entire book.

The reason why we use a constant reference instead of a reference is the user of
this function can assure that the value of the variable passed does not change within
the function. We technically call this "const-to-reference".

The ability to pass it by reference keeps us from needing to make a copy of the
string and avoids the ugliness of using a pointer.

Note:

It should also be noted that "const-to-reference" only makes sense for complex
types -- classes and structs. In the case of ordinal types -- i.e. int, float, bool,
etc. -- there is no savings in using a reference instead of simply using pass by
value, and indeed the extra costs associated with indirection may make code
using a reference slower than code that copies small objects.

Passing an array of fixed-length by using reference

In some case, a function requires an array of a specific length to work:

void func (int (¶) [4]);

239

Fundamentals for getting started

Unlike the case of array changed into pointer above, the parameter is not a PLAIN
array that can be changed into a pointer, but rather a reference to array with 4 ints.
Therefore, only array of 4 ints, not array of any other length, not pointer to int, can
be passed into this function. This helps you prevent buffer overflow errors because
the array object is ALWAYS allocated unless you circumvent the type system by
casting.

It can be used to pass an array without specifying the number of elements manu-
ally:

template<int n>void func (int (¶) [n]);

The compiler generates the value of length at compile time, inside the function, n
stores the number of elements. However, the use of template generates code bloat.

In C++, a multi-dimensional array cannot be converted to a multi-level pointer,
therefore, the code below is invalid:

// WRONG
void foo(int**matrix,int n,int m);
int main(){
int datall0][5];
// do something on data
foo(data,10,5);
}

Although an int[10][5] can be converted to an (*int)[5], it cannot be converted
to int**. Therefore you may need to hard-code the array bound in the function
declaration:

// BAD
void foo(int (*matrix) [5],int n,int m);
int main(){
int data[10][5];
// do something on data
foo(data, 10,5);
}

To make the function more generic, templates and function overloading should be
used:

// GOOD
template<int junk,int rubbish>void foo(int (&ématrix) [junk] [rubbish],int n,int m);
void foo(int**matrix,int n,int m);
int main(){
int data[l0][5];
// do something on data
foo(data, 10,5);

240

Functions

The reason for having n and m in the first version is mainly for consistency, and
also deal with the case that the array allocated is not used completely. It may also
be used for checking buffer overflows by comparing n/m with junk/rubbish.

by value

When we want to write a function which the value of the argument is independent
to the passed variable, we use pass-by-value approach.

int add(int numl, int num2)

{

numl += num2; // change of value of "numl"
return numl;

}

int main()

{

int a = 10, b = 20, ans;
ans = add(a, b);

std:i:icout << a << " + " << b << " =" << ans << std::endl;
return 0;
}
Output:
10 + 20 = 30

The above example shows a property of pass-by-value, the arguments are copies
of the passed variable and only in the SCOPE?®® of the corresponding function.
This means that we have to afford the cost of copying. However, this cost is
usually considered only for larger and more complex variables.

In this case, the values of "a" and "b" are copied to "numl" and "num?2" on the
function "add()". We can see that the value of "num1" is changed in line 3. How-
ever, we can also observe that the value of "a" is kept after passed to this function.

Constant Parameters

The keyword const can also be used as a guarantee that a function will not modify
a value that is passed in. This is really only useful for references and pointers (and

289 Chapter 3.1.9 on page 78

241

Fundamentals for getting started

not things passed by value), though there’s nothing syntactically to prevent the use
of const for arguments passed by value.

Take for example the following functions:

void foo(const std::string &s)
{
s.append("blah"); // ERROR -- we can’t modify the string

std::cout << s.length() << std::endl; // fine
}

void bar (const Widget *w)
{
w->rotate(); // ERROR - rotate wouldn’t be const

std::cout << w->name() << std::endl; // fine

In the first example we tried to call a non-const method -- append() -- on an
argument passed as a const reference, thus breaking our agreement with the caller
not to modify it and the compiler will give us an error.

The same is true with rotate (), but with a const pointer in the second example.
Default values

Parameters in C++ functions (including member functions and constructors) can
be declared with default values, like this

int foo (int a, int b =5, int ¢ = 3);

Then if the function is called with fewer arguments (but enough to specify the
arguments without default values), the compiler will assume the default values for
the missing arguments at the end. For example, if I call

foo(6, 1)

that will be equivalent to calling

242

Functions

foo(6, 1, 3)

In many situations, this saves you from having to define two separate functions
that take different numbers of parameters, which are almost identical except for a
default value.

The "value" that is given as the default value is often a constant, but may be any
valid expression, including a function call that performs arbitrary computation.

Default values can only be given for the last arguments; i.e. you cannot give a
default value for a parameter that is followed by a parameter that does not have a
default value, since it will never be used.

Once you define the default value for a parameter in a function declaration, you
cannot re-define a default value for the same parameter in a later declaration, even
if it is the same value.

Ellipsis (...) as a parameter

If the parameter list ends with an ellipsis, it means that the arguments number must
be equal or greater than the number of parameters specified. It will in fact create a
variadic function, a function of variable arity; that is, one which can take different
numbers of arguments.

Note:

The variadic function feature is going to be readdressed in the upcoming C++
language standard, C++0x; with the possible inclusion of variatic macros and
the ability to create variadic template classes and variadic template functions.
Variadic templates will finally allow the creation of true tuple classes in C++.

3.7.4 Returning values

When declaring a function, you must declare it in terms of the type that it will
return, this is done in three steps, in the function declaration, the function im-
plementation (if distinct) and on the body of the same function with the return
keyword.

Functions with results

243

Fundamentals for getting started

You might have noticed by now that some of the functions yield results. Other
functions perform an action but don’t return a value.

Other ways to get a value from a function is to use a pointer or a reference as
argument or use a global variable

Get more that a single value from a function

The return type determines the capacity, any type will work from an array or a
std::vector, a struct or a class, it is only restricted by the return type you chose.

That raises some questions

* What happens if you call a function and you don’t do anything with the result
(i.e. you don’t assign it to a variable or use it as part of a larger expression)?

* What happens if you use a function without a result as part of an expression, like
newLine() + 77

* Can we write functions that yield results, or are we stuck with things like new-
Line and printTwice?

The answer to the third question is "yes, you can write functions that returns val-
ues,". For now I will leave it up to you to answer the other two questions by trying
them out. Any time you have a question about what is legal or illegal in C++, a first
step to find out is to ask the compiler. However you should be aware of two issues,
that we already mentioned when introducing the compiler: First a compiler may
have bugs just like any other software, so it happens that not every source code
which is forbidden in C++ is properly rejected by the compiler, and vice versa.
The other issue is even more dangerous: You can write programs in C++ which a
C++ implementation is not required to reject, but whose behavior is not defined by
the language. Needless to say, running such a program can, and occasionally will,
do harmful things to the system it is running or produce corrupt output!

For example:

int MyFunc(); // returns an int
SOMETYPE MyFunc(); // returns a SOMETYPE

int* MyFunc(); // returns a pointer to an int
SOMETYPE *MyFunc(); // returns a pointer to a SOMETYPE
SOMETYPE &MyFunc(); // returns a reference to a SOMETYPE

If you have understood the syntax of pointer declarations, the declaration of a func-
tion that returns a pointer or a reference should seem logical. The above piece of

244

Functions

code shows how to declare a function that will return a reference or a pointer; be-
low are outlines of what the definitions (implementations) of such functions would
look like:

SOMETYPE *MyFunc (int *p)
{
YV

return p;

}

SOMETYPE &MyFunc (int &r)
{
Y

return r;

}

return

The return statement causes execution to jump from the current function to what-
ever function called the current function. An optional a result (return variable) can
be returned. A function may have more than one return statement (but returning
the same type).

Syntax

return;
return value;

Within the body of the function, the return statement should NOT return a
pointer or a reference that has the address in memory of a local variable that was
declared within the function, because as soon as the function exits, all local vari-
ables are destroyed and your pointer or reference will be pointing to some place
in memory which you no longer own, so you cannot guarantee its contents. If the
object to which a pointer refers is destroyed, the pointer is said to be a dangling
pointer until it is given a new value; any use of the value of such a pointer is in-
valid. Having a dangling pointer like that is dangerous; pointers or references to
local variables must not be allowed to escape the function in which those local (aka
automatic) variables live.

However, within the body of your function, if your pointer or reference has the
address in memory of a data type, struct, or class that you dynamically allocated

the memory for, using the new operator, then returning said pointer or reference
would be reasonable:

245

Fundamentals for getting started

SOMETYPE *MyFunc() //returning a pointer that has a dynamically
{ //allocated memory address is valid code
int *p = new int[5];

/S

return p;

}

In most cases, a better approach in that case would be to return an object such as
a smart pointer which could manage the memory; explicit memory management
using widely distributed calls to new and delete (ormalloc and free) is tedious,
verbose and error prone. At the very least, functions which return dynamically
allocated resources should be carefully documented. See this book’s section on
memory management for more details.

const SOMETYPE *MyFunc (int *p)
{
Y/

return p;

}

In this case the SOMETYPE object pointed to by the returned pointer may not be
modified, and if SOMETYPE is a class then only const member functions may be
called on the SOMETYPE object.

If such a const return value is a pointer or a reference to a class then we cannot
call non-const methods on that pointer or reference since that would break our
agreement not to change it.

Note:

As a general rule methods should be const except when it’s not possible to
make them such. While getting used to the semantics you can use the compiler
to inform you when a method may not be const -- it will (usually) give an error
if you declare a method const that needs to be non-const.

Static returns
When a function returns a variable (or a pointer to one) that is statically located,

one must keep in mind that it will be possible to overwrite its content each time a
function that uses it is called. If you want to save the return value of this function,

246

Functions

you should manually save it elsewhere. Most such static returns use GLOBAL
VARIABLES?%,

Of course, when you save it elsewhere, you should make sure to actually copy the
value(s) of this variable to another location. If the return value is a struct, you
should make a new struct, then copy over the members of the struct.

One example of such a function is the STANDARD C LIBRARY?®! function LO-
CALTIME??,

293

Return "codes" (best practices)

There are 2 kinds of behaviors :

Note:

The selection of, and consistent use of this practice helps to avoid simple er-
rors. Personal taste or organizational dictates may influence the decision, but
a general rule-of-thumb is that you should follow whatever choice has been
made in the CODE BASE“ you are currently working in. However, there may
be valid reasons for making a different choice in any particular situation.

a HTTP://EN.WIKIPEDIA.ORG/WIKI/CODE_BASE

Positive means success

This is the "logical" way to think, and as such the one used by almost all beginners.
In C++, this takes the form of a boolean true/false test, where "true" (also 1 or any
non-zero number) means success, and "false" (also 0) means failure.

The major problem of this construct is that all errors return the same value (false),

so you must have some kind of externally visible error code in order to determine
where the error occurred. For example:

bool bOK;
if (my_functionl())
{
// block of instruction 1

290 Chapter 3.3.3 on page 137

291 Chapter 3.7.10 on page 264

292 Chapter 3.7.11 on page 349

293 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

247

http://en.wikipedia.org/wiki/Code_base
http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

if (my_function2())
{
// block of instruction 2
if (my_function3())
{
// block of instruction 3
// Everything worked
error_code = NO_ERROR;
bOK = true;
}
else
{
//error handler for function 3 errors
error_code = FUNCTION_3_FAILED;
bOK = false;
}
}
else
{
//error handler for function 2 errors
error_code = FUNCTION_2_FAILED;
bOK = false;
}
}
else
{
//error handler for function 1 errors
error_code = FUNCTION_1_FAILED;
bOK = false;
}

return bOK;

As you can see, the else blocks (usually error handling) of my_functionl can be
really far from the test itself; this is the first problem. When your function begins
to grow, it’s often difficult to see the test and the error handling at the same time.

This problem can be compensated by SOURCE CODE EDITOR?* features such as
folding, or by testing for a function returning "false" instead of true.

if (!my_functionl()) // or if (my_functionl() == false)
{

//error handler for function 1 errors

/S

This can also make the code look more like the "0 means success" paradigm, but a
little less readable.

The second problem of this construct is that it tends to break up logical tests (my_-
function2 is one level more indented, my_function3 is 2 levels indented) which
causes legibility problems.

294 HTTP://EN.WIKIPEDIA.ORG/WIKI/SOURCE_CODE_EDITOR

248

http://en.wikipedia.org/wiki/Source_code_editor

Functions

One advantage here is that you follow the STRUCTURED PROGRAMMING?? prin-
ciple of a function having a single entry and a single exit.

The MICROSOFT FOUNDATION CLASS LIBRARY??® (MFC) is an example of a
standard library that uses this paradigm.

0 means success

This means that if a function returns 0, the function has completed successfully.
Any other value means that an error occurred, and the value returned may be an
indication of what error occurred.

The advantage of this paradigm is that the error handling is closer to the test itself.
For example the previous code becomes:

if (0 != my_functionl())

{
//error handler for function 1 errors
return FUNCTION_1_FAILED;

}

// block of instruction 1

if (0 != my_function2())

{
//error handler for function 2 errors
return FUNCTION_2_FAILED;

}

// block of instruction 2

if (0 != my_function3())

{
//error handler for function 3 errors
return FUNCTION_3_FAILED;

}

// block of instruction 3

// Everything worked

return 0; // NO_ERROR

In this example, this code is more readable (this will not always be the case). How-
ever, this function now has multiple exit points, violating a principle of structured
programming.

The C STANDARD LIBRARY??’ (libc) is an example of a standard library that uses
this paradigm.

295 HTTP://EN.WIKIPEDIA.ORG/WIKI/STRUCTURED_PROGRAMMING

296 HTTP://EN.WIKIPEDIA.ORG/WIKI/MICROSOFT_FOUNDATION_CLASS_
LIBRARY

297 HTTP://EN.WIKIPEDIA.ORG/WIKI/C_STANDARD_LIBRARY

249

http://en.wikipedia.org/wiki/Structured_programming
http://en.wikipedia.org/wiki/Microsoft_Foundation_Class_Library
http://en.wikipedia.org/wiki/Microsoft_Foundation_Class_Library
http://en.wikipedia.org/wiki/C_Standard_Library

Fundamentals for getting started

Note:

Some people argue that using functions results in a performance penalty. In this
case just use inline functions and let the compiler do the work. Small functions
mean visibility, easy debugging and easy maintenance.

3.7.5 Composition

Just as with mathematical functions, C++ functions can be composed, meaning
that you use one expression as part of another. For example, you can use any
expression as an argument to a function: double x = cos (angle + pi/2);

This statement takes the value of pi, divides it by two and adds the result to the
value of angle. The sum is then passed as an argument to the cos function.

You can also take the result of one function and pass it as an argument to another:
double x = exp (log (10.0));

This statement finds the log base e of 10 and then raises e to that power. The result
gets assigned to x; I hope you know what it is.

3.7.6 Recursion

In programming languages, RECURSION??® was first implemented in Li1sP?*° on
the basis of a mathematical concept that existed earlier on, it is a concept that
allows us to break down a problem into one or more subproblems that are similar
in form to the original problem, in this case, of having a function call itself in some
circumstances. It is generally distinguished from ITERATORS OR LOOPS3?

A simple example of a recursive function is:

void func () {
func();

}

It should be noted that non-terminating recursive functions as shown above are al-
most never used in programs (indeed, some definitions of recursion would exclude

298 HTTP://EN.WIKIPEDIA.ORG/WIKI/RECURSION
299 HTTP://EN.WIKIBOOKS.ORG/WIKI/PROGRAMMING%3ALISP
300 Chapter 3.6.1 on page 214

250

http://en.wikipedia.org/wiki/Recursion
http://en.wikibooks.org/wiki/Programming%3ALisp

Functions

such non-terminating definitions). A terminating condition is used to prevent infi-
nite recursion.

Example

double power (double x, int n)
{
if (n < 0)
{
std::cout << std::endl
<< "Negative index, program terminated.";

exit (1);
}
if (n)

return x * power(x, n-1);
else

return 1.0;

}

The above function can be called like this:

x = power (x, static_cast<int> (power (2.0, 2)));

Why is recursion useful? Although, theoretically, anything possible by recursion
is also possible by iteration (that is, while), it is sometimes much more convenient
to use recursion. Recursive code happens to be much easier to follow as in the
example below. The problem with recursive code is that it takes too much memory.
Since the function is called many times, without the data from the calling function
removed, memory requirements increase significantly. But often the simplicity and
elegance of recursive code overrules the memory requirements.

The classic example of recursion is the factorial: n! = (n— 1)!n, where 0! = 1 by
convention. In recursion, this function can be succinctly defined as

unsigned factorial (unsigned n)
{
if(n '=0)
{
return n * factorial (n-1);
}
else
{
return 1;
}

251

Fundamentals for getting started

With iteration, the logic is harder to see:

unsigned factorial? (unsigned n)
{

int a = 1;

while (n > 0)

a*n;

V)
o

Although recursion tends to be slightly slower than iteration, it should be used
where using iteration would yield long, difficult-to-understand code. Also, keep
in mind that recursive functions take up additional memory (on the stack) for each
level. Thus they can run out of memory where an iterative approach may just use
constant memory.

Each recursive function needs to have a Base Case. A base case is where the
recursive function stops calling itself and returns a value. The value returned is
(hopefully) the desired value.

For the previous example,

unsigned factorial (unsigned n)
{
if(n '= 0)
{
return n * factorial (n-1);
}
else
{
return 1;
}
}

the base case is reached when n = 0. In this example, the base case is everything
contained in the else statement (which happens to return the number 1). The overall
value that is returned is every value from n to 0 multiplied together. So, suppose
we call the function and pass it the value 3. The function then does the math
3%2x1 = 6 and returns 6 as the result of calling factorial(3).

Another classic example of recursion is the sequence of Fibonacci numbers:

252

Functions

01123581321 34 ...

The zeroth element of the sequence is 0. The next element is 1. Any other number
of this series is the sum of the two elements coming before it. As an exercise, write
a function that returns the nth Fibonacci number using recursion.

3.7.7 main

The function main also happens to be the entry point of any (standard-compliant)
C++ program and must be defined. The compiler arranges for the main function
to be called when the program begins execution. main may call other functions
which may call yet other functions.

Note:

main also special because the user code is not allowed to call it; in particular, it
cannot be directly or indirectly recursive. This is one of the many small ways
in which C++ differs from C.

The main function returns an integer value. In certain systems, this value is in-
terpreted as a success/failure code. The return value of zero signifies a successful
completion of the program. Any non-zero value is considered a failure. Unlike
other functions, if control reaches the end of main (), an implicit return 0; for
success is automatically added. To make return values from main more readable,
the header file cstdlib defines the constants EXIT_SUCCESS and EXIT_FAILURE
(to indicate successful/unsuccessful completion respectively).

Note:

The ISO C++ Standard (ISO/IEC 14882:1998) specifically requires main to
have a return type of int. But the ISO C Standard (ISO/IEC 9899:1999) actu-
ally does not, though most compilers treat this as a minor warning-level error.
The explicit use of return 0; (or return EXIT_SUCCESS;) to exit the main
function is left to the CODING STYLE? used.

a Chapter 3.1.8 on page 61

The main function can also be declared like this:

int main(int argc, char **argv) {
// code
}

253

Fundamentals for getting started

which defines the main function as returning an integer value int and taking two
parameters. The first parameter of the main function, arge, is an integer value int
that specifies the number of arguments passed to the program, while the second,
argy, is an array of strings containing the actual arguments. There is almost always
at least one argument passed to a program; the name of the program itself is the
first argument, argv [0]. Other arguments may be passed from the system.

Example

#include <iostream>

int main(int argc, char **argv) {

std::cout << "Number of arguments: " << argc << std::endl;
for(size_t i = 0; 1 < argc; i++)
std::cout << " Argument " << i << " = '" << argv[i] << "'" << std::endl;
}
Note:

size_t is the return type of sizeof function. size_t is a typedef for some
unsigned type and is often defined as unsigned int or unsigned long but not
always.

If the program above is compiled into the executable arguments and executed
from the command line like this in *nix:

$./arguments I love chocolate cake

Or in Command Prompt in Windows or MS-DOS:

C:\>arguments I love chocolate cake

It will output the following (but note that argument 0 may not be quite the same as
this -- it might include a full path, or it might include the program name only, or it
might include a relative path, or it might even be empty):

Number of arguments: 5
Argument 0 = './arguments’
Argument 1 = "I’

Argument 2 = ’love’
Argument 3 = ’'chocolate’
Argument 4 = ’cake’

254

Functions

You can see that the command line arguments of the program are stored into the
argv array, and that argc contains the length of that array. This allows you to
change the behavior of a program based on the command line arguments passed to
it.

Note:

argyv is a (pointer to the first element of an) array of strings. As such, it can
be written as char **argv or as char *argv[]. However, char argv[][]
is not allowed. Read up on C++ arrays for the exact reasons for this.

Also, arge and argv are the two most common names for the two arguments
given to the main function. You can think them to stand for "arguments count"
and "arguments variables" respectively. They can, however, be changed if
you’d like. The following code is just as legal:

int main(int foo, char **bar){ // code }

However, any other programmer that sees your code might get mad at you if
you code like that.

From the example above, we can also see that C++ do not really care about
what the variables’ names are (of course, you cannot use reserved words as
names) but their types.

3.7.8 Pointers to functions

The POINTERS®! we have looked at so far have all been data pointers, pointers to
functions (more often called function pointers) are very similar and share the same
characteristics of other pointers but in place of pointing to a variable they point to
functions. Creating an extra level of indirection, as a way to use the FUNCTIONAL
PROGRAMMING? paradigm in C++, since it facilitates calling functions which
are determined at runtime from the same piece of code. They allow passing a
function around as parameter or return value in another function.

Using function pointers has exactly the same overhead as any other function call
plus the additional pointer indirection and since the function to call is determined
only at runtime, the compiler will typically not inline the function call as it could
do anywhere else. Because of this characteristics, using function pointers may add
up to be significantly slower than using regular function calls, and be avoided as a
way to gain performance.

301 Chapter 3.4.10 on page 184
302 HTTP://EN.WIKIPEDIA.ORG/WIKI/FUNCTIONAL%20PROGRAMMING

255

http://en.wikipedia.org/wiki/Functional%20programming

Fundamentals for getting started

Note:

Function pointers are mostly used in C, C++ also permits another constructs to
enable FUNCTIONAL PROGRAMMING¢ that are called FUNCTORS? (class type
functors and template type functors) that have some advantages over function
pointers.

a HTTP://EN.WIKIPEDIA.ORG/WIKI/FUNCTIONAL%20PROGRAMMING
b HTTP://EN.WIKIPEDIA.ORG/WIKI/FUNCTION%200BJECT

To declare a pointer to a function naively, the name of the pointer must be paren-
thesized, otherwise a function returning a pointer will be declared. You also have
to declare the function’s return type and its parameters. These must be exact!

Consider:

int (*ptof) (int arg);

The function to be referenced must obviously have the same return type and the
same parameter type as that of the pointer to function. The address of the function
can be assigned just by using its name, optionally prefixed with the address-of
operator &. Calling the function can be done by using either prof{<value>) or
(*ptof)(<value>).

So:

int (*ptof) (int arg);
int func(int arg) {
//function body
}
ptof = &func; // get a pointer to func
ptof = func; // same effect as ptof = &func
(*ptof) (5); // calls func
ptof (5); // same thing.

A function returning a float can’t be pointed to by a pointer returning a double.
If two names are identical (such as int and signed, or a typedef name), then the
conversion is allowed. Otherwise, they must be entirely the same. You define the
pointer by grouping the * with the variable name as you would any other pointer.
The problem is that it might get interpreted as a return type instead.

It is often clearer to use a typedef for function pointer types; this also provides a
place to give a meaningful name to the function pointer’s type:

typedef int (*int_to_int_function) (int);
int_to_int_function ptof;

256

http://en.wikipedia.org/wiki/Functional%20programming
http://en.wikipedia.org/wiki/Function%20object

Functions

int *func (int); // WRONG: Declares a function taking an int returning
pointer-to-int.

int (*func) (int); // RIGHT: Defines a pointer to a function taking an int
returning int.

To help reduce confusion, it is popular to typedef either the function type or the
pointer type:

typedef int ifunc (int); // now "ifunc" means "function taking an int
returning int"

typedef int (*pfunc) (int); // now "pfunc" means "pointer to function taking an
int returning int"

If you typedef the function type, you can declare, but not define, functions with
that type. If you typdef the pointer type, you cannot either declare or define
functions with that type. Which to use is a matter of style (although the pointer is
more popular).

To assign a pointer to a function, you simply assign it to the function name. The
& operator is optional (it’s not ambiguous). The compiler will automatically select
an overloaded version of the function appropriate to the pointer, if one exists:

(int, int);

(int, double);
, int = 4);
int);

int (*p) (int) = &g; // ERROR: The default parameter needs to be included in the
pointer type.

p = &h; // ERROR: The return type needs to match exactly.
p = &i; // Correct.
p = 1i; // Also correct.

int (*p2) (int, double);
p2 = f; // Correct: The compiler automatically picks "int f (int,
double)".

Using a pointer to a function is even simpler - you simply call it like you would
a function. You are allowed to dereference it using the * operator, but you don’t
have to:

#include <iostream>

int £ (int i) { return 2 * i;
int main ()
{
int (*g) (int) = f;
std::cout<<"g(4) is "<<g(4)<<std::endl; // Will output "g(4) is 8"
*g)

std::cout<<" (*g) (5) is "<<g(5)<<std::endl; // Will output "g(5) is 10"

257

Fundamentals for getting started

return 0;

303

3.7.9 Callback

In COMPUTER PROGRAMMING>%, a callback is EXECUTABLE CODE?® that is
passed as an ARGUMENT>" to other code. It allows a lower-level ABSTARACTION
LAYER to call a FUNCTION®® defined in a higher-level layer. A callback is
often back on the level of the original caller.

Application program

Main program Callback function
calls calls

Library function

Software library

Figure 22: A callback is often back on the level of the original caller.

Usually, the higher-level code starts by calling a function within the lower-level
code, passing to it a POINTER?? or HANDLE?!? to another function. While the
lower-level function executes, it may call the passed-in function any number of
times to perform some subtask. In another scenario, the lower-level function reg-
isters the passed-in function as a handler that is to be called asynchronously by the
lower-level at a later time in reaction to something.

303 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

304 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPUTER%20PROGRAMMING

305 HTTP://EN.WIKIPEDIA.ORG/WIKI/EXECUTABLE%20CODE

306 HTTP://EN.WIKIPEDIA.ORG/WIKI/ARGUMENT%20%28COMPUTER%20SCIENCES
29

307 HTTP://EN.WIKIPEDIA.ORG/WIKI/ABSTRACTION%20LAYER

308 HTTP://EN.WIKIPEDIA.ORG/WIKI/SUBROUTINE

309 HTTP://EN.WIKIPEDIA.ORG/WIKI/POINTER

310 HTTP://EN.WIKIPEDIA.ORG/WIKI/SMART$20POINTER

258

http://en.wikibooks.org/wiki/Category%3A
http://en.wikipedia.org/wiki/computer%20programming
http://en.wikipedia.org/wiki/executable%20code
http://en.wikipedia.org/wiki/argument%20%28computer%20science%29
http://en.wikipedia.org/wiki/argument%20%28computer%20science%29
http://en.wikipedia.org/wiki/abstraction%20layer
http://en.wikipedia.org/wiki/subroutine
http://en.wikipedia.org/wiki/pointer
http://en.wikipedia.org/wiki/smart%20pointer

Functions

A callback can be used as a simpler alternative to POLYMORPHISM>'! and
GENERIC PROGRAMMING?!2, in that the exact behavior of a function can be dy-
namically determined by passing different (yet compatible) function pointers or
handles to the lower-level function. This can be a very powerful technique for
CODE REUSE’!"3. In another common scenario, the callback is first registered and
later called asynchronously.

311 HTTP://EN.WIKIPEDIA.ORG/WIKI/POLYMORPHISM%20%28COMPUTERS
20SCIENCE%29

312 HTTP://EN.WIKIPEDIA.ORG/WIKI/GENERIC%20PROGRAMMING

313 HTTP://EN.WIKIPEDIA.ORG/WIKI/CODE%$20REUSE

259

http://en.wikipedia.org/wiki/polymorphism%20%28computer%20science%29
http://en.wikipedia.org/wiki/polymorphism%20%28computer%20science%29
http://en.wikipedia.org/wiki/generic%20programming
http://en.wikipedia.org/wiki/code%20reuse

Fundamentals for getting started

Application program (Initial step)

Main program Callback function

calls

Main loop

Registration function

Software platform

Application program (Later steps)

Main program Callback function

calls

Registration function

Main loop

Software platform

Figure 23: In another common scenario, the callback is first registered and later
called asynchronously.

3.7.10 Overloading

Function overloading is the use of a single name for several different functions in
the same scope. Multiple functions who share the same name must be differenti-
ated by using another set of parameters for every such function. The functions can

be different in the number of parameters they expect, or their parameters can differ

260

Functions

in type. This way, the compiler can figure out the exact function to call by looking
at the arguments the caller supplied. This is called overload resolution, and is quite
complex.

// Overloading Example

// (1)
double geometric_mean(int, int);

/7 (2)

double geometric_mean(double, double);

/7 (3)

double geometric_mean(double, double, double);

VI

// Will call (1):
geometric_mean(10, 25);

// Will call (2):
geometric_mean(22.1, 421.77);

// Will call (3):
geometric_mean(11.1, 0.4, 2.224);

Under some circumstances, a call can be ambiguous, because two or more func-
tions match with the supplied arguments equally well.

Example, supposing the declaration of geometric_mean above:

// This is an error, because (1) could be called and the second

// argument casted to an int, and (2) could be called with the first
// argument casted to a double. None of the two functions is

// unambiguously a better match.

geometric_mean(7, 13.21);

// This will call (3) too, despite its last argument being an int,
// Because (3) is the only function which can be called with 3

// arguments

geometric_mean(l.1, 2.2, 3);

Templates and non-templates can be overloaded. A non-template function takes
precedence over a template, if both forms of the function match the supplied argu-
ments equally well.

Note that you can overload many operators in C++ too.

Overloading resolution

Please beware that overload resolution in C++ is one of the most complicated parts
of the language. This is probably unavoidable in any case with automatic template

261

Fundamentals for getting started

instantiation, user defined implicit conversions, built-in implicit conversation and
more as language features. So do not despair if you do not understand this at first
go. It is really quite natural, once you have the ideas, but written down it seems
extremely complicated.

The easiest way to understand overloading is to imagine that the compiler first
finds every function which might possibly be called, using any legal conversions
and template instantiations. The compiler then selects the best match, if any, from
this set. Specifically, the set is constructed like this:

* All functions with matching name, including function templates, are put into the
set. Return types and visibility are not considered. Templates are added with
as closely matching parameters as possible. Member functions are considered
functions with the first parameter being a pointer-to-class-type.

* Conversion functions are added as so-called surrogate functions, with two pa-
rameters, the first being the class type and the second the return type.

* All functions that do not match the number of parameters, even after considering
defaulted parameters and ellipses, are removed from the set.

* For each function, each argument is considered to see if a legal conversion se-
quence exists to convert the caller’s argument to the function’s parameters. If no
such conversion sequence can be found, the function is removed from the set.

The legal conversions are detailed below, but in short a legal conversion is any
number of built-in (like int to float) conversions combined with at most one user
defined conversion. The last part is critical to understand if you are writing re-
placements to built-in types, such as smart pointers. User defined conversions are
described above, but to summarize it is

1. implicit conversion operators like operator short toShort ();
2. One argument constructors (If a constructor has all but one parameter de-
faulted, it is considered one-argument)

The overloading resolution works by attempting to establish the best matching
function.

Easy conversions are preferred

Looking at one parameter, the preferred conversion is roughly based on scope of
the conversion. Specifically, the conversions are preferred in this order, with most-
preferred highest:

1. No conversion, adding one or more const, adding reference, convert array to
pointer to first member

262

Functions

a) const are preferred for rvalues (roughly constants) while non-const are
preferred for lvalues (roughly assignables)
2. Conversion from short integral types (bool, char, short) to int, and float to
double.
3. Built-in conversions, such as between int and double and pointer type con-
version. Pointer conversion are ranked as
a) Base to derived (pointers) or derived to base (for pointers-to-members),
with most-derived preferred
b) Conversion to void*
¢) Conversion to bool
4. User-defined conversions, see above.
5. Match with ellipses. (As an aside, this is rather useful knowledge for tem-
plate meta programming)

The best match is now determined according to the following rules:

* A function is only a better match if all parameters match at least as well

In short, the function must be better in every respect --- if one parameter matches
better and another worse, neither function is considered a better match. If no
function in the set is a better match than both, the call is ambiguous (i.e., it fails)
Example:

void foo (void*, bool);
void foo (int*, int);

int main() {
int a;
foo(&a, true); // ambiguous

* Non-templates are preferred over templates

If all else is equal between two functions, but one is a template and the other not,
the non-template is preferred. This seldom causes surprises.

* Most-specialized template is preferred

263

Fundamentals for getting started

When all else is equal between two template function, but one is more specialized
than the other, the most specialized version is preferred. Example:

template<typename T> void foo(T); //1
template<typename T> void foo(T*); //2

int main() {
int a;
foo(&a); // Calls 2, since 2 is more specialized.

Which template is more specialized is an entire chapter unto itself.

* Return types are ignored

This rule is mentioned above, but it bears repeating: Return types are never part of
overload resolutions, even if the function selected has a return type that will cause
the compilation to fail. Example:

void foo (int) ;
int foo (float) ;

int main() {

// This will fail since foo(int) is best match, and void cannot be converted
to int.

return foo(5);
}

* The selected function may not be accessible

If the selected best function is not accessible (e.g., it is a private function and the
call it not from a member or friend of its class), the call fails.

314

3.7.11 Standard C Library

The C standard library is the C language standardized collection of header files
and library routines used to implement common operations, such as input/output

314 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

264

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Functions

and string handling. It became part of the C++ STANDARD LIBRARY>!” as the
Standard C Library in its ANSI C 89 form with some small modifications to
make it work better with the C++ Standard Library but remaining outside of the std
namespace. Header files in the C++ Standard Library do not end in ".h". However,
the C++ Standard Library includes 18 header files from the C Standard Library,
with ".h" endings. Their use is deprecated (ISO/IEC 14882:2003(E) Programming
Languages — C++).

For a more in depth look into the C programming language check the C PRO-
GRAMMING WIKIBOOK?!® but be aware of the incompatibilities we have already
covered on the COMPARING C++ WITH C SECTION?!7 of this book.

All Standard C Library Functions

Functions Descriptions

ABORT?!8 stops the program

ABS31? absolute value

ACO$3?0 arc cosine

ASCTIME?! a textual version of the time

ASIN3?? arc sine

ASSERT??? stops the program if an expression
isn’t true

ATAN3?4 arc tangent

ATAN23% arc tangent, using signs to determine
quadrants

ATEXIT3%6 sets a function to be called when the
program exits

ATOF3?’ converts a string to a double

315 Chapter 3.1.2 on page 45
316 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%20PROGRAMMING
317 Chapter 2.3.7 on page 25
318 Chapter 3.7.11 on page 356
319 Chapter 3.7.11 on page 330
320 Chapter 3.7.11 on page 331
321 Chapter 3.7.11 on page 345
322 Chapter 3.7.11 on page 331
323 Chapter 3.7.11 on page 357
324 Chapter 3.7.11 on page 332
325 Chapter 3.7.11 on page 333
326 Chapter 3.7.11 on page 357
327 Chapter 3.7.11 on page 304

265

http://en.wikibooks.org/wiki/C%20Programming

Fundamentals for getting started

Functions
ATO?8
ATOL3?
BSEARCHY
cALLOC3!

CEIL332

CLEARERR333
CLOCK?33

C0Os33
cosn330
CcTIME??’

DIFFTIME>38
DIv3%

EXIT40
Expil
FABS342

FCLOSE*%
FEOF344
FERROR3%

328 Chapter 3.7.11 on page 304
329 Chapter 3.7.11 on page 305
330 Chapter 3.7.11 on page 358
331 Chapter 3.7.11 on page 353
332 Chapter 3.7.11 on page 333
333 Chapter 3.7.11 on page 274
334 Chapter 3.7.11 on page 346
335 Chapter 3.7.11 on page 334
336 Chapter 3.7.11 on page 334
337 Chapter 3.7.11 on page 347
338 Chapter 3.7.11 on page 348
339 Chapter 3.7.11 on page 335
340 Chapter 3.7.11 on page 358
341 Chapter 3.7.11 on page 336
342 Chapter 3.7.11 on page 336
343 Chapter 3.7.11 on page 274
344 Chapter 3.7.11 on page 275
345 Chapter 3.7.11 on page 275

266

Descriptions

converts a string to an integer
converts a string to a long
perform a binary search

allocates and clears a two-
dimensional chunk of memory

the smallest integer not less than a
certain value

clears errors

returns the amount of time that the
program has been running

cosine

hyperbolic cosine

returns a specifically formatted ver-
sion of the time

the difference between two times
returns the quotient and remainder
of a division

stop the program

returns "e" raised to a given power
absolute value for floating-point
numbers

close a file

true if at the end-of-file

checks for a file error

Functions

Functions
FFLUSH?40

FGETC3*?
FGETPOS>*8
FGETS3%

FLOOR?

FMOD!
FOPEN>2
FPRINTF>>3
FPUTC
FPUTS>>
FREAD?>%°
FREEY’

FREOPEN>%
FREXP3?
FSCANE>00

FSEEK>0!
FSETPOS>02

346 Chapter 3.7.
347 Chapter 3.7.
348 Chapter 3.7.
349 Chapter 3.7.
350 Chapter 3.7.
351 Chapter 3.7.
352 Chapter 3.7.
353 Chapter 3.7.
354 Chapter 3.7.
355 Chapter 3.7.
356 Chapter 3.7.
357 Chapter 3.7.
358 Chapter 3.7.
359 Chapter 3.7.
360 Chapter 3.7.
361 Chapter 3.7.
362 Chapter 3.7.

11 on page 276
11 on page 277
11 on page 277
11 on page 278
11 on page 337
11 on page 337
11 on page 279
11 on page 280
11 on page 281
11 on page 282
11 on page 282
11 on page 354
11 on page 283
11 on page 338
11 on page 284
11 on page 284
11 on page 285

Descriptions

writes the contents of the output
buffer

get a character from a stream

get the file position indicator

get a string of characters from a
stream

returns the largest integer not greater
than a given value

returns the remainder of a division
open a file

print formatted output to a file

write a character to a file

write a string to a file

read from a file

returns previously allocated memory
to the operating system

open an existing stream with a dif-
ferent name

decomposes a number into scientific
notation

read formatted input from a file
move to a specific location in a file
move to a specific location in a file

267

Fundamentals for getting started

Functions Descriptions

FTELL3®3 returns the current file position indi-
cator

FWRITE* write to a file

GETC?® read a character from a file

GETCHAR3®® read a character from STDIN

GETENV?3¢7 get environment information about a
variable

GETS%8 read a string from STDIN

GMTIME?® returns a pointer to the current
Greenwich Mean Time

ISALNUM?7? true if a character is alphanumeric

ISALPHA3! true if a character is alphabetic

ISCNTRL?7? true if a character is a control char-
acter

ISDIGIT?"3 true if a character is a digit

ISGRAPH?4 true if a character is a graphical
character

ISLOWER?" true if a character is lowercase

ISPRINT?7® true if a character is a printing char-
acter

1SPUNCT?’ true if a character is punctuation

ISSPACE"® true if a character is a space charac-
ter

ISUPPER?"? true if a character is an uppercase

character

363 Chapter 3.7.11 on page 286
364 Chapter 3.7.11 on page 286
365 Chapter 3.7.11 on page 287
366 Chapter 3.7.11 on page 288
367 Chapter 3.7.11 on page 359
368 Chapter 3.7.11 on page 288
369 Chapter 3.7.11 on page 348
370 Chapter 3.7.11 on page 306
371 Chapter 3.7.11 on page 306
372 Chapter 3.7.11 on page 307
373 Chapter 3.7.11 on page 308
374 Chapter 3.7.11 on page 308
375 Chapter 3.7.11 on page 309
376 Chapter 3.7.11 on page 310
377 Chapter 3.7.11 on page 310
378 Chapter 3.7.11 on page 311
379 Chapter 3.7.11 on page 311

268

Functions

Functions
ISXDIGIT80

LABS38!
LDEXP382

LDIV383

LOCALTIME>84

LOG®
LOG 10380
LONGIMP3¥7

MALLOC388
MEMCHR3%?

MEMCMP3?0
MEMCPY3!
MEMMOVE3%?
MEMSET??3
MKTIME?*

MODF3%’

PERROR3?®

380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

Chapter 3.7.
Chapter 3.7.
Chapter 3.7.
Chapter 3.7.
Chapter 3.7.
Chapter 3.7.
Chapter 3.7.
Chapter 3.7.
Chapter 3.7.
Chapter 3.7.
Chapter 3.7.
Chapter 3.7.
Chapter 3.7.
Chapter 3.7.
Chapter 3.7.
Chapter 3.7.
Chapter 3.7.

11 on page 312
11 on page 338
11 on page 339
11 on page 339
11 on page 349
11 on page 340
11 on page 341
11 on page 359
11 on page 354
11 on page 312
11 on page 313
11 on page 314
11 on page 314
11 on page 315
11 on page 349
11 on page 341
11 on page 289

Descriptions

true if a character is a hexadecimal
character

absolute value for long integers
computes a number in scientific no-
tation

returns the quotient and remainder
of a division, in long integer form
returns a pointer to the current time
natural logarithm

natural logarithm, in base 10

start execution at a certain point in
the program

allocates memory

searches an array for the first occur-
rence of a character

compares two buffers

copies one buffer to another

moves one buffer to another

fills a buffer with a character
returns the calendar version of a
given time

decomposes a number into integer
and fractional parts

displays a string version of the cur-
rent error to STDERR

269

Fundamentals for getting started

Functions
pow397

PRINTF3?8
pUTC?
PUTCHAR*®
pUTS*0!
QSORT#02
RAISE*03
RAND*0*
REALLOC?*0

REMOVE*00
RENAME’
REWIND?#08

SCANF*®?
SETBUF*!0
SETIMPH!
SETLOCALE*?
SETVBUF*!3

SIGNAL*4

397 Chapter 3.7.11 on page 342
398 Chapter 3.7.11 on page 290
399 Chapter 3.7.11 on page 293
400 Chapter 3.7.11 on page 294
401 Chapter 3.7.11 on page 294
402 Chapter 3.7.11 on page 360
403 Chapter 3.7.11 on page 361
404 Chapter 3.7.11 on page 361
405 Chapter 3.7.11 on page 355
406 Chapter 3.7.11 on page 295
407 Chapter 3.7.11 on page 295
408 Chapter 3.7.11 on page 296
409 Chapter 3.7.11 on page 296
410 Chapter 3.7.11 on page 298
411 Chapter 3.7.11 on page 362
412 Chapter 3.7.11 on page 350
413 Chapter 3.7.11 on page 299
414 Chapter 3.7.11 on page 363

270

Descriptions

returns a given number raised to an-
other number

write formatted output to STDOUT
write a character to a stream

write a character to STDOUT
write a string to STDOUT

perform a quicksort

send a signal to the program
returns a pseudo-random number
changes the size of previously allo-
cated memory

erase a file

rename a file

move the file position indicator to
the beginning of a file

read formatted input from STDIN
set the buffer for a specific stream
set execution to start at a certain
point

sets the current locale

set the buffer and size for a specific
stream

register a function as a signal han-
dler

Functions

Functions
SIN41S
SINH*16
SPRINTF*!7
SQRT4!3
SRAND*!?

SSCANF*20
STRCAT#!

STRCHR

422

STRCMP*23

STRCOLL*?

STRCPY*®
STRCSPN*26

STRERROR*?’

STRETIME*?8

STRLEN?*%

STRNCAT*0

STRNCMPH!

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Chapter 3.7.
Chapter 3.7.
Chapter 3.7.
Chapter 3.7.
Chapter 3.7.
Chapter 3.7.
Chapter 3.7.
Chapter 3.7.
Chapter 3.7.
Chapter 3.7.
Chapter 3.7.
Chapter 3.7.
Chapter 3.7.
Chapter 3.7.
Chapter 3.7.
Chapter 3.7.
Chapter 3.7.

11 on page 342
11 on page 343
11 on page 299
11 on page 343
11 on page 364
11 on page 300
11 on page 316
11 on page 317
11 on page 317
11 on page 318
11 on page 319
11 on page 320
11 on page 320
11 on page 351
11 on page 321
11 on page 321
11 on page 322

Descriptions

sine

hyperbolic sine

write formatted output to a buffer
square root

initialize the random number gener-
ator

read formatted input from a buffer
concatenates two strings

finds the first occurrence of a char-
acter in a string

compares two strings

compares two strings in accordance
to the current locale

copies one string to another
searches one string for any charac-
ters in another

returns a text version of a given error
code

returns individual elements of the
date and time

returns the length of a given string
concatenates a certain amount of
characters of two strings

compares a certain amount of char-
acters of two strings

271

Fundamentals for getting started

Functions
STRNCPY*32

STRPBRK*33
STRRCHR**
STRSPN*3
STRSTR*3¢
STRTOD*’
STRTOK*3®
STRTOL*
STRTOUL**Y
STRXFRM*!
SYSTEM*42
TANH?
TANH

TIME*S

TMPFILE*0
TMPNAM*/

432 Chapter 3.7.
433 Chapter 3.7.
434 Chapter 3.7.
435 Chapter 3.7.
436 Chapter 3.7.
437 Chapter 3.7.
438 Chapter 3.7.
439 Chapter 3.7.
440 Chapter 3.7.
441 Chapter 3.7.
442 Chapter 3.7.
443 Chapter 3.7.
444 Chapter 3.7.
445 Chapter 3.7.
446 Chapter 3.7.
447 Chapter 3.7.

272

11 on page 322
11 on page 323
11 on page 324
11 on page 324
11 on page 325
11 on page 326
11 on page 326
11 on page 327
11 on page 328
11 on page 328
11 on page 365
11 on page 344
11 on page 345
11 on page 352
11 on page 301
11 on page 301

Descriptions

copies a certain amount of charac-
ters from one string to another

finds the first location of any charac-
ter in one string, in another string
finds the last occurrence of a charac-
ter in a string

returns the length of a substring of
characters of a string

finds the first occurrence of a sub-
string of characters

converts a string to a double

finds the next token in a string
converts a string to a long

converts a string to an unsigned
long

converts a substring so that it can be
used by string comparison functions
perform a system call

tangent

hyperbolic tangent

returns the current calendar time of
the system

return a pointer to a temporary file
return a unique filename

Functions

Functions
TOLOWER*8
TOUPPER*?
UNGETC®Y
451
VA_ARG

VPRINTF, VFPRINTF, AND

VSPRINTF*?

VSCANF, VFESCANF, AND VSS-

CANF#3

Descriptions

converts a character to lowercase
converts a character to uppercase
puts a character back into a stream
use variable length parameter lists
write formatted output with variable
argument lists

read formatted input with variable
argument lists

These routines included on the Standard C Library can be sub divided into:

e STANDARD C I/0%*
¢ STANDARD C STRING & CHARACTER™®?
¢ STANDARD C MATH*®

e STANDARD C TIME & DATE®’
¢ STANDARD C MEMORY*8
e OTHER STANDARD C FUNCTIONS*®

460

461

448
449
450
451
452
453

454
455
456
457
458
459
460
461

Chapter 3.7.11 on page 329
Chapter 3.7.11 on page 329
Chapter 3.7.11 on page 302
Chapter 3.7.11 on page 365
Chapter 3.7.11 on page 302

HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FCODES
2FSTANDARD%20C%20LIBRARYS2FFUNCTIONSS2FVSCANF$2C%20VFSCANF%2CS

20AND%20VSSCANF

Chapter 3.7.11 on page 273
Chapter 3.7.11 on page 303
Chapter 3.7.11 on page 330
Chapter 3.7.11 on page 345
Chapter 3.7.11 on page 353
Chapter 3.7.11 on page 356

HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

273

http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FStandard%20C%20Library%2FFunctions%2Fvscanf%2C%20vfscanf%2C%20and%20vsscanf
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FStandard%20C%20Library%2FFunctions%2Fvscanf%2C%20vfscanf%2C%20and%20vsscanf
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FStandard%20C%20Library%2FFunctions%2Fvscanf%2C%20vfscanf%2C%20and%20vsscanf
http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Fundamentals for getting started

Standard C I/0

The Standard C Library includes routines that are somewhat outdated, but due to
the HISTORY OF THE C++ LANGUAGE*®? and its objective to maintain compati-
bility these are included in the package.

C 1/O calls still appear in old code (not only ANSI C 89 but even old C++ code).
Its use today may depend on a large number of factors, the age of the code base
or the level of complexity of the project or even based on the experience of the
programmers. Why use something you are not familiar with if you are proficient in
C and in some cases C-style I/0 routines are superior to their C++ I/O counterparts,
for instance they are more compact and may be are good enough for the simple
projects that don’t make use of classes.

Note:

If you’re learning I/O for the first time you probably should program using the
C++ I/O system and not bring legacy I/O systems into the mix. Learn C-style
I/O only if you have to.

clearerr

Syntax

include <cstdio> void clearerr(FILE *stream);

The clearerr function resets the error flags and EOQF indicator for the given stream.
If an error occurs, you can use perror () or strerror () to figure out which error
actually occurred, or read the error from the global variable errno.

Related topics

FEOF*%3 - FERROR*** - PERROR*®> - STRERROR*00
467

462 Chapter 2.1 on page 7

463 Chapter 3.7.11 on page 275

464 Chapter 3.7.11 on page 275

465 Chapter 3.7.11 on page 289

466 Chapter 3.7.11 on page 320

467 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3AC%2B%2B%20PROGRAMMING

274

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Functions

fclose

Syntax

include <cstdio> int fclose(FILE *stream);

The function fclose() closes the given file stream, deallocating any buffers associ-
ated with that stream. fclose() returns O upon success, and EOF otherwise.

Related topics

FFLUSH*®® - FOPEN*® - FREOPEN*"? - SETBUF*"!
472

feof

Syntax

include <cstdio> int feof (FILE *stream);

The function feof() returns TRUE if the end-of-file was reached, or FALSE other-
wise.

Related topics

CLEARERR*"3 - FERROR?"* - GETC*"S - PERRORY® - puTC*"’

478

468 Chapter 3.7.11 on page 276
469 Chapter 3.7.11 on page 279
470 Chapter 3.7.11 on page 283
471 Chapter 3.7.11 on page 298
472 BHTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3AC$2B%2B%20PROGRAMMING
473 Chapter 3.7.11 on page 274
474 Chapter 3.7.11 on page 275
475 Chapter 3.7.11 on page 287
476 Chapter 3.7.11 on page 289
477 Chapter 3.7.11 on page 293
478 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3AC%2B%2B%20PROGRAMMING

275

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Fundamentals for getting started

ferror

Syntax

include <cstdio> int ferror(FILE *stream);

The ferror() function looks for errors with stream, returning zero if no errors have
occurred, and non-zero if there is an error. In case of an error, use perror() to
determine which error has occurred.

Related topics

CLEARERR*”Y - FEOF*80 - pERROR*S!

482

fflush

Syntax

include <cstdio> int fflush(FILE *stream);

If the given file stream is an output stream, then fflush() causes the output buffer
to be written to the file. If the given stream is of the input type, the behavior of
fflush() depends on the library being used (for example, some libraries ignore the
operation, others report an error, and others clear pending input).

fflush() is useful when either debugging (for example, if a program segfaults before
the buffer is sent to the screen), or it can be used to ensure a partial display of output
before a long processing period.

By default, most implementations have stdout transmit the buffer at the end of
each line, while stderr is flushed whenever there is output. This behavior changes
if there is a redirection or pipe, where calling fflush(stdout) can help maintain the
flow of output.

479 Chapter 3.7.11 on page 274
480 Chapter 3.7.11 on page 275
481 Chapter 3.7.11 on page 289
482 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

276

http://en.wikibooks.org/wiki/Category%3A

Functions

printf("Before first call\n");
fflush(stdout);
shady_function();

printf("Before second call\n");
fflush(stdout);
dangerous_dereference () ;

Related topics

FCLOSE*3 - FOPEN*®* - FREAD* - FWRITE* - GETC*7 - puTC*8
489

fgetc

Syntax

include <cstdio> int fgetc(FILE *stream);

The fgetc() function returns the next character from stream, or EOF if the end of
file is reached or if there is an error.

Related topics

FOPEN* - FpuTC*! - FREAD*? - FWRITE®? - GETC** - GETCHAR*® -
GETS*° - puTc?’

498

483 Chapter 3.7.11 on page 274

484 Chapter 3.7.11 on page 279

485 Chapter 3.7.11 on page 282

486 Chapter 3.7.11 on page 286

487 Chapter 3.7.11 on page 287

488 Chapter 3.7.11 on page 293

489 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%$2B%$20PROGRAMMING
490 Chapter 3.7.11 on page 279

491 Chapter 3.7.11 on page 281

492 Chapter 3.7.11 on page 282

493 Chapter 3.7.11 on page 286

494 Chapter 3.7.11 on page 287

495 Chapter 3.7.11 on page 288

496 Chapter 3.7.11 on page 288

497 Chapter 3.7.11 on page 293

498 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

277

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

fgetpos

Syntax

include <cstdio> int fgetpos(FILE *stream, fpos_t *position);

The fgetpos() function stores the file position indicator of the given file stream
in the given position variable. The position variable is of type fpos_t (which is
defined in cstdio) and is an object that can hold every possible position in a FILE.
fgetpos() returns zero upon success, and a non-zero value upon failure.

Related topics

FSEEK*?? - FSETPOS® - FTELLYO!
502

fgets

Syntax

include <cstdio> char *fgets(char *str, int num, FILE *stream);

The function fgets () reads up to num - 1 characters from the given file stream and
dumps them into str. The string that fgets () produces is always null-terminated.
fgets () will stop when it reaches the end of a line, in which case st r will contain
that newline character. Otherwise, fgets () will stop when it reaches num - 1
characters or encounters the EOF character. fgets () returns str on success, and
NULL on an error.

Related topics

499 Chapter 3.7.11 on page 284
500 Chapter 3.7.11 on page 285
501 Chapter 3.7.11 on page 286
502 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

278

http://en.wikibooks.org/wiki/Category%3A

Functions

FPUTS " - FSCANF% - GETSY® - sCANE%0
507

fopen

Syntax

include <cstdio> FILE *fopen(const char *fname, const char *mode);

The fopen() function opens a file indicated by fname and returns a stream asso-
ciated with that file. If there is an error, fopen() returns NULL. mode is used to
determine how the file will be treated (i.e. for input, output, etc.)

The mode contains up to three characters. The first character is either "r", "w", or
"a", which indicates how the file is opened. A file opened for reading starts allows
input from the beginning of the file. For writing, the file is erased. For appending,
the file is kept and writing to the file will start at the end. The second character is
"b", is an optional flag that opens the file as binary - omitting any conversions from
different formats of text. The third character "+" is an optional flag that allows read
and write operations on the file (but the file itself is opened in the same way.

Mode Meaning Mode Meaning

" Open a text file "r+" Open a text file
for reading for read/write

"w" Create a text file "w+" Create a text file
for writing for read/write

"a" Append to a "a+" Open a text file
text file for read/write

"rb" Open a binary "rb+" Open a binary
file for reading file for read-

/write

503 Chapter 3.7.11 on page 282
504 Chapter 3.7.11 on page 284
505 Chapter 3.7.11 on page 288
506 Chapter 3.7.11 on page 296
507 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3A

279

http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

Mode Meaning Mode Meaning
"wb" Create a binary ~ "wb+" Create a binary
file for writing file for read-
/write
"ab" Append to a "ab+" Open a binary
binary file file for read-
/write
An example:
int ch;

FILE *input = fopen("stuff", "r");
ch = getc(input);

Related topics

FCLOSE® - FrLUSHYY - FGETC?!? - FpuTC ! - FREAD’!'? - FREOPEN!3 -
FSEEK>!* - FWRITE?!S - GETC?!0 - GETCHAR’ - SETBUF 18

519

fprintf

Syntax

include <cstdio> int fprintf(FILE *stream, const char *format, ...);

508 Chapter 3.7.11 on page 274
509 Chapter 3.7.11 on page 276
510 Chapter 3.7.11 on page 277
511 Chapter 3.7.11 on page 281
512 Chapter 3.7.11 on page 282
513 Chapter 3.7.11 on page 283
514 Chapter 3.7.11 on page 284
515 Chapter 3.7.11 on page 286
516 Chapter 3.7.11 on page 287
517 Chapter 3.7.11 on page 288
518 Chapter 3.7.11 on page 298
519 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3AC%2B%2B%20PROGRAMMING

280

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Functions

The fprintf() function sends information (the arguments) according to the specified
format to the file indicated by stream. fprintf() works just like PRINTF () as far as
the format goes. The return value of fprintf() is the number of characters outputted,
or a negative number if an error occurs. An example:

char name[20] = "Mary";
FILE *out;
out = fopen("output.txt", "w");
if(out != NULL)
fprintf(out, "Hello %s\n", name);

Related topics

FPUTC2! - FPUTSY?? - ESCANF2? - PRINTF24 - SPRINTF%
526

fputc

Syntax

include <cstdio> int fputc(int ch, FILE *stream);

The function fputc() writes the given character ch to the given output stream. The
return value is the character, unless there is an error, in which case the return value
is EOF.

Related topics

520 Chapter 3.7.11 on page 290
521 Chapter 3.7.11 on page 281
522 Chapter 3.7.11 on page 282
523 Chapter 3.7.11 on page 284
524 Chapter 3.7.11 on page 290
525 Chapter 3.7.11 on page 299
526 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

281

http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

FGETC?? - FOPEN2 - FPRINTE'Z - FREAD - FWRITE>?! - GETC3? -
GETCHAR>3 - puTc>34

535

fputs

Syntax

include <cstdio> int fputs(const char *str, FILE *stream);

The fputs() function writes an array of characters pointed to by str to the given
output stream. The return value is non-negative on success, and EOF on failure.

Related topics

FGETS0 - FPRINTF 37 - FSCANF>3® - GETS? - GETC¥ - puTs#!
542

527 Chapter 3.7.11 on page 277
528 Chapter 3.7.11 on page 279
529 Chapter 3.7.11 on page 280
530 Chapter 3.7.11 on page 282
531 Chapter 3.7.11 on page 286
532 Chapter 3.7.11 on page 287
533 Chapter 3.7.11 on page 288
534 Chapter 3.7.11 on page 293
535 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
536 Chapter 3.7.11 on page 278
537 Chapter 3.7.11 on page 280
538 Chapter 3.7.11 on page 284
539 Chapter 3.7.11 on page 288
540 Chapter 3.7.11 on page 287
541 Chapter 3.7.11 on page 294
542 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

282

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Functions

fread

Syntax

include <cstdio> int fread(void *buffer, size_t size, size_t num, FILE *stream);

The function fread() reads num number of objects (where each object is size bytes)
and places them into the array pointed to by buffer. The data comes from the given
input stream. The return value of the function is the number of things read. You
can use FEOF *3() or FERROR*() to figure out if an error occurs.

Related topics

FFLUSH® - FGETC* - FOPENY - FPUTC™ - ESCANF™ - FWRITE™ -
GETC!

552

freopen

Syntax

include <cstdio> FILE *freopen(const char *fname, const char *mode, FILE *stream);

The freopen() function is used to reassign an existing stream to a different file and
mode. After a call to this function, the given file stream will refer to fname with

543 Chapter 3.7.11 on page 275
544 Chapter 3.7.11 on page 275
545 Chapter 3.7.11 on page 276
546 Chapter 3.7.11 on page 277
547 Chapter 3.7.11 on page 279
548 Chapter 3.7.11 on page 281
549 Chapter 3.7.11 on page 284
550 Chapter 3.7.11 on page 286
551 Chapter 3.7.11 on page 287
552 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

283

http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

access given by mode. The return value of freopen() is the new stream, or NULL
if there is an error.

Related topics

FCLOSE’>? - FOPEN"
555

fscanf

Syntax

include <cstdio> int fscanf(FILE *stream, const char *format, ...);

The function fscanf() reads data from the given file stream in a manner exactly like
scanf(). The return value of fscanf() is the number of variables that are actually
assigned values, including zero if there were no matches. EOF is returned if there
was an error reading before the first match.

Related topics

FGETS>® - FPRINTF - FPUTS® - FREADY - FWRITE® - SCANF®! - ss-
CANF>%2

563

553 Chapter 3.7.11 on page 274

554 Chapter 3.7.11 on page 279

555 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
556 Chapter 3.7.11 on page 278

557 Chapter 3.7.11 on page 280

558 Chapter 3.7.11 on page 282

559 Chapter 3.7.11 on page 282

560 Chapter 3.7.11 on page 286

561 Chapter 3.7.11 on page 296

562 Chapter 3.7.11 on page 300

563 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3AC%2B%2B%20PROGRAMMING

284

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Functions

fseek

Syntax

include <cstdio> int fseek(FILE *stream, long offset, int origin);

The function fseek() sets the file position data for the given stream. The origin
value should have one of the following values (defined in cstdio):

Name Explanation

SEEK_SET Seek from the start of the file
SEEK _CUR Seek from the current location
SEEK_END Seek from the end of the file

fseek() returns zero upon success, non-zero on failure. You can use fseek() to
move beyond a file, but not before the beginning. Using fseek() clears the EOF
flag associated with that stream.

Related topics

FGETPOS ** - FOPEN"® - FSETPOS%® - FTELL®’ - REWIND 8
569

fsetpos

Syntax

include <cstdio> int fsetpos(FILE *stream, const fpos_t *position);

564 Chapter 3.7.11 on page 277
565 Chapter 3.7.11 on page 279
566 Chapter 3.7.11 on page 285
567 Chapter 3.7.11 on page 286
568 Chapter 3.7.11 on page 296
569 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

285

http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

The fsetpos() function moves the file position indicator for the given stream to a
location specified by the position object. fpos_t is defined in cstdio. The return
value for fsetpos() is zero upon success, non-zero on failure.

Related topics

FGETPOS 0 - FSEEK>’! - FTELLY7?
573

ftell

Syntax

include <cstdio> long ftell(FILE *stream);

The ftell() function returns the current file position for stream, or -1 if an error
occurs.

Related topics

FGETPOS>’* - FSEEK 7’ - FSETPOS 70
577

fwrite

Syntax

include <cstdio> int fwrite(const void *buffer, size_t size, size_t count, FILE

*stream);

570 Chapter 3.7.11 on page 277
571 Chapter 3.7.11 on page 284
572 Chapter 3.7.11 on page 286
573 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
574 Chapter 3.7.11 on page 277
575 Chapter 3.7.11 on page 284
576 Chapter 3.7.11 on page 285
577 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3A

286

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Functions

The fwrite() function writes, from the array buffer, count objects of size size to
stream. The return value is the number of objects written.

Related topics

FFLUSH"8 - FGETC"? - FOPEN"80 - FpUTC®! - FREADY82 - FSCANF®3 - GETC84
585

getc

Syntax

include <cstdio> int getc(FILE *stream);

The getc() function returns the next character from stream, or EOF if the end of
file is reached. getc() is identical to FGETC8(). For example:

int ch;
FILE *input = fopen("stuff", "r");

ch = getc(input);
while(ch != EOF) {
printf("$c", ch);
ch = getc(input);
}

Related topics

578 Chapter 3.7.11 on page 276
579 Chapter 3.7.11 on page 277
580 Chapter 3.7.11 on page 279
581 Chapter 3.7.11 on page 281
582 Chapter 3.7.11 on page 282
583 Chapter 3.7.11 on page 284
584 Chapter 3.7.11 on page 287
585 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
586 Chapter 3.7.11 on page 277

287

http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

FEOF87 - FELUSH®® - FGETC® - FOPEN? - FPUTC?! - FGETCY?? - FREADY??
- FWRITE* - pUTC - UNGETCY?0

597

getchar

Syntax

include <cstdio> int getchar(void);

The getchar() function returns the next character from stdin, or EOF if the end of
file is reached.

Related topics

FGETC® - FOPEN"Y - rpUTCO® - puTCOO!
602

587 Chapter 3.7.11 on page 275
588 Chapter 3.7.11 on page 276
589 Chapter 3.7.11 on page 277
590 Chapter 3.7.11 on page 279
591 Chapter 3.7.11 on page 281
592 Chapter 3.7.11 on page 277
593 Chapter 3.7.11 on page 282
594 Chapter 3.7.11 on page 286
595 Chapter 3.7.11 on page 293
596 Chapter 3.7.11 on page 302
597 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
598 Chapter 3.7.11 on page 277
599 Chapter 3.7.11 on page 279
600 Chapter 3.7.11 on page 281
601 Chapter 3.7.11 on page 293
602 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

288

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Functions

gets

Syntax

include <cstdio> char *gets(char *str);

The gets() function reads characters from stdin and loads them into str, until a new-
line or EOF is reached. The newline character is translated into a null termination.
The return value of gets() is the read-in string, or NULL if there is an error.

Note:
gets() does not perform bounds checking, and thus risks overrunning str. For a
similar (and safer) function that includes bounds checking, see FGETS%().

a Chapter 3.7.11 on page 278

Related topics

FGETC - FGETS® - FPUTS®® - puTSO00

607

perror

Syntax

include <cstdio> void perror(const char *str);

The perror() function writes str, a ":" followed by a space, an implementation-
defined and/or language-dependent error message corresponding to the global vari-
able errno, and a newline to stderr. For example:

char* input_filename = "not_found.txt";

603 Chapter 3.7.11 on page 277
604 Chapter 3.7.11 on page 278
605 Chapter 3.7.11 on page 282
606 Chapter 3.7.11 on page 294
607 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

289

http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

FILE* input = fopen(input_filename, "r");
if(input == NULL) {
char error_msg[255];

sprintf(error_msg, "Error opening file ’%s’", input_filename);
perror(error_msg);
exit(-1);

}

If the file called not_found.txt is not found, this code will produce the following
output:

Error opening file ’not_found.txt’: No such file or directory

If "str" is a null pointer or points to the null byte, only the error message corre-
sponding to errno and a newline are written to stderr.

Related topics

CLEARERR®® - FEOF®% - FERROR®!V

611

printf

Syntax

include <cstdio> int printf(const char *format, ...);

The printf() function prints output to stdout, according to format and other ar-
guments passed to printf(). The string format consists of two types of items -
characters that will be printed to the screen, and format commands that define how
the other arguments to printf() are displayed. Basically, you specify a format string
that has text in it, as well as "special”" characters that map to the other arguments
of printf(). For example, this code

char name[20] = "Bob";

608 Chapter 3.7.11 on page 274
609 Chapter 3.7.11 on page 275
610 Chapter 3.7.11 on page 275
611 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

290

http://en.wikibooks.org/wiki/Category%3A

Functions

int age = 21;

printf("Hello %s, you are %d years old\n", name, age);

displays the following output:

Hello Bob, you are 21 years old

The %s means, "insert the first argument, a string, right here." The %d indicates
that the second argument (an integer) should be placed there. There are different
%-codes for different variable types, as well as options to limit the length of the

variables and whatnot.

Control Character
Yoc
%d
i
Y0e

9%E

Yot
Pog
%G
900
Yox

Y X

ou
Y0s
Yox
Jop
Yon

0%

Explanation

a single character

a decimal integer

an integer

scientific notation, with a lowercase
ne

scientific notation, with a uppercase
g

a floating-point number

use %e or %f, whichever is shorter
use %E or %f, whichever is shorter
an octal number

unsigned hexadecimal, with lower-
case letters

unsigned hexadecimal, with upper-
case letters

an unsigned integer

a string

a hexadecimal number

a pointer

the argument shall be a pointer to
an integer into which is placed the
number of characters written so far
a percent sign

A field-length specifier may appear before the final control character to indicate

the width of the field:

291

Fundamentals for getting started

* h, when inserted inside %d, causes the argument to be a short int.

* 1, when inserted inside %d, causes the argument to be a long.

* 1, when inserted inside %f, causes the argument to be a double.

* L, when inserted inside %d or %f, causes the argument to be a long long or long
double respecively.

An integer placed between a % sign and the format command acts as a minimum
field width specifier, and pads the output with spaces or zeros to make it long
enough. If you want to pad with zeros, place a zero before the minimum field
width specifier:

$012d

You can also include a precision modifier, in the form of a .N where N is some
number, before the format command:

%$012.4d

The precision modifier has different meanings depending on the format command
being used:

* With %e, %E, and %f, the precision modifier lets you specify the number of
decimal places desired. For example, %12.6f will display a floating number at
least 12 digits wide, with six decimal places.

* With %g and %G, the precision modifier determines the maximum number of
significant digits displayed.

* With %s, the precision modifier simply acts as a maximum field length, to com-
plement the minimum field length that precedes the period.

All of printf()’s output is right-justified, unless you place a minus sign right after
the % sign. For example,

$-12.4f

will display a floating point number with a minimum of 12 characters, 4 decimal
places, and left justified. You may modify the %d, %i, %o, %u, and %x type
specifiers with the letter 1 and the letter h to specify long and short data types (e.g.
%hd means a short integer). The %e, %f, and %g type specifiers can have the
letter 1 before them to indicate that a double follows. The %g, %f, and %e type
specifiers can be preceded with the character *#’ to ensure that the decimal point

292

Functions

will be present, even if there are no decimal digits. The use of the #’ character with
the %x type specifier indicates that the hexidecimal number should be printed with
the '0x’ prefix. The use of the '# character with the %o type specifier indicates
that the octal value should be displayed with a O prefix.

Inserting a plus sign '+’ into the type specifier will force positive values to be
preceded by a ’+’ sign. Putting a space character * * there will force positive values
to be preceded by a single space character.

You can also include constant escape sequences in the output string.

The return value of printf() is the number of characters printed, or a negative num-
ber if an error occurred.

Related topics

FPRINTF®Z - pUTS®!3 - sSCANFO! - SPRINTEOD
616

putc

Syntax

include <cstdio> int putc(int ch, FILE *stream);

The putc() function writes the character ch to stream. The return value is the
character written, or EOF if there is an error. For example:

int ch;
FILE *input, *output;
input = fopen("tmp.c", "r");

output = fopen("tmpCopy.c", "w");
ch = getc(input);
while(ch != EOF) {

putc(ch, output);

ch = getc(input);

612 Chapter 3.7.11 on page 280
613 Chapter 3.7.11 on page 294
614 Chapter 3.7.11 on page 296
615 Chapter 3.7.11 on page 299
616 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

293

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Fundamentals for getting started

}
fclose(input);
fclose(output);

Generates a copy of the file tmp.c called tmpCopy.c.
Related topics

FEOF®!” - FrLUSH®'® - FGETC®? - FPUTC®® - GETC®?! - GETCHAR®? -
PUTCHAR®? - puTs0?*

625

putchar

Syntax

include <cstdio> int putchar(int ch);

The putchar() function writes ch to stdout. The code

putchar(ch);

is the same as

putc(ch, stdout);
The return value of putchar() is the written character, or EOF if there is an error.
Related topics

pUTCO20
627

617 Chapter 3.7.11 on page 275
618 Chapter 3.7.11 on page 276
619 Chapter 3.7.11 on page 277
620 Chapter 3.7.11 on page 281
621 Chapter 3.7.11 on page 287
622 Chapter 3.7.11 on page 288
623 Chapter 3.7.11 on page 294
624 Chapter 3.7.11 on page 294
625 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
626 Chapter 3.7.11 on page 293
627 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

294

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Functions

puts

Syntax

include <cstdio> int puts(char *str);

The function puts() writes str to stdout. puts() returns non-negative on success, or
EOF on failure.

Related topics

FPUTS®28 - GETSO% - pRINTF® - puT(CO3!

632

remove

Syntax

include <cstdio> int remove(const char *fname);

The remove() function erases the file specified by fname. The return value of
remove() is zero upon success, and non-zero if there is an error.

Related topics

RENAME®?3
634

628 Chapter 3.7.11 on page 282
629 Chapter 3.7.11 on page 288
630 Chapter 3.7.11 on page 290
631 Chapter 3.7.11 on page 293
632 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
633 Chapter 3.7.11 on page 295
634 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

295

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

rename

Syntax

include <cstdio> int rename(const char *oldfname, const char *newfname);

The function rename() changes the name of the file oldfname to newfname. The
return value of rename() is zero upon success, noON-zero on error.

Related topics

REMOVE®?
636

rewind

Syntax

include <cstdio> void rewind(FILE *stream);

The function rewind() moves the file position indicator to the beginning of the
specified stream, also clearing the error and EOF flags associated with that stream.

Related topics

FSEEK®7

638

635 Chapter 3.7.11 on page 295
636 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
637 Chapter 3.7.11 on page 284
638 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

296

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Functions

scanf

Syntax

include <cstdio> int scanf(const char *format, ...);

The scanf() function reads input from stdin, according to the given format, and
stores the data in the other arguments. It works a lot like PRINTF®?(). The format
string consists of control characters, whitespace characters, and non-whitespace
characters. The control characters are preceded by a % sign, and are as follows:

Control Character Explanation

Yoc a single character

9d a decimal integer

Yoi an integer

Yoe, %of, Yog a floating-point number

Yolf a double

900 an octal number

9os a string

Yox a hexadecimal number

Jop a pointer

9on an integer equal to the number of
characters read so far

ou an unsigned integer

I a set of characters

0% a percent sign

scanf() reads the input, matching the characters from format. When a control char-
acter is read, it puts the value in the next variable. Whitespace (tabs, spaces, etc.)
are skipped. Non-whitespace characters are matched to the input, then discarded.
If a number comes between the % sign and the control character, then only that
many characters will be converted into the variable. If scanf() encounters a set of
characters, denoted by the %[] control character, then any characters found within
the brackets are read into the variable. The return value of scanf() is the number of
variables that were successfully assigned values, or EQF if there is an error.

639 Chapter 3.7.11 on page 290

297

Fundamentals for getting started

This code snippet uses scanf() to read an int, float, and a double from the user.
Note that the variable arguments to scanf() are passed in by address, as denoted by
the ampersand (&) preceding each variable:

int i;
float f;
double d;

printf("Enter an integer: ");
scanf ("%d", &i);

")

printf("Enter a float:
scanf ("%f", &f);

printf("Enter a double: ");
scanf ("%1f", &d);

printf("You entered %d, %f, and %f\n", i, £, d);
Related topics

FGETS®0 - FSCANF®! - PRINTF®*? - sSCANFO*

644

setbuf

Syntax

include <cstdio> void setbuf(FILE *stream, char *buffer);

The setbuf() function sets stream to use buffer, or, if buffer is NULL, turns off
buffering. This function expects that the buffer be BUFSIZ characters long - since
this function does not support specifying the size of the buffer, buffers larger than
BUFSIZ will be partly unused.

Related topics

640 Chapter 3.7.11 on page 278
641 Chapter 3.7.11 on page 284
642 Chapter 3.7.11 on page 290
643 Chapter 3.7.11 on page 300
644 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

298

http://en.wikibooks.org/wiki/Category%3A

Functions

FCLOSE® - FOPEN®* - SETVBUF®/

648

setvbuf

Syntax

include <cstdio> int setvbuf(FILE *stream, char *buffer, int mode, size_t size);

The function setvbuf() sets the buffer for stream to be buffer, with a size of size.
mode can be one of:

» _IOFBF, which indicates full buffering
» _IOLBF, which means line buffering
» _IONBEF, which means no buffering

Related topics

FFLUSH®* - SETBUF®

651

sprintf

Syntax

include <cstdio> int sprintf(char *buffer, const char *format, ...);

645
646
647
648
649
650
651

Chapter 3.7.11 on page 274
Chapter 3.7.11 on page 279
Chapter 3.7.11 on page 299
HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
Chapter 3.7.11 on page 276
Chapter 3.7.11 on page 298
HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

299

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Fundamentals for getting started

The sprintf() function is just like PRINTF®¥2(), except that the output is sent to
buffer. The return value is the number of characters written. For example:

char string[50];
int file_number = 0;

sprintf(string, "file.%d", file_number);

file_number++;

output_file = fopen(string, "w");

Note that sprintf() does the opposite of a function like ATO1933() -- where ATOI%%()
converts a string into a number, sprintf() can be used to convert a number into a
string.

For example, the following code uses sprintf() to convert an integer into a string of
characters:

char result[100];
int num = 24;
sprintf(result, "%d", num);

This code is similar, except that it converts a floating-point number into an array
of characters:

char result[100];
float fnum = 3.14159;
sprintf(result, "%f", fnum);

Related topics

FPRINTF® - PRINTE®>°
Standard C String and Character) ATOF®’ - ATO19%® - ATOL %
g

660

652 Chapter 3.7.11 on page 290
653 Chapter 3.7.11 on page 304
654 Chapter 3.7.11 on page 304
655 Chapter 3.7.11 on page 280
656 Chapter 3.7.11 on page 290
657 Chapter 3.7.11 on page 304
658 Chapter 3.7.11 on page 304
659 Chapter 3.7.11 on page 305
660 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

300

http://en.wikibooks.org/wiki/Category%3A

Functions

sscanf

Syntax

include <cstdio> int sscanf(const char *buffer, const char *format, ...

The function sscanf() is just like SCANF®!(), except that the input is read from
buffer.

Related topics

FSCANF®2 - sCcANF093

664

tmpfile

Syntax

include <cstdio> FILE *tmpfile(wvoid);

The function tmpfile() opens a temporary file with a unique filename and returns a

pointer to that file. If there is an error, null is returned.

Related topics

TMPNAM®®S

666

661
662
663
664
665
666

Chapter 3.7.11 on page 296
Chapter 3.7.11 on page 284
Chapter 3.7.11 on page 296
HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3A
Chapter 3.7.11 on page 301
HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

301

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

tmpnam

Syntax

include <cstdio> char *tmpnam(char *name);

The tmpnam() function creates a unique filename and stores it in name. tmpnam()
can be called up to TMP_MAX times.

Related topics

TMPFILE®®’

668

ungetc

Syntax

include <cstdio> int ungetc(int ch, FILE *stream);

The function ungetc() puts the character ch back in stream.
Related topics

GETC%%
(C++ I/0) PUTBACK®7?

671

667 Chapter 3.7.11 on page 301

668 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

669 Chapter 3.7.11 on page 287

670 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FCODE%
2FI0O%2FFUNCTIONS%2FPUTBACK

671 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

302

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FIO%2FFunctions%2Fputback
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FIO%2FFunctions%2Fputback
http://en.wikibooks.org/wiki/Category%3A

Functions

vprintf, vfprintf, and vsprintf

Syntax

include <cstdarg> include <cstdio> int vprintf(char *format, va_list
arg_ptr); int vfprintf(FILE *stream, const char *format, va_list arg_-

ptr); int vsprintf(char *buffer, char *format, va_list arg_ptr);

These functions are very much like PRINTF®72(), FPRINTF®3(), and SPRINTE®74().
The difference is that the argument list is a pointer to a list of arguments. va_list is
defined in cstdarg, and is also used by (Other Standard C Functions) VA_ARG®P().

For example:

void error(char *fmt, ...) {
va_list args;
va_start (args, fmt);
fprintf(stderr, "Error: ");
viprintf(stderr, fmt, args);
fprintf(stderr, "\n");
va_end(args);
exit (1);

}

676

677

Standard C String & Character

The Standard C Library includes also routines that deals with characters and
strings. You must keep in mind that in C, a string of characters is stored in succes-
sive elements of a character array and terminated by the NULL character.

/+ "Hello" is stored in a character array #*/
char note[SIZE];

672 Chapter 3.7.11 on page 290
673 Chapter 3.7.11 on page 280
674 Chapter 3.7.11 on page 299
675 Chapter 3.7.11 on page 365
676 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
677 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

303

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Fundamentals for getting started

note[0] = 'H’; note[l] = 'e’; note[2] = "1'; note[3] = '1"; note[d] = '0o’;
note[5] = "\0’;

Even if outdated this C string and character functions still appear in old code and
more so than the previous I/O functions.

atof

Syntax

include <cstdlib> double atof(const char *str);

The function atof() converts str into a double, then returns that value. str must start
with a valid number, but can be terminated with any non-numerical character, other
than "E" or "e". For example,

x = atof("42.0is_the_answer");
results in x being set to 42.0.
Related topics

ATOI?78 - ATOLS"® - STRTODO®?
(Standard C I/O) SPRINTF%8!

682

atoi

Syntax

include <cstdlib> int atoi(const char *str);

678 Chapter 3.7.11 on page 304
679 Chapter 3.7.11 on page 305
680 Chapter 3.7.11 on page 326
681 Chapter 3.7.11 on page 299
682 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3AC%2B%2B%$20PROGRAMMING

304

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Functions

The atoi() function converts str into an integer, and returns that integer. str should
start with a whitespace or some sort of number, and atoi() will stop reading from
str as soon as a non-numerical character has been read. For example:

int i

i = atoi("512");

i = atoi("512.035");

i = atoi(" 512.035");

i = atoi(" 512+34");

i =atoi(" 512 bottles of beer on the wall");

All five of the above assignments to the variable i would result in it being set to
512.

If the conversion cannot be performed, then atoi() will return zero:

int i = atoi(" does not work: 512"); // results in 1 == 0
Related topics

ATOF%83 - ATOL084
(Standard C I/O) SPRINTF%®

686

atol

Syntax

include <cstdlib> long atol(const char *str);

The function atol() converts str into a long, then returns that value. atol() will read
from str until it finds any character that should not be in a long. The resulting
truncated value is then converted and returned. For example,

x = atol("1024.0001");

results in X being set to 1024L.

683 Chapter 3.7.11 on page 304
684 Chapter 3.7.11 on page 305
685 Chapter 3.7.11 on page 299
686 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

305

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Fundamentals for getting started

Related topics

ATOF®7 - ATOI1988 - STRTOD®S?
(Standard C I/O) SPRINTF?

691

isalnum

Syntax

include <cctype> int isalnum(int ch);

The function isalnum() returns non-zero if its argument is a numeric digit or a letter
of the alphabet. Otherwise, zero is returned.

char c;
scanf ("%c", &c);
if(isalnum(c))
printf("You entered the alphanumeric character %c\n", c);

Related topics

ISALPHA®??2 - [SCNTRL®? - 1SDIGIT® - ISGRAPH®® - ISPRINT®® - 1SPUNCT®Y?
- ISSPACE®8 - 1sXDIGIT®

700

687 Chapter 3.7.11 on page 304

688 Chapter 3.7.11 on page 304

689 Chapter 3.7.11 on page 326

690 Chapter 3.7.11 on page 299

691 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3AC%2B%2B%20PROGRAMMING
692 Chapter 3.7.11 on page 306

693 Chapter 3.7.11 on page 307

694 Chapter 3.7.11 on page 308

695 Chapter 3.7.11 on page 308

696 Chapter 3.7.11 on page 310

697 Chapter 3.7.11 on page 310

698 Chapter 3.7.11 on page 311

699 Chapter 3.7.11 on page 312

700 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

306

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3A

Functions

isalpha

Syntax

include <cctype> int isalpha(int ch);

The function isalpha() returns non-zero if its argument is a letter of the alphabet.
Otherwise, zero is returned.

char c;
scanf ("%c", &c);
if(isalpha(c))
printf("You entered a letter of the alphabet\n");

Related topics

ISALNUM’%! - 1scNTRL%2 - 1SDIGIT’? - ISGRAPH'% - ISPRINT’% - [sPUNCT?%°
- 1sSPACEY7 - 1sxDIGIT’?8

709

isentrl

Syntax

include <cctype> int iscntrl(int ch);

The iscntrl() function returns non-zero if its argument is a control character (be-
tween 0 and Ox1F or equal to 0x7F). Otherwise, zero is returned.

Related topics

701 Chapter 3.7.11 on page 306
702 Chapter 3.7.11 on page 307
703 Chapter 3.7.11 on page 308
704 Chapter 3.7.11 on page 308
705 Chapter 3.7.11 on page 310
706 Chapter 3.7.11 on page 310
707 Chapter 3.7.11 on page 311
708 Chapter 3.7.11 on page 312
709 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3A

307

http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

ISALNUM’10 - 1saALPHA7!! - 1SDIGIT’!2 - ISGRAPH!3 - 1SPRINT’! - 1SPUNCT1?
- 1sSPACE’10 - 1sxpIGIT’!?

718

isdigit

Syntax

include <cctype> int isdigit(int ch);

The function isdigit() returns non-zero if its argument is a digit between 0 and 9.
Otherwise, zero is returned.

char c;
scanf ("%c", &c);
if(isdigit(c))
printf("You entered the digit %c\n", c);

Related topics

ISALNUM’! - 1SALPHA7?? - 1SCNTRL7?! - 1SGRAPH’?? - ISPRINT’? - 1s-
PUNCT’?* - ISSPACE’® - ISXDIGIT %0

727

710 Chapter 3.7.11 on page 306
711 Chapter 3.7.11 on page 306
712 Chapter 3.7.11 on page 308
713 Chapter 3.7.11 on page 308
714 Chapter 3.7.11 on page 310
715 Chapter 3.7.11 on page 310
716 Chapter 3.7.11 on page 311
717 Chapter 3.7.11 on page 312
718 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3A
719 Chapter 3.7.11 on page 306
720 Chapter 3.7.11 on page 306
721 Chapter 3.7.11 on page 307
722 Chapter 3.7.11 on page 308
723 Chapter 3.7.11 on page 310
724 Chapter 3.7.11 on page 310
725 Chapter 3.7.11 on page 311
726 Chapter 3.7.11 on page 312
727 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3A

308

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Functions

isgraph

Syntax

include <cctype> int isgraph(int ch);

The function isgraph() returns non-zero if its argument is any printable character
other than a space (if you can see the character, then isgraph() will return a non-
zero value). Otherwise, zero is returned.

Related topics

ISALNUM’?® - 1SALPHA7? - 1SCNTRL7? - 1SDIGIT’3! - 1SPRINT’?? - 1SPUNCT’33
- ISSPACE"?* - 1SXDIGIT’??

736

islower

Syntax

include <cctype> int islower(int ch);

The islower() function returns non-zero if its argument is a lowercase letter. Oth-
erwise, zero is returned.

Related topics

ISUPPER?’

728 Chapter 3.7.11 on page 306
729 Chapter 3.7.11 on page 306
730 Chapter 3.7.11 on page 307
731 Chapter 3.7.11 on page 308
732 Chapter 3.7.11 on page 310
733 Chapter 3.7.11 on page 310
734 Chapter 3.7.11 on page 311
735 Chapter 3.7.11 on page 312
736 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
737 Chapter 3.7.11 on page 311

309

http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

738

isprint

Syntax

include <cctype> int isprint(int ch);

The function isprint() returns non-zero if its argument is a printable character (in-
cluding a space). Otherwise, zero is returned.

Related topics

ISALNUM”? - 1SALPHA7? - 1scNTRL7*! - 1SDIGIT’*? - 1SGRAPH'® - 1s-
PUNCT’* - ISSPACE’#

746

ispunct

Syntax

include <cctype> int ispunct(int ch);

The ispunct() function returns non-zero if its argument is a printing character but
neither alphanumeric nor a space. Otherwise, zero is returned.

Related topics

738 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3A
739 Chapter 3.7.11 on page 306
740 Chapter 3.7.11 on page 306
741 Chapter 3.7.11 on page 307
742 Chapter 3.7.11 on page 308
743 Chapter 3.7.11 on page 308
744 Chapter 3.7.11 on page 310
745 Chapter 3.7.11 on page 311
746 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3A

310

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Functions

ISALNUM 47 - ISALPHA*8 - 1SCNTRL* - 1SDIGIT"? - ISGRAPH™’! - 1SSPACE"2
- ISXDIGIT’3

754

isspace

Syntax

include <cctype> int isspace(int ch);

The isspace() function returns non-zero if its argument is some sort of space (i.e.
single space, tab, vertical tab, form feed, carriage return, or newline). Otherwise,
zero is returned.

Related topics

ISALNUM’ - ISALPHA7® - ISCNTRL77 - ISDIGIT’® - ISGRAPH? - ISPRINT 00
- ISPUNCT’®! - IsXDIGIT0?

763

747 Chapter 3.7.11 on page 306
748 Chapter 3.7.11 on page 306
749 Chapter 3.7.11 on page 307
750 Chapter 3.7.11 on page 308
751 Chapter 3.7.11 on page 308
752 Chapter 3.7.11 on page 311
753 Chapter 3.7.11 on page 312
754 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
755 Chapter 3.7.11 on page 306
756 Chapter 3.7.11 on page 306
757 Chapter 3.7.11 on page 307
758 Chapter 3.7.11 on page 308
759 Chapter 3.7.11 on page 308
760 Chapter 3.7.11 on page 310
761 Chapter 3.7.11 on page 310
762 Chapter 3.7.11 on page 312
763 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3A

311

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

isupper

Syntax

include <cctype> int isupper(int ch);

The isupper() function returns non-zero if its argument is an uppercase letter. Oth-
erwise, zero is returned.

Related topics

ISLOWER®* - TOLOWER’®?
766

isxdigit

Syntax

include <cctype> int isxdigit(int ch);

The function isxdigit() returns non-zero if its argument is a hexadecimal digit (i.e.
A-F, a-f, or 0-9). Otherwise, zero is returned.

Related topics

ISALNUM’®7 - 1SALPHA%® - 1scNTRL7® - 1sDIGIT’? - 1SGRAPH! - 1s-
PUNCT’’? - 1ISSPACE’"3

774

764 Chapter 3.7.11 on page 309
765 Chapter 3.7.11 on page 329
766 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
767 Chapter 3.7.11 on page 306
768 Chapter 3.7.11 on page 306
769 Chapter 3.7.11 on page 307
770 Chapter 3.7.11 on page 308
771 Chapter 3.7.11 on page 308
772 Chapter 3.7.11 on page 310
773 Chapter 3.7.11 on page 311
774 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3A

312

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Functions

memchr

Syntax

include <cstring> void *memchr(const void *buffer, int ch, size_t count);

The memchr() function looks for the first occurrence of ch within count characters
in the array pointed to by buffer. The return value points to the location of the first
occurrence of ch, or NULL if ch isn’t found. For example:

char names[] = "Alan Bob Chris X Dave";

if (memchr (names,’X’,strlen(names)) == NULL)
printf("Didn’t find an X\n");

else
printf("Found an X\n");

Related topics

MEMCMP’> - MEMCPY'7® - STRSTR"?
778

memcmp

Syntax

include <cstring> int memcmp (const void *bufferl, const void *buffer2, size_t count

)i

The function memcmp() compares the first count characters of buffer! and buffer2.
The return values are as follows:

Return value Explanation
less than O bufferl is less than buffer2
equal to 0 bufferl is equal to buffer2

775 Chapter 3.7.11 on page 313
776 Chapter 3.7.11 on page 314
777 Chapter 3.7.11 on page 325
778 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3A

313

http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

Return value Explanation
greater than O bufferl is greater than buffer2
Related topics

MEMCHR”? - MEMCPY"®? - MEMSET’8! - STRCMP782
783

memcpy

Syntax

include <cstring> void *memcpy(void *to, const void *from, size_t count);

The function memcpy() copies count characters from the array from to the array
to. The return value of memcpy() is fo. The behavior of memcpy() is undefined if
to and from overlap.

Related topics

MEMCHR”®* - MEMCMP’® - MEMMOVE’®¢ - MEMSET’87 - STRCPY’38
STRLEN’® - sTRNCPY'??

791

779 Chapter 3.7.11 on page 312
780 Chapter 3.7.11 on page 314
781 Chapter 3.7.11 on page 315
782 Chapter 3.7.11 on page 317
783 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
784 Chapter 3.7.11 on page 312
785 Chapter 3.7.11 on page 313
786 Chapter 3.7.11 on page 314
787 Chapter 3.7.11 on page 315
788 Chapter 3.7.11 on page 319
789 Chapter 3.7.11 on page 321
790 Chapter 3.7.11 on page 322
791 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3A

314

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Functions

memmove

Syntax

include <cstring> void *memmove (void *to, const void *from, size_t count);

The memmove() function is identical to MEMCPY’%?(), except that it works even if
to and from overlap.

Related topics

MEMCPY’?3 - MEMSET’?*

795

memset

Syntax

include <cstring> void* memset (void* buffer, int ch, size_t count);

The function memset() copies ch into the first count characters of buffer, and re-
turns buffer. memset() is useful for intializing a section of memory to some value.
For example, this command:

const int ARRAY_LENGTH;
char the_array[ARRAY_LENGTH];

// zero out the contents of the_array
memset (the_array, ’\0’, ARRAY_LENGTH);

...Is a very efficient way to set all values of the_array to zero.

792 Chapter 3.7.11 on page 314
793 Chapter 3.7.11 on page 314
794 Chapter 3.7.11 on page 315
795 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

315

http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

The table below compares two different methods for initializing an array of charac-
ters: a for loop versus memset(). As the size of the data being initialized increases,
memset() clearly gets the job done much more quickly:

Input size Initialized with a for Initialized with mem-
loop set()
1000 0.016 0.017
10000 0.055 0.013
100000 0.443 0.029
1000000 4.337 0.291
Related topics
MEMCMP’® - MEMCPY”®7 - MEMMOVE’?®
799
strcat
Syntax

include <cstring> char *strcat(char *strl, const char *str2);

The strcat() function concatenates str2 onto the end of strl, and returns strl. For
example:

printf("Enter your name: ");
scanf("%s", name);

title = strcat(name, " the Great");
printf("Hello, %s\n", title); ;

Note that strcat() does not perform bounds checking, and thus risks overrunning
strl or str2. For a similar (and safer) function that includes bounds checking, see
STRNCAT30().

796 Chapter 3.7.11 on page 313
797 Chapter 3.7.11 on page 314
798 Chapter 3.7.11 on page 314
799 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3A
800 Chapter 3.7.11 on page 321

316

http://en.wikibooks.org/wiki/Category%3A

Functions

Related topics

STRCHR®?! - STRCMP8%2 - STRCPY®?? - STRNCATS04

805

strchr

Syntax

include <cstring> char *strchr(const char *str, int ch);

The function strchr() returns a pointer to the first occurrence of ck in str, or NULL
if ch is not found.

Related topics

STRCAT3% - STRCMP3?7 - STRCPY3%® - STRLEN®® - STRNCATS!? - sTRNCMPS!!
- STRNCPY®2 - STRPBRK®'? - STRRCHR®'* -STRSPN3!® - STRSTR31® - STR-
TOK817

818

801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818

Chapter 3.7.
Chapter 3.7.
Chapter 3.7.
Chapter 3.7.

11 on page 317
11 on page 317
11 on page 319
11 on page 321

HTTP://EN.WIKIBOOKS

Chapter 3.7.
Chapter 3.7.
Chapter 3.7.
Chapter 3.7.
Chapter 3.7.
Chapter 3.7.
Chapter 3.7.
Chapter 3.7.
Chapter 3.7.
Chapter 3.7.
Chapter 3.7.
Chapter 3.7.

11 on page 316
11 on page 317
11 on page 319
11 on page 321
11 on page 321
11 on page 322
11 on page 322
11 on page 323
11 on page 324
11 on page 324
11 on page 325
11 on page 326

.ORG/WIKI/CATEGORY$3A

HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

317

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Fundamentals for getting started

strcmp

Syntax

include <cstring> int strcmp(const char *strl, const char *str2);

The function strcmp() compares strl and str2, then returns:

Return value Explanation

less than O strl is less than str2
equal to 0 strl is equal to str2
greater than O strl is greater than str2

For example:

printf("Enter your name: ");

scanf ("%s", name);

if(strcmp(name, "Mary") ==) |
printf("Hello, Dr. Mary!\n");

}

Note that if st/ or str2 are missing a null-termination character, then stremp() may
not produce valid results. For a similar (and safer) function that includes explicit
bounds checking, see strncmp().

Related topics

MEMCMP®!? - STRCAT32? - STRCHR®?! - STRCOLL®?? - STRCPY®?? - STRLENS?
- STRNCMP3® - STRXFRM320

827

819 Chapter 3.7.11 on page 313
820 Chapter 3.7.11 on page 316
821 Chapter 3.7.11 on page 317
822 Chapter 3.7.11 on page 318
823 Chapter 3.7.11 on page 319
824 Chapter 3.7.11 on page 321
825 Chapter 3.7.11 on page 322
826 Chapter 3.7.11 on page 328
827 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

318

http://en.wikibooks.org/wiki/Category%3A

Functions

strcoll

Syntax

include <cstring> int strcoll(const char *strl, const char *str2);

The strcoll() function compares strl and str2, much like STRCMP®?8(). However,
strcoll() performs the comparison using the locale specified by the (Standard C
Date & Time) SETLOCALE®??() function.

Related topics

STRCMP33? - STRXFRM®3!
(Standard C Date & Time) SETLOCALE33?

833

strepy

Syntax

include <cstring> char *strcpy(char *to, const char *from);

The strcpy() function copies characters in the string fromto the string to, including
the null termination. The return value is to.

Note that strcpy() does not perform bounds checking, and thus risks overrunning
from or to. For a similar (and safer) function that includes bounds checking, see
STRNCPY®34().

Related topics

828 Chapter 3.7.11 on page 317
829 Chapter 3.7.11 on page 350
830 Chapter 3.7.11 on page 317
831 Chapter 3.7.11 on page 328
832 Chapter 3.7.11 on page 350
833 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3A
834 Chapter 3.7.11 on page 322

319

http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

MEMCPY® - STRCAT®® - STRCHR®7 - sTRcMP3*® - sTRNCMPS
STRNCPY®*0

841

strespn

Syntax

include <cstring> size_t strcspn(const char *strl, const char *str2);

The function strcspn() returns the index of the first character in str/ that matches
any of the characters in str2.

Related topics

STRPBRK®*? - STRRCHR®* - STRSTR3# - STRTOK®*
846

strerror

Syntax

include <cstring> char *strerror(int num);

835 Chapter 3.7.11 on page 314
836 Chapter 3.7.11 on page 316
837 Chapter 3.7.11 on page 317
838 Chapter 3.7.11 on page 317
839 Chapter 3.7.11 on page 322
840 Chapter 3.7.11 on page 322
841 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3A
842 Chapter 3.7.11 on page 323
843 Chapter 3.7.11 on page 324
844 Chapter 3.7.11 on page 325
845 Chapter 3.7.11 on page 326
846 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3A

320

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Functions

The function strerror() returns an implementation defined string corresponding to
num. If an error occurred, the error is located within the global variable errno.

Related topics

PERROR®Y’
848

strlen

Syntax

include <cstring> size_t strlen(char *str);

The strlen() function returns the length of str (determined by the number of char-
acters before null termination).

Related topics

MEMCPY®* - STRCHR® - STRCMP®! - STRNCMPS2
853

strncat

Syntax

include <cstring> char *strncat(char *strl, const char *str2, size_t count);

The function strncat() concatenates at most count characters of str2 onto strl,
adding a null termination. The resulting string is returned.

847 Chapter 3.7.11 on page 289

848 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%$3AC%2B%2B%20PROGRAMMING
849 Chapter 3.7.11 on page 314

850 Chapter 3.7.11 on page 317

851 Chapter 3.7.11 on page 317

852 Chapter 3.7.11 on page 322

853 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

321

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

Related topics

STRCAT®* - STRCHR®Y - STRNCMP3?® - STRNCPYSY’
858

strncmp

Syntax

include <cstring> int strncmp(const char *strl, const char *str2, size_t count);

The strncmp() function compares at most count characters of str/ and str2. The
return value is as follows:

Return value Explanation

less than 0 strl is less than str2
equal to 0 strl is equal to str2
greater than 0 strl is greater than str2

If there are less than count characters in either string, then the comparison will stop
after the first null termination is encountered.

Related topics

STRCHR®? - sSTRCMP3 - STRCPY®®! - STRLENS®Z - STRNCAT®®? - STRNCPY 3%
865

854 Chapter 3.7.11 on page 316
855 Chapter 3.7.11 on page 317
856 Chapter 3.7.11 on page 322
857 Chapter 3.7.11 on page 322
858 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3A
859 Chapter 3.7.11 on page 317
860 Chapter 3.7.11 on page 317
861 Chapter 3.7.11 on page 319
862 Chapter 3.7.11 on page 321
863 Chapter 3.7.11 on page 321
864 Chapter 3.7.11 on page 322
865 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3A

322

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Functions

strncpy

Syntax

include <cstring> char *strncpy(char *to, const char *from, size_t count);

The strncpy() function copies at most count characters of from to the string to. Only
if from has less than count characters, is the remainder padded with \O’ characters.
The return value is the resulting string.

Note:
Using strings not padded with the "\O’ character can create security vulnerabil-
ities.

Related topics

MEMCPY®% - STRCHR3¢7 - STRCPY®3 - STRNCAT3®® - STRNCMP370

871

strpbrk

Syntax

include <cstring> char * strpbrk(const char *str, const char *ch);

The function strchr() returns a pointer to the first occurrence of any character within
ch in str, or NULL if no characters were not found.

Related topics

866 Chapter 3.7.11 on page 314
867 Chapter 3.7.11 on page 317
868 Chapter 3.7.11 on page 319
869 Chapter 3.7.11 on page 321
870 Chapter 3.7.11 on page 322
871 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

323

http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

STRCHR®’2 - STRRCHR®"? - STRSTR®74
875

strrchr

Syntax

include <cstring> char *strrchr(const char *str, int ch);

The function strrchr() returns a pointer to the last occurrence of ch in str, or NULL
if no match is found.

Related topics

STRCHR®7 - STRCSPN377 - STRPBRK®”® - STRSPN®7? - STRSTR38 - sSTRTOK®®!
882

strspn

Syntax

include <cstring> size_t strspn(const char *strl, const char *str2);

872 Chapter 3.7.11 on page 324
873 Chapter 3.7.11 on page 324
874 Chapter 3.7.11 on page 325
875 BTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC$2B%$2B%20PROGRAMMING
876 Chapter 3.7.11 on page 317
877 Chapter 3.7.11 on page 320
878 Chapter 3.7.11 on page 323
879 Chapter 3.7.11 on page 324
880 Chapter 3.7.11 on page 325
881 Chapter 3.7.11 on page 326
882 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3AC%2B%2B%20PROGRAMMING

324

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Functions

The strspn() function returns the index of the first character in str/ that doesn’t
match any character in str2.

Related topics

STRCHR®® - STRPBRK®34 - STRRCHR®®S - STRSTR38¢ - STRTOK®®’
888
strstr

Syntax

include <cstring> char *strstr(const char *strl, const char *str2);

The function strstr() returns a pointer to the first occurrence of str2 in strl, or
NULL if no match is found. If the length of str2 is zero, then strstr() will simply
return stril.

For example, the following code checks for the existence of one string within an-
other string:

char* strl = "this is a string of characters";

char* str2 = "a string";

char* result = strstr(strl, str2);

if(result == NULL) printf("Could not find ’'$%s’ in ’'%s’\n", str2, strl);
else printf("Found a substring: ’%s’\n", result);

When run, the above code displays this output:

Found a substring: ’"a string of characters’

Related topics

883 Chapter 3.7.11 on page 317
884 Chapter 3.7.11 on page 323
885 Chapter 3.7.11 on page 324
886 Chapter 3.7.11 on page 325
887 Chapter 3.7.11 on page 326
888 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3A

325

http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

MEMCHR®? - STRCHR3 - sTRCSPN®! - STRPBRK®?? - STRRCHR3?? - STR-
SPN8%4 - sTRTOK®?S

896

strtod

Syntax

include <cstdlib> double strtod(const char *start, char **end);

The function strtod() returns whatever it encounters first in start as a double. end is
set to point at whatever is left in start after that double. If overflow occurs, strtod()
returns either HUGE_VAL or -HUGE_VAL.

x = atof("42.0is_the_answer");

results in x being set to 42.0.

Related topics

ATOF3Y7
898

889 Chapter 3.7.11 on page 312
890 Chapter 3.7.11 on page 317
891 Chapter 3.7.11 on page 320
892 Chapter 3.7.11 on page 323
893 Chapter 3.7.11 on page 324
894 Chapter 3.7.11 on page 324
895 Chapter 3.7.11 on page 326
896 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3A
897 Chapter 3.7.11 on page 304
898 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

326

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Functions

strtok

Syntax

include <cstring> char *strtok(char *strl, const char *str2);

The strtok() function returns a pointer to the next "token" in strl, where str2 con-
tains the delimiters that determine the token. strtok() returns NULL if no token is
found. In order to convert a string to tokens, the first call to strtok() should have
strl point to the string to be tokenized. All calls after this should have strl be

NULL.

For example:

char str[] = "now # is the time for all # good men to come to the # aid of their

country";
char delims[] = "#";
char *result = NULL;
result = strtok(str, delims);
while(result != NULL) {
printf("result is \"%s\"\n", result);
result = strtok(NULL, delims
}

The above code will display the following output:

result is "now "

result is " is the time for all "
result is " good men to come to the
result is " aid of their country"

n

Related topics

STRCHR®? - STRCSPN?® - STRPBRK??! - STRRCHR?Y? - STRSPN? - STRSTR?

905

899 Chapter 3.7.11 on page 317
900 Chapter 3.7.11 on page 320
901 Chapter 3.7.11 on page 323
902 Chapter 3.7.11 on page 324
903 Chapter 3.7.11 on page 324
904 Chapter 3.7.11 on page 325
905 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3A

327

http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

strtol

Syntax

include <cstdlib> long strtol(const char *start, char **end, int base);

The strtol() function returns whatever it encounters first in start as a long, doing
the conversion to base if necessary. end is set to point to whatever is left in start
after the long. If the result can not be represented by a long, then strtol() returns
either LONG_MAX or LONG_MIN. Zero is returned upon error.

Related topics

ATOL?% - sTRTOUL?Y

908

strtoul

Syntax

include <cstdlib> unsigned long strtoul (const char *start, char **end, int base);

The function strtoul() behaves exactly like STRTOL?%(), except that it returns an
unsigned long rather than a mere long.

Related topics

STRTOL10
911

906 Chapter 3.7.11 on page 305
907 Chapter 3.7.11 on page 328
908 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
909 Chapter 3.7.11 on page 327
910 Chapter 3.7.11 on page 327
911 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

328

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Functions

strxfrm

Syntax

include <cstring> size_t strxfrm(char *strl, const char *str2, size_t num);

The strxfrm() function manipulates the first num characters of str2 and stores them
in str1. The result is such that if a STRCOLL’'?() is performed on str/ and the old
str2, you will get the same result as with a STRCMP?13().

Related topics

STRCMP?* - sTRCOLL?!S
916

tolower

Syntax

include <cctype> int tolower(int ch);

The function tolower() returns the lowercase version of the character ch.
Related topics

1SUPPER’!7 - TOUPPER®!8
919

912 Chapter 3.7.11 on page 318
913 Chapter 3.7.11 on page 317
914 Chapter 3.7.11 on page 317
915 Chapter 3.7.11 on page 318
916 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
917 Chapter 3.7.11 on page 311
918 Chapter 3.7.11 on page 329
919 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

329

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

toupper

Syntax

include <cctype> int toupper(int ch);

The toupper() function returns the uppercase version of the character ch.
Related topics

TOLOWER??Y
921

Standard C Math

This section will cover the Math elements of the C Standard Library.

abs

Syntax

include <cstdlib> int abs(int num);

The abs() function returns the absolute value of num. For example:

int magic_number = 10;

cout << "Enter a guess: ";

cin >> x;

cout << "Your guess was " << abs(magic_number - x) << " away from the magic
number." << endl;

Related topics

FABS??2 - LABSY?3

920 Chapter 3.7.11 on page 329
921 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
922 Chapter 3.7.11 on page 336
923 Chapter 3.7.11 on page 338

330

http://en.wikibooks.org/wiki/Category%3A

Functions

924

acos

Syntax

include <cmath> double acos(double arg);

The acos() function returns the arc cosine of arg, which will be in the range [0, pi].
arg should be between -1 and 1. If arg is outside this range, acos() returns NAN
and raises a floating-point exception.

Related topics

ASIN?Z - ATANY26 - ATAN2%?7 - c0s9%8 - cosH?? - SsIN?30 - sINH?3! - TAND32 -
TANH?33

934

asin

Syntax

include <cmath> double asin(double arg);

924 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC$2B%$2B%20PROGRAMMING
925 Chapter 3.7.11 on page 331
926 Chapter 3.7.11 on page 332
927 Chapter 3.7.11 on page 333
928 Chapter 3.7.11 on page 334
929 Chapter 3.7.11 on page 334
930 Chapter 3.7.11 on page 342
931 Chapter 3.7.11 on page 343
932 Chapter 3.7.11 on page 344
933 Chapter 3.7.11 on page 345
934 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

331

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Fundamentals for getting started

The asin() function returns the arc sine of arg, which will be in the range [-pi/2,
+pi/2]. arg should be between -1 and 1. If arg is outside this range, asin() returns
NAN and raises a floating-point exception.

Related topics

ACOS?3 - ATAN?30 - ATAN2937 - 08?38 - cOosH??? - SIN?40 - sINH! - TAN42 -
TANH?#

944

atan

Syntax

include <cmath> double atan(double arg);

The function atan() returns the arc tangent of arg, which will be in the range [-pi/2,
+pi/2].

Related topics

ACOS?™ - ASIN?* - ATAN2%7 - 08?8 - cosH™ - SIN?O - sINH?S! - TAND? -
TANH?3

935 Chapter 3.7.11 on page 331
936 Chapter 3.7.11 on page 332
937 Chapter 3.7.11 on page 333
938 Chapter 3.7.11 on page 334
939 Chapter 3.7.11 on page 334
940 Chapter 3.7.11 on page 342
941 Chapter 3.7.11 on page 343
942 Chapter 3.7.11 on page 344
943 Chapter 3.7.11 on page 345
944 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3AC%2B%2B%20PROGRAMMING
945 Chapter 3.7.11 on page 331
946 Chapter 3.7.11 on page 331
947 Chapter 3.7.11 on page 333
948 Chapter 3.7.11 on page 334
949 Chapter 3.7.11 on page 334
950 Chapter 3.7.11 on page 342
951 Chapter 3.7.11 on page 343
952 Chapter 3.7.11 on page 344
953 Chapter 3.7.11 on page 345

332

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Functions

954

atan2

Syntax

include <cmath> double atan2(double y, double x);

The atan2() function computes the arc tangent of y/x, using the signs of the argu-
ments to compute the quadrant of the return value.

Related topics

ACOS?% - ASIND® - ATANY - c0s8?8 - cosH?? - sIN%0 - sINHO! - TANOZ -
TANH?®3

964

ceil

Syntax

include <cmath> double ceil(double num);

The ceil() function returns the smallest integer no less than num. For example:

954 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3AC$2B%$2B%20PROGRAMMING
955 Chapter 3.7.11 on page 331
956 Chapter 3.7.11 on page 331
957 Chapter 3.7.11 on page 332
958 Chapter 3.7.11 on page 334
959 Chapter 3.7.11 on page 334
960 Chapter 3.7.11 on page 342
961 Chapter 3.7.11 on page 343
962 Chapter 3.7.11 on page 344
963 Chapter 3.7.11 on page 345
964 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3AC%2B%$2B%20PROGRAMMING

333

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Fundamentals for getting started

y = 6.04;
x = ceil(vy);

would set x to 7.0.
Related topics

FLOOR?® - FMOD?00
967

CoS

Syntax

include <cmath> float cos(float arg); double cos(double arg); long double cos(

long double arg);

The cos() function returns the cosine of arg, where arg is expressed in radians. The
return value of cos() is in the range [-1,1]. If arg is infinite, cos() will return NAN
and raise a floating-point exception.

Related topics

ACOS?98 - ASIN?® - ATAN?0 - ATAN297! - cOsH?7? - SIN?T3 - SINH?74 - TANYT?
- TANH70

977

965 Chapter 3.7.11 on page 337
966 Chapter 3.7.11 on page 337
967 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
968 Chapter 3.7.11 on page 331
969 Chapter 3.7.11 on page 331
970 Chapter 3.7.11 on page 332
971 Chapter 3.7.11 on page 333
972 Chapter 3.7.11 on page 334
973 Chapter 3.7.11 on page 342
974 Chapter 3.7.11 on page 343
975 Chapter 3.7.11 on page 344
976 Chapter 3.7.11 on page 345
977 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

334

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Functions

cosh

Syntax

include <cmath> float cosh(float arg); double cosh(

double arg); long double cosh(long double arg);

The function cosh() returns the hyperbolic cosine of arg.
Related topics

ACOS?™8 - ASIN?T? - ATAN?80 - ATAN2?8T - c0s%82 - SIN?33 - SINH?3* - TAN®S -
TANH?80

987

div

Syntax

include <cstdlib> div_t div(int numerator, int denominator);

The function div() returns the quotient and remainder of the operation numerator /
denominator. The div_t structure is defined in cstdlib, and has at least:

int quot; // The quotient
int rem; // The remainder

978 Chapter 3.7.11 on page 331
979 Chapter 3.7.11 on page 331
980 Chapter 3.7.11 on page 332
981 Chapter 3.7.11 on page 333
982 Chapter 3.7.11 on page 334
983 Chapter 3.7.11 on page 342
984 Chapter 3.7.11 on page 343
985 Chapter 3.7.11 on page 344
986 Chapter 3.7.11 on page 345
987 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3A

335

http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

For example, the following code displays the quotient and remainder of x/y:

div_t temp;

temp = div(x, y);

printf("%d divided by %d yields %d with a remainder of %d\n",
X, y, temp.quot, temp.rem);

Related topics

LDIV?88
989

exp

Syntax

include <cmath> double exp(double arg);

The exp() function returns e (2.7182818) raised to the argth power.
Related topics

LOG99O _ POW991 _ SQRT992
993

fabs

Syntax

include <cmath> double fabs(double arg);

The function fabs() returns the absolute value of arg.

988 Chapter 3.7.11 on page 339
989 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
990 Chapter 3.7.11 on page 340
991 Chapter 3.7.11 on page 342
992 Chapter 3.7.11 on page 343
993 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

336

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Functions

Related topics

ABS?* - FMOD?® - LABS?%®

997

floor

Syntax

include <cmath> double floor(double arg);

The function floor() returns the largest integer value not greater than arg.

// Example for positive numbers
y = 6.04;
x = floor(vy);

would result in x being set to 6 (double 6.0).

// Example for negative numbers

y = -6.04;

x = floor(vy);

would result in x being set to -7 (double -7.0).
Related topics

CEIL??® - EMOD???
1000

994 Chapter 3.7.11 on page 330
995 Chapter 3.7.11 on page 337
996 Chapter 3.7.11 on page 338
997 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
998 Chapter 3.7.11 on page 333
999 Chapter 3.7.11 on page 337
1000 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3A

337

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

fmod

Syntax

include <cmath> double fmod(double x, double y);

The fmod() function returns the remainder of x/y.
Related topics

CEIL!00! _ pABs1002 _ g ooR1003
1004

frexp

Syntax

include <cmath> double frexp(double num, int* exp);

The function frexp() is used to decompose num into two parts: a mantissa between
0.5 and 1 (returned by the function) and an exponent returned as exp. Scientific
notation works like this:

num = mantissa * (2 * exp)

Related topics

LDEXP!005 _ MoDFE!006
1007

1001 Chapter 3.7.11 on page 333
1002 Chapter 3.7.11 on page 336
1003 Chapter 3.7.11 on page 337
1004 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
1005 Chapter 3.7.11 on page 339
1006 Chapter 3.7.11 on page 341
1007 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

338

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Functions

labs

Syntax

include <cstdlib> long labs(long num);

The function labs() returns the absolute value of num.
Related topics

ABSIOOS _ FABSIOO9

1010

Idexp

Syntax

include <cmath> double ldexp(double num, int exp);

The ldexp() function returns num * (2~ exp). And get this: if an overflow occurs,
HUGE_VAL is returned.

Related topics

FREXPOI! - MopF1012
1013

1008 Chapter 3.7.11 on page 330
1009 Chapter 3.7.11 on page 336
1010 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%$3A
1011 Chapter 3.7.11 on page 338
1012 Chapter 3.7.11 on page 341
1013 6TTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%$3A

339

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

1div

Syntax

include <cstdlib> 1ldiv_t 1div(long numerator, long denominator);

Testing: adiv_t, div_t, 1div_t.

The 1div() function returns the quotient and remainder of the operation numerator
/ denominator. The ldiv_t structure is defined in cstdlib and has at least:

long quot; // the quotient
long rem; // the remainder

Related topics

pryl0i4

1015

log

Syntax

include <cmath> double log(double num);

The function log() returns the natural (base e) logarithm of num. There’s a domain
error if num is negative, a range error if num is zero.

In order to calculate the logarithm of x to an arbitrary base b, you can use:

double answer = log(x) / log(b);

Related topics

1014 Chapter 3.7.11 on page 335
1015uTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

340

http://en.wikibooks.org/wiki/Category%3A

Functions

EXP1016 - 10G101017 - pow!018 _ gQRrT!019

1020

log10

Syntax

include <cmath> double loglO(double num);

The 10g10 () function returns the base 10 (or common) logarithm for num. There
will be a domain error if num is negative and a range error if num is zero.

Related topics

LOGmm
1022

modf

Syntax

include <cmath> double modf (double num, double *i);

The function modf() splits num into its integer and fraction parts. It returns the
fractional part and loads the integer part into i.

Related topics

1016 Chapter 3.7.11 on page 336
1017 Chapter 3.7.11 on page 341
1018 Chapter 3.7.11 on page 342
1019 Chapter 3.7.11 on page 343
1020 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
1021 Chapter 3.7.11 on page 340
1022 5TTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

341

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

FREXP193 _ [pgxp!024
1025

pow

Syntax

include <cmath> double pow(double base, double exp);

The pow() function returns base raised to the expth power. There’s a domain error
if base is zero and exp is less than or equal to zero. There’s also a domain error
if base is negative and exp is not an integer. There’s a range error if an overflow
occurs.

Related topics

ExPI026 _10G1027 _ gqr!028
1029

sin

Syntax

include <cmath> double sin(double arg);

The function sin() returns the sine of arg, where arg is given in radians. The return
value of sin() will be in the range [-1,1]. If arg is infinite, sin() will return NAN
and raise a floating-point exception.

1023 Chapter 3.7.11 on page 338
1024 Chapter 3.7.11 on page 339
1025 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
1026 Chapter 3.7.11 on page 336
1027 Chapter 3.7.11 on page 340
1028 Chapter 3.7.11 on page 343
1029 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

342

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Functions

Related topics

ACOSIO3O _ ASIN1031 _ ATAN1032 _ ATAN21033 _ C051034 _ COSH1035 _ SINH1036 _
TAN]037 _ TANH1038

1039

sinh

Syntax

include <cmath> double sinh(double arg);

The function sinh() returns the hyperbolic sine of arg.

Related topics

ACOSIO40 - ASINIO4L _ ATANIO42 | ATAN21043 _ COSIO44 _ COSHIO45 _ SIN1046 _
TANI047 _ TANH1048

1049

1030 Chapter 3.7.
1031 Chapter 3.7.
1032 Chapter 3.7.
1033 Chapter 3.7.
1034 Chapter 3.7.
1035 Chapter 3.7.
1036 Chapter 3.7.
1037 Chapter 3.7.
1038 Chapter 3.7.

11 on page 331
11 on page 331
11 on page 332
11 on page 333
11 on page 334
11 on page 334
11 on page 343
11 on page 344
11 on page 345

1039 HTTP://EN.WIKIBOOKS

1040 Chapter 3.7.
1041 Chapter 3.7.
1042 Chapter 3.7.
1043 Chapter 3.7.
1044 Chapter 3.7.
1045 Chapter 3.7.
1046 Chapter 3.7.
1047 Chapter 3.7.
1048 Chapter 3.7.

11 on page 331
11 on page 331
11 on page 332
11 on page 333
11 on page 334
11 on page 334
11 on page 342
11 on page 344
11 on page 345

.ORG/WIKI/CATEGORY%3A

1049 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

343

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

sqrt

Syntax

include <cmath> double sqrt(double num);

The sqrt() function returns the square root of num. If num is negative, a domain
eITor Occurs.

Related topics

Exp!050 _ 1 0G105! _ pow!1052
1053

tan

Syntax

include <cmath> double tan(double arg);

The tan() function returns the tangent of arg, where arg is given in radians. If arg
is infinite, tan() will return NAN and raise a floating-point exception.

Related topics

ACOS!054 _ ASINIO03S _ ATAN!O36 _ ATAN21057 _ cog!058 _ cosyg!039 - SIN106O _
SINH1061 - TANH1062

1050 Chapter 3.7.11 on page 336
1051 Chapter 3.7.11 on page 340
1052 Chapter 3.7.11 on page 342
1053 5TTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
1054 Chapter 3.7.11 on page 331
1055 Chapter 3.7.11 on page 331
1056 Chapter 3.7.11 on page 332
1057 Chapter 3.7.11 on page 333
1058 Chapter 3.7.11 on page 334
1059 Chapter 3.7.11 on page 334
1060 Chapter 3.7.11 on page 342
1061 Chapter 3.7.11 on page 343
1062 Chapter 3.7.11 on page 345

344

http://en.wikibooks.org/wiki/Category%3A

Functions

1063

tanh

Syntax

include <cmath> double tanh(double arg);

/*xexamplex*/
#include <stdio.h>
#include <math.h>
int main (){
double ¢, p;
c = log(2.0);
p = tanh (c);
printf ("The hyperbolic tangent of %1f is %$1f.\n", ¢, p);
return 0;

}
The function tanh() returns the hyperbolic tangent of arg.
Related topics

ACOSIO64 _ ASIN1065 _ ATAN1066 _ ATAN21067 _ COSIO68 _ COSH1069 _ SIN1070 _
SIPJ}{1071 _ TY\PJ1072

1073

Standard C Time & Date

This section will cover the Time and Date elements of the C Standard Library.

1063 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3A
1064 Chapter 3.7.11 on page 331
1065 Chapter 3.7.11 on page 331
1066 Chapter 3.7.11 on page 332
1067 Chapter 3.7.11 on page 333
1068 Chapter 3.7.11 on page 334
1069 Chapter 3.7.11 on page 334
1070 Chapter 3.7.11 on page 342
1071 Chapter 3.7.11 on page 343
1072 Chapter 3.7.11 on page 344
1073 5TTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3A

345

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

asctime

Syntax

include <ctime> char *asctime(const struct tm *ptr);

The function asctime() converts the time in the struct ’ptr’ to a character string of
the following format:

day month date hours:minutes:seconds year

An example:

Mon Jun 26 12:03:53 2000

Related topics

cLock!'9 - cTiME!?? - DIFFTIME!Y7 - GMTIME!??7 - LOCALTIME!?7® - MK-
TIMEL9 - i 080

1081

clock

Syntax

include <ctime> clock_t clock(void);

1074 Chapter 3.7.11 on page 346
1075 Chapter 3.7.11 on page 347
1076 Chapter 3.7.11 on page 348
1077 Chapter 3.7.11 on page 348
1078 Chapter 3.7.11 on page 349
1079 Chapter 3.7.11 on page 349
1080 Chapter 3.7.11 on page 352
1081 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3ACS2B%2B%20PROGRAMMING

346

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Functions

The clock() function returns the processor time since the program started, or -1 if
that information is unavailable. To convert the return value to seconds, divide it by
CLOCKS_PER_SEC.

Note:

If your compiler and library is POSIX compliant, then CLOCKS_PER_SEC
is always defined as 1000000.

Related topics

ASCTIME!082 _ cTIME!083 - TrME1084
1085

ctime

Syntax

include <ctime> char *ctime(const time_t *time);

The ctime() function converts the calendar time time to local time of the format:

day month date hours:minutes:seconds year

using ctime() is equivalent to

asctime(localtime(tp));

Related topics

1082 Chapter 3.7.11 on page 345
1083 Chapter 3.7.11 on page 347
1084 Chapter 3.7.11 on page 352
1085 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%$3A

347

http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

ASCTIME!08¢ _ cLock!087 -

TIhlElogl

1092

difftime

Syntax

GMTIME!988 _

LOCALTIME!8 _

include <ctime> double difftime(time_t time2, time_t timel);

The function difftime() returns time2 - timel, in seconds.

Related topics

ASCTIME!?3 - GMTIME!?®* - LocALTIME!? - TIME!0%

1097

gmtime

Syntax

include <ctime> struct tm *gmtime(const time_t *time);

1086 Chapter 3.7.11 on page 345
1087 Chapter 3.7.11 on page 346
1088 Chapter 3.7.11 on page 348
1089 Chapter 3.7.11 on page 349
1090 Chapter 3.7.11 on page 349
1091 Chapter 3.7.11 on page 352

1092 5TTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

1093 Chapter 3.7.11 on page 345
1094 Chapter 3.7.11 on page 348
1095 Chapter 3.7.11 on page 349
1096 Chapter 3.7.11 on page 352

1097 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

348

MKTIME!9%0 _

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Functions

The gmtime() function returns the given time in Coordinated Universal Time (usu-
ally Greenwich mean time), unless it’s not supported by the system, in which case
NULL is returned. Watch out for the STATIC RETURN!98,

Related topics

ASCTIME!®? = cTiME!N _ prrrriME! 19! - LocALTIME!?? - MKTIME!03 -
STRETIME!% - TpmEg!105

1106

localtime

Syntax

include <ctime> struct tm *localtime(const time_t *time);

The function localtime() converts calendar time time into local time. Watch out for
the STATIC RETURN!7,

Related topics

ASCTIMEN® _ cTiME'® - prrrTIME!O - oMTIME!!! - STRETIME!!? -
TIME! 13

1114

1098 Chapter 3.7.4 on page 246

1099 Chapter 3.7.11 on page 345

1100 Chapter 3.7.11 on page 347

1101 Chapter 3.7.11 on page 348

1102 Chapter 3.7.11 on page 349

1103 Chapter 3.7.11 on page 349

1104 Chapter 3.7.11 on page 351

1105 Chapter 3.7.11 on page 352

1106 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
1107 Chapter 3.7.4 on page 246

1108 Chapter 3.7.11 on page 345

1109 Chapter 3.7.11 on page 347

1110 Chapter 3.7.11 on page 348

1111 Chapter 3.7.11 on page 348

1112 Chapter 3.7.11 on page 351

1113 Chapter 3.7.11 on page 352

1114 5TTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

349

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

mktime

Syntax

include <ctime> time_t mktime(struct tm *time);

The mktime() function converts the local time in time to calendar time, and returns
it. If there is an error, -1 is returned.

Related topics

ascTiIMEND - cTime!!16 - gmTIME!!Y - TIME! 18
1119
setlocale

Syntax

include <clocale> char *setlocale(int category, const char * locale);

The setlocale() function is used to set and retrieve the current locale. If locale is
NULL, the current locale is returned. Otherwise, locale is used to set the locale
for the given category.

category can have the following values:

Value Description

LC_ALL All of the locale
LC_TIME Date and time formatting
LC_NUMERIC Number formatting

1115 Chapter 3.7.11 on page 345
1116 Chapter 3.7.11 on page 347
1117 Chapter 3.7.11 on page 348
1118 Chapter 3.7.11 on page 352
11195TTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

350

http://en.wikibooks.org/wiki/Category%3A

Functions

Value
LC_COLLATE

LC_CTYPE

LC_MONETARY
LC_MESSAGES

Related topics

Description

String collation and regular expres-
sion matching

Regular expression matching, con-
version, case-sensitive comparison,
wide character functions, and char-
acter classification.

For monetary formatting

For natural language messages

(Standard C String & Character) STRCOLL!?0

1121

strftime

Syntax

include <ctime> size_t strftime(char *str, size_t maxsize, const char *fmt,

struct tm *time);

The function strftime() formats date and time information from time to a format
specified by fmt, then stores the result in str (up to maxsize characters). Certain
codes may be used in fmt to specify different types of time:

Code
Y0a
%A
%b
%B
Yoc
od

1120 Chapter 3.7.11 on page 318

Meaning

abbreviated weekday name (e.g. Fri)
full weekday name (e.g. Friday)
abbreviated month name (e.g. Oct)
full month name (e.g. October)

the standard date and time string
day of the month, as a number (1-
31)

1121 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

351

http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

Code Meaning

%H hour, 24 hour format (0-23)

%1 hour, 12 hour format (1-12)

%j day of the year, as a number (1-366)

%om month as a number (1-12).

%M minute as a number (0-59)

Jop locale’s equivalent of AM or PM

%S second as a number (0-59)

%U week of the year, (0-53), where
week 1 has the first Sunday

Yow weekday as a decimal (0-6), where
Sunday is 0

%W week of the year, (0-53), where
week 1 has the first Monday

Jox standard date string

P X standard time string

%y year in decimal, without the century
(0-99)

DY year in decimal, with the century

%L time zone name

%% a percent sign

Note:

Some versions of Microsoft Visual C++ may use values that range from 0-11
to describe %m (month as a number).

Related topics

GMTIME!''?2 - LocALTIME!!?3 - TIME!124
1125

1122 Chapter 3.7.11 on page 348
1123 Chapter 3.7.11 on page 349
1124 Chapter 3.7.11 on page 352
11255TTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

352

http://en.wikibooks.org/wiki/Category%3A

Functions

time

Syntax

include <ctime> time_t time(time_t *time);

The function time() returns the current time, or -1 if there is an error. If the argu-
ment time is given, then the current time is stored in time.

Related topics

ASCTIME!N26 - cLock!? - cTiME! 28 - DIFFTIME!N? - GMTIME!!?C - LOCAL-
TIME! 3! - MKTIME!!32 - STRFTIME!!33
(Other Standard C functions) SRAND'134

1135

Standard C Memory Management

This section will cover memory management elements from the Standard C Li-
brary.

Note:
It is recommended to use the new and delete operators instead of these func-
tions, as they provide additional control over the creation of objects.

1126 Chapter 3.7.11 on page 345
1127 Chapter 3.7.11 on page 346
1128 Chapter 3.7.11 on page 347
1129 Chapter 3.7.11 on page 348
1130 Chapter 3.7.11 on page 348
1131 Chapter 3.7.11 on page 349
1132 Chapter 3.7.11 on page 349
1133 Chapter 3.7.11 on page 351
1134 Chapter 3.7.11 on page 364
1135 5TTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORYS$3A

353

http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

calloc

Syntax

include <cstdlib> void *calloc(size_t num, size_t size);

The function calloc() allocates a block of memory that can store num objects of
size size. In addition, the block of memory allocated is set to all zeros.

If the operation fails, calloc() returns NULL.
Related topics

FREE!13® - maLLOC!37 - REALLOC!!38
1139

free

Syntax

include <cstdlib> void free(void *p);

The function free() releases a previously allocated block from a call to calloc,
malloc, or realloc.

Related topics

caLLoc! - marroc!!*! - rReaLLoc! 142

1143

1136 Chapter 3.7.11 on page 354
1137 Chapter 3.7.11 on page 354
1138 Chapter 3.7.11 on page 355
1139 5TTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
1140 Chapter 3.7.11 on page 353
1141 Chapter 3.7.11 on page 354
1142 Chapter 3.7.11 on page 355
1143 5TTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

354

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Functions

malloc

Syntax

include <cstdlib> void *malloc(size_t s);

The function malloc() allocates a block of memory of size s. The memory remains
uninitialized.

If the operation fails, malloc() returns NULL.
Related topics

caLLoc!# _ greg!!% - REAaLLOC!40

1147

realloc

Syntax

include <cstdlib> void *realloc(void *p, size_t s);

The function realloc() resizes a block created by malloc() or calloc(), and returns a
pointer to the new memory region.

If the resize operation fails, realloc() returns NULL and leaves the old memory
region intact.

Note:

realloc() does not have a corresponding operator in C++ - however, this is
not required since the standard template library already provides the necessary
memory management for most usages.

1144 Chapter 3.7.11 on page 353
1145 Chapter 3.7.11 on page 354
1146 Chapter 3.7.11 on page 355
1147 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3AC%2B%2B%20PROGRAMMING

355

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Fundamentals for getting started

Related topics

cAaLLOC 8 _ grEE!4 - MaLLOC!O
1151

1152

Other Standard C functions

This section will cover several functions that are outside of the previous niches but
are nevertheless part of the C Standard Library.

abort

Syntax

include <cstdlib> void abort(void);

The function abort() terminates the current program. Depending on the imple-
mentation, the return from the function can indicate a canceled (e.g. you used the
signal() function to catch SIGABRT) or failed abort.

SIGABRT is sent by the process to itself when it calls the abort libc function, de-
fined in cstdlib. The SIGABRT signal can be caught, but it cannot be blocked; if
the signal handler returns then all open streams are closed and flushed and the pro-
gram terminates (dumping core if appropriate). This means that the abort call never
returns. Because of this characteristic, it is often used to signal fatal conditions in
support libraries, situations where the current operation cannot be completed but
the main program can perform cleanup before exiting. It is also used if an assertion
fails.

Related topics

1148 Chapter 3.7.11 on page 353
1149 Chapter 3.7.11 on page 354
1150 Chapter 3.7.11 on page 354
1151 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
1152 5TTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

356

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Functions

ASSERT!133 - ATEXIT!134 - EXIT!1SS
1156

assert

Syntax

include <cassert> assert(exp);

The assert() macro is used to test for errors. If exp evaluates to zero, assert() writes
information to stderr and exits the program. If the macro NDEBUG is defined, the
assert() macros will be ignored.

Related topics

ABORT! 157

1158

atexit

Syntax

include <cstdlib> int atexit(void (*func) (void));

The function atexit() causes the function pointed to by func to be called when the
program terminates. You can make multiple calls to atexit() (at least 32, depend-
ing on your compiler) and those functions will be called in reverse order of their
establishment. The return value of atexit() is zero upon success, and non-zero on
failure.

1153 Chapter 3.7.11 on page 357
1154 Chapter 3.7.11 on page 357
1155 Chapter 3.7.11 on page 358
1156 5TTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
1157 Chapter 3.7.11 on page 356
1158 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

357

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Fundamentals for getting started

Related topics

ABORT!? - gxyT1160
1161

bsearch

Syntax

include <cstdlib> void* bsearch(const void *key, const void *base,

size_t num, size_t size, int (*compare) (const void *, const void *));

The function bsearch() performs a search within a sorted array, returning a pointer
to the element in question or NULL.

*key refers to an object that matches an item searched within *base. This array
contains num elements, each of size size.

The compare function accepts two pointers to the object within the array - which
need to first be cast to the object type being examined. The function returns -1 if
the first parameter should be before the second, 1 if the first parameter is after, or
0 if the object matches.

Related topics

QSORT! 162
1163

1159 Chapter 3.7.11 on page 356
1160 Chapter 3.7.11 on page 358
1161 5TTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
1162 Chapter 3.7.11 on page 360
1163 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3ACS2B%2B%20PROGRAMMING

358

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Functions

exit

Syntax

include <cstdlib> void exit (int exit_code);

The exit() function stops the program. exit_code is passed on to be the return
value of the program, where usually zero indicates success and non-zero indicates
an error.

Related topics

ABORT!M04 - ATEXIT!0 - sysTEM!160

1167

getenv

Syntax

include <cstdlib> char *getenv(const char *name);

The function getenv() returns environmental information associated with name,
and is very implementation dependent. NULL is returned if no information about
name is available.

Related topics

SYSTEM! 168

1169

1164 Chapter 3.7.11 on page 356
1165 Chapter 3.7.11 on page 357
1166 Chapter 3.7.11 on page 365
1167 aTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3A
1168 Chapter 3.7.11 on page 365
1169 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

359

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

longjmp

Syntax

include <csetjmp> void longjmp(jmp_buf env, int val);

The function longjmp() behaves as a cross-function goto statement: it moves the
point of execution to the record found in env, and causes setjmp() to return val.
Using longjmp() may have some side effects with variables in the setjmp() calling
function that were modified after the initial return.

longjmp() does not call destructors of any created objects. As such, it has been
superseded with the C++ exception system, which uses the throw and catch key-
words.

Related topics

SETIMP!170

1171

gsort

Syntax

include <cstdlib> void* gsort(const void *base, size_t num,

size_t size, int (*compare) (const void *, const void *));

The function gsort() performs a QUICK SORT'!”? on an array. Note that some
implementations may instead use a more efficient sorting algorithm.

*base refers to the array being sorted. This array contains num elements, each of
size size.

1170 Chapter 3.7.11 on page 362
1171 5TTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%$3AC%2B%2B%20PROGRAMMING
1172 HTTP://EN.WIKIPEDIA.ORG/WIKI/QUICKSORT

360

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikipedia.org/wiki/quicksort

Functions

The compare function accepts two pointers to the object within the array - which
need to first be cast to the object type being examined. The function returns -1 if
the first parameter should be before the second, 1 if the first parameter is after, or
0 if the object matches.

Related topics

BSEARCH!!73
1174

raise

Syntax

include <csignal> int raise (int)

The raise() function raises a signal specified by its parameter.
If unsuccessful, it returns a non-zero value.
Related topics

SIGNAL!7
1176

rand

Syntax

include <cstdlib> int rand(void);

The function RAND'!'”7() returns a pseudo-random integer between zero and
RAND_MAX. An example:

1173 Chapter 3.7.11 on page 358
1174 5TTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
1175 Chapter 3.7.11 on page 363
1176 iTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3AC$2B%2B%20PROGRAMMING
1177 Chapter 3.7.11 on page 361

361

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Fundamentals for getting started

srand(time (NULL));
for(i =0; 1 < 10; i++)

printf("Random number #%d: %d\n", i, rand());
The rand() function must be seeded before its first call with the SRAND'78() func-
tion - otherwise it will consistently return the same numbers when the program is
restarted.

Note:

The generation of random numbers is essential to CRYPTOGRAPHY?. Any
STOCHASTIC PROCESS” (generation of random numbers) simulated by a com-
puter, however, is not truly random, but pseudorandom; that is, the randomness
of a computer is not from random radioactive decay of an unstable chemical
isotope, but from predefined stochastic process, this is why this function needs
to be seeded.

a HTTP://EN.WIKIBOOKS.ORG/WIKI/CRYPTOGRAPHY
b HTTP://EN.WIKIPEDIA.ORG/WIKI/STOCHASTIC%20PROCESS

Related topics

SRAND!!7?

1180

setjmp

Syntax

include <csetjmp> int setjmp(jmp_buf env);

The function setjmp() stores the current execution status in env, and returns 0. The
execution state includes basic information about which code is being executed in
preparation for the longjmp() function call. If and when longjmp is called, setjmp()
will return the parameter provided by longjmp - however, on the second return,
variables that were modified after the initial setjmp() call may have an undefined
value.

1178 Chapter 3.7.11 on page 364
1179 Chapter 3.7.11 on page 364
1180 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

362

http://en.wikibooks.org/wiki/Cryptography
http://en.wikipedia.org/wiki/stochastic%20process
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Functions

The buffer is only valid until the calling function returns, even if it is declared
statically.

Since setjmp() does not understand constructors or destructors, it has been super-
seded with the C++ exception system, which uses the throw and catch keywords.

Note:
setjmp does not appear to be within the std namespace.

Related topics

LONGIMP!18!
1182

signal

Syntax

include <csignal> void (*signal(int sig, void (*handler) (int))) (int)

The signal() function takes two parameters - the first is the signal identifier, and
the second is a function pointer to a signal handler that takes one parameter. The
return value of signal is a function pointer to the previous handler (or SIG_ERR if
there was an error changing the signal handler).

By default, most raised signals are handled either by the handlers SIG_DFL (which
is the default signal handler that usually shuts down the program), or SIG_IGN
(which ignores the signal and continues program execution.)

When you specify a custom handler and the signal is raised, the signal handler
reverts to the default.

While the signal handlers are superseded by throw and catch, some systems may
still require you to use these functions to handle some important events. For ex-
ample, the signal SIGTERM on Unix-based systems indicates that the program
should terminate soon.

1181 Chapter 3.7.11 on page 359
1182 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

363

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Fundamentals for getting started

Note:

List of standard signals in Solaris

SIGHUP, SIGINT, SIGQUIT, SIGILL, SIGTRAP, SIGABRT, SIGEMT,
SIGFPE, SIGKILL, SIGBUS, SIGSEGYV, SIGSYS, SIGPIPE, SIGALRM,
SIGTERM, SIGUSR1, SIGUSR2, SIGCHLD, SIGPWR, SIGWINCH, SIG-
URG, SIGIO, SIGSTOP, SIGTSTP, SIGCONT, SIGTTIN, SIGTTOU,
SIGVTALRM, SIGPROF, SIGXCPU, SIGXFSZ, SIGWAITING, SIGLWP,
SIGFREEZE, SIGTHAW, SIGCANCEL, SIGLOST

Related topics

RAISE!183
1184

srand

Syntax

include <cstdlib> void srand(unsigned seed);

The function srand() is used to seed the random sequence generated by RAND!183().
For any given seed, RAND!'3() will generate a specific "random" sequence over
and over again.

srand(time (NULL));
for(i =0; 1 < 10; i++)
printf("Random number #%d: %d\n", i, rand());

Related topics

RAND!187
(Standard C Time & Date functions) TIME!!88

1183 Chapter 3.7.11 on page 361
1184 vTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3ACS2B%$2B%20PROGRAMMING
1185 Chapter 3.7.11 on page 361
1186 Chapter 3.7.11 on page 361
1187 Chapter 3.7.11 on page 361
1188 Chapter 3.7.11 on page 352

364

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Functions

1189

system

Syntax

include <cstdlib> int system(const char *command);

The system() function runs the given command by passing it to the default com-
mand interpreter.

The return value is usually zero if the command executed without errors. If com-
mand is NULL, system() will test to see if there is a command interpreter available.
Non-zero will be returned if there is a command interpreter available, zero if not.

Related topics

ExITH9 - GETENV!19!

1192

va_arg
Syntax
include <cstdarg> type va_arg(va_list argptr, type); void va_-
end(va_list argptr); void va_start(va_list argptr, last_parm);

The va_arg() macros are used to pass a variable number of arguments to a function.

1. First, you must have a call to va_start() passing a valid va_list and the
mandatory first argument of the function. This first argument can be any-

1189 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
1190 Chapter 3.7.11 on page 358
1191 Chapter 3.7.11 on page 359
1192 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

365

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3A

Fundamentals for getting started

thing; one way to use it is to have it be an integer describing the number of
parameters being passed.

2. Next, you call va_arg() passing the va_list and the type of the argument to
be returned. The return value of va_arg() is the current parameter.

3. Repeat calls to va_arg() for however many arguments you have.

4. Finally, a call to va_end() passing the va_list is necessary for proper cleanup.

int sum(int num, ...) {
int answer = 0;
va_list argptr;
va_start (argptr, num);
for(; num > 0; num—-) {
answer += va_arg(argptr, int);
}

va_end(argptr);

return(answer);

int main(void) {

int answer = sum(4, 4, 3, 2, 1);
printf("The answer is %d\n", answer);

return(0);

}
This code displays 10, which is 4+3+2+1.

Here is another example of variable argument function, which is a simple printing
function:

void my_printf(char *format, ...) {
va_list argptr;

va_start (argptr, format);

while(*format != "\0’) {
// string
if(*format == s’) {

char* s = va_arg(argptr, char *);
printf("Printing a string: %s\n", s);
}

// character

else if(*format == "¢’) {
char ¢ = (char) va_arg(argptr, int);
printf("Printing a character: %c\n", c);
break;

}

366

Debugging

// integer
else if(*format == 'd’") {
int d = va_arg(argptr, int);
printf("Printing an integer: %d\n", d);

}

*format++;

}
va_end(argptr)
}
int main(void) {
my_printf("sdc", "This is a string", 29, 'X');

return(0);

}

This code displays the following output when run:

Printing a string: This is a string
Printing an integer: 29
Printing a character: X

1193

3.8 Debugging

Programming is a complex process, and since it is done by human beings, it often
leads to errors. This makes debugging a fundamental skill of any programmer as
debugging is an intrinsic part of programming.

For historical reasons, programming errors are called bugs (after an actual bug was
found in a computer’s mechanical relay, causing it to malfunction, as documented
by Dr. Grace Hopper) and going through the code, examining it and looking for
something wrong in the implementation (bugs) and correcting them is called de-
bugging. The only help available to the programmer are the clues generated by the
observable output. Other alternatives are running automated tools to test or verify
the code or analyze the code as it runs, this is the task where a DEBUGGER!'%* can
come to your aid.

1193 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
1194 5TTP://EN.WIKIPEDIA.ORG/WIKI/DEBUGGER

367

http://en.wikibooks.org/wiki/Category%3A
http://en.wikipedia.org/wiki/debugger

Fundamentals for getting started

Debugging can be quite stressful, especially MULTI-THREADED' ! programs that

are extremely hard to debug, but it can also be a quite fun intellectual activity, kind
of like a logic puzzle. Experience in debugging will not only reduce future errors
but generate better hypothesis for what might be going wrong and ways to improve
the design.

In debugging code there are already understood sections and situations that are
prone to errors, for instance issues regarding pointer arithmetics is a well under-
stood fragility inherited from C and in debugging, as any other methodology, there
are already established techniques, procedures and practices that can make the de-
tection of bugs easier (i.e..DELTA DEBUGGING'!%%),

The field of debugging also covers establishing the security for the code (or the
system it will run under). Of course this will all depend on the design limitations
and requirements for the specific implementation.

3.8.1 Definition of bug

A bug in a program is defined by an unexpected behavior, unintended by the pro-
grammer. It happens when the behavior was not expected or intended in that pro-
gram’s code. A bug can also be described as error, flaw, mistake, FAILURE!NY or
FAULT'1%8,

Most bugs arise from programming mistakes, and a few are caused by externalities
(compiler, hardware or other systems outside of the direct responsibility of the
programmer). A program that contains a large number of bugs, and/or bugs that
seriously interfere with its functionality, is said to be buggy.

Reports detailing bugs in a program are commonly known as bug reports, fault
reports, problem reports, trouble reports, change requests, and so forth.

There are a few different kinds of bugs that can occur in a program, and it is useful
to distinguish between them in order to track them down more quickly.

Categorizations for bugs regarding their origin:

* Organizational

1195 Chapter 6.6.5 on page 609

1196 5TTP://EN.WIKIPEDIA.ORG/WIKI/DELTA%$20DEBUGGING

1197 HTTP://EN.WIKIPEDIA.ORG/WIKI/FAILURE

1198 5TTP://EN.WIKIPEDIA.ORG/WIKI/FAULT%$20%28TECHNOLOGY%29

368

http://en.wikipedia.org/wiki/Delta%20Debugging
http://en.wikipedia.org/wiki/failure
http://en.wikipedia.org/wiki/fault%20%28technology%29

Debugging

* Conceptual error. Where the code is syntactically correct, but the programmer
or designer intended it to do something else. These can occur due to differ-
ences between the documentation and the actual product.

» Unpropagated updates; e.g. programmer changes "myAdd" but forgets to
change "mySubtract", which uses the same algorithm. These errors are miti-
gated by the DO NOT REPEAT YOURSELF'!® philosophy.

* Comments out of date or incorrect: many programmers assume the comments
accurately describe the code.

* External

» COMPILER BUGS'?? or unexpected results due to lack of a default behavior
on the C++ language specifications.

* Environmental bugs on external dependencies (libraries or other software) or
Operating System bugs/undocumented behaviors.

* Hardware bugs or undocumented behaviors.

* Arithmetic bugs

* DIVISION BY ZERO!?0L,

* ARITHMETIC OVERFLOW 22 or UNDERFLOW 293,

s Loss of ARITHMETIC PRECISION'?** due to ROUNDING'?®> or NUMERI-
CALLY UNSTABLE!?% algorithms.

* Logic bugs
* INFINITE LOOP'?s and infinite RECURSION!2%8,
« OFF BY ONE ERROR'??| counting one too many or too few when looping.
Syntax bugs (TYPos!?10)
* Resource bugs
» NULL POINTER!?!! dereference.

1199 HTTP://EN.WIKIPEDIA.ORG/WIKI/DON%27T%$20REPEAT$20YOURSELF

1200 HTTP://EN.WIKIBOOKS.ORG/WIKI/%$23COMPILER%20BUGS

1201 HTTP://EN.WIKIPEDIA.ORG/WIKI/DIVIDE$20BY%202ER0%23DIVISIONS
20BY%$202ERO0%20INS20COMPUTERS20ARITHMETIC

1202 5TTP://EN.WIKIPEDIA.ORG/WIKI/ARITHMETIC$200VERFLOW

1203 HTTP://EN.WIKIPEDIA.ORG/WIKI/ARITHMETIC%20UNDERFLOW

1204 uTTP://EN.WIKIPEDIA.ORG/WIKI/ARITHMETIC%20PRECISION

1205HTTP://EN.WIKIPEDIA.ORG/WIKI/ROUNDING

1206 HTTP://EN.WIKIPEDIA.ORG/WIKI/NUMERICAL%20STABILITY

1207 HTTP://EN.WIKIPEDIA.ORG/WIKI/INFINITE%20LOOP

1208 HTTP://EN.WIKIPEDIA.ORG/WIKI/RECURSION%20%28COMPUTERS
20SCIENCES%29

1209 HTTP://EN.WIKIPEDIA.ORG/WIKI/OFF%20BY%200NE%$20ERROR

1210 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23TYPOS

1211 HTTP://EN.WIKIPEDIA.ORG/WIKI/POINTER%20%28COMPUTING%29%23THES
20NULL%20POINTER

369

http://en.wikipedia.org/wiki/Don%27t%20repeat%20yourself
http://en.wikibooks.org/wiki/%23Compiler%20Bugs
http://en.wikipedia.org/wiki/Divide%20by%20zero%23Division%20by%20zero%20in%20computer%20arithmetic
http://en.wikipedia.org/wiki/Divide%20by%20zero%23Division%20by%20zero%20in%20computer%20arithmetic
http://en.wikipedia.org/wiki/Arithmetic%20overflow
http://en.wikipedia.org/wiki/Arithmetic%20underflow
http://en.wikipedia.org/wiki/arithmetic%20precision
http://en.wikipedia.org/wiki/rounding
http://en.wikipedia.org/wiki/numerical%20stability
http://en.wikipedia.org/wiki/Infinite%20loop
http://en.wikipedia.org/wiki/Recursion%20%28computer%20science%29
http://en.wikipedia.org/wiki/Recursion%20%28computer%20science%29
http://en.wikipedia.org/wiki/Off%20by%20one%20error
http://en.wikibooks.org/wiki/%23Typos
http://en.wikipedia.org/wiki/Pointer%20%28computing%29%23The%20null%20pointer
http://en.wikipedia.org/wiki/Pointer%20%28computing%29%23The%20null%20pointer

Fundamentals for getting started

+ Using an UNINITIALIZED VARIABLE'?!2,

 Using an otherwise valid instruction on the wrong DATA TYPE'?!3 (see
PACKED DECIMAL!214/BINARY CODED DECIMAL'?1).

» ACCESS VIOLATION!?16s,

» Resource leaks, where a finite system resource such as MEMORY '?!7 or FILE
HANDLES!?!8 are exhausted by repeated allocation without release.

+ BUFFER OVERFLOW'%!?, in which a program tries to store data past the end of
allocated storage. This may or may not lead to an access violation or STORAGE
VIOLATION'??%, These bugs can form a SECURITY VULNERABILITY 22!,

* Excessive recursion which though logically valid causes STACK OVER-
FLOW 1222

* Co-processing bugs

» DEADLOCK %%,

* RACE CONDITION!?24,

« Concurrency errors in CRITICAL SECTION!?23s, MUTUAL EXCLUSION!%?6g
and other features of CONCURRENT PROCESSING!??’, TIME-OF-CHECK-TO-
TIME-OF-USE!'??8 (TOCTOU) is a form of unprotected critical section.

Common errors

Common programming errors are bugs mostly occur due to lack of experience, at-
tention or when the programmer delegates too much responsibility to the compiler,
IDE or other development tools.

1212 HTTP://EN.WIKIPEDIA.ORG/WIKI/UNINITIALIZED$20VARIABLE

1213 6TTP://EN.WIKIPEDIA.ORG/WIKI/DATA%20TYPE

1214 uTTP://EN.WIKIPEDIA.ORG/WIKI/PACKED$20DECIMAL

1215 HTTP://EN.WIKIPEDIA.ORG/WIKI/BINARY%20CODED%20DECIMAL

1216 iTTP://EN.WIKIPEDIA.ORG/WIKI/ACCESS%$20VIOLATION

1217 8TTP://EN.WIKIPEDIA.ORG/WIKI/MEMORY$20LEAK

1218 HTTP://EN.WIKIPEDIA.ORG/WIKI/HANDLE%20LEAK

1219 5TTP://EN.WIKIPEDIA.ORG/WIKI/BUFFER%$200VERFLOW

1220 5TTP://EN.WIKIPEDIA.ORG/WIKI/STORAGE$20VIOLATION

1221 HTTP://EN.WIKIPEDIA.ORG/WIKI/SOFTWARE%20BUG$23SECURITY_
VULNERABILITIES

1222 uTTP://EN.WIKIPEDIA.ORG/WIKI/STACK%$200VERFLOW

1223 HTTP://EN.WIKIPEDIA.ORG/WIKI/DEADLOCK

1224 5TTP://EN.WIKIPEDIA.ORG/WIKI/RACE%20CONDITION

1225 8TTP://EN.WIKIPEDIA.ORG/WIKI/CRITICAL%20SECTION

1226 uTTP://EN.WIKIPEDIA.ORG/WIKI/MUTUAL%20EXCLUSION

1227 5TTP://EN.WIKIPEDIA.ORG/WIKI/CONCURRENT%$20PROGRAMMINGS
23COORDINATINGS$20ACCESS%20T0%20RESOURCES

1228 HTTP://EN.WIKIPEDIA.ORG/WIKI/TIME-OF—CHECK—TO-TIME—OF—USE

370

http://en.wikipedia.org/wiki/uninitialized%20variable
http://en.wikipedia.org/wiki/data%20type
http://en.wikipedia.org/wiki/packed%20decimal
http://en.wikipedia.org/wiki/binary%20coded%20decimal
http://en.wikipedia.org/wiki/Access%20violation
http://en.wikipedia.org/wiki/memory%20leak
http://en.wikipedia.org/wiki/handle%20leak
http://en.wikipedia.org/wiki/Buffer%20overflow
http://en.wikipedia.org/wiki/storage%20violation
http://en.wikipedia.org/wiki/Software%20bug%23Security_vulnerabilities
http://en.wikipedia.org/wiki/Software%20bug%23Security_vulnerabilities
http://en.wikipedia.org/wiki/stack%20overflow
http://en.wikipedia.org/wiki/Deadlock
http://en.wikipedia.org/wiki/Race%20condition
http://en.wikipedia.org/wiki/Critical%20section
http://en.wikipedia.org/wiki/Mutual%20exclusion
http://en.wikipedia.org/wiki/Concurrent%20programming%23Coordinating%20access%20to%20resources
http://en.wikipedia.org/wiki/Concurrent%20programming%23Coordinating%20access%20to%20resources
http://en.wikipedia.org/wiki/Time-of-check-to-time-of-use

Debugging

» Usage of uninitialized variables or pointers.

* Forgetting the differences between the debug and release version of the compiled
code.

 Forgetting the break statement in a switch when fall-through was not meant

* Forgetting to check for null before accessing a member on a pointer.

// unsafe
p->doStuff();

// much better!
if (p)
{

p->doStuff();

}

This will cause access violations (segmentation faults) and cause your program
to halt unexpectedly.

Typos

Typos are a aggregation of simple to commit syntax errors (in very specific situa-
tions where the C++ language is ambivalent). The term comes from TYPOGRAPH-
ICAL ERROR'??? as in an error on the typing process.

Forgetting the ; at the end of a line. All time classic !

Use of the wrong operator, such as performing assignment instead of EQUAL-
ITY TEST'?, In simple cases often warned by the compiler.

// Example of an assignment of a number in an 1f statement when a comparison was
meant.
if (x = 143) // should be: if (x == 143)

Forgetting the brackets in a multi lined loop or if statement.

if (x==3)
cout << x;
flagt+;

1229 5aTTP://EN.WIKIPEDIA.ORG/WIKI/TYPOGRAPHICAL%20ERROR
1230 HTTP://EN.WIKIPEDIA.ORG/WIKI/%$3D%3D%23EQUALITY

371

http://en.wikipedia.org/wiki/Typographical%20error
http://en.wikipedia.org/wiki/%3D%3D%23Equality

Fundamentals for getting started

Understanding the timing

Compile-time errors

The compiler can only translate a program if the program is syntactically correct;
otherwise, the compilation fails and you will not be able to run your program.
Syntax refers to the structure of your program and the rules about that structure.

For example, in English, a sentence must begin with a capital letter and end with a
period. this sentence contains a syntax error. So does this one

For most human readers, a few syntax errors are not a significant problem, which
is why we can read the poetry of E. E. CUMMINGS!?*! without spewing error
messages.

Compilers are not so forgiving. If there is a single syntax error anywhere in your
program, the compiler will print an error message and quit, and you will not be
able to run your program.

To make matters worse, there are more syntax rules in C++ than there are in En-
glish, and the error messages you get from the compiler are often not very helpful.
During the first few weeks of your programming career, you will probably spend a
lot of time tracking down syntax errors. As you gain experience, though, you will
make fewer errors and find them faster.

Linker errors

Most linker errors are generated when using improper settings on your compil-
er/IDE, most recent compilers will report some sort of information about the er-
rors and if you keep in mind the linker function you will be able to easily address
them. Most other sort of errors are due to improper use of the language or setup
of the project files, that can lead to code collisions due to redefinitions or missing
information.

Run-time errors
The run-time error, so-called because the error does not appear until you run the
program.

Logic errors and semantics

1231 5TTP://EN.WIKIPEDIA.ORG/WIKI/E._E._CUMMINGS

372

http://en.wikipedia.org/wiki/E._E._Cummings

Debugging

The third type of error is the logical or semantic error. If there is a logical error in
your program, it will compile and run successfully, in the sense that the computer
will not generate any error messages, but it will not do the right thing. It will do
something else. Specifically, it will do what you told it to do.

The problem is that the program you wrote is not the program you wanted to write.
The meaning of the program (its semantics) is wrong. Identifying logical errors
can be tricky, since it requires you to work backwards by looking at the output of
the program and trying to figure out what it is doing.

Compiler Bugs

As we have seen earlier, bugs are common to every programming task. Creating a
compiler is no different, in fact creating a C++ compiler is an extremely complex
programming task, more so since the language even if stable is always evolving
and not only on the standard.

The liberty C++ permits enables programmers to push the envelop on what it is
possible and expected and to an increase on the level of code complexity due to
abstractions. This has lead to compilers to attempt to automating several low level
actions to ease the burden to the programmer, like code optimization, higher level
of interaction and control over the compiler components and the inclusion of very
low level configuration possibilities. All these features increase the number of
ways a compiler can end up generating incorrect (or sometimes technically cor-
rect but unexpected) results. The programmer should always keep in mind that
compiler bugs are possible but extremely rare.

One of the most common bugs attributed to the compiler result from a badly con-
figured optimization option (or an inability to understand them). If you suspect a
compiler error turn optimizations off fist.

3.8.2 Experimental debugging

One of the most important skills you should acquire from working with this book
is debugging. Although it can be frustrating, debugging is one of the most intel-
lectually rich, challenging, and interesting parts of programming.

In some ways debugging is like detective work. You are confronted with clues and
you have to infer the processes and events that lead to the results you see.

Debugging is also like an experimental science. Once you have an idea what is
going wrong, you modify your program and try again. If your hypothesis was

373

Fundamentals for getting started

correct, then you can predict the result of the modification, and you take a step
closer to a working program. If your hypothesis was wrong, you have to come
up with a new one. As SHERLOCK HOLMES'?3? pointed out, "When you have
eliminated the impossible, whatever remains, however improbable, must be the
truth." (from A. CONAN DOYLE’s!?*3 The Sign of Four).

For some people, programming and debugging are the same thing. That is, pro-
gramming is the process of gradually debugging a program until it does what you
want. The idea is that you should always start with a working program that does
something, and make small modifications, debugging them as you go, so that you
always have a working program.

For example, LINUX'?** is an operating system that contains thousands
of lines of code, but it started out as a simple program LINUS TOR-
VALDS!'?% used to explore the Intel 80386 chip. According to Larry Green-
field, "One of Linus’s earlier projects was a program that would switch
between printing AAAA and BBBB. This later evolved to Linux" (from
[ftp://sunsite.unc.edu//pub/Linux/docs/LDP/users-guide/!INDEX.html The Linux
Users’” Guide Beta Version 1], Page 10).

Endurance/Stress test

This sort of test is done to detect not only bugs but to mark opportunities for opti-
mization. An endurance test is performed by analyzing multiple times the same
actions as to gather statistical significant data. Note that this type of test is re-
stricted to the selected set of actions and the projected variations, during the test,
in regards to input processing.

Some automation is possible in this type of test, even dealing with simulating in-
teraction with the users interface.

A stress test is a subtle variation of the endurance, the purpose is to determine and
even establish the limits of the program as it processes inputs. Again the gathered
metrics will only have significance in regards to the actions performed.

This tests and any variations will therefore depend on how they are designed and
are extremely goal oriented, in the sense that they will only provide correct an-
swerer to correctly asked questions. Reliance on results will have to be conser-

1232 HTTP://EN.WIKIPEDIA.ORG/WIKI/SHERLOCK_HOLMES

1233 gTTP://EN.WIKIPEDIA.ORG/WIKI/A. CONAN_DOYLE

1234 uTTP://EN.WIKIPEDIA.ORG/WIKI/LINUX

1235 HTTP://EN.WIKIPEDIA.ORG/WIKI/LINUS_BENEDICT_TORVALDS

374

http://en.wikipedia.org/wiki/Sherlock_Holmes
http://en.wikipedia.org/wiki/A._Conan_Doyle
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Linus_Benedict_Torvalds

Debugging

vative, as the tester must acknowledge that some events may be absent from the
scrutiny. This characteristic makes them more useful for optimization, since bot-
tleneck in resource usage will provide a better starting point for analysis than for
instance a crash or a deadlock.

3.8.3 Tracing

The technique of TRACING!23® evolved directly from the hardware to the SOFT-
WARE ENGINEERING'?*’ field. In field of hardware it consists on sampling the
signals of an given circuit to verify the consistency of the hardware implemented
logic/algorithm, as such earlier programmers adopted the term and function to
trace the execution of the software with one particularly distinction, tracing should
not be performed or enabled in public release versions.

There are several ways to execute the tracing, by simply include into the code
report faculties that would produce the output of its state at run time (similarly
to the errors and warnings the compiler and linker generates), one can even use
the compiler and linker to report special messages. Another way is to interact
directly to a debugger in a specified debug mode the debugger to interact with the
running code. One can even integrate full fledged LOGGING'?® systems that can
record that same information in volume, and in an organized fashion, it all depends
on the levels of complexity and detail required for the pertinent functionality one
requires.

Event logging versus tracing

Logging can be an objective of a final product, but rarely covering the direct in-
ternal functioning of the main program, providing debug information useful for
diagnostics and AUDITING'?*. The debug information is typically only of interest
to the programmers for debugging purposes, and additionally, depending on the
type and detail of information contained in a trace log, by experienced SYSTEM
ADMINISTRATOR?*%s or TECHNICAL SUPPORT!?*! personnel to diagnose com-
mon problems with software. Tracing is a CROSS-CUTTING CONCERN!?42,

1236 HTTP://EN.WIKIPEDIA.ORG/WIKI/TRACING

1237 5TTP://EN.WIKIPEDIA.ORG/WIKI/SOFTWARE%20ENGINEERING
1238 5TTP://EN.WIKIPEDIA.ORG/WIKI/DATA%20LOGGING

1239 HTTP://EN.WIKIPEDIA.ORG/WIKI/AUDITING

1240 5iTTP://EN.WIKIPEDIA.ORG/WIKI/SYSTEM%$20ADMINISTRATOR
1241 aTTP://EN.WIKIPEDIA.ORG/WIKI/TECHNICAL%$20SUPPORT
1242 HTTP://EN.WIKIPEDIA.ORG/WIKI/CROSS—CUTTING%$20CONCERN

375

http://en.wikipedia.org/wiki/Tracing
http://en.wikipedia.org/wiki/software%20engineering
http://en.wikipedia.org/wiki/Data%20logging
http://en.wikipedia.org/wiki/auditing
http://en.wikipedia.org/wiki/system%20administrator
http://en.wikipedia.org/wiki/technical%20support
http://en.wikipedia.org/wiki/cross-cutting%20concern

Fundamentals for getting started

3.8.4 Debugger

Normally, there is no way to see the source code of a program while the program
is running. This inability to "see under the covers" while the program is executing
is a real handicap when you are debugging a program. The most primitive way of
looking under the covers is to insert (depending on your programming language)
print or display, or exhibit, or echo statements into your code, to display informa-
tion about what is happening. But finding the location of a problem this way can
be a slow, painful process. This is where a debugger comes in.

If you want to use a debugger and have never used one before, then you have two
tasks ahead of you. Your first task is to learn basic debugger concepts and vocabu-
lary. The second is to learn how to use the particular debugger that is available to
you. The documentation for your debugger will help you with the second task, but
it may not help with the first. In this section we will help you with the first task
by providing an introduction to basic debugger concepts and terminology in regard
to the language at hand. Once you become familiar with these basics, then your
debugger’s documentation/use should make more sense to you. Most software
debugging is a slow manual process that does not scale well.

A debugger is a piece of software that enables you to run your program in debug-
ging mode rather than in normal mode. Running a program in debugging mode
allows you to look under the covers while your program is running. Specifically, a
debugger enables you:

1. to see the source code of each statement in your program as that statement
executes.

2. to suspend or pause execution of the program at places of your choosing.

3. while the program is paused, to issue various commands in order to examine
and change the internal state of the program.

4. to resume (or continue) execution.

It is worth noting that there is a generally accepted set of debugger terms and con-
cepts. Most debuggers are evolutionary descendants of a Unix console debugger
for C named dbx, so they share concepts and terminology derived from dbx. Many
visual debuggers are simply graphic wrappers around a console debugger, so vi-
sual debuggers share the same heritage, and the same set of concepts and terms.
Programmers keep running into the same types of bugs that others have encoun-
tered (even across different languages by reusing code); one common example is
buffer overruns.

Debuggers come in two flavors: console-mode (or simply console) debuggers and
visual or graphical debuggers.

376

Debugging

Console debuggers are often a part of the language itself, or included in the lan-
guage’s standard libraries. The user interface to a console debugger is the keyboard
and a console-mode window (Microsoft Windows users know this as a "DOS con-
sole"). When a program is executing under a console debugger, the lines of source
code stream past the console window as they are executed. A typical debugger has
many ways to specify the exact places in the program where you want execution to
pause. When the debugger pauses, it displays a special debugger prompt that indi-
cates that the debugger is waiting for keyboard input. The user types in commands
that tell the debugger what to do next. Typical commands would be to display the
value of certain program variables, or to continue execution of the program.

Visual debuggers are typically available as one component of a multi-featured
IDE (integrated development environment). A powerful and easy-to-use visual
debugger is an important selling-point for an IDE. The user interface of a visual
debugger typically looks like the interface of a graphical text editor. The source
code is displayed on the screen, in much the same way that it is displayed when
you are editing it. The debugger has its own toolbar or menu with specialized
debugger features. And it may have a special debugger margin an area to the left
of the source code, used for displaying symbols for breakpoints, the current-line
pointer, and so on. As the debugger runs, some kind of visual pointer (perhaps a
yellow arrow) will move down this debugger margin, indicating which statement
has just finished executing, or which statement is about to be executed. Features
of the debugger can be invoked by mouse-clicks on areas of the source code, the
debugger margin, or the debugger menus.

How do you start the debugger?

How you start the debugger (or put your program into debugging mode) depends
on your programming language and on the kind of debugger that you are using.
If you are using a console debugger, then depending on the facilities offered by
your particular debugger you may have a choice of several different ways to start
the debugger. One way may be to add an argument (e.g. -d) to the command
line that starts the program running. If you do this, then the program will be in
debugging mode from the moment it starts running. A second way may be to start
the debugger, passing it the name of your program as an argument. For example,
if your debugger’s name is pdb and your program’s name is myProgram, then you
might start executing your program by entering pdb myProgram at the command
prompt. A third way may be to insert statements into the source code of your
program statements that put your program into debugging mode. If you do this,
when you start your program running, it will execute normally until it reaches the

377

Fundamentals for getting started

debugging statements. When those statements execute, they put your program into
debugging mode, and from that point on you will be in debugging mode.

If you are working with an IDE that provides a visual debugger, then there is
usually a "debug" button or menu item on your toolbar. Clicking it will start your
program running in debug mode. As the debugger runs, some kind of visual pointer
will move down the debugger margin, indicating what statement is executing.

Tracing your program

To explore the features offered by debuggers, let us begin by imagining that you
have a simple debugger to work with. This debugger is very primitive, with an
extremely limited feature set. But as a purely hypothetical debugger, it has one
major advantage over all real debuggers: simply wishing for a new feature causes
that feature magically to be added to the debugger’s feature set!

At the outset, your debugger has very few capabilities. Once you start the de-
bugger, it will show you the code for one statement in your program, execute the
statement, and then pause. When the debugger is paused, you can tell it to do only
two things:

1. the command print <aVariableName> will print the value of a variable, and
2. the command step will execute the next statement and then pause again.

If the debugger is a console debugger, you must type these commands at the de-
bugger prompt. If the debugger is a visual debugger, you can just click a Next
button, or type a variable name into a special Show Variable window. And that is
all the capabilities that the debugger has.

Although such a simple debugger is moderately useful, it is also very clumsy.
Using it, you very quickly find yourself wishing for more control over where the
debugger pauses, and for a larger set of commands that you can execute when the
debugger is paused.

Controlling where the debugger pauses

What you desire most is for the debugger not to pause after every statement. Most
programs do a lot of setup work before they get to the area where the real problems
lie, and you are tired of having to step through each of those setup statements one
statement at a time to get to the real trouble zone. In short, you wish you could set
breakpoints. A breakpoint is an object that you can attach to a line of code. The

378

Debugging

debugger runs without pausing until it encounters a line with a breakpoint attached
to it. The breakpoint tells the debugger to pause, so the debugger pauses.

With breakpoint functionality added to the debugger (wishing for it has made it
appear!), you can now set a breakpoint at the beginning of the section of the code
where the problem lies, then start up the debugger. It will run the program until
it reaches the breakpoint. Then it will pause, and you can start examining the
situation with your print command.

But when you’re finished using the print command, you are back to where you
were before single-stepping through the remainder of the program with the step
command. You begin to wish for an alternative to the step command for a run
to next breakpoint command. With such a command, you can set multiple break-
points in the program. Then, when you are paused at a breakpoint, you have the
option of single-stepping through the code with the step command, or running to
the next breakpoint with the run to next breakpoint command.

With our hypothetical debugger, wishing makes it so! Now you have on-the-fly
control over where the program will pause next. You're starting to get some real
control over the debugging process!

The introduction of the run to next breakpoint command starts you thinking. What
other useful alternatives to the step command can you think of?

Often you find yourself paused at a place in the code where you know that the next
15 statements contain no problems. Rather than stepping through them one-by-
one, you wish you could to tell the debugger something like step 15 and it would
execute the next 15 statements before pausing.

When you are working your way through a program, you often come to a statement
that makes a call to a subroutine. In such cases, the step command is in effect a
step into command. That is, it drops down into the subroutine, and allows you to
trace the execution of the statements inside the subroutine, one by one.

However, in many cases you know that there is no problem in the subroutine. In
such cases, you want to tell the debugger to step over the subroutine call that is, to
run the subroutine without pausing at any of the statements inside the subroutine.
The step over command is a sort of step (but do not show me any of the messy
details) command. (In some debuggers, the step over command is called next.)

When you use step or step into to drop down into a subroutine, it sometimes hap-
pens that you get to a point where there is nothing more in the subroutine that is
of interest. You wish to be able to tell the debugger to step out or run until subrou-
tine end, which would cause it to run without pause until it encountered a return
statement (or an implicit return of control to its caller) and then to pause.

379

Fundamentals for getting started

And you realize that the step over and step into commands might be useful with
loops as well as with subroutines. When you encounter a looping construct (a for
statement or a do while statement, for instance) it would be handy to be able to
choose to step into or to step over the execution of the loop.

Almost always there comes a time when there is nothing more to be learned by
stepping through the code. You wish for a command to tell the debugger to con-
tinue or simply run to the end of the program.

Even with all of these commands, if you are using a console debugger you find that
you are still using the step command quite a bit, and you are getting tired of typing
the word step. You wish that if you wanted to repeat a command, you could just
hit the ENTER key at the debugger prompt, and the debugger would repeat the last
command that you entered at the debugger prompt. Lo, wishing makes it so!

This is such a productivity feature, that you start thinking about other features that
a console debugger might provide to improve its ease-of-use. You notice that you
often need to print multiple variables, and you often want to print the same set of
variables over and over again. You wish that you had some way to create a macro
or alias for a set of commands. You might like, for example, to define a macro
with an alias of foo the macro would consist of a set of debugger print statements.
Once foo is defined, then entering foo at the debugger prompt runs the statements
in the macro, just as if you had entered them at the debugger prompt.

Persistence

Eventually the end of the workday arrives. Your debugging work is not yet fin-
ished. You log off of your computer and go home for some well-earned rest. The
next morning, you arrive at work bright-eyed and bushy-tailed and ready to con-
tinue debugging. You boot your computer, fire up the debugger, and find that all
of the aliases, breakpoints, and watchpoints that you defined the previous day are
gone! And now you have a really big wish for the debugger. You want it to have
some persistence. You want it to be able to remember this stuff, so you do not have
to re-create it every time you start a new debugger session.

You can define aliases at the debugger prompt, which is great for aliases that you
need to invent for special occasions. But often, there is a set of aliases that you need
in every debugging session. That is, you’d like to be able to save alias definitions,
and automatically re-create the aliases when you start any debugging session.

380

Debugging

Most debuggers allow you to create a file that contains alias definitions. That file
is given a special name. When the debugger starts, it looks for the file with that
special name, and automatically loads those alias definitions.

Examining the call stack

When you are stepping through a program, one of the questions that you may
have is "How did I get to this point in the code?" The answer to this question lies
in the call stack (also known as the execution stack) of the current statement. The
call stack is a list of the functions that were entered to get you to your current
statement. For example, if the main program module is MAIN, and MAIN calls
function A, and function A calls function B, and function B calls function C, and
function C contains statement S, then the execution stack to statement S is:

MAIN
A
B
C
statement S

In many interpreted languages, if your program crashes, the interpreter will print
the call stack for you as a stack trace.

Conditional Breakpoints

Some debuggers allow you to attach a set of conditions to breakpoints. You may
be able to specify that the debugger should pause at the breakpoint only if a certain
condition is met (for example VariableX > 100) or if the value of a certain variable
has changed since the last time the breakpoint was encountered. You may be able,
for example, to set the breakpoint to break when a certain counter reaches a value
of (say) 100. This would allow a loop to run 100 times before breaking.

A breakpoint that has conditions attached to it is called a conditional breakpoint. A
breakpoint that has no conditions attached to it is called an unconditional or simple
breakpoint. In some debuggers, all breakpoints have conditions attached to them,
and "unconditional” breakpoints are simply breakpoints with a condition of frue.

381

Fundamentals for getting started

Watchpoints

Some debuggers support a kind of breakpoint called a watch or a watchpoint. A
watchpoint is a conditional breakpoint that is not associated with any particular
line, but with a variable. A watchpoint is useful when you would like to pause
whenever a certain variable’s value changes. Searching through your code, looking
for every line that changes the variable’s value, and setting breakpoints on those
lines, would be both laborious and error-prone. Watchpoints allow you to avoid
all of that by associating a breakpoint with a variable rather than a point in the
source code. Once a watchpoint has been defined, then it "watches" its variable.
Whenever the value of the variable changes, the code pauses and you will probably
get a message telling you why execution has paused. Then you can look at where
you are in the code and what the value of the variable is.

Setting Breakpoints in a Visual Debugger

How you create (or "set" or "insert") a breakpoint will depend on your particular
debugger, and especially on whether it is a visual debugger or a console-mode
debugger. In this section we discuss how you typically set breakpoints in a visual
debugger, and in the next section we will discuss how it is done in a console-mode
debugger.

Visual debuggers typically let you scroll through the code until you find a point
where you want to set a breakpoint. You place the cursor on the line of where
you want to insert the breakpoint and then press a special hotkey or click a menu
item or icon on the debugger toolbar. If an icon is available, it may be something
that suggests the act of watching for instance it may look like a pair of glasses
or binoculars. At that point, a special dialog may pop up allowing you to specify
whether the breakpoint is conditional or unconditional, and (if it is conditional)
allowing you to specify the conditions associated with the breakpoint.

Once the breakpoint has been placed, many visual debuggers place a red dot or
a red octagon (similar to a American/European traffic "STOP" SIGN!?*3) in the
margin to indicate there is a breakpoint at that point in the code.

1243 uTTP://EN.WIKIPEDIA.ORG/WIKI/STOP_SIGN

382

http://en.wikipedia.org/wiki/Stop_sign

Chapter Summary

3.8.5 Other runtime analyzers

3.9

Chapter Summary

. THE CODE'** - includes list of recognized keywords'**.

a) FILE ORGANIZATION!240

b) STATEMENTS!?#’

¢) CODING STYLE CONVENTIONS 248
d) DOCUMENTATION!?#

¢) SCOPE AND NAMESPACES'?0

. COMPILER!?!

a) PREPROCESSOR!?? - includes the STANDARD HEADERS/?%3,
b) LINKER!?*

. VARIABLES AND STORAGE'?> - locality, scope and visibility, including

SOURCE EXAMPLES!2,
a) TYpe!®’

. OPERATORS'?® - precedence order and composition, , assignment,

sizeof, new, delete, [] (arrays'®?), * (pointers'?®?) and & (references).
a) LOGICAL OPERATORS'20! - the && (and), Il (or), and ! (not).
b) CONDITIONAL OPERATOR!?%? - the ?:

. TYPE CASTING'?% - Automatic, explicit and advanced type casts.

1244 Chapter 3 on page 41

1245 Chapter 3.1.3 on page 46
1246 Chapter 3.1.5 on page 49
1247 Chapter 3.1.6 on page 56
1248 Chapter 3.1.7 on page 59
1249 Chapter 3.1.8 on page 74
1250 Chapter 3.1.9 on page 78
1251 Chapter 3.1.10 on page 87
1252 Chapter 3.2.2 on page 98
1253 Chapter 3.2.3 on page 100
1254 Chapter 3.2.3 on page 117
1255 Chapter 3.2.4 on page 121

1256 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FCODE%

2FVARIABLES$2FEXAMPLES

1257 Chapter 3.3.3 on page 138
1258 Chapter 3.3.4 on page 163

1259 Chapter 3.4.10 on page 178
1260 Chapter 3.4.10 on page 184
1261 Chapter 3.4.12 on page 200
1262 Chapter 3.4.13 on page 203
1263 Chapter 3.4.14 on page 204

383

http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FVariables%2FExamples
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FVariables%2FExamples

Fundamentals for getting started

6. FLow OF CONTROL!?%* - Conditionals (if, if-else, switch), loop iterations
(while, do-while, for) and goto.

7. FUNCTIONS'?% - Introduction (including main), argument passing, return-
ing values, recursive functions, pointers to functions and function overload-
ing.

a) STANDARD C LIBRARY'?%® - 1/0'2%7 STRING AND CHARAC-
TER!2%8 MATH!2?, TIME AND DATE'?0, MEMORY!?"! and OTHER
STANDARD C FUNCTIONS 272

8. DEBUGGING'?® - Finding, fixing, preventing bugs and using debugging
tools.

21274

21275

1264 Chapter 3.5.2 on page 213

1265 Chapter 3.6.3 on page 229

1266 Chapter 3.7.10 on page 264

1267 Chapter 3.7.11 on page 273

1268 Chapter 3.7.11 on page 303

1269 Chapter 3.7.11 on page 330

1270 Chapter 3.7.11 on page 345

1271 5TTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FCODES
2FSTANDARD%20C%20LIBRARY%S2FMEMORY %20

1272 Chapter 3.7.11 on page 356

1273 Chapter 3.7.11 on page 367

1274 uTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

1275 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

384

http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FStandard%20C%20Library%2FMemory%20
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FStandard%20C%20Library%2FMemory%20
http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

4 Object Oriented Programming

4.1 Structures

A simple implementation of the object paradigm from (OOP) that holds collections
of data records (also known as compound values or set). A struct is like a class
except for the default access (class has default access of private, struct has default
access of public). C++ also guarantees that a struct that only contains C types is
equivalent to the same C struct thus allowing access to legacy C functions, it can
(but may not) also have constructors (and must have them, if a templated class is
used inside a st ruct), as with Classes the compiler implicitly-declares a destructor
if the struct doesn’t have a user-declared destructor. Structures will also allow
OPERATOR OVERLOADINGI.

A struct is defined by:

struct myStructType /+: inheritances =/ {
public:

// public members

protected:

// protected members

private:

// private members

} myStructName;

Because it is not supported in C, it is uncommon to have structs in C++ using in-
heritances even though they are supported just like in classes. The more distinctive
aspect is that structs can have two identities one is in reference to the type and
another to the specific object. The public access label can sometimes be ignored
since the default state of struct for member functions and fields is public.

An object of type myStructType (case-sensitive) is declared using:

myStructType objl;

1 Chapter 4.6 on page 438

385

Object Oriented Programming

Note:

From a technical viewpoint, a struct and a class are practically the same thing.
A struct can be used anywhere a class can be and vice-versa, the only technical
difference is that class members default to private and struct members default
to public. Structs can be made to behave like classes simply by putting in the
keyword private at the beginning of the struct. Other than that it is mostly a
difference in convention.

Why should you Use Structs, Not Classes?

Older programmer languages used a similar type called Record (i.e.. COBOL,
FORTRAN) this was implemented in C as the struct keyword. And so C++ uses
structs to comply with this C’s heritage (the code and the programmers). Structs
are simpler to be managed by the programmer and the compiler. One should use a
struct for POD (PLAINOLDDATA?) types that have no methods and whose data
members are all public. struct may be used more efficiently in situations that
default to public inheritance (which is the most common kind) and where public
access (which is what you want if you list the public interface first) is the intended
effect. Using a class, you typically have to insert the keyword public in two
places, for no real advantage. In the end it’s just a matter of convention, which
programmers should be able to get used to.

Point objects

As a simple example of a compound structure, consider the concept of a math-
ematical point. At one level, a point is two numbers (coordinates) that we treat
collectively as a single object. In mathematical notation, points are often written
in parentheses, with a comma separating the coordinates. For example, (0, 0) in-
dicates the origin, and (x, y) indicates the point x units to the right and y units up
from the origin.

The natural way to represent a point is using two doubles. The structure or st ruct
is one of the solutions to group these two values into a compound object.

// A struct definition:
struct Point
double x, y; };

2 HTTP://EN.WIKIBOOKS.ORG/WIKI/WIKI$3APLAINOLDDATA

386

http://en.wikibooks.org/wiki/wiki%3APlainOldData

Structures

This definition indicates that this structure contains two members, named x and y.
These members are also called instance variables, for reasons I will explain a little
later.

It is a common error to leave off the semi-colon at the end of a structure definition.
It might seem odd to put a semi-colon after a squiggly-brace, but you’ll get used
to it. This syntax is in place to allow the programmer the facility to create an
instance[s] of the struct when it is defined.

Once you have defined the new structure, you can create variables with that type:

struct Point blank;
blank.x 3.0;
blank.y = 4.0;

The first line is a conventional variable declaration: blank has type Point. The
next two lines initialize the instance variables of the structure. The "dot nota-
tion" used here is similar to the syntax for invoking a function on an object, as
in fruit.length (). Of course, one difference is that function names are always
followed by an argument list, even if it is empty.

As usual, the name of the variable blank appears outside the box and its value
appears inside the box. In this case, that value is a compound object with two
named instance variables.

Accessing instance variables

You can read the values of an instance variable using the same syntax we used to
write them:

int x = blank.x;

The expression blank.x means "go to the object named blank and get the value of
the member named x." In this case we assign that value to a local variable named x.
Notice that there is no conflict between the local variable named x and the instance
variable named x. The purpose of dot notation is to identify which variable you
are referring to unambiguously.

You can use dot notation as part of any expression, so the following are legal.

cout << blank.x << ", " << blank.y << endl;
double distance = sqgrt (blank.x * blank.x + blank.y * blank.y);

The first line outputs 3, 4; the second line calculates the value 5.

387

Object Oriented Programming

Operations on structures

Most of the operators we have been using on other types, like mathematical opera-
tors (+, %, etc.) and comparison operators (==, >, etc.), do not work on structures.
Actually, it is possible to define the meaning of these operators for the new type,
but we won’t do that in this book.

On the other hand, the assignment operator does work for structures. It can be
used in two ways: to initialize the instance variables of a structure or to copy the
instance variables from one structure to another. An initialization looks like this:

Point blank = { 3.0, 4.0 };

The values in curly brackets get assigned to the instance variables of the structure
one by one, in order. So in this case, x gets the first value and y gets the second.

Unfortunately, this syntax can be used only in an initialization, not in an assign-

ment statement. Therefore, the following is illegal.

Point blank;
blank = { 3.0, 4.0 }; // WRONG !!

You might wonder why this perfectly reasonable statement should be illegal, and
there is no good answer. (Note, however, that a similar syntax is legal in C since
1999, and is under consideration for possible inclusion in C++ in the future.)

On the other hand, it is legal to assign one structure to another. For example:

Point pl = { 3.0, 4.0 };
Point p2 = pl;
cout << p2.x << ", " << p2.y << endl;

The output of this program is 3, 4.

Structures as return types

You can write functions that return structures. For example, findCenter takes a
Rectangle as an argument and returns a Point that contains the coordinates of the
center of the Rectangle:

Point findCenter (Rectangle& box)

{
double x = box.corner.x + box.width/2;
double y = box.corner.y + box.height/2;
Point result = {x, v};

388

Structures

return result;

}

To call this function, we have to pass a box as an argument (notice that it is being
passed by reference), and assign the return value to a Point variable:

Rectangle box = { {0.0, 0.0}, 100, 200 };
Point center = findCenter (box);
printPoint (center);

The output of this program is (50, 100).

Passing other types by reference

It’s not just structures that can be passed by reference. All the other types we’ve
seen can, too. For example, to swap two integers, we could write something like:

void swap (int& x, int& y)
{

int temp = x;

X =Y

y temp;
}

We would call this function in the usual way:

int 1 =7;

int j = 9;

swap (i, 3);

cout << i << j << endl;

The output of this program is 97. Draw a stack diagram for this program to con-
vince yourself this is true. If the parameters x and y were declared as regular
parameters (without the &s), swap would not work. It would modify x and y and
have no effect on i and j.

When people start passing things like integers by reference, they often try to use
an expression as a reference argument. For example:

int 1 = 7;

int j = 9;

swap (i, j+1); // WRONG!!

This is not legal because the expression j+1 is not a variable — it does not occupy
a location that the reference can refer to. It is a little tricky to figure out exactly
what kinds of expressions can be passed by reference. For now, a good rule of
thumb is that reference arguments have to be variables.

389

Object Oriented Programming

Pointers and structures

Structures can also be pointed by pointers and store pointers. The rules are the
same as for any fundamental data type. The pointer must be declared as a pointer
to the structure.

4.1.1 Nesting structures

Structures can also be nested so that a valid element of a structure can also be
another structure.

//of course you have to define the Point struct first!

struct Rectangle {
Point upper_left;
Point upper_right;
Point lower_left;
Point lower_right;
bi

4.1.2 this

The this keyword is an implicitly created pointer that is only accessible within
nonstatic member functions of a struct (or a union or class) and points to the object
for which the member function is called. This pointer is not available in static
member functions. This will be restated again on when introducing unions a more
in depth analysis is provided in the SECTION ABOUT CLASSES?.

4.2 union

The union keyword is used to define a union type.

Syntax

union union-name {
public-members-1list;

3 Chapter 4.3.4 on page 405

390

union

private:

private-members-list;

} object-list;
Union is similar to struct (more that class), unions differ in the aspect that the
fields of a union share the same position in memory and are by default public
rather than private. The size of the union is the size of its largest field (or larger
if alignment so requires, for example on a SPARC machine a union contains a
double and a char [17] so its size is likely to be 24 because it needs 64-bit
alignment). Unions cannot have a destructor.

What is the point of this? Unions provide multiple ways of viewing the same
memory location, allowing for more efficient use of memory. Most of the uses of
unions are covered by object-oriented features of C++, so it is more common in
C. However, sometimes it is convenient to avoid the formalities of object-oriented
programming when performance is important or when one knows that the item in
question will not be extended.

union Data {
int i;
char c;

bi

4.2.1 Writing to Different Bytes

Unions are very useful for low-level programming tasks that involve writing to the
same memory area but at different portions of the allocated memory space, for
instance:

union item {
// The item is 16-bits
short theltem;
// In little-endian lo accesses the low 8-bits -
// hi, the upper 8-bits
struct { char lo; char hi; } portions;
i

Note:

A name for the struct declared in item can be omitted because it is not used. All
that needs to be explicitly named is the parts that we intend to access, namely
the instance itself, portions.

item tItem;

391

Object Oriented Programming

tItem.theItem = 0xBEAD;
tItem.portions.lo = 0xEF; // The item now equals OxBEEF

Using this union we can modify the low-order or high-order bytes of theltem with-
out disturbing any other bytes.

4.2.2 Example in Practice: SDL Events

One real-life example of unions is the event system of SDL, a graphics library in
C. In graphical programming, an event is an action triggered by the user, such as
a mouse move or keyboard press. One of the SDL’s responsibilities is to handle
events and provide a mechanism for the programmer to listen for and react to them.

Note:

The following section deals with a library in C rather than C++, so some fea-
tures, such as methods of objects, are not used here. However C++ is more-or-
less a superset of C, so you can understand the code with the knowledge you
have gained so far.

// primary event structure in SDL

typedef union {
Uint8 type;
SDL_ActiveEvent active;
SDL_KeyboardEvent key;
SDL_MouseMotionEvent motion;
SDL_MouseButtonEvent button;
SDL_JoyAxisEvent jaxis;
SDL_JoyBallEvent jball;
SDL_JoyHatEvent jhat;
SDL_JoyButtonEvent jbutton;
SDL_ResizeEvent resize;
SDL_ExposeEvent expose;
SDL_QuitEvent quit;
SDL_UserEvent user;
SDL_SysWMEvent syswm;

} SDL_Event;

Each of the types other than Uint8 (an 8-bit unsigned integer) is a struct with
details for that particular event.
// SDL_MouseButtonEvent
typedef struct{
Uint8 type;

Uint8 button;
Uint8 state;

392

union

Uintlé x, y;
} SDL_MouseButtonEvent;

When the programmer receives an event from SDL, he first checks the type value.
This tells him what kind of an event it is. Based on this value, he either ignores the
event or gets more information by getting the appropriate part of the union.

For example, if the programmer received an event in SDI_Event ev, he could
react to mouse clicks with the following code.

if (ev.type == SDL_MOUSEBUTTONUP && ev.button.button == SDL_BUTTON_RIGHT) {

cout << "You have right-clicked at coordinates (" << ev.button.x << ", "
<< ev.button.y << ")." << endl;
}
Note:

As each of the SDL._SomethingEvent structs contain a Uint8 type entry, it is
safe to access both Uint8 type and the corresponding sub-struct together.

While identical functionality can be provided with a struct rather than a union,
the union is far more space efficient; the struct would use memory for each of the
different event types, whereas the union only uses memory for one. As only one
entry has meaning per instance, it is reasonable to use a union in this case.

This scheme could also be constructed with polymorphism and inheritance features
of object-oriented C++, however the setup would be involved and less efficient than
this one. Use of unions loses type safety, however it gains in performance.

4.2.3 this

The this keyword is a implicitly created pointer that is only accessible within non-
static member functions of a union (or a struct or class) and points to the object
for which the member function is called. The this pointer is not available in static
member functions. This will be restated again on when introducing unions a more
in depth analysis is provided in the SECTION ABOUT CLASSES”.

5

4 Chapter 4.3.4 on page 405
5 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

393

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Object Oriented Programming

4.3 Classes

Classes are used to create user defined types. An instance of a class is called an
object and programs can contain any number of classes. As with other types, object
types are case-sensitive.

Classes provide encapsulation as defined in the Object Oriented Programming
(OOP) paradigm. A class can have both data members and functions members
associated with it. Unlike the built-in types, the class can contain several variables
and functions, those are called members.

Classes also provide flexibility in the "DIVIDE AND CONQUER®" scheme in pro-
gram writing. In other words, one programmer can write a class and guarantee
an interface. Another programmer can write the main program with that expected
interface. The two pieces are put together and compiled for usage.

Note:

From a technical viewpoint, a struct and a class are practically the same thing.
A struct can be used anywhere a class can be and vice-versa, the only technical
difference is that class members default to private and struct members default
to public. Structs can be made to behave like classes simply by putting in the
keyword private at the beginning of the struct. Other than that it is mostly a
difference in convention.

The C++ standard does not have a definition for method. When discussing with
users of other languages, the use of the word method to represent a member
function can at times become confusing or raise problems to interpretation, like
referring to a static member function as a static method. It is even common for
some C++ programmers to use the term method to refer specifically to a virtual
member functions in an informal context.

4.3.1 Declaration

A class is defined by:

class MyClass

{

/* public, protected and private
variables, constants, and functions =/
bi

6 HTTP://EN.WIKIPEDIA.ORG/WIKI/DIVIDE%20AND%$20CONQUER

394

http://en.wikipedia.org/wiki/divide%20and%20conquer

Classes

An object of type MyClass (case-sensitive) is declared using:

MyClass object;

* by default, all class members are initially private.

» keywords public and protected allow access to class members.

* classes contain not only data members, but also functions to manipulate that
data.

* aclass is used as the basic building block of OOP (this is a distinction of con-
vention, not of language-enforced semantics).

A class can be created

* before main() is called.
* when a function is called in which the object is declared.
* when the "new" operator is used.

Class Names

* Name the class after what it is. If you can’t determine a name, then you have not
designed the system well enough.

* Compound names of over three words are a clue your design may be confusing
various entities in your system. Revisit your design. Try a CRC card session to
see if your objects have more responsibilities than they should.

* Avoid the temptation of naming a class something similar to the class it is derived
from. A class should stand on its own. Declaring an object with a class type
doesn’t depend on where that class is derived from.

 Suffixes or prefixes are sometimes helpful. For example, if your system uses
agents then naming something DownloadAgent conveys real information.

Data Abstraction

A fundamental concept of Object Oriented (OO) recommends an object should
not expose any of its implementation details. This way, you can change the im-
plementation without changing the code that uses the object. The class, by design,
allows its programmer to hide (and also prevents changes as to) how the class is
implemented. This powerful tool allows the programmer to build in a *preven-
tive’ measure. Variables within the class often have a very significant role in what
the class does, therefore variables can be secured within the private section of the
class.

395

Object Oriented Programming

4.3.2 Access labels

The access labels Public, Protected and Private are used within classes to set
access permissions for the members in that section of the class. All class members
are initially private by default. The labels can be in any order. These labels can
be used multiple times in a class declaration for cases where it is logical to have
multiple groups of these types. An access label will remain active until another
access label is used to change the permissions.

We have already mentioned that a class can have member functions "inside" it; we
will see more about them later. Those member functions can access and modify
all the data and member function that are inside the class. Therefore, permission
labels are to restrict access to member function that reside outside the class and for
other classes.

For example, a class "Bottle" could have a private variable fill, indicating a liquid
level 0-3 dl. fill cannot be modified directly (compiler error), but instead Bottle
provides the member function sip() to reduce the liquid level by 1. Mywaterbottle
could be an instance of that class, an object.

/* Bottle — Class and Object Example */
#include <iostream>
#include <iomanip>

using namespace std;

class Bottle

{

private: // variables are modified by member functions of class
int iFill; // dl of liquid
public:

Bottle () // Default Constructor

: iFi11(3) // They start with 3 dl of liquid
{
// More constructor code would go here if needed.

}

bool sip() // return true if liquid was available

{

if (iFill > 0)
{
--iFill;
return true;

}
else

{

return false;

}

396

Classes

}

int level() const // return level of liquid dIl
{

return iFill;
}

};i // Class declaration has a trailing semicolon

int main()
{
// terosbottle object is an instance of class Bottle
Bottle terosbottle;
cout << "In the beginning, mybottle has
<< terosbottle.level ()
<< " dl of liquid"
<< endl;

n

while (terosbottle.sip())

{
cout << "Mybottle has "
<< terosbottle.level ()
<< " dl of liquid"
<< endl;
}

return 0;

}

These keywords, private, public, and protected, affect the permissions of the mem-
bers -- whether functions or variables.

public

This label indicates any members within the *public’ section can accessed freely
anywhere a declared object is in scope.

Note:
Avoid declaring public data members, since doing so would contribute to create
unforeseen disasters.

private

Members defined as private are only accessible within the class defining them, or
friend classes. Usually the domain of member variables and helper functions. It’s
often useful to begin putting functions here and then moving them to the higher
access levels as needed so to reduce complexity.

397

Object Oriented Programming

Note:

It’s often overlooked that different instances of the same class may access each
others’ private or protected variables. A common case for this is in copy con-
structors.

(This is an example where the default copy constructor will do the same thing.)

class Foo
{
public:
Foo (const Foo &f)

{
m_iValue = f.m_iValue; // perfectly legal
}

private:
int m_iValue;

}i

protected

The protected label has a special meaning to inheritance, protected members are
accessible in the class that defines them and in classes that inherit from that base
class, or friends of it. In the section on inheritance we will see more about it.

Note:

Other instances of the same class can access a protected field - provided the
two classes are of the same type. However, an instance of a child class cannot
access a protected field or method of an instance of a parent class.

4.3.3 Inheritance (Derivation)

As we have seen early as we introduced PROGRAMMING PARADIGMS’, INHER-
ITANCES is a property that describes a relationship between two (or more) types,
or classes, of objects in OOP and C++ classes share this property. This in it self in
not an abstraction but a characteristic of OOP.

7 Chapter 2.2.3 on page 16
8 Chapter 2.3.4 on page 20

398

Classes

Derivation is the action of creating a new class using the inheritance property of
the C++ programming language. It is possible to derive one class from another or
even several (MULTIPLE INHERITANCE?), like a tree we can call base class to
the root and child class to any leaf; in any other case the parent/child relation will
exist for each class derived from another.

Base Class

A base class is a class that is created with the intention of deriving other classes
from it.

Child Class

A child class is a class that was derived from another, that will now be the parent
class to it.

Parent Class

A parent class is the closest class that we derived from to create the one we are
referencing as the child class.

As an example, suppose you are creating a game, something using different cars,
and you need specific type of car for the policemen and another type for the
player(s). Both car types share similar properties. The major difference (on this
example case) would be that the policemen type would have sirens on top of their
cars and the players’ cars will not.

One way of getting the cars for the policemen and the player ready is to create
separate classes for policemen’s car and for the player’s car like this:

class PlayerCar {
private:
int color;

public:
void driveAtFullSpeed (int mph) {
// code for moving the car ahead

}

bi

9 Chapter 4.3.3 on page 403

399

Object Oriented Programming

class PoliceCar {
private:
int color;
bool sirenOn; // identifies whether the siren is on or not
bool inAction; // identifies whether the police is in action (following the
player) or not

public:
bool isInAction() {
return this->inAction;

}

void driveAtFullSpeed(int mph) {
// code for moving the car ahead

}
bi

and then creating separate objects for the two cars like this:

PlayerCar playerl;
PoliceCar policemenl;

So, except for one thing that you can easily notice: there are certain parts of code
that are very similar (if not exactly the same) in the above two classes. In essence,
you have to type in the same code at two different locations! And when you update
your code to include methods (functions) for handBrake () and pressHorn(),
you’ll have to do that in both the classes above.

Therefore, to escape this frustrating (and confusing) task of writing the same code
at multiple locations in a single project, you use Inheritance.

Now that you know what kind of problems Inheritance solves in C++, let’s examine
how to implement Inheritance in our programs. As its name suggests, Inheritance
lets us create new classes which automatically have all the code from existing
classes. It means that if there is a class called MyClass, a new class with the
name MyNewClass can be created which will have all the code present inside the
MyClass class. The following code segment shows it all:

class MyClass {
protected:
int age;
public:
void sayAge() {
this->age = 20;
cout << age;

}i

class MyNewClass : public MyClass

400

Classes

bi
int main() {

MyNewClass *a = new MyNewClass () ;
a->sayAge () ;

return 0;

}

As you can see, using the colon ’:”> we can inherit a new class out of an existing
one. It’s that simple! All the code inside the MyClass class is now available to
the MyNewClass class. And if you are intelligent enough, you can already see the
advantages it provides. If you are like me (i.e. not too intelligent), you can see the
following code segment to know what I mean:

class Car {
protected:
int color;
int currentSpeed;
int maxSpeed;
public:
void applyHandBrake () {
this->currentSpeed = 0;
}
void pressHorn () {
cout << "Teeeeeeeeeeeeent"; // funny noise for a horn
}
void driveAtFullSpeed (int mph) {
// code for moving the car ahead;
}
i

class PlayerCar : public Car |

i

class PoliceCar : public Car f{

private:
bool sirenOn; // identifies whether the siren 1s on or not
bool inAction; // identifies whether the police is in action (following

the player) or not
public:
bool isInAction() {
return this->inAction;

}
ti
In the code above, the two newly created classes PlayerCar and PoliceCar have
been inherited from the Car class. Therefore, all the methods and properties (vari-
ables) from the Car class are available to the newly created classes for the player’s
car and the policemen’s car. Technically speaking, in C++, the Car class in this

401

Object Oriented Programming

case is our "Base Class" since this is the class which the other two classes are based
on (or inherit from).

Just one more thing to note here is the keyword profected instead of the usual
private keyword. That’s no big deal: We use protected when we want to make sure
that the variables we define in our base class should be available in the classes that
inherit from that base class. If you use private in the class definition of the Car
class, you will not be able to inherit those variables inside your inherited classes.

There are three types of class inheritance: public, private and protected. We use
the keyword public to implement public inheritance. The classes who inherit with
the keyword public from a base class, inherit all the public members as public
members, the protected data is inherited as protected data and the private data is
inherited but it cannot be accessed directly by the class.

The following example shows the class Circle that inherits "publicly" from the
base class Form:

class Form {
private:
double area;

public:
int color;

double getArea() {
return this->area;

}

void setArea(double area) {
this->area=area;

}

i

class Circle: public Form {
public:
double getRatio() {
double a;
a= getArea();
return sqrt(a/2*3.14);
}

void setRatio(double diameter) {
setArea(pow(diameter * 0.5, 2) * (3.14));
}

bool isDark() {

return color>10;

}

402

Classes

The new class Circle inherits the attribute area from the base class Form (the at-
tribute area is implicitly an attribute of the class Circle), but it cannot access it
directly. It does so through the functions getArea and setArea (that are public in
the base class and remain public in the derived class). The color attribute, however,
is inherited as a public attribute, and the class can access it directly.

The following table indicates how the attributes are inherited in the three different

types of inheritance:

private protected public
private inheri- The memberis The memberis The member is
tance inaccessible. private. private.
protected inher- The memberis = The memberis The member is
itance inaccessible. protected. protected.
public inheri- The memberis The member is The member is
tance inaccessible. protected. public.

As the table above shows, protected members are inherited as protected methods
in public inheritance. Therefore, we should use the protected label whenever we
want to declare a method inaccessible outside the class and not to lose access to it
in derived classes. However, losing accessibility can be useful sometimes, because
we are encapsulating details in the base class.

Let’s imagine that we have a class with a very complex method "m" that invokes
many auxiliary methods declared as private in the class. If we derive a class from
it, we should not bother about those methods because they are inaccessible in the
derived class. If a different programmer is in charge of the design of the derived
class, allowing access to those methods could be the cause of errors and confusion.
So, it is a good idea to avoid the protected label whenever we can have a design
with the same result with the private label.

Multiple inheritance

MULTIPLE INHERITANCE!? allows the construction of classes that inherit from
more than one type or class. This contrasts with single inheritance, where a class
will only inherit from one type or class.

Multiple inheritance can cause some confusing situations, and is much more com-
plex than single inheritance, so there is some debate over whether or not its benefits

10 Chapter 2.3.4 on page 21

403

Object Oriented Programming

outweigh its risks. Multiple inheritance has been a touchy issue for many years,
with opponents pointing to its increased complexity and ambiguity in situations
such as the "DIAMOND PROBLEM!!". Most modern OOP languages do not allow
multiple inheritance.

The declared order of derivation is relevant for determining the order of default
initialization by constructors and destructors cleanup.

class One
{

// class internals

}

class Two

{
// class internals

}

class MultipleInheritance : public One, public Two
{
// class internals

}

Note:
Remember that when creating classes that will be derived from, the destructor
may require further considerations.

12

4.3.4 Data members

Data members are declared in the same way as a global or function variable, but
as part of the class definition. Their purpose is to store information for that class
and may include members of any type, even other user-defined types. They are
usually hidden from outside use, depending on the coding style adopted, external
use is normally done through SPECIAL MEMBER FUNCTIONS '3,

11 HTTP://EN.WIKIPEDIA.ORG/WIKI/DIAMOND%20PROBLEM
12 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
13 Chapter 4.3.1 on page 394

404

http://en.wikipedia.org/wiki/diamond%20problem
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Classes

Note:

Explicit initializers are not allowed inside the class definition, except if they
are const static int or enumeration types, these may have an explicit ini-
tializer.

this pointer

The this keyword acts as a pointer to the class being referenced. The this pointer
acts like any other pointer, although you can’t change the pointer itself. Read
the section concerning POINTERS AND REFERENCES'* to understand more about
general pointers.

The this pointer is only accessible within nonstatic member functions of a class,
union or struct, and is not available in static member functions. It is not necessary
to write code for the this pointer as the compiler does this implicitly. When using a
debugger, you can see the this pointer in some variable list when the program steps
into nonstatic class functions.

In the following example, the compiler inserts an implicit parameter this in the
nonstatic member function int getData(). Additionally, the code initiating the call
passes an implicit parameter (provided by the compiler).

class Foo
{
private:
int 1X;
public:
Foo(){ 1X = 5; };

int getData()
{
return this->iX; // this is provided by the compiler at compile time
}
i

int main()

{
Foo Example;
int iTemp;

iTemp = Example.getData (&¢Example); // compiler adds the &Example reference
at compile time

14 Chapter 3.4.1 on page 164

405

Object Oriented Programming

return 0;

}

There are certain times when a programmer should know about and use the this
pointer. The this pointer should be used when overloading the assignment operator
to prevent a catastrophe. For example, add in an assignment operator to the code
above.

class Foo
{
private:
int iX;
public:
Foo() { iX = 5; };

int getData()
{

return iX;

}

Foo& operator=(const Foo &RHS);
bi

Foo& Foo::operator=(const Foo &RHS
{
if (this != &RHS)
{ // the if this test prevents an object from copying to itself (ie. RHS =
RHS;)
this->iX = RHS.iX; // this 1is suitable for this class, but can be
more complex when
// copying an object in a different much larger
class
}

return (*this); // returning an object allows chaining, like a = b
= c; statements
}
However little you may know about this, it is important in implementing any class.

15

static data member

The use of the static specifier in a data member, will cause that member to be
shared by all instances of the owner class and derived classes. To use static data
members you must declare the data member as static and initialize it outside of the
class declaration, at file scope.

15 wuTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

406

http://en.wikibooks.org/wiki/Category%3A

Classes

When used in a class data member, all instantiations of that class share one copy
of the variable.

class Foo
public:
Foo () {
++iNumFoos;
cout << "We have now created " << iNumFoos << " instances of the Foo
class\n";
}
private:
static int iNumFoos;

int Foo::iNumFoos = 0; // allocate memory for numFoos, and initialize it

int main() {
Foo f1;
Foo £2;
Foo f3;

}

In the example above, the static class variable numFoos is shared between all three
instances of the Foo class (f1, f2 and f3) and keeps a count of the number of times
that the Foo class has been instantiated.

4.3.5 Member Functions

Member functions can (and should) be used to interact with data contained within
user defined types. User defined types provide flexibility in the "DIVIDE AND
CONQUER’" scheme in program writing. In other words, one programmer can
write a user defined type and guarantee an interface. Another programmer can
write the main program with that expected interface. The two pieces are put to-
gether and compiled for usage. User defined types provide encapsulation defined
in the Object Oriented Programming (OOP) paradigm.

Within classes, to protect the data members, the programmer can define functions
to perform the operations on those data members. Member functions and func-
tions are names used interchangeably in reference to classes. Function prototypes
are declared within the class definition. These prototypes can take the form of non-
class functions as well as class suitable prototypes. Functions can be declared and
defined within the class definition. However, most functions can have very large
definitions and make the class very unreadable. Therefore it is possible to define
the function outside of the class definition using the scope resolution operator "::".

16 HTTP://EN.WIKIPEDIA.ORG/WIKI/DIVIDE%20AND$20CONQUER

407

http://en.wikipedia.org/wiki/divide%20and%20conquer

Object Oriented Programming

This scope resolution operator allows a programmer to define the functions some-
where else. This can allow the programmer to provide a header file .4 defining the
class and a .obj file built from the compiled .cpp file which contains the function
definitions. This can hide the implementation and prevent tampering. The user
would have to define every function again to change the implementation. Func-
tions within classes can access and modify (unless the function is constant) data
members without declaring them, because the data members are already declared
in the class.

Simple example:
file: Foo.h

// the header file named the same as the class helps locate classes within a
project

// one class per header file makes it easier to keep the

// header file readable (some classes can become large)

// each programmer should determine what style works for them or what programming
standards their

// teacher/professor/employer has

#ifndef FOO_H
#define FOO_H

class Foof{

public:
Foo(); // function called the default constructor
Foo(int a, int b); // function called the overloaded constructor

int Manipulate(int g, int h);

private:
int x;
int y;
bi

#endif

file: Foo.cpp

#include "Foo.h"

/+ these constructors should really show use of initialization lists
Foo::Foo () : x(5), y(10)

{

}

Foo:Foo(int a, int b) : x(a), y(b)

{

}

*/
Foo::Foo () {
x = 5;

y = 10;

}

Foo::Foo(int a, int b){

408

Classes

X
|

= a;
y = b;

int Foo::Manipulate(int g, int h){
x =h + g*x;
y =g+ hy;

}

Overloading

Member functions can be overloaded. This means that multiple member functions
can exist with the same name on the same scope, but must have different signatures.
A member function’s signature is comprised of the member function’s name and
the type and order of the member function’s parameters.

Due to name hiding, if a member in the derived class shares the same name
with members of the base class, they will be hidden to the compiler. To make
those members visible, one can use declarations to introduce them from base class
scopes.

Constructors and other class member functions, except the Destructor, can be over-
loaded.

Constructors

A constructor is a special member function which is called whenever a new in-
stance of a class is created. The compiler calls the constructor after the new object
has been allocated in memory, and converts that "raw" memory into a proper, typed
object. The constructor is declared much like a normal member function but it will
share the name of the class and it has no return value.

Constructors are responsible for almost all of the run-time setup necessary for the
class operation. Its main purpose becomes in general defining the data members
upon object instantiation (when an object is declared), they can also have argu-
ments, if the programmer so chooses. If a constructor has arguments, then they
should also be added to the declaration of any other object of that class when using
the new operator. Constructors can also be overloaded.

Foo myTest; // essentially what happens is: Foo myTest = Foo();
Foo myTest(3, 54); // accessing the overloaded constructor
Foo myTest = Foo(20, 45); // although a new object is created, there are some

extra function calls involved
// with more complex classes, an assignment operator

409

Object Oriented Programming

should

// be defined to ensure a proper copy (includes
""deep copy’’)

// myTest would be constructed with the default
constructor, and then the

// assignment operator copies the unnamed Foo(20,
) object to myTest

using new with a constructor

Foo* myTest = new Foo(); // this defines a pointer to a dynamically
allocated object
Foo* myTest = new Foo(40, 34); // constructed with Foo(40, 34)

// be sure to use delete to avoid memory leaks

Note:

While there is no risk in using new to create an object, it is often best to avoid
using memory allocation functions within objects’ constructors. Specifically,
using new to create an array of objects, each of which also uses new to allocate
memory during its construction, often results in runtime errors. If a class or
structure contains members which must be pointed at dynamically created
objects, it is best to sequentially initialize these arrays of the parent object,
rather than leaving the task to their constructors.

This is especially important when writing code with exceptions (in EXCEPTION
HANDLINGY), if an exception is thrown before a constructor is completed, the
associated destructor will not be called for that object.

a Chapter 5.4 on page 517

A constructor can’t delegate to another. It is also considered desirable to reduce the
use of default arguments, if a maintainer has to write and maintain multiple con-
structors it can result in code duplication, which reduces maintainability because
of the potential for introducing inconsistencies and even lead to code bloat.

Default Constructors

A default constructor is one which can be called with no arguments. Most com-
monly, a default constructor is declared without any parameters, but it is also pos-
sible for a constructor with parameters to be a default constructor if all of those
parameters are given default values.

410

45

Classes

In order to create an array of objects of a class type, the class must have an acces-
sible default constructor; C++ has no syntax to specify constructor arguments for
array elements.

Overloaded Constructors

When an object of a class is instantiated, the class writer can provide various
constructors each with a different purpose. A large class would have many data
members, some of which may or may not be defined when an object is instanti-
ated. Anyway, each project will vary, so a programmer should investigate various
possibilities when providing constructors.

These are all constructors for a class myFoo.

// default constructor, the user has no control over initial values
// overloaded constructors

myFoo () ;

myFoo (int a, int b=0); // allows construction with a certain ’a’ value, but

accepts ‘b’ as 0
// or allows the user to provide both ’“a’ and ’b’ values

// or

myFoo(int a, int b); // overloaded constructor, the user must specify both

values

class myFoo {
private:
int Usefull;
int Useful2;

public:
myFoo () {
Usefull = 5;
Useful2 = 10;
i

// default constructor

myFoo(int a, int b = 0) { // two possible cases when invoked

Usefull = a;
Useful2 = b;
}i
i
myFoo Find; // default constructor, private member values Usefull = 5,
Useful2 = 10
myFoo Find(8); // overloaded constructor case 1, private member values
Usefull = 8, Useful2 = 0

myFoo Find(8, 256);
Usefull = 8, Useful2

// overloaded constructor case 2, private member values
= 256

411

Object Oriented Programming

Constructor initialization lists

Constructor initialization lists (or member initialization list) are the only way to
initialize data members and base classes with a non-default constructor. Construc-
tors for the members are included between the argument list and the body of the
constructor (separated from the argument list by a colon). Using the initialization
lists is not only better in terms of efficiency but also the simplest way to guar-
antee that all initialization of data members are done before entering the body of
constructors.

// Using the initialization list for _myComplexMember
MyClass::MyClass (int mySimpleMember, MyComplexClass myComplexMember)
: _myComplexMember (myComplexMember) // only 1 call, to the copy constructor
{
_mySimpleMember=mySimpleMember; // uses 2 calls, one for the constructor of the
mySimpleMember class
// and a second for the assignment operator of
the MyComplexClass class
}

This is more efficient than assigning value to the complex data member inside
the body of the constructor because in that case the variable is initialized with its
corresponding constructor.

Note that the arguments provided to the constructors of the members do not need to
be arguments to the constructor of the class; they can also be constants. Therefore
you can create a default constructor for a class containing a member with no default
constructor.

Example:

MyClass::MyClass() : _myComplexMember (0) { }

It is useful to initialize your members in the constructor using this initialization
lists. This makes it obvious for the reader that the constructor does not execute
logic. The order the initialization is done should be the same as you defined your
base-classes and members. Otherwise you can get warnings at compile-time. Once
you start initializing your members make sure to keep all in the constructor(s) to
avoid confusion and possible Oxbaadfood.

It is safe to use constructor parameters that are named like members.

Example:

class MyClass : public MyBaseClassA, public MyBaseClassB {
private:
int c;
void *pointerMember;
public:

412

Classes

MyClass (int, int,int);

i

VAR v4
MyClass::MyClass (int a, int b, int c):
MyBaseClassA(a)
,MyBaseClassB (b)

,c(c)

,pointerMember (NULL)

, referenceMember ()

{

//logic

}

Note that this technique was also possible for normal functions but it is now obso-
leted and is classified as an error in such case.

Note:

It is a common misunderstanding that initialization of data members can be
done within the body of constructors. All such kind of so-called "initialization"
are actually assignments. The C++ standard defines that all initialization of
data members are done before entering the body of constructors. This is the
reason why certain types (const types and references) cannot be assigned to
and must be initialized in the constructor initialization list.

One should also keep in mind that class members are initialized in the order
they are declared, not the order they appear in the initializer list. One way of
avoiding CHICKEN AND EGG PARADOXES? is to always add the members to
the initializer list in the same order they’re declared.

a HTTP://EN.WIKIPEDIA.ORG/WIKI/CHICKEN%$200R%20THE%20EGG

Destructors

Destructors like the Constructors are declared as any normal member functions
but will share the same name as the Class, what distinguishes them is that the
Destructor’s name is preceded with a "™, it can not have arguments and can’t be
overloaded.

Destructors are called whenever an Object of the Class is destroyed. Destructors
are crucial in avoiding resource leaks (by deallocating memory), and in implement-
ing the RAII idiom. Resources which are allocated in a Constructor of a Class are
usually released in the Destructor of that Class as to return the system to some
known or stable state after the Class ceases to exist.

413

http://en.wikipedia.org/wiki/Chicken%20or%20the%20egg

Object Oriented Programming

The Destructor is invoked when Objects are destroyed, after the function they were
declared in returns, when the delete operator is used or when the program is over.
If an object of a derived type is destructed, first the Destructor of the most derived
object is executed. Then member objects and base class subjects are destructed
recursively, in the reverse order their corresponding Constructors completed. As
with structs the compiler implicitly-declares a Destructor as a inline public member
of its class if the class doesn’t have a user-declared Destructor.

The DYNAMIC TYPE!” of the object will change from the most derived type as
Destructors run, symmetrically to how it changes as Constructors execute. This
affects the functions called by virtual calls during construction and destruction,
and leads to the common (and reasonable) advice to avoid calling virtual functions
of an object either directly or indirectly from its Constructors or Destructors.

inline

Sharing most of the concepts we have seen before on the introduction to INLINE
FUNCTIONS'8, when dealing with member function those concepts are extended,
with a few additional considerations.

If the member functions definition is included inside the declaration of the class,
that function is by default made implicitly inline. Compiler options may override
this behavior.

Calls to virtual functions cannot be inlined if the object’s type is not known at
compile-time, because we don’t know which function to inline.

static

The static keyword can be used in four different ways:

e TO CREATE PERMANENT STORAGE FOR LOCAL VARIABLES IN A FUNC-
TION'.

* TO SPECIFY INTERNAL LINKAGEZC.

e TO DECLARE MEMBER FUNCTIONS THAT ACT LIKE NON-MEMBER FUNC-
TIONS?!,

17 HTTP://EN.WIKIPEDIA.ORG/WIKI/DYNAMIC%20TYPE
18 Chapter 3.7 on page 229

19 Chapter 3.3.4 on page 156

20 Chapter 3.2.4 on page 119

21 Chapter 4.3.5 on page 415

414

http://en.wikipedia.org/wiki/dynamic%20type

Classes

* TO CREATE A SINGLE COPY OF A DATA MEMBER?2.

static member function

Member functions or variables declared static are shared between all instances of
an object type. Meaning that only one copy of the member function or variable
does exists for any object type.

member functions callable without an object

When used in a class function member, the function does not take an instantiation
as an implicit this parameter, instead behaving like a free function. This means
that static class functions can be called without creating instances of the class:

class Foo {
public:
Foo() {
++numFoos;
cout << "We have now created " << numFoos << " instances of the Foo class\n";
}
static int getNumFoos () {
return numFoos;
}
private:
static int numFoos;

i
int Foo::numFoos = 0; // allocate memory for numFoos, and initialize it

int main() {
Foo f1;
Foo £2;
Foo f3;
cout << "So far, we’ve made " << Foo::getNumFoos() << " instances of the Foo
class\n";

}

Named constructors

Named constructors are a good example of using static member functions. Named
constructors is the name given to functions used to create an object of a class
without (directly) using its constructors. This might be used for the following:

1. To circumvent the restriction that constructors can be overloaded only if their
signatures differ.
2. Making the class non-inheritable by making the constructors private.

22 Chapter 4.3.4 on page 406

415

Object Oriented Programming

3. Preventing stack allocation by making constructors private

Declare a static member function that uses a private constructor to create the ob-
ject and return it. (It could also return a pointer or a reference but this complication
seems useless, and turns this into the FACTORY PATTERN?? rather than a conven-
tional named constructor.)

Here’s an example for a class that stores a temperature that can be specified in any
of the different temperature scales.

class Temperature
{
public:
static Temperature Fahrenheit (double f);
static Temperature Celsius (double c);
static Temperature Kelvin (double k);
private:
Temperature (double temp);
double _temp;
bi

Temperature::Temperature (double temp):_temp (temp) {}

Temperature Temperature::Fahrenheit (double f)
{

return Temperature ((f + 459.67) / 1.8);
}

Temperature Temperature::Celsius (double c)

{

return Temperature (c + 273.15);

}

Temperature Temperature::Kelvin (double k)

{

return Temperature (k);

}

const

This type of member function cannot modify the member variables of a class. It’s a
hint both to the programmer and the compiler that a given member function doesn’t
change the internal state of a class; however, any variables declared as mutable
can still be modified.

Take for example:

23 Chapter 6.2 on page 541

416

Classes

class Foo
{
public:
int value() const

{

return m_value;

}

void setValue(int 1)

{
m_value = i;

}

private:
int m_value;

i

Here value () clearly does not change m_value and as such can and should be
const. However setValue () does modify m_value and as such cannot be const.

Another subtlety often missed is a const member function cannot call a non-const
member function (and the compiler will complain if you try). The const mem-
ber function cannot change member variables and a non-const member functions
can change member variables. Since we assume non-const member functions do
change member variables, const member functions are assumed to never change
member variables and can’t call functions that do change member variables.

The following code example explains what const can do depending on where it is
placed.

class Foo
{
public:
/ *
* Modifies m_widget and the user
* may modify the returned widget.
*/
Widget *widget ();

J/*
* Does not modify m _widget but the
* user may modify the returned widget.
*/

Widget *widget () const;

/*
* Modifies m _widget, but the user
* may not modify the returned widget.
*/

const Widget *cWidget ();

/%

417

Object Oriented Programming

* Does not modify m _widget and the user
* may not modify the returned widget.
*/

const Widget *cWidget () const;

private:

Widget *m_widget;
bi

Accessors and Modifiers (Setter/Getter)

What is an accessor?

An accessor is a member function that does not modify the state of an object. The
accessor functions should be declared as CONST?*.

Getter is another common definition of an accessor due to the naming (
GetSize ()) of that type of member functions.

What is a modifier?

A modifier, also called a modifying function, is a member function that changes
the value of at least one data member. In other words, an operation that modifies
the state of an object. Modifiers are also known as ‘mutators’.

Setter is another common definition of a modifier due to the naming (SetSize (
int a_Size)) of that type of member functions.

Note:
These are commonly used reference labels (not defined on the standard lan-
guage).

Dynamic polymorphism (Overrides)

So far, we have learned that we can add new data and functions to a class through
inheritance. But what about if we want our derived class to inherit a method from
the base class, but to have a different implementation for it? That is when we are
talking about polymorphism, a fundamental concept in OOP programming.

24 Chapter 4.3.5 on page 409

418

Classes

As seen previously in the PROGRAMMING PARADIGMS SECTION?’, POLYMOR-
PHISM?® is subdivided in two concepts static polymorphism and dynamic polymor-
phism. This section concentrates on dynamic polymorphism, which applies in C++
when a derived class overrides a function declared in a base class.

We implement this concept redefining the method in the derived class. However,
we need to have some considerations when we do this, so now we must introduce
the concepts of dynamic binding, static binding and virtual methods.

Suppose that we have two classes, A and B. B derives from A and redefines the
implementation of a method c () that resides in class A. Now suppose that we have
an object b of class B. How should the instruction b.c () be interpreted?

If b is declared in the stack (not declared as a pointer or a reference) the compiler
applies static binding, this means it interprets (at compile time) that we refer to the
implementation of ¢ () that resides in B.

However, if we declare b as a pointer or a reference of class A, the compiler could
not know which method to call at compile time, because b can be of type A or B.
If this is resolved at run time, the method that resides in B will be called. This is
called dynamic binding. If this is resolved at compile time, the method that resides
in A will be called. This is again, static binding.

Virtual member functions

The virtual member functions is relatively simple, but often misunderstood. The
concept is an essential part of designing a class hierarchy in regards to sub-classing
classes as it determines the behavior of overridden methods in certain contexts.

Virtual member functions are class member functions, that can be overridden in
any class derived from the one where they were declared. The member function
body is then replaced with a new set of implementation in the derived class.

Note:
When overriding virtual functions you can alter the private, protected or public
state access state of the member function of the derived class.

25 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMINGS
2FPROGRAMMING%20PARADIGMS
26 Chapter 2.3.4 on page 21

419

http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Paradigms
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Paradigms

Object Oriented Programming

By placing the keyword virtual before a method declaration we are indicating
that when the compiler has to decide between applying static binding or dynamic
binding it will apply dynamic binding. Otherwise, static binding will be applied.

Note:

While it is not required to use the virtual keyword in our subclass definitions
(since if the base class function is virtual all subclass overrides of it will also
be virtual) it is good style to do so when producing code for future reutilization
(for use outside of the same project).

Again, this should be clearer with an example:

class Foo
{
public:
void f()
{
std::cout << "Foo
}
virtual void g()
{
std::cout << "Foo
}
bi

f()"

tig ()"

class Bar : public Foo

{
public:
void f()
{
std::cout << "Bar
}
virtual void g()
{
std::cout << "Bar
}
}i

int main()
{
Foo foo;
Bar bar;

Foo *baz = &bar;
Bar *quux = &bar;

foo.f(); // "Foo:
foo.g(); // "Foo:

bar.f(); // "Bar:
bar.g(); // "Bar:

420

EQ"

g ()"

sE()"
g)"

cEO"
g

<<

<<

<<

<<

std:

std:

std:

std:

:endl;

:endl;

:endl;

:endl;

Classes

// So far everything we would expect...

baz->f(); // "Foo::f()"
baz->g(); // "Bar::g()"

quux->f(); // "Bar::f()"
quux->g(); // "Bar::g()"

return 0;

}

Our first calls to £ () and g () on the two objects are straightforward. However
things get interesting with our baz pointer which is a pointer to the Foo type.

f() isnotvirtual and as such acall to f () will always invoke the implementation
associated with the pointer type -- in this case the implementation from Foo.

Note:
Remember that OVERLOADING® and OVERRIDING? are distinct concepts.

a Chapter 4.3.5 on page 409
b Chapter 4.3.5 on page 418

Virtual function calls are computationally more expensive than regular function
calls. Virtual functions use pointer indirection, invocation and will require a few
extra instructions than normal member functions. They also require that the con-
structor of any class/structure containing virtual functions to initialize a table of
pointers to its virtual member functions.

All this characteristics will signify a trade-off between performance and design.
One should avoid preemptively declaring functions virtual without an existing
structural need. Keep in mind that virtual functions that are only resolved at run-
time cannot be inlined.

Note:
Some of the needs for using virtual functions can be addressed by using a class
template. This will be covered when we introduce TEMPLATES?.

a Chapter 5 on page 483

Pure virtual member function
There is one additional interesting possibility. Sometimes we don’t want to pro-
vide an implementation of our function at all, but want to require people sub-

421

Object Oriented Programming

classing our class to provide an implementation on their own. This is the case for
pure virtuals.

To indicate a pure virtual function instead of an implementation we simply add
an "= 0" after the function declaration.

Again -- an example:

class Widget
{
public:
virtual void paint() = 0;
}i

class Button : public Widget
{
public:
void paint() // is virtual because it is an override

{
// do some stuff to draw a button

}
b
Because paint () is a pure virtual function in the Widget class we are required
to provide an implementation in all concrete subclasses. If we don’t the compiler
will give us an error at build time.

This is helpful for providing interfaces -- things that we expect from all of the ob-
jects based on a certain hierarchy, but when we want to ignore the implementation
details.

So why is this useful?

Let’s take our example from above where we had a pure virtual for painting.
There are a lot of cases where we want to be able to do things with widgets without
worrying about what kind of widget it is. Painting is an easy example.

Imagine that we have something in our application that repaints widgets when
they become active. It would just work with pointers to widgets -- i.e. Widget
*activeWidget () const might be a possible function signature. So we might
do something like:

Widget *w = window->activeWidget();
w->paint ();

We want to actually call the appropriate paint member function for the "real" wid-
get type -- not Widget::paint () (which is a "pure" virtual and will cause

422

Classes

the program to crash if called using virtual dispatch). By using a virtual
function we insure that the member function implementation for our subclass --
Button: :paint () in this case -- will be called.

Covariant return types

Covariant return types is the ability for a virtual function in a derived class to
return a pointer or reference to an instance of itself if the version of the method in
the base class does so. e.g.

class base
{
public:
virtual base* create() const;
i

class derived : public base
{
public:
virtual derived* create() const;
i

This allows casting to be avoided.
Note:

Some older compilers do not have support for covariant return types.
Workarounds exist for such compilers.

virtual Constructors
There is a hierarchy of classes with base class Foo. Given an object bar belonging
in the hierarchy, it is desired to be able to do the following:

1. Create an object baz of the same class as bar (say, class Bar) initialized

using the default constructor of the class. The syntax normally used is:

Bar* baz = bar.create();
2. Create an object baz of the same class as bar which is a copy of bar. The
syntax normally used is:

Bar* baz = bar.clone();

In the class Foo, the methods Foo: :create () and Foo: :clone () are declared as
follows:

423

Object Oriented Programming

class Foo
{
V2R

public:
// Virtual default constructor
virtual Foo* create() const;

// Virtual copy constructor
virtual Foo* clone() const;
i

If Foo is to be used as an abstract class, the functions may be made pure virtual:

class Foo
{
/).

public:
virtual Foo* create() const = 0;
virtual Foo* clone() const = 0;
bi
In order to support the creation of a default-initialized object, and the creation of
a copy object, each class Bar in the hierarchy must have public default and copy
constructors. The virtual constructors of Bar are defined as follows:

class Bar : ... // Bar is a descendant of Foo
{

V2R

public:

// Non-virtual default constructor

Bar ();

// Non-virtual copy constructor
Bar (const Baré&);

// Virtual default constructor, inline implementation

Bar* create() const { return new Foo (); }

// Virtual copy constructor, inline implementation

Bar* clone() const { return new Foo (*this); }
bi
The above code uses COVARIANT RETURN TYPES?’. If your compiler doesn’t
support Bar* Bar::create(), use Foo* Bar::create () instead, and similarly

for clone ().

While using these virtual constructors, you must manually deallocate the object
created by calling delete baz;. This hassle could be avoided if a smart pointer

27 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23COVARIANT%20RETURN%20TYPES

424

http://en.wikibooks.org/wiki/%23Covariant%20return%20types

Classes

(e.g. std::auto_ptr<Foo>) is used in the return type instead of the plain old
Foo*.

Remember that whether or not Foo uses dynamically allocated memory, you must
define the destructor virtual "Foo () and make it virtual to take care of deal-
location of objects using pointers to an ancestral type.

virtual Destructor

It is of special importance to remember to define a virtual destructor even if empty
in any base class, since failing to do so will create problems with the default com-
piler generated destructor that will not be virtual.

A virtual destructor is not overridden when redefined in a derived class, the defi-
nitions to each destructor are cumulative and they start from the last derivate class
toward the first base class.

Pure virtual Destructor
Every abstract class should contain the declaration of a pure virtual destructor.

Pure virtual destructors are a special case of pure virtual functions (meant to be
overridden in a derived class). They must always be defined and that definition
should always be empty.

class Interface {

public:
virtual ~Interface() = 0; //declaration of a pure virtual destructor
bi
Interface::~Interface(){} //pure virtual destructor definition (should always be
empty)
28 29

Law of three

The "law of three" is not really a law, but rather a guideline: if a class needs an
explicitly declared copy constructor, copy assignment operator, or destructor, then
it usually needs all three.

28 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
29 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

425

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Object Oriented Programming

There are exceptions to this rule (or, to look at it another way, refinements). For
example, sometimes a destructor is explicitly declared just in order to make it
virtual; in that case there’s not necessarily a need to declare or implement the
copy constructor and copy assignment operator.

Most classes should not declare any of the "big three" operations; classes that
manage resources generally need all three.

4.3.6 Subsumption property

Subsumption is a property that all objects that reside in a class hierarchy must
fulfill: an object of the base class can be substituted by an object that derives from
it (directly or indirectly). All mammals are animals (they derive from them), and all
cats are mammals. Therefore, because of the subsumption property we can "treat"
any mammal as an animal and any cat as a mammal. This implies abstraction,
because when we are "treating" a mammal as an animal, the only we should know
about it is that it lives, it grows, etc, but nothing related to mammals.

This property is applied in C++, whenever we are using pointers or references to
objects that reside in a class hierarchy. In other words, a pointer of class animal
can point to an object of class animal, mammal or cat.

Let’s continue with our example:

//needs to be corrected
enum AnimalType {
Herbivore,
Carnivore,
Omnivore,

}i

class Animal
public:
AnimalType Type;
bool bIsAlive;
int iNumberOfChildren;
bi

class Mammal : public Animal{
public:
int iNumberOfTeats;
i
class Cat : public Mammal{

public:
bool bLikesFish; // probably true

426

Classes

int main() {
Animal* pAl = new Animal;
Animal* pA2 = new Mammal;
Animal* pA3 = new Cat;
Mammal* pM = new Cat;

pA2->bIsAlive = True;
pA2->Type = Herbivore;
pM->iNumberOfTeats = 2;

PA2->iNumberOfTeats = 6;
pA3->bLikesFish = True;

Cat* pC = (Cat*)pA3;
later)
pC->bLikesFish = False;
}

e
7’/
/7

/7
e

7’/

/7

Correct
Correct
Correct

Incorrect
Incorrect

Downcast, correct (but very poor practice, see

Correct (although it is a very awkward cat)

In the last lines of the example there is cast of a pointer to Animal, to a pointer to
Cat. This is called "Downcast". Downcasts are useful and should be used, but first
we must ensure that the object we are casting is really of the type we are casting to
it. Downcasting a base class to an unrelated class is an error. To resolve this issue,
the casting operators dynamic_cast, or static_cast<> should be used. These
correctly cast an object from one class to another, and will throw an exception if
the class types are not related. eg. If you try:

Cat* pC = new Cat;

motorbike* pM = dynamic_cast<motorbike*>(pC);

Then, the app will throw an exception, as a cat is not a motorbike. Static_cast is
very similar, only it will perform the type checking at compile time. If you have
an object where you are not sure of its type then you should use dynamic_cast,
and be prepared to handle errors when casting. If you are downcasting objects
where you know the types, then you should use static_cast. Do not use old-
style C casts as these will simply give you an access violation if the types cast are

unrelated.

4.3.7 Local classes

A local class is any class that is defined inside a specific statement block, in a
LOCAL SCOPE’, for instance inside a function. This is done like defining any
other class, but local classes can not however access non-static local variables or

30 Chapter 3.1.9 on page 78

427

Object Oriented Programming

be used to define STATIC DATA MEMBERS>!. These type of classes are useful
especially in template functions, as we will see later.

void MyFunction()

{
class LocalClass

{

// ... members definitions ...
i

// ... any code that needs the class ...

4.3.8 User defined automatic type conversion

We already covered AUTOMATIC TYPE CONVERSIONS?? (implicit conversion) and
mentioned that some can be user-defined.

A user-defined conversion from a class to another class can be done by provid-
ing a constructor in the target class that takes the source class as an argument,
Target (const Source& a_Class) or by providing the target class with a con-
version operator, as operator Source ().

4.3.9 Ensuring objects of a class are never copied

This is required e.g. to prevent memory-related problems that would result in case
the default copy-constructor or the default assignment operator is unintentionally
applied to a class C which uses dynamically allocated memory, where a copy-
constructor and an assignment operator are probably an overkill as they won’t be
used frequently.

Some style guidelines suggest making all classes non-copyable by default, and
only enabling copying if it makes sense. Other (bad) guidelines say that you should
always explicitly write the copy constructor and copy assignment operators; that’s
actually a bad idea, as it adds to the maintenance effort, adds to the work to read a
class, is more likely to introduce errors than using the implicitly declared ones, and
doesn’t make sense for most object types. A sensible guideline is to think about
whether copying makes sense for a type; if it does, then first prefer to arrange

31 Chapter 4.3.4 on page 406
32 Chapter 3.5.1 on page 205

428

Classes

that the compiler-generated copy operations will do the right thing (e.g., by hold-
ing all resources via resource management classes rather than via raw pointers or
handles), and if that’s not reasonable then obey the LAW OF THREE>?. If copying
doesn’t make sense, you can disallow it in either of two idiomatic ways as shown
below.

Just declare the copy-constructor and assignment operator, and make them
private. Do not define them. As they are not protected or public, they are
inaccessible outside the class. Using them within the class would give a linker
error since they are not defined.

class C

{

private:
// Not defined anywhere
C (const C&);
C& operator= (const C&);
bi
Remember that if the class uses dynamically allocated memory for data members,
you must define the memory release procedures in destructor “C () to release the

allocated memory.

A class which only declares these two functions can be used as a private base class,
so that all classes which privately inherits such a class will disallow copying.

Note:

A part of the BOOST“ library, the utility class boost :noncopyable performs a
similar function, easier to use but with added costs due to the required deriva-
tion.

a Chapter 6.4.2 on page 588

4.3.10 Container class

A class that is used to hold objects in memory or external storage is often called
a container class. A container class acts as a generic holder and has a predefined
behavior and a well-known interface. It is also a supporting class whose purpose
is to hide the topology used for maintaining the list of objects in memory. When

33 Chapter 4.3.5 on page 409

429

Object Oriented Programming

it contains a group of mixed objects, the container is called a heterogeneous con-
tainer; when the container is holding a group of objects that are all the same, the
container is called a homogeneous container.

4.3.11 Interface class
4.3.12 Singleton class

A SINGLETON>* class is a class that can only be instantiated once (similar to the
use of static variables or functions). It is one of the possible implementations
of a CREATIONAL PATTERN>?, which is fully covered in the DESIGN PATTERNS
SECTION?® of the book.

37

4.3.13 Abstract Classes

An abstract class is, conceptually, a class that cannot be instantiated and is usually
implemented as a class that has one or more pure virtual (abstract) functions.

A pure virtual function is one which must be overridden by any concrete (i.e.,
non-abstract) derived class. This is indicated in the declaration with the syntax'' =
0" in the member function’s declaration.

Example

class AbstractClass {

public:

virtual void AbstractMemberFunction() = 0; //pure virtual function makes this
class Abstract class

virtual void NonAbstractMemberFunctionl(); //virtual function

void NonAbstractMemberFunction2 () ;
i

In general an abstract class is used to define an implementation and is intended to
be inherited from by concrete classes. It’s a way of forcing a contract between the

34 Chapter 6.3 on page 542
35 Chapter 6.3 on page 542
36 Chapter 6.2 on page 541
37 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

430

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Classes

class designer and the users of that class. If we wish to create a concrete class (a
class that can be instantiated) from an abstract class we must declare and define
a matching member function for each abstract member function of the base class.
Otherwise we will create a new abstract class (this could be useful sometimes).

Sometimes we use the phrase "pure abstract class," meaning a class that exclu-
sively has pure virtual functions (and no data). The concept of interface is mapped
to pure abstract classes in C++, as there is no construction "interface" in C++ the
same way that there is in Java.

Example

class Vehicle {

public:
explicit
Vehicle(int topSpeed)
: m_topSpeed(topSpeed)
{}
int TopSpeed() const {

return m_topSpeed;

}
virtual void Save(std::ostream&) const = 0;

private:
int m_topSpeed;
}i

class WheeledLandVehicle : public Vehicle
public:
WheeledLandVehicle(int topSpeed, int numberOfWheels)
: Vehicle(topSpeed), m_numberOfWheels(numberOfWheels)
{}
int NumberOfWheels () const {
return m_numberOfWheels;

}
void Save(std::ostream&) const; // is implicitly virtual

private:
int m_numberOfWheels;

i

class TrackedLandVehicle : public Vehicle
public:
int TrackedLandVehicle (int topSpeed, int numberOfTracks)
: Vehicle(topSpeed), m_numberOfTracks (numberOfTracks)
{}
int NumberOfTracks () const {
return m_numberOfTracks;
}

void Save(std::ostream&) const; // is implicitly virtual

431

Object Oriented Programming

private:
int m_numberOfTracks;

bi
In this example the Vehicle is an abstract base class as it has an abstract member
function. It is not a pure abstract class as it also has data and concrete member
functions. The class WheeledLandVehicle is derived from the base class. It also
holds data which is common to all wheeled land vehicles, namely the number of
wheels. The class TrackedLandVehicle is another variation of the Vehicle class.

This is something of a contrived example but it does show how that you can share
implementation details among a hierarchy of classes. Each class further refines a
concept. This is not always the best way to implement an interface but in some
cases it works very well. As a guideline, for ease of maintenance and understand-
ing you should try to limit the inheritance to no more than 3 levels. Often the best
set of classes to use is a pure virtual abstract base class to define a common in-
terface. Then use an abstract class to further refine an implementation for a set of
concrete classes and lastly define the set of concrete classes.

An abstract class is a class that is designed to be specifically used as a base class.
An abstract class contains at least one pure virtual function. You declare a pure vir-
tual function by using a pure specifier (= 0) in the declaration of a virtual member
function in the class declaration.

The following is an example of an abstract class:

class AB {
public:
virtual void f() = 0;
bi
Function AB::f is a pure virtual function. A function declaration cannot have both
a pure specifier and a definition.

Abstract class cannot be used as a parameter type, a function return type, or the
type of an explicit conversion, and not to declare an object of an abstract class. It
can be used to declare pointers and references to an abstract class.

432

Classes

Pure Abstract Classes

An abstract class is one in which there is a declaration but no definition for a
member function. The way this concept is expressed in C++ is to have the member
function declaration assigned to zero.

Example

class PureAbstractClass
{
public:
virtual void AbstractMemberFunction() = 0;
i

A pure Abstract class has only abstract member functions and no data or concrete
member functions. In general, a pure abstract class is used to define an interface
and is intended to be inherited by concrete classes. It’s a way of forcing a contract
between the class designer and the users of that class. The users of this class must
declare a matching member function for the class to compile.

Example of usage for a pure Abstract Class

class DrawableObject
{
public:
virtual void Draw(GraphicalDrawingBoards&) const = 0; //draw to
GraphicalDrawingBoard
}i

class Triangle : public DrawableObject
{
public:
void Draw (GraphicalDrawingBoards&) const; //draw a triangle
}i

class Rectangle : public DrawableObject
{
public:
void Draw (GraphicalDrawingBoards) const; //draw a rectangle
i

class Circle : public DrawableObject
{
public:
void Draw (GraphicalDrawingBoards&) const; //draw a circle
ti

typedef std::list<DrawableObject*> DrawableList_t;

433

Object Oriented Programming

Drawablelist_t drawableList;
GraphicalDrawingBoard gdrawb;

drawableList.pushback (new Triangle());
drawableList.pushback (new Rectangle());
drawableList.pushback (new Circle());

for (DrawableList_t::const_iterator iter = drawableList.begin(),
endIter = drawablelList.end();
iter != endIter;
+titer)
{
DrawableObject *object = *iter;
object->Draw (gdrawb) ;
}

Note that this is a bit of a contrived example and that the drawable objects are not
fully defined (no constructors or data) but it should give you the general idea of the
power of defining an interface. Once the objects are constructed, the code that calls
the interface does not know any of the implementation details of the called objects,
only that of the interface. The object GraphicalDrawingBoard is a placeholder
meant to represent the thing onto which the object will be drawn, i.e. the video
memory, drawing buffer, printer.

Note that there is a great temptation to add concrete member functions and data
to pure abstract base classes. This must be resisted, in general it is a sign that the
interface is not well factored. Data and concrete member functions tend to imply a
particular implementation and as such can inherit from the interface but should not
be that interface. Instead if there is some commonality between concrete classes,
creation of abstract class which inherits its interface from the pure abstract class
and defines the common data and member functions of the concrete classes works
well. Some care should be taken to decide whether inheritance or aggregation
should be used. Too many layers of inheritance can make the maintenance and
usage of a class difficult. Generally, the maximum accepted layers of inheritance
is about 3, above that and refactoring of the classes is generally called for. A
general test is the "is a" vs "has a", as in a Square is a Rectangle, but a Square has
a set of sides.

38

4.3.14 What is a "'nice'' class?

A "nice" class takes into consideration the use of the following functions:

38 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

434

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Classes

1. The copy constructor.

2. The assignment operator.

3. The equality operator.

4. The inequality operator.

Class Declaration

class Nice
{
public:
Nice (const Nice &Copy);
Nice &operator= (const Nice &Copy)

12
bool operator== (const Nice ¶m) const;
bool operator!= (const Nice ¶m) const;
bi
Description

A "nice" class could also be called a container safe class. Many containers such
as those in the STANDARD TEMPLATE LIBRARY?® (STL), that we’ll see later, use
copy construction and the assignment operator when interacting with the objects of
your class. The assignment operator and copy constructor only need to be declared
and defined if the default behavior, which is a member-wise (not binary) copy, is
undesirable or insufficient to properly copy/construct your object.

A general rule of thumb is that if the default, member-wise copy operations do
not work for your objects then you should define a suitable copy constructor and
assignment operator. They are both needed if either is defined.

39 Chapter 5.1.5 on page 499

435

Object Oriented Programming

4.4 Copy Constructor

The purpose of the copy constructor is to allow the programmer to perform the
same instructions as the assignment operator with the special case of knowing that
the caller is initializing/constructing rather than an copying.

It is also good practice to use the explicit keyword when using a copy constructor
to prevent unintended implicit type conversion.

Example

class Nice
{
public:
explicit Nice(int _a) : a(_a)
{
return;
}
private:
int a;

}i

class NotNice
{
public:
NotNice (int _a) : af(_a)
{
return;
}
private:
int a;

bi

int main()
{
Nice proper = Nice(10); //this is ok
Nice notproper = 10; //this will result in an error
NotNice eg = 10; //this WILL compile, you may not have intended this conversion
return 0;

4.5 Equality Operator

The equality operator says, "Is this object equal to that object?". What constitutes
equal is up to the programmer. This is a requirement if you ever want to use the
equality operator with objects of your class.

436

Inequality Operator

However, in most applications (e.g. mathematics), it is usually the case that coding
the inequality is easier than coding the equality. In which case the following code
can be written for the equality.

inline bool Nice::operator== (const Nice& param) const
{
return ! (*this != param);

}

4.6 Inequality Operator

The inequality operator says, "Is this object not equal to that object?". What con-
stitutes not equal is up to the programmer. This is a requirement if you ever want
to use the inequality operator with objects of your class.

However, in some applications, coding the equality is easier than coding the in-
equality. In which case the following code can be written for the inequality.

inline pool Nice::operator!= (const Nice& param) const

{
return ! (*this == param);

}

If the statement about the (in)equality operators having different efficiency (what-
ever kind) seems complete nonsense to you, consider that typically, all object at-
tributes must match for two objects to be considered equal.

Typically, only one object attribute must differ for two objects to be considered un-
equal. For equality and inequality operators, that doesn’t mean one is faster than
the other.

Note, however, that using both the above equality and inequality functions as de-
fined will result in an infinite recursive loop and care must be taken to use only one
or the other. Also, there are some situations where neither applies and therefore
neither of the above can be used.

Given two objects A and B (with class attributes x and y), an equality operator
could be written as

if (A.x != B.x) return false;
if (A.y != B.y) return false;
return true;

while an inequality operator could be written as

437

Object Oriented Programming

if (A.x != B.x) return true;
if (A.y != B.y) return true;
return false;

So yes, the equality operator can certainly be written .../(a/=b)..., but it isn’t any
faster. In fact, there’s the additional overhead of a method call and a negation
operation.

So the question becomes, is a little execution overhead worth the smaller code and
improved maintainability? There is no simple answer to this it all depend on how
the programmer is using them. If your class is composed of, say, an array of 1
billion elements, the overhead is negligible.

40

4.7 Operator overloading

Operator overloading (less commonly known as AD-HOC*' POLYMORPHISM*?)
is a specific case of POLYMORPHISM*® (part of the OO nature of the language) in
which some or all operators like +, = or == are treated as polymorphic functions and
as such have different behaviors depending on the types of its arguments. Operator
overloading is usually only SYNTACTIC SUGAR*. It can easily be emulated using
function calls.

Consider this operation:

add (a, multiply (b,c))

Using operator overloading permits a more concise way of writing it, like this:

a+t+bXc

(Assuming the x operator has higher PRECEDENCE® than +.)

40 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3AC%2B%2B%20PROGRAMMING

41 HTTP://EN.WIKIPEDIA.ORG/WIKI/AD—HOC

42 HTTP://EN.WIKIPEDIA.ORG/WIKI/TYPE%20POLYMORPHISM

43 HTTP://EN.WIKIPEDIA.ORG/WIKI/POLYMORPHISM%20%28COMPUTERS
20SCIENCE%29

44 HTTP://EN.WIKIPEDIA.ORG/WIKI/SYNTACTIC%20SUGAR

45 HTTP://EN.WIKIPEDIA.ORG/WIKI/PRECEDENCE

438

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikipedia.org/wiki/ad-hoc
http://en.wikipedia.org/wiki/type%20polymorphism
http://en.wikipedia.org/wiki/polymorphism%20%28computer%20science%29
http://en.wikipedia.org/wiki/polymorphism%20%28computer%20science%29
http://en.wikipedia.org/wiki/syntactic%20sugar
http://en.wikipedia.org/wiki/precedence

Operator overloading

Operator overloading can provide more than an aesthetic benefit, since the lan-
guage allows operators to be invoked implicitly in some circumstances. Problems,
and critics, to the use of operator overloading arise because it allows programmers
to give operators completely free functionality, without an imposition of coherency
that permits to consistently satisfy user/reader expectations, usage of the << oper-
ator is an example of this problem.

// The expression
a << 1;

Will return twice the value of a if a is an integer variable, but if a is an output
stream instead this will write "1" to it. Because operator overloading allows the
programmer to change the usual semantics of an operator, it is usually considered
good practice to use operator overloading with care.

To overload an operator is to provide it with a new meaning for user-defined types.
This is done in the same fashion as defining a function. The basic syntax follows
(where @ represents a valid operator):

return_type operator((argument_list)

{
// ... definition

}

Not all operators may be overloaded, new operators cannot be created, and the
precedence, associativity or arity of operators cannot be changed (for example !
cannot be overloaded as a binary operator). Most operators may be overloaded as
either a member function or non-member function, some, however, must be defined
as member functions. Operators should only be overloaded where their use would
be natural and unambiguous, and they should perform as expected. For example,
overloading + to add two complex numbers is a good use, whereas overloading *
to push an object onto a vector would not be considered good style.

Note:

Operator overloading should only be utilized when the meaning of the over-
loaded operator’s operation is unambiguous and practical for the underlying
type and where it would offer a significant notational brevity over appropri-
ately named function calls.

A simple Message Header

// sample of Operator Overloading

439

Object Oriented Programming

#include <string>

class PlMessageHeader
{

std::string m_ThreadSender;
std::string m_ThreadReceiver;

//return true if the messages are equal, false otherwise
inline bool operator == (const PlMessageHeader &b) const
{
return ((b.m_ThreadSender==m_ThreadSender) &&
(b.m_ThreadReceiver==m_ThreadReceiver));

}

//return true if the message is for name
inline bool isFor (const std::string &name) const

{

return (m_ThreadReceiver==name);

}

//return true if the message is for name
inline bool isFor (const char *name) const
{
return (m_ThreadReceiver==name);// since name type is std::string, it
becomes unsafe if name == NULL
}
i

Note:
The use of the inline keyword in the example above is technically redundant,
as functions defined within a class definition like this are implicitly inline.

4.7.1 Operators as member functions

Aside from the operators which must be members, operators may be overloaded as
member or non-member functions. The choice of whether or not to overload as a
member is up to the programmer. Operators are generally overloaded as members
when they:

1. change the left-hand operand, or
2. require direct access to the non-public parts of an object.

When an operator is defined as a member, the number of explicit parameters is
reduced by one, as the calling object is implicitly supplied as an operand. Thus,
binary operators take one explicit parameter and unary operators none. In the
case of binary operators, the left hand operand is the calling object, and no type

440

Operator overloading

COERCION*® will be done upon it. This is in contrast to non-member operators,
where the left hand operand may be coerced.

// binary operator as member function Vector2D Vector2D::operator+ (const
Vector2D right)const {...}

// binary operator as non-member function Vector2D operator+ (const
Vector2D left, const Vector2D right) {...}

// binary operator as non-member function with 2 arguments friend
Vector2D operator+(const Vector2D left, const Vector2D right) {...}

// unary operator as member function Vector2D Vector2D::operator-()const

{...}

// unary operator as non-member function Vector2D operator-(const Vector2D
vec) {...}

4.7.2 Overloadable operators

Arithmetic operators

* + (addition)

- (subtraction)

* * (multiplication)
 / (division)

* % (modulus)

As binary operators, these involve two arguments which do not have to be the same
type. These operators may be defined as member or non-member functions. An
example illustrating overloading for the addition of a 2D mathematical vector type
follows.

Vector2D Vector2D::operator+ (const Vector2D& right)
{

Vector2D result;

result.set_x(x() + right.x());

result.set_y(y() + right.y());

return result;

46 Chapter 3.3 on page 121

441

Object Oriented Programming

It is good style to only overload these operators to perform their customary arith-
metic operation. Because operator has been overloaded as member function, it can
access to private fields.

Bitwise operators

“(XOR)

[(OR)

& (AND)

* 7 (complement)

<< (shift left, insertion to stream)

* >> (shift right, extraction from stream)

All of the bitwise operators are binary, excepting complement, which is unary. It
should be noted that these operators have a lower precedence than the arithmetic
operators, so if ~ were to be overloaded for exponentiation, X " y + z may not work
as intended. Of special mention are the shift operators, << and >>. These have been
overloaded in the standard library for interaction with streams. When overloading
these operators to work with streams the rules below should be followed:

1. overload << and >> as friends (so that it can access the private variables with
the stream be passed in by references

2. (input/output modifies the stream, and copying is not allowed)

3. the operator should return a reference to the stream it receives (to allow
chaining, cout << 3 << 4 << 5)

An example using a 2D vector

friend ostreamé operator<<(ostream& out, const Vector2D& vec) // output
{

out << "(" << wvec.x() << ", " << vec.y() << ™M)

return out;

}

friend istreams¢ operator>>(istream& in, Vector2D& vec) // input
{

double x, y;

in >> x > y;

vec.set_x(x);

vec.set_y(y);

return in;

442

Operator overloading

Assignment operator

The assignment operator, =, must be a member function, and is given default
behavior for user-defined classes by the compiler, performing an assignment of
every member using its assignment operator. This behavior is generally acceptable
for simple classes which only contain variables. However, where a class contains
references or pointers to outside resources, the assignment operator should be over-
loaded (as general rule, whenever a destructor and copy constructor are needed so
is the assignment operator), otherwise, for example, two strings would share the
same buffer and changing one would change the other.

In this case, an assignment operator should perform two duties:

1. clean up the old contents of the object
2. copy the resources of the other object

For classes which contain raw pointers, before doing the assignment, the assign-
ment operator should check for self-assignment, which generally will not work (as
when the old contents of the object are erased, they cannot be copied to refill the
object). Self assignment is generally a sign of a coding error, and thus for classes
without raw pointers, this check is often omitted, as while the action is wasteful of
cpu cycles, it has no other effect on the code.

Example

class BuggyRawPointer { // example of super—-common mistake

T *m_ptr;

public:

BuggyRawPointer (T *ptr) : m_ptr(ptr) {}

BuggyRawPointer& operator=(BuggyRawPointer const &rhs) {
delete m_ptr; // free resource; // Problem here!
m_ptr = 0;
m_ptr = rhs.m_ptr;
return *this;

bi

BuggyRawPointer x (new T);
x = x; // We might expect this to keep x the same. This sets x.m _ptr == 0. Oops!

// The above problem can be fixed like so:
class WithRawPointer2 {
T *m_ptr;
public:
WithRawPointer2 (T *ptr) : m_ptr(ptr) {}
WithRawPointer2s& operator=(WithRawPointer2 const &rhs) {
if (this != &rhs) {
delete m_ptr; // free resource;
m_ptr = 0;

443

Object Oriented Programming

m_ptr = rhs.m_ptr;
}

return *this;
i
bi

WithRawPointer2 x2 (new T);
x2 = x2; // x2.m_ptr unchanged.

Another common use of overloading the assignment operator is to declare the over-
load in the private part of the class and not define it. Thus any code which attempts
to do an assignment will fail on two accounts, first by referencing a private mem-
ber function and second fail to link by not having a valid definition. This is done
for classes where copying is to be prevented, and generally done with the addition
of a privately declared copy constructor

Example

class DoNotCopyOrAssign {
public:
DoNotCopyOrAssign() {};
private:
DoNotCopyOrAssign (DoNotCopyOrAssign consté&);
DoNotCopyOrAssign &operator=(DoNotCopyOrAssign const &);
bi

class MyClass : public DoNotCopyOrAssign {
public:
MyClass();
bi

MyClass x, y;
x =vy; // Fails to compile due to private assignment operator;
MyClass z(x); // Fails to compile due to private copy constructor.

Relational operators

* == (equality)

* = (inequality)

* > (greater-than)

¢ < (less-than)

* >= (greater-than-or-equal-to)
* <= (less-than-or-equal-to)

All relational operators are binary, and should return either true or false. Generally,
all six operators can be based off a comparison function, or each other, although

444

Operator overloading

this is never done automatically (e.g. overloading > will not automatically overload
< to give the opposite). There are, however, some templates defined in the header
<utility>; if this header is included, then it suffices to just overload operator== and
operator<, and the other operators will be provided by the STL.

Logical operators

. 1 (NOT)
« && (AND)
« 11 (OR)

The ! operator is unary, && and |l are binary. It should be noted that in normal
use, && and Il have "short-circuit" behavior, where the right operand may not be
evaluated, depending on the left operand. When overloaded, these operators get
function call precedence, and this short circuit behavior is lost. It is best to leave
these operators alone.

Example

bool Functionl();
bool Function2();

Functionl () && Function2();

If the result of Function1() is false, then Function2() is not called.

MyBool Function3();
MyBool Functiond4();

bool operators&s (MyBool const &, MyBool const &);

Function3 () && Functiond ()

Both Function3() and Function4() will be called no matter what the result of the
call is to Function3() This is a waste of CPU processing, and worse, it could have
surprising unintended consequences compared to the expected "short-circuit" be-
havior of the default operators. Consider:

extern MyObject * ObjectPointer;

bool Functionl() { return ObjectPointer != null; }

bool Function2() { return ObjectPointer->MyMethod(); }
MyBool Function3() { return ObjectPointer != null; }
MyBool Function4 () { return ObjectPointer->MyMethod(); }

bool operators&s (MyBool const &, MyBool const &);

445

Object Oriented Programming

Functionl() && Function2(); // Does not execute FunctionZ2() when pointer is null
Function3() && Function4d(); // Executes Function4 () when pointer is null

Compound assignment operators

* += (addition-assignment)

* -= (subtraction-assignment)

* *= (multiplication-assignment)

* /= (division-assignment)

* %= (modulus-assignment)

* &= (AND-assignment)

* |= (OR-assignment)

* "= (XOR-assignment)

* >>= (shift-right-assignment)

* <<= (shift-left-assignment)

Compound assignment operators should be overloaded as member functions, as
they change the left-hand operand. Like all other operators (except basic assign-
ment), compound assignment operators must be explicitly defined, they will not
be automatically (e.g. overloading = and + will not automatically overload +=).
A compound assignment operator should work as expected: A @= B should be

equivalent to A = A @ B. An example of += for a two-dimensional mathematical
vector type follows.

Vector2D& Vector2D::operator+=(const Vector2D& right)
{

this->x += right.x;

this->y += right.y;

return *this;

Increment and decrement operators

* ++ (increment)
¢ -- (decrement)

Increment and decrement have two forms, prefix (++i) and postfix (i++). To dif-
ferentiate, the postfix version takes a dummy integer. Increment and decrement
operators are most often member functions, as they generally need access to the
private member data in the class. The prefix version in general should return a
reference to the changed object. The postfix version should just return a copy of
the original value. In a perfect world, A +=1, A = A + 1, A++, ++A should all
leave A with the same value.

446

Operator overloading

Example

SomeValue SomeValue::operator++() // prefix { ++data; return *this; }

SomeValue SomeValue::operator++ (int unused) // postfix { SomeValue result =
*this; ++data; return result; }

Often one operator is defined in terms of the other for ease in maintenance, espe-
cially if the function call is complex.

SomeValue SomeValue::operator++(int unused) // postfix
{
SomeValue result = *this;
++(*this); // call SomeValue::operator++()
return result;

Subscript operator

The subscript operator, [], is a binary operator which must be a member function
(hence it takes only one explicit parameter, the index). The subscript operator is
not limited to taking an integral index. For instance, the index for the subscript
operator for the std::map template is the same as the type of the key, so it may
be a string etc. The subscript operator is generally overloaded twice; as a non-
constant function (for when elements are altered), and as a constant function (for
when elements are only accessed).

Function call operator

The function call operator, (), is generally overloaded to create objects which
behave like functions, or for classes that have a primary operation. The function
call operator must be a member function, but has no other restrictions - it may be
overloaded with any number of parameters of any type, and may return any type.
A class may also have several definitions for the function call operator.

Address of, Reference, and Pointer operators

These three operators, operator&(), operator*() and operator->() can be over-
loaded. In general these operators are only overloaded for smart pointers, or
classes which attempt to mimic the behavior of a raw pointer. The pointer op-
erator, operator->() has the additional requirement that the result of the call to that

447

Object Oriented Programming

operator, must return a pointer, or a class with an overloaded operator->(). In gen-
eral A == *&A should be true.

Example

class T {
public:
const memberFunction() const;
}i

// forward declaration
class DullSmartReference;

class DullSmartPointer {
private:
T *m_ptr;
public:
DullSmartPointer (T *rhs) : m_ptr(rhs) {};
DullSmartReference operator* () const {
return DullSmartReference (*m_ptr);
}
T *operator->() const {
return m_ptr;
}
bi

class DullSmartReference {
private:
T *m_ptr;
public:
DullSmartReference (T &rhs) : m_ptr(&rhs) {}
DullSmartPointer operators () const {
return DullSmartPointer (m_ptr);
}
// conversion operator
operator T() { return *m_ptr; }
}i

DullSmartPointer dsp(new T);

dsp->memberFunction(); // calls T::memberFunction
T t;

DullSmartReference dsr(t);

dsp = &dsr;

t = dsr; // calls the conversion operator

These are extremely simplified examples designed to show how the operators can
be overloaded and not the full details of a SmartPointer or SmartReference class.
In general you won’t want to overload all three of these operators in the same class.

448

Operator overloading

Comma operator

The comma operator,() , can be overloaded. The language comma operator has
left to right precedence, the operator,() has function call precedence, so be aware
that overloading the comma operator has many pitfalls.

Example

MyClass operator, (MyClass const &, MyClass const &);

MyClass Functionl();
MyClass Function2();

MyClass x = Functionl(), Function2();

For non overloaded comma operator, the order of execution will be Function1(),
Function2(); With the overloaded comma operator, the compiler can call either
Function1(), or Function2() first.

Member access operators

The two member access operators, operator->() and operator->*() can be over-
loaded. The most common use of overloading these operators is with defining ex-
pression template classes, which is not a common programming technique. Clearly
by overloading these operators you can create some very unmaintainable code so
overload these operators only with great care.

When the -> operator is applied to a pointer value of type (T *), the language
dereferences the pointer and applies the . member access operator (so x->m is
equivalent to (*x).m). However, when the -> operator is applied to a class instance,
it is called as a unary postfix operator; it is expected to return a value to which the
-> operator can again be applied. Typically, this will be a value of type (T *), as
in the example under ADDRESS OF, REFERENCE, AND POINTER OPERATORS*/
above, but can also be a class instance with operator->() defined; the language will
call operator->() as many times as necessary until it arrives at a value of type (T

*),

Memory management operators

47 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23ADDRESS%200F.2C%20REFERENCE.
2C%20AND%$20POINTERS200PERATORS

449

http://en.wikibooks.org/wiki/%23Address%20of.2C%20Reference.2C%20and%20Pointer%20operators
http://en.wikibooks.org/wiki/%23Address%20of.2C%20Reference.2C%20and%20Pointer%20operators

Object Oriented Programming

* new (allocate memory for object)
new/[] (allocate memory for array)
delete (deallocate memory for object)
delete[] (deallocate memory for array)

The memory management operators can be overloaded to customize allocation
and deallocation (e.g. to insert pertinent memory headers). They should behave
as expected, new should return a pointer to a newly allocated object on the heap,
delete should deallocate memory, ignoring a NULL argument. To overload new,
several rules must be followed:

* new must be a member function
* the return type must be void*
* the first explicit parameter must be a size_t value

To overload delete there are also conditions:

¢ delete must be a member function (and cannot be virtual)

* the return type must be void

* there are only two forms available for the parameter list, and only one of the
forms may appear in a class:
* void*
* void*, size_t

Conversion operators

Conversion operators enable objects of a class to be either implicitly (coercion)
or explicitly (casting) converted to another type. Conversion operators must be
member functions, and should not change the object which is being converted, so
should be flagged as constant functions. The basic syntax of a conversion operator
declaration, and declaration for an int-conversion operator follows.

operator ’’type’’ () const; // const is not necessary, but is good style
operator int () const;

Notice that the function is declared without a return-type, which can easily be
inferred from the type of conversion. Including the return type in the function
header for a conversion operator is a syntax error.

double operator double() const; // error - return type included

4.7.3 Operators which cannot be overloaded

¢ ?: (conditional)
e . (member selection)

450

/0

* .* (member selection with pointer-to-member)
* :: (scope resolution)

* sizeof (object size information)

* typeid (object type information)

To understand the reasons why the language doesn’t permit these op-
erators to be overloaded, read "Why can’t I overload dot, :, sizeof,
etc.?" at the Bjarne Stroustrup’s C++ Style and Technique FAQ (
HTTP://WWW.RESEARCH.ATT.COM/ BS/BS_FAQ2.HTML#OVERLOAD-DOT*®).

49

4.8 1/0

Also commonly referenced as the C++ 1/0 of the C++ STANDARD LIBRARY”,
since the library also includes the C Standard library and its I/O implementation,
as seen before in the STANDARD C 1/0 SECTION’!,

Input and output are essential for any computer software, as these are the only
means by which the program can communicate with the user. The simplest form
of input/output is pure textual, i.e. the application displays in console form, using
simple ASCII characters to prompt the user for inputs, which are supplied using
the keyboard.

There are many ways for a program to gain input and output, including

* File i/o, that is, reading and writing to files

* Console i/o, reading and writing to a console window, such as a terminal in
UNIX-based operating systems or a DOS prompt in Windows.

* Network i/o, reading and writing from a network device

* String i/o, reading and writing treating a string as if it were the input or output
device

While these may seem unrelated, they work very similarly. In fact, operating sys-
tems that follow the POSIX specification deal with files, devices, network sockets,
consoles, and many other things all with one type of handle, a file descriptor. How-
ever, low-level interfaces provided by the operating system tend to be difficult to

48 HTTP://WWW.RESEARCH.ATT.COM/~{}BS/BS_FAQ2.HTML#¥OVERLOAD—DOT
49 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3AC%2B%2B%20PROGRAMMING
50 Chapter 3.1.2 on page 45

51 Chapter 3.7.11 on page 274

451

http://www.research.att.com/~{}bs/bs_faq2.html#overload-dot
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Object Oriented Programming

use, so C++, like other languages, provide an abstraction to make programming
easier. This abstraction is the stream.

4.8.1 Character encoding

American Standard Code for Information Interchange (ASCII) 95 chart

ASCII® is a CHARACTER-ENCODING SCHEME>? based on the ORDERING* of
The 95 ASCII graphic characters numbered from
0x20 to Ox7E (32 to 126 decimal), also known as the printable characters, represent
letters, digits, PUNCTUATION MARKS>®, and a few miscellaneous symbols. The
first 32 ASCII characters, from 0x00 to 0x20, are known as control characters.
The SPACE CHARACTERY, that denotes the space between words, as produced
by the space-bar of a keyboard, represented by code 0x20 (HEXADECIMAL?®), is
considered a non-printing graphic (or an invisible graphic) rather than a control

the ENGLISH ALPHABET>.

character.
Binary ocr® DEC® HEx®! GLYPH®?
010 0000 040 32 20 SPACE®?
010 0001 041 33 21 164
0100010 042 34 22 "65
0100011 043 35 23 #06
0100100 044 36 24 $¢7
010 0101 045 37 25 %8
0100110 046 38 26 &%
0100111 047 39 27 70

52 HTTP://EN.WIKIPEDIA.ORG/WIKI/ASCII

53 HTTP://EN.WIKIPEDIA.ORG/WIKI/CHARACTER%20ENCODING

54 HTTP://EN.WIKIPEDIA.ORG/WIKI/ORDER%$20%28MATHEMATICS%29

55
56
57
58
63
64
65
66
67
68
69
70

452

HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.

WIKIPEDIA.
WIKIPEDIA.
.ORG/WIKI/SPACE%20%28PUNCTUATION%29
.ORG/WIKI/HEXADECIMAL

.ORG/WIKI/SPACE%20%28PUNCTUATIONS29
WIKIPEDIA.
WIKIPEDIA.
.ORG/WIKI/NUMBER%20SIGN
.ORG/WIKI/DOLLAR%20SIGN
WIKIPEDIA.
WIKIPEDIA.
WIKIPEDIA.

WIKIPEDIA
WIKIPEDIA
WIKIPEDIA

WIKIPEDIA
WIKIPEDIA

ORG/WIKI/ENGLISH%20ALPHABET
ORG/WIKI/PUNCTUATION$20MARKS

ORG/WIKI/EXCLAMATION%20MARK
ORG/WIKI/QUOTATION%20MARK

ORG/WIKI/PERCENT%20SIGN
ORG/WIKI/AMPERSAND
ORG/WIKI/APOSTROPHE

http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/character%20encoding
http://en.wikipedia.org/wiki/Order%20%28mathematics%29
http://en.wikipedia.org/wiki/English%20alphabet
http://en.wikipedia.org/wiki/punctuation%20marks
http://en.wikipedia.org/wiki/Space%20%28punctuation%29
http://en.wikipedia.org/wiki/hexadecimal
http://en.wikipedia.org/wiki/Space%20%28punctuation%29
http://en.wikipedia.org/wiki/Exclamation%20mark
http://en.wikipedia.org/wiki/Quotation%20mark
http://en.wikipedia.org/wiki/Number%20sign
http://en.wikipedia.org/wiki/Dollar%20sign
http://en.wikipedia.org/wiki/Percent%20sign
http://en.wikipedia.org/wiki/Ampersand
http://en.wikipedia.org/wiki/apostrophe

/0

GLYPH®?
(71

+*73

Binary ocr¥® DEC HEx®
010 1000 050 40 28
010 1001 051 41 29
010 1010 052 42 2A
010 1011 053 43 2B
010 1100 054 44 2C
010 1101 055 45 2D
0101110 056 46 2E
010 1111 057 47 2F
011 0000 060 48 30
011 0001 061 49 31
0110010 062 50 32
011 0011 063 51 33
0110100 064 52 34
011 0101 065 53 35
0110110 066 54 36
0110111 067 55 37
011 1000 070 56 38
011 1001 071 57 39
0111010 072 58 3A
011 1011 073 59 3B
0111100 074 60 3C
71 HBTTP://EN.WIKIPEDIA.ORG/WIKI/BRACKET
72 HTTP://EN.WIKIPEDIA.ORG/WIKI/BRACKET
73 HTTP://EN.WIKIPEDIA.ORG/WIKI/ASTERISK
74 HTTP://EN.WIKIPEDIA.ORG/WIKI/PLUS%20SIGN
75 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMMA%20%28PUNCTUATIONS29
76 HTTP://EN.WIKIPEDIA.ORG/WIKI/HYPHEN-MINUS
77 wBTTP://EN.WIKIPEDIA.ORG/WIKI/FULL%20STOP
78 HTTP://EN.WIKIPEDIA.ORG/WIKI/SLASH%20%28PUNCTUATIONS29
79 HTTP://EN.WIKIPEDIA.ORG/WIKI/O
80 HTTP://EN.WIKIPEDIA.ORG/WIKI/1%20%28NUMBER%29
81 HTTP://EN.WIKIPEDIA.ORG/WIKI/2%20%28NUMBER%29
82 HTTP://EN.WIKIPEDIA.ORG/WIKI/3%20%28NUMBER%29
83 HTTP://EN.WIKIPEDIA.ORG/WIKI/4%20%28NUMBER%29
8 HTTP://EN.WIKIPEDIA.ORG/WIKI/5%20%28NUMBER%29
85 HTTP://EN.WIKIPEDIA.ORG/WIKI/6%20%28NUMBER%29
8 HTTP://EN.WIKIPEDIA.ORG/WIKI/7%20%28NUMBER%29
87 HTTP://EN.WIKIPEDIA.ORG/WIKI/8%20%28NUMBER%29
88 HTTP://EN.WIKIPEDIA.ORG/WIKI/9%20%28NUMBER%29
8 HTTP://EN.WIKIPEDIA.ORG/WIKI/COLON%20%28PUNCTUATIONS29
90 HTTP://EN.WIKIPEDIA.ORG/WIKI/SEMICOLON
91 HTTP://EN.WIKIPEDIA.ORG/WIKI/LESS—THAN$20SIGN

453

http://en.wikipedia.org/wiki/Bracket
http://en.wikipedia.org/wiki/Bracket
http://en.wikipedia.org/wiki/Asterisk
http://en.wikipedia.org/wiki/Plus%20sign
http://en.wikipedia.org/wiki/Comma%20%28punctuation%29
http://en.wikipedia.org/wiki/Hyphen-minus
http://en.wikipedia.org/wiki/Full%20stop
http://en.wikipedia.org/wiki/Slash%20%28punctuation%29
http://en.wikipedia.org/wiki/0
http://en.wikipedia.org/wiki/1%20%28number%29
http://en.wikipedia.org/wiki/2%20%28number%29
http://en.wikipedia.org/wiki/3%20%28number%29
http://en.wikipedia.org/wiki/4%20%28number%29
http://en.wikipedia.org/wiki/5%20%28number%29
http://en.wikipedia.org/wiki/6%20%28number%29
http://en.wikipedia.org/wiki/7%20%28number%29
http://en.wikipedia.org/wiki/8%20%28number%29
http://en.wikipedia.org/wiki/9%20%28number%29
http://en.wikipedia.org/wiki/Colon%20%28punctuation%29
http://en.wikipedia.org/wiki/Semicolon
http://en.wikipedia.org/wiki/Less-than%20sign

Object Oriented Programming

Binary

011 1101
0111110
011 1111

Binary

100 0000
100 0001
100 0010
100 0011
100 0100
100 0101
100 0110
100 0111
100 1000
100 1001
100 1010
100 1011
100 1100
100 1101
100 1110
100 1111
101 0000

ocr¥
075
076
077

oct?”
100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120

DEC®
61
62
63

DEC?
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

92

93

94

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

454

HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.

WIKIPEDIA

WIKIPEDIA.

WIKIPEDIA
WIKIPEDIA
WIKIPEDIA

WIKIPEDIA
WIKIPEDIA
WIKIPEDIA

WIKIPEDIA
WIKIPEDIA
WIKIPEDIA

WIKIPEDIA
WIKIPEDIA
WIKIPEDIA

ORG/WIKI/B
ORG/WIKI/C

.ORG/WIKI/D
.ORG/WIKI/E
.ORG/WIKI/F
WIKIPEDIA.

ORG/WIKI/G

.ORG/WIKI/H
.ORG/WIKI/I
.ORG/WIKI/J
WIKIPEDIA.
WIKIPEDIA.

ORG/WIKI/K
ORG/WIKI/L

.ORG/WIKI/M
.ORG/WIKI/N
.ORG/WIKI/O
WIKIPEDIA.

ORG/WIKI/P

Hex®!
3D
3E
3F

HEXY
40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50

.ORG/WIKI/EQUALS%20SIGN
ORG/WIKI/GREATER-THAN%20SIGN
.ORG/WIKI/QUESTION%20MARK
.ORG/WIKI/%40

.ORG/WIKI/A
WIKIPEDIA.
WIKIPEDIA.

GLYPH®?

http://en.wikipedia.org/wiki/Equals%20sign
http://en.wikipedia.org/wiki/Greater-than%20sign
http://en.wikipedia.org/wiki/Question%20mark
http://en.wikipedia.org/wiki/%40
http://en.wikipedia.org/wiki/A
http://en.wikipedia.org/wiki/B
http://en.wikipedia.org/wiki/C
http://en.wikipedia.org/wiki/D
http://en.wikipedia.org/wiki/E
http://en.wikipedia.org/wiki/F
http://en.wikipedia.org/wiki/G
http://en.wikipedia.org/wiki/H
http://en.wikipedia.org/wiki/I
http://en.wikipedia.org/wiki/J
http://en.wikipedia.org/wiki/K
http://en.wikipedia.org/wiki/L
http://en.wikipedia.org/wiki/M
http://en.wikipedia.org/wiki/N
http://en.wikipedia.org/wiki/O
http://en.wikipedia.org/wiki/P

/0

Binary

101 0001
101 0010
101 0011
101 0100
101 0101
101 0110
101 0111
101 1000
101 1001
101 1010
101 1011
101 1100
101 1101
101 1110
101 1111

Binary

110 0000
110 0001
110 0010
110 0011
110 0100

ocr®
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137

OCT131
140
141
142
143
144

DEC?
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

DEC13?
96

97

98

99

100

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
135
136
137
138
139

HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP

://EN.
://EN.
://EN.
://EN.
://EN.
://EN.
://EN.
://EN.
://EN.
://EN.
://EN.
://EN.
://EN.
://EN.
://EN.
://EN.
://EN.
://EN.
://EN.
://EN.

WIKIPEDIA.
WIKIPEDIA.
.ORG/WIKI/S
.ORG/WIKI/T
WIKIPEDIA.
WIKIPEDIA.
WIKIPEDIA.
.ORG/WIKI/X
WIKIPEDIA.
WIKIPEDIA.
WIKIPEDIA.

WIKIPEDIA
WIKIPEDIA

WIKIPEDIA

WIKIPEDIA
WIKIPEDIA

WIKIPEDIA.
WIKIPEDIA.

WIKIPEDIA
WIKIPEDIA

ORG/WIKI/Q
ORG/WIKI/R

ORG/WIKI/U
ORG/WIKI/V
ORG/WIKI/W

ORG/WIKI/Y

ORG/WIKI/Z
ORG/WIKI/BRACKET

ORG/WIKI/CARET

Hex??
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
S5E
5F

HEX133
60
61
62
63

.ORG/WIKI/BACKSLASH
.ORG/WIKI/BRACKET
WIKIPEDIA.

ORG/WIKI/UNDERSCORE
ORG/WIKI/GRAVE%20ACCENT

.ORG/WIKI/A
.ORG/WIKI/B
WIKIPEDIA.
WIKIPEDIA.

ORG/WIKI/C
ORG/WIKI/D

GLypH!3
(135

A136
B137
C138
D139

455

http://en.wikipedia.org/wiki/Q
http://en.wikipedia.org/wiki/R
http://en.wikipedia.org/wiki/S
http://en.wikipedia.org/wiki/T
http://en.wikipedia.org/wiki/U
http://en.wikipedia.org/wiki/V
http://en.wikipedia.org/wiki/W
http://en.wikipedia.org/wiki/X
http://en.wikipedia.org/wiki/Y
http://en.wikipedia.org/wiki/Z
http://en.wikipedia.org/wiki/Bracket
http://en.wikipedia.org/wiki/Backslash
http://en.wikipedia.org/wiki/Bracket
http://en.wikipedia.org/wiki/Caret
http://en.wikipedia.org/wiki/Underscore
http://en.wikipedia.org/wiki/Grave%20accent
http://en.wikipedia.org/wiki/a
http://en.wikipedia.org/wiki/b
http://en.wikipedia.org/wiki/c
http://en.wikipedia.org/wiki/d

Object Oriented Programming

Binary

110 0101
1100110
1100111
110 1000
110 1001
110 1010
110 1011
110 1100
110 1101
1101110
110 1111
111 0000
111 0001
111 0010
111 0011
111 0100
1110101
1110110
1110111
111 1000
111 1001

OCT131
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171

DEC132
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

456

HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.

WIKIPEDIA.
WIKIPEDIA.
WIKIPEDIA.
.ORG/WIKI/H
.ORG/WIKI/I
WIKIPEDIA.
WIKIPEDIA.
WIKIPEDIA.
.ORG/WIKI/M
WIKIPEDIA.
WIKIPEDIA.
WIKIPEDIA.

WIKIPEDIA
WIKIPEDIA

WIKIPEDIA

WIKIPEDIA
WIKIPEDIA

WIKIPEDIA
WIKIPEDIA

ORG/WIKI/E
ORG/WIKI/F
ORG/WIKI/G

ORG/WIKI/J
ORG/WIKI/K
ORG/WIKI/L

ORG/WIKI/N
ORG/WIKI/O
ORG/WIKI/P

.ORG/WIKI/Q
.ORG/WIKI/R
WIKIPEDIA.
WIKIPEDIA.
WIKIPEDIA.

ORG/WIKI/S
ORG/WIKI/T
ORG/WIKI/U

.ORG/WIKI/V
.ORG/WIKI/W
WIKIPEDIA.
WIKIPEDIA.

ORG/WIKI/X
ORG/WIKI/Y

HEX133
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79

http://en.wikipedia.org/wiki/e
http://en.wikipedia.org/wiki/f
http://en.wikipedia.org/wiki/g
http://en.wikipedia.org/wiki/h
http://en.wikipedia.org/wiki/i
http://en.wikipedia.org/wiki/j
http://en.wikipedia.org/wiki/k
http://en.wikipedia.org/wiki/l
http://en.wikipedia.org/wiki/m
http://en.wikipedia.org/wiki/n
http://en.wikipedia.org/wiki/o
http://en.wikipedia.org/wiki/p
http://en.wikipedia.org/wiki/q
http://en.wikipedia.org/wiki/r
http://en.wikipedia.org/wiki/s
http://en.wikipedia.org/wiki/t
http://en.wikipedia.org/wiki/u
http://en.wikipedia.org/wiki/v
http://en.wikipedia.org/wiki/w
http://en.wikipedia.org/wiki/x
http://en.wikipedia.org/wiki/y

/0

Binary Oocrh! DEC!32 HEx!33 GLypH!3
111 1010 172 122 7A 7161
111 1011 173 123 7B {162
111 1100 174 124 7C |163
111 1101 175 125 7D j164
1111110 176 126 7E -165

166

4.8.2 Streams

A stream is a type of object from which we can take values, or to which we can
pass values. This is done transparently in terms of the underlying code that demon-
strates the use of the std: : cout stream, known as the standard output stream.

// ’Hello World!’ program
#include <iostream>

int main()

{
std::cout << "Hello World!" << std::endl;
return 0;

}

Almost all input and output one ever does can be modeled very effectively as a
stream. Having one common model means that one only has to learn it once. If
you understand streams, you know the basics of how to output to files, the screen,
sockets, pipes, and anything else that may come up.

A stream is an object that allows one to push data in or out of a medium, in order.
Usually a stream can only output or can only input. It is possible to have a stream
that does both, but this is rare. One can think of a stream as a car driving along a
one-way street of information. An output stream can insert data and move on. It
(usually) cannot go back and adjust something it has already written. Similarly, an
input stream can read the next bit of data and then wait for the one that comes after
it. It does not skip data or rewind and see what it had read 5 minutes ago.

161 HTTP://EN.WIKIPEDIA.ORG/WIKI/Z

162 uTTP://EN.WIKIPEDIA.ORG/WIKI/BRACKET

163 HTTP://EN.WIKIPEDIA.ORG/WIKI/VERTICAL%20BAR

164 HTTP://EN.WIKIPEDIA.ORG/WIKI/BRACKET

165 uTTP://EN.WIKIPEDIA.ORG/WIKI/TILDE

166 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

457

http://en.wikipedia.org/wiki/z
http://en.wikipedia.org/wiki/Bracket
http://en.wikipedia.org/wiki/Vertical%20bar
http://en.wikipedia.org/wiki/Bracket
http://en.wikipedia.org/wiki/Tilde
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Object Oriented Programming

The semantics of what a stream’s read and write operations do depend on the type
of stream. In the case of a file, an input file stream reads the file’s contents in
order without rewinding, and an output file stream writes to the file in order. For a
console stream, output means displaying text, and input means getting input from
the user via the console. If the user has not inputted anything, then the program
blocks, or waits, for the user to enter in something.

iostream

Grpgst Sy T L)

) d J%gi >
o 4 by “ g;‘é} I
] 2 5% S g £ €3 S 8 1 : %‘t\;‘? ‘.

Figure 24: c++ program that uses iostream to save output to the file

iostream is a HEADER FILE!®” used for input/output. Part of the C++ standard
library. The name stands for Input/Output Stream. In C++ there is no special
syntax for streaming data input or output. Instead, these are combined as a LI-
BRARY!%® of functions. Like we have seen with the C STANDARD LIBRARY USE
OF <cstdio> HEADER'®, iostream provides basic OOP services for I/O.

The <iostream> automatically defines and uses a few standard objects:

* cin, an object of the istream class that reads data from the standard input device.
* cout, an object of the ostream class, which displays data to the standard output
device.

167 Chapter 3.1.6 on page 53
168 Chapter 6.3.3 on page 584
169 Chapter 3.7.11 on page 274

458

/0

* cerr, another object of the ostream class that writes unbuffered output to the
standard error device.
* clog, like cerr, but uses buffered output.

for sending data to and from the STANDARD STREAMS!7? input, output, error (un-
buffered), and error (buffered) respectively. As part of the C++ standard library,
these objects are a part of the std namespace.

Standard input, output, and error

The most common streams one uses are cout, cin, and cerr (pronounced "c out",
"cin", and "c err(or)", respectively). They are defined in the header <iostream>.
Usually, these streams read and write from a console or terminal. In UNIX-based
operating systems, such as Linux and Mac OS X, the user can redirect them to other
files, or even other programs, for logging or other purposes. They are analogous
to stdout, stdin, and stderr found in C. cout is used for generic output, cin
is used for input, and cerr is used for printing errors. (cerr typically goes to
the same place as cout, unless one or both is redirected, but it is not buffered
and allows the user to fine-tune which parts of the program’s output is redirected
where.)

Output
The standard syntax for outputting to a stream, in this case, cout, is

cout << some_data << some_more_data;

Example

#include <iostream>
using namespace std;
int main()
{

int a = 1;

cout << "Hello world! " << a << '\n’;

return 0;

}

Result of Execution

170 HTTP://EN.WIKIPEDIA.ORG/WIKI/STANDARD$20STREAMS

459

http://en.wikipedia.org/wiki/standard%20streams

Object Oriented Programming

Hello world! 1

To add a line break, send a newline character, \n or use std: :endl, which writes
a newline and flushes the stream’s buffer.

Example

#include <iostream>
#include <ostream>

using namespace std;

int main()
{
int a = 1;
char x = 13;
cout << "Hello world!"™ << "\n" << a << endl << x << endl;

return 0;

}

Execution

Hello world!
1

It is always a good idea to end your output with a blank line, so as to not mess up
with user’s terminals.

As seen in the "Hello World!" program, we direct the output to std: :cout. This
means that it is a member of the standard library. For now, don’t worry about what
this means; we will cover the library and namespaces in later chapters.

What you do need to remember is that, in order to use the output stream, you
must include a reference to the standard 1O library, as shown here: #include
<iostream>

This opens up a number of streams, functions and other programming devices
which we can now use. For this section, we are interested in two of these;
std::cout and std: :endl.

Once we have referenced the standard IO library, we can use the output stream
very simply. To use a stream, give its name, then pipe something in or out of it, as
shown: std::cout << "Hello, world!";

The << operator feeds everything to the right of it into the stream. We have essen-
tially fed a text object into the stream. That’s as far as our work goes; the stream

460

/0

now decides what to do with that object. In the case of the output stream, it’s
printed on-screen.

We’re not limited to only sending a single object type to the stream, nor indeed are
we limited to one object a time. Consider the examples below:

std::cout << "Hello, " << "Joe"<< std::endl;
std::cout << "The answer to life, the universe and everything is " << 42 <<
std::endl;

As can be seen, we feed in various values, separated by a pipe character. The
result comes out something like:

Hello, Joe
The answer to life, the universe and everything is 42

You will have noticed the use of std: :endl throughout some of the examples so
far. This is the newline constant. It is a member of the standard IO library, and
comes "free" when we instantiate that in order to use the output stream. When the
output stream receives this constant, it starts a new line in the console.

And of course, we’re not limited to sending only ONE newline, either:

std::cout << "Hello, " << "Joe" << std::endl << std::endl;
std::cout << "How old are you?";

Which produces something like:

Hello, Joe

How old are you?

Input

What would be the use of an application that only ever outputted information, but
didn’t care about what its users wanted? Minimal to none. Fortunately, inputting
is as easy as outputting when you’re using the stream.

The standard input stream is called std::cin and is used very similarly to the
output stream. Once again, we instantiate the standard IO library:

#include <iostream>

461

Object Oriented Programming

This gives us access to std::cin (and the rest of that class). Now, we give the
name of the stream as usual, and pipe output from it into a variable. A number of
things have to happen here, demonstrated in the example below:

#include <iostream>
int main(int argc, char argv[]) {
int a;
std::cout << "Hello! How old are you? ";
std::cin >> a;
std::cout << "You're really " << a << " years old?" << std::endl;

return 0;

}

We instantiate the standard IO library as usual, and call our main function in the
normal way. Now we need to consider where the user’s input goes. This calls for
a variable (discussed in a later chapter) which we declare as being called a.

Next, we send some output, asking the user for their age. The real input happens
now; everything the user types until they hit Enter is going to be stored in the input
stream. We pull this out of the input stream and save it in our variable.

Finally, we output the user’s age, piping the contents of our variable into the output
stream.

Note: You will notice that if anything other than a whole number is entered, the
program will crash. This is due to the way in which we set up our variable. Don’t
worry about this for now; we will cover variables later on.

A Program Using User Input
The following program inputs two numbers from the user and prints their sum:

#include <iostream>

int main()
{
int numl, num2;
std::cout << "Enter number 1: ";
std::cin >> numl;
std::cout << "Enter number 2: ";
std::cin >> num2;
std::cout << "The sum of " << numl << " and " << num2 << " is "
<< numl + num2 << ".\n";
return 0;

}

Just like std: : cout which represents the standard output stream, the C++ library
provides (and the iostream header declares) the object std::cin representing
standard input, which usually gets input from the keyboard. The statement:

462

/0

std::cin >> numl;

uses the extraction operator (>>) to get an integer input from the user. When used
to input integers, any leading whitespace is skipped, a sequence of valid digits
optionally preceded by a + or - sign is read and the value stored in the variable.
Any remaining characters in the user input are not consumed. These would be
considered next time some input operation is performed.

If you want the program to use a function from a specific namespace, normally
you must specify which namespace the function is in. The above example calls to
cout, which is a member of the std namespace (hence std: :cout). If you want
a program to specifically use the std namespace for an identifier, which essentially
removes the need for all future scope resolution (e.g. std: :), you could write the
above program like this:

#include <iostream>
using namespace std;

int main()
{
int numl, num2;

cout << "Enter number 1: ";

cin >> numl;

cout << "Enter number 2: ";

cin >> num2;

cout << "The sum of " << numl << " and " << num2 << " is "
<< numl + num2 << ".\n";

return 0;

}

Please note that ’std’ namespace is the namespace defined by standard C++ library.

Manipulators

A manipulator is a function that can be passed as an argument to a stream in
different circumstances. For example, the manipulator "hex’ will cause the stream
object to format subsequent integer input to the stream in hexadecimal instead of
decimal. Likewise, ’oct’ results in integers displaying in octal, and ’dec’ reverts
back to decimal.

Example

#include <iostream>
using namespace std;

int main()

{

463

Object Oriented Programming

cout << dec << 16 << ' 7 << 10 << endl;
cout << oct << 16 << 7 7 << 10 << endl;
cout << hex << 16 << ' 7 << 10 << endl;

return 0;

}

Execution

16 10
20 12
10 a

There are many manipulators which can be used in conjunction with streams to
simplify the formatting of input. For example, ’setw()’ sets the field width of the
data item next displayed. Used in conjunction with ’left’ and ’right’(which set the
justification of the data), setw’ can easily be used to create columns of data.

Example

#include <iostream>
#include <iomanip>
using namespace std;

int main()

{
cout << setw(1l0) << right << 90 << setw(8) << "Help!" << endl;
cout << setw(10) << left << 45 << setw(8) << "Hi!" << endl;

return 0;

}

Execution

90 Help!
45 Hi!

The data in the top row display at the right of the columns created by ’setw’, while
in the next row, the data is left justified in the column. Please note the inclusion of
a new library ’iomanip’. Most formatting manipulators require this library.

Here are some other manipulators and their uses:

Manipulator Function

boolalpha displays boolean values as ’true’ and
"false’ instead of as integers.

noboolalpha forces bools to display as integer
values

464

/0

Manipulator Function

showuppercase converts strings to uppercase before
displaying them

noshowuppercase displays strings as they are received,
instead of in uppercase

fixed forces floating point numbers to dis-
play with a fixed number of decimal
places

scientific displays floating point numbers in

scientific notation

Buffers

Most stream objects, including *cout’ and ’cin’, have an area in memory where the
information they are transferring sits until it is asked for. This is called a ’buffer’.
Understanding the function of buffers is essential to mastering streams and their
use.

Example

#include <iostream>
using namespace std;

int main()

{
int numl, num2;
cin >> numl;
cin >> num2;

cout << "Numberl: " << numl << endl
<< "Number2: " << num2 << endl;
return 0;

}

Execution 1

>74
>27
Numberl: 74
Number2: 27

The inputs are given separately, with a hard return between them. *>’ denotes user
input.

Execution 2

465

Object Oriented Programming

>74 27
Numberl: 74
Number2: 27

The inputs are entered on the same line. They both go into the ’cin’ stream buffer,
where they are stored until needed. As ’cin’ statements are executed, the contents
of the buffer are read into the appropriate variables.

Execution 3

>74 27 56
Numberl: 74
Number2: 27

In this example, 'cin’ received more input than it asked for. The third number it
read in, 56, was never inserted into a variable. It would have stayed in the buffer
until *cin’ was called again. The use of buffers can explain many strange behaviors
that streams can exhibit.

Example

#include <iostream>
using namespace std;

int main()
{
int numl, num2, num3;

cin >> numl >> num2;

cout << "Numberl: " << numl << endl
<< "Number2: " << num2 << endl;

cin >> num3;
cout << "Number3: " << num3 << endl;

return 0;

}

Execution

>45 89 37

Numberl: 45
Number2: 89
Number3: 37

466

/0

Notice how all three numbers were entered at the same time in one line, but the
stream only pulled them out of the buffer when they were asked for. This can
cause unexpected output, since the user might accidentally put an extra space into
his input. A well written program will test for this type of unexpected input and
handle it gracefully.

ios

ios is a HEADER FILE!”! in the C++ standard library which defines several types
and functions basic to the operation of iostreams. This header is typically included
automatically by other iostream headers. Programmers rarely include it directly.

Typedefs
Name description
ios Supports the ios class from the old
iostream library.
streamoff Supports internal operations.
streampos Holds the current position of the
buffer pointer or file pointer.
streamsize Specifies the size of the stream.
wios Supports the wios class from the old
iostream library.
wstreampos Holds the current position of the
buffer pointer or file pointer.
Manipulators
Name description
boolalpha Specifies that variables of type bool
appear as true or false in the stream.
dec Specifies that integer variables ap-

pear in base 10 notation.

171 Chapter 3.1.6 on page 53

467

Object Oriented Programming

Name

fixed

hex

internal

left

noboolalpha

noshowbase

noshowpoint

noshowpos

noskipws

nounitbuf

nouppercase

oct

right

scientific

showbase

showpoint

468

description

Specifies that a floating-point num-
ber is displayed in fixed-decimal
notation.

Specifies that integer variables ap-
pear in base 16 notation.

Causes a number’s sign to be left
justified and the number to be right
justified.

Causes text that is not as wide as the
output width to appear in the stream
flush with the left margin.

Specifies that variables of type bool
appear as 1 or 0 in the stream.

Turns off indicating the notational
base in which a number is displayed.
Displays only the whole-number
part of floating-point numbers
whose fractional part is zero.
Causes positive numbers to not be
explicitly signed.

Cause spaces to be read by the input
stream.

Causes output to be buffered and
processed when the buffer is full.
Specifies that hexadecimal digits
and the exponent in scientific nota-
tion appear in lowercase.

Specifies that integer variables ap-
pear in base 8 notation.

Causes text that is not as wide as the
output width to appear in the stream
flush with the right margin.

Causes floating point numbers to be
displayed using scientific notation.
Indicates the notational base in
which a number is displayed.
Displays the whole-number part of a
floating-point number and digits to
the right of the decimal point even
when the fractional part is zero.

/0

Name
showpos

skipws

unitbuf

uppercase

Classes

Name
basic_ios

fpos

ios_base

fstream

description

Causes positive numbers to be ex-
plicitly signed.

Cause spaces to not be read by the
input stream.

Causes output to be processed when
the buffer is not empty.

Specifies that hexadecimal digits
and the exponent in scientific nota-
tion appear in uppercase.

description

The template class describes the
storage and member functions com-
mon to both input streams (of tem-
plate class basic_istream) and output
streams (of template class basic_-
ostream) that depend on the template
parameters.

The template class describes an ob-
ject that can store all the information
needed to restore an arbitrary file-
position indicator within any stream.
The class describes the storage and
member functions common to both
input and output streams that do not
depend on the template parameters.

With cout and cin, we can do basic communication with the user. For more
complex io, we would like to read from and write to files. This is done with
file stream classes, defined in the header <fstream>. ofstream is an output file
stream, and ifstream is an input file stream.

Files

469

Object Oriented Programming

To open a file, one can either call open on the file stream or, more commonly,
use the constructor. One can also supply an open mode to further control the file
stream. Open modes include

* ios::app Leaves the file’s original contents and appends new data to the end.

* ios::out Outputs new data in the file, removing the old contents. (default for
ofstream)

* ios::in Reads data from the file. (default for ifstream)

Example

// open a file called Test.txt and write "HELLO, HOW ARE YOU?" to it
#include <fstream>

using namespace std;

int main()
{

ofstream filel;

filel.open("filel.txt", ios::app);
filel << "This data will be appended to the file filel.txt\n";
filel.close();

ofstream file2 ("file2.txt");
file2 << "This data will replace the contents of file2.txt\n";

return 0;

}

The call to close() can be omitted if you do not care about the return value (whether
it succeeded); the destructors will call close when the object goes out of scope.

If an operation (e.g. opening a file) was unsuccessful, a flag is set in the stream
object. You can check the flags’ status using the bad() or fail() member functions,
which return a boolean value. The stream object doesn’t throw any exceptions in
such a situation; hence manual status check is required. See reference for details
on bad() and fail().

Text input until EOF/error/invalid input
Input from the stream infile to a variable data until one of the following:

* EOF reached on infile.

* An error occurs while reading from infile (e.g., connection closed while read-
ing from a remote file).

* The input item is invalid, e.g. non-numeric characters, when data is of type int.

#include <iostream>

470

/0

/S

while (infile >> data)
{
// manipulate data here

}

Note that the following is not correct:

#include <iostream>
V2R

while (!infile.eof())

{
infile >> data; // wrong!
// manipulate data here

}

This will cause the last item in the input file to be processed twice, because eof ()
does not return true until input fails due to EOF.

ostream

Classes and output streams

It is often useful to have your own classes’ instances compatible with the stream
framework. For instance, if you defined the class Foo like this:

class Foo

{
public:

Foo() : x(1), y(2)
{
}

int x, y;

}i

You will not be able to pass its instance to cout directly using the '<<’ operator,
because it is not defined for these two objects (Foo and ostream). What needs to be
done is to define this operator and thus bind the user-defined class with the stream
class.

ostream& operator<<(ostreamé& output, Foo& arg
{

output << arg.x << ", " << arg.y;

471

Object Oriented Programming

return output;

}
Now this is possible:

Foo my_object;
cout << "my_object’s values are: " << my_object << endl;

The operator function needs to have ’ostream&’ as its return type, so chaining
output works as usual between the stream and objects of type Foo:

Foo myl, my2, my3;
cout << myl << my2 << my3;

This is because (cout << myl) is of type ostream&, so the next argument (my?2)

can be appended to it in the same expression, which again gives an ostream& so
my3 can be appended and so on.

If you decided to restrict access to the member variables x and y (which is probably
a good idea) within the class Foo, i.e.:

class Foo

{
public:

Foo() : x(1), y(2)
{
}

private:
int %, y;i
b
you will have trouble, because the global operator<< function doesn’t have access
to the private variables of its second argument. There are two possible solutions to
this problem:

1. Within the class Foo, declare the operator<< function as the classes’ friend
which grants it access to private members, i.e. add the following line to the class
declaration:

friend ostream&é operator<<(ostream& output, Foo& arg);

Then define the operator<< function as you normally would (note that the de-
clared function is not a member of Foo, just its friend, so don’t try defining it as
Foo::operator<<).

2. Add public-available functions for accessing the member variables and make
the operator<< function use these instead:

472

/0

class Foo
{
public:
Foo() : x(1), y(2)
{
}
int get_x()
{
return x;
}
int get_y()
{
return y;
}
private:
int %, y;

i

ostream& operator<<(ostream& output, Foo& arg

{
output << arg.get_x() << "," << arg.get_y();
return output;

}
1172

4.8.3 The string class

The string class is a part of the C++ standard library, used for convenient manipula-
tion of sequences of characters, to replace the static, unsafe C method of handling
strings. To use the string class in a program, the <string> header must be included.
The standard library string class can be accessed through the std namespace.

The basic template class is basic_string<> and its standard specializations are
string and wstring.

Basic usage

Declaring a std string is done by using one of these two methods:

using namespace std;

172 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

473

http://en.wikibooks.org/wiki/Category%3A

Object Oriented Programming

string std_string;
or

std::string std_string;

Text I/0

This section will deal only with keyboard and text input. There are many other
inputs that can be read (mouse movements and button clicks, etc...), but these will
not be covered in this section, even reading the special keys of the keyboard will
be excluded.

Perhaps the most basic use of the string class is for reading text from the user and
writing it to the screen. In the header file iostream, C++ defines an object named
cin that handles input in much the same way that cout handles output.

// snipped designed to get an integer value from the user

int x;

std::cin >> x;

The >> operator will cause the execution to stop and will wait for the user to type
something. If the user types a valid integer, it will be converted into an integer
value and stored in x.

If the user types something other than an integer, the compiler will not report an
error. Instead, it leaves the old content (a "random" meaningless value) in x and
continues.

This can then be extended into the following program:

#include <iostream>
#include <string>

int main(){
std::string name;
std::cout << "Please enter your first name: ";
std::cin >> name;
std::cout << "Welcome " << name << "!" << std::endl;

return 0;

}

Although a string may hold a sequence containing any character--including spaces
and nulls--when reading into a string using cin and the extraction operator (>>)
only the characters before the first space will be stored. Alternatively, if an entire
line of text is desired, the getline function may be used:

474

/0

std::getline(std::cin, name);

Getting user input

Fortunately, there is a way to check and see if an input statement succeeds. We
can invoke the good function on cin to check what is called the stream state. good
returns a bool: if true, then the last input statement succeeded. If not, we know
that some previous operation failed, and also that the next operation will fail.

Thus, getting input from the user might look like this:

#include <iostream>

int main ()

{
using namespace std; // pull in the std namespace
int x;

// prompt the user for input

cout << "Enter an integer: ";

// get input
cin >> x;

// check and see if the input statement succeeded
if (cin.good() == false) {

cout << "That was not an integer." << endl;

return -1;

}

// print the value we got from the user
cout << x << endl;
return 0;

}

cin can also be used to input a string:

string name;

cout << "What is your name? ";

cin >> name;

cout << name << endl;

As with the scanf() function from the Standard C Library, this statement only takes
the first word of input, and leaves the rest for the next input statement. So, if you
run this program and type your full name, it will only output your first name.

You may also notice the >> operator doesn’t handle errors as expected (for exam-
ple, if you accidentally typed your name in a prompt for a number.) Because of
these issues, it may be more suitable to read a line of text, and using the line for
input — this is performed using the function called getline.

475

Object Oriented Programming

string name;

cout << "What is your name? ";

getline (cin, name);

cout << name << endl;

The first argument to getline is cin, which is where the input is coming from. The
second argument is the name of the string variable where you want the result to be
stored.

getline reads the entire line until the user hits Return or Enter. This is useful for
inputting strings that contain spaces.

In fact, getline is generally useful for getting input of any kind. For example, if
you wanted the user to type an integer, you could input a string and then check to
see if it is a valid integer. If so, you can convert it to an integer value. If not, you
can print an error message and ask the user to try again.

To convert a string to an integer you can use the strtol function defined in the
header file cstdlib. (Note that the older function atoi is less safe than strtol, as well
as being less capable.)

If you still need the features of the >> operator, you will need to create a string
stream as available from <sstream>. The use of this stream will be discussed in a
later chapter.

More advanced string manipulation

We will be using this dummy string for some of our examples.

string str("Hello World!");

This invokes the default constructor with a const char* argument. Default con-
structor creates a string which contains nothing, i.e. no characters, notevena ' \0’
(however std::string is not null terminated).

string str2(str);

Will trigger the copy constructor. std::string knows enough to make a deep
copy of the characters it stores.

string str2 = str;

This will copy strings using assignment operator. Effect of this code is same as
using copy constructor in example above.

476

/0

Size

string::size_type string::size() const;
string::size_type string::length() const;

So for example one might do:

string::size_type strSize = str.size();
string::size_type strSize2 = str2.length();

The methods size () and length () both return the size of the string object. There
is no apparent difference. Remember that the last character in the string is size ()

- 1 and not size (). Like in C-style strings, and arrays in general, std: :string
starts counting from O.

1/0

ostream& operator<<(ostream &out, string &str);
istream& operator>>(istream &in, string &str);

The shift operators (>> and <<) have been overloaded so you can perform I/O oper-
ations on istream and ostream objects, most notably cout, cin, and filestreams.
Thus you could just do console I/O like this:

std::cout << str << endl;
std::cin >> str;

istream& getline (istream& in, strings& str, char delim = "\n’);

Alternatively, if you want to read entire lines at a time, use getline(). Note
that this is not a member function. getline () will retrieve characters from input
stream in and assign them to str until EOF is reached or delim is encountered.
getline will reset the input string before appending data to it. delim can be set
to any char value and acts as a general delimiter. Here is some example usage:

#include <fstream>

//open a file

std::ifstream file("somefile.cpp");
std::string data, temp;

while(getline(file, temp, '#')) //while data left in file

{
//append data
data += temp;

4717

Object Oriented Programming

std::cout << data;

Because of the way get1ine works (i.e. it returns the input stream), you can nest
multiple getline () calls to get multiple strings; however this may significantly
reduce readability.

Operators

char& string::operator(] (string::size_type pos);

Chars in strings can be accessed directly using the overloaded subscript ([])
operator, like in char arrays:

std::cout << str[0] << str[2];

prints "HI".

std: :string supports casting from the older C string type const char*. Youcan
also assign or append a simple char to a string. Assigning a char* to a string is
as simple as

str = "Hello World!";

If you want to do it character by character, you can also use

str = "H';

Not surprisingly, operator+ and operator+= are also defined! You can append
another string, a const char* ora char to any string.

The comparison operators >, <, ==, >=, <=, !=all perform comparison op-
erations on strings, similar to the C strcmp() function. These return a true/false
value.

if (str == "Hello World!")
{

std::cout << "Strings are equal!";

}

Searching strings

string::size_type string::find(string needle, string::size_type pos = 0) const;

478

/0

You can use the find () member function to find the first occurrence of a string
inside another. find () will look for needle inside this starting from position
pos and return the position of the first occurrence of the needle. For example:

std::string haystack = "Hello World!";

std::string needle = "o";

std::cout << haystack.find(needle);

Will simply print "4" which is the index of the first occurrence of "0" in str. If we
want the "o0" in "World", we need to modify pos to point past the first occurrence.
str.find(find, 4) would return4, while str.find (find, 5) would give 7. If
the substring isn’t found, find () returns std::string: :npos.This simple code
searches a string for all occurrences of "wiki" and prints their positions:

std::string wikistr = "wikipedia is full of wikis (wiki-wiki means fast)";

for(string::size_type i = 0, tfind; (tfind = wikistr.find("wiki", 1)) !=
string::npos; i = tfind + 1)

{

std::cout << "Found occurrence of ’wiki’ at position " << tfind << std::endl;

}

string::size_type string::rfind(string needle, string::size_type pos =
string::npos) const;

The function rfind () works similarly, except it returns the last occurrence of the
passed string.

Inserting/erasing

string& string::insert(size_type pos, const string& str);

You can use the insert () member function to insert another string into a string.
For example:

string newstr = " Human";
str.insert (5,newstr);

Would return Hello Human World!

string& string::erase(size_type pos, size_type n);

You can use erase () to remove a substring from a string. For example:

str.erase (6,11);

Would return Hello!

479

Object Oriented Programming

string& string::substr(size_type pos, size_type n);

You can use substr () to extract a substring from a string. For example:

string str = "Hello World!";
string part = str.substr(6,5);

Would return World.

Backwards compatibility

const char* string::c_str() const;
const char* string::data() const;

For backwards compatibility with C/C++ functions which only accept char*
parameters, you can use the member functions string::c_str() and
string::data() to return a temporary const char* string you can pass to a
function. The difference between these two functions is that ¢_str () returns a
null-terminated string while data () does not necessarily return a null-terminated
string. So, if your legacy function requires a null-terminated string, use c_str (),
otherwise use data () (and presumably pass the length of the string in as well).

String Formatting

Strings can only be appended to other strings, but not to numbers or other
datatypes, so something like std::string("Foo") + 5 would not result in a
string with the content "Foo5". To convert other datatypes into string there
exist the class std::ostringstream, found in the include file <sstream>.
std::ostringstream acts exactly like std: : cout, the only difference is that the
output doesn’t go to the current standard output as provided by the operating sys-
tem, but into an internal buffer, that buffer can be converted into a std: :string
via the std::ostringstream::str () method.

Example

#include <iostream>
#include <sstream>

int main()

{

std::ostringstream buffer;

480

Chapter Summary

// Use the std::ostringstream just like std::cout or other iostreams
buffer << "You have: " << 5 << " Helloworlds in your inbox";

// Convert the std::ostringstream to a normal string
std::string text = buffer.str();

std::cout << text << std::endl;

return 0;

Advanced use

173

4.9 Chapter Summary

1. STRUCTURES!7*
2. UNIONs!?
3. CLASSES!7® (INHERITANCE!”?, MEMBER FUNCTIONS!’, POLYMOR-

pHISM'7® and THIS!® pointer)
a) ABSTRACT CLASSES'®! including PURE ABSTRACT CLASSES (AB-
STRACT TYPES) 82
b) NICE CLASS'®

4. OPERATOR OVERLOADING!84
5. STANDARD INPUT/OUTPUT STREAMS LIBRARY!®?

a) STRING!'86

173
174
175
176
177
178
179
180
181
182
183
184
185
186

HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%$3AC$2B%$2B%20PROGRAMMING
Chapter 4 on page 385
Chapter 4.1.2 on page 390
Chapter 4.2.3 on page 393
Chapter 4.3.2 on page 398
Chapter 4.3.4 on page 407
Chapter 4.3.5 on page 418
Chapter 4.3.4 on page 405
Chapter 4.3.12 on page 430
Chapter 4.3.13 on page 432
Chapter 4.3.13 on page 434
Chapter 4.6 on page 438
Chapter 4.7.3 on page 451
Chapter 4.8.2 on page 473

481

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Object Oriented Programming

3187

3188

187 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A
188 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

482

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

5 Advanced Features

5.1 Templates

Templates are a way to make code more reusable. Trivial examples include cre-
ating generic data structures which can store arbitrary data types. Templates
are of great utility to programmers, especially when combined with multiple IN-
HERITANCE! and OPERATOR OVERLOADING?. The STANDARD TEMPLATE LI-
BRARY? (STL) provides many useful functions within a framework of connected
templates.

As the templates are very expressive they may be used for things other than generic
programming. One such use is called TEMPLATE METAPROGRAMMING®*, which
is a way of pre-evaluating some of the code at compile-time rather than run-time.
Further discussion here only relates to templates as a method of generic program-
ming.

By now you should have noticed that functions that perform the same tasks tend
to look similar. For example, if you wrote a function that prints an int, you would
have to have the int declared first. This way, the possibility of error in your code is
reduced, however, it gets somewhat annoying to have to create different versions of
functions just to handle all the different data types you use. For example, you may
want the function to simply print the input variable, regardless of what type that
variable is. Writing a different function for every possible input type (double,char
*, etc. ...) would be extremely cumbersome. That is where templates come in.

Templates solve some of the same problems as macros, generate "optimized" code
at compile time, but are subject to C++’s strict type checking.

Parameterized types, better known as templates, allow the programmer to create
one function that can handle many different types. Instead of having to take into

1 HTTP://EN.WIKIPEDIA.ORG/WIKI/INHERITANCE$20INS
200BJECT—ORIENTED$20PROGRAMMING

2 HTTP://EN.WIKIPEDIA.ORG/WIKI/OPERATOR%200VERLOADING

Chapter 5.1.5 on page 499

4 HTTP://EN.WIKIPEDIA.ORG/WIKI/TEMPLATE%20METAPROGRAMMING

w

483

http://en.wikipedia.org/wiki/Inheritance%20in%20object-oriented%20programming
http://en.wikipedia.org/wiki/Inheritance%20in%20object-oriented%20programming
http://en.wikipedia.org/wiki/operator%20overloading
http://en.wikipedia.org/wiki/template%20metaprogramming

Advanced Features

account every data type, you have one arbitrary parameter name that the compiler
then replaces with the different data types that you wish the function to use, ma-
nipulate, etc.

» Templates are instantiated at compile-time with the source code.
* Templates are type safe.

» Templates allow user-defined specialization.

* Templates allow non-type parameters.

» Templates use “lazy structural constraints”.

* Templates support mix-ins.

Syntax for Templates

Templates are pretty easy to use, just look at the syntax:

template <class TYPEPARAMETER>

(or, equivalently, and preferred by some)

template <typename TYPEPARAMETER>

5.1.1 Function template

There are two kinds of templates. A function template behaves like a function
that can accept arguments of many different types. For example, the Standard
Template Library contains the function template max (x, y) which returns either
x or y, whichever is larger. max () could be defined like this:

template <typename TYPEPARAMETER>
TYPEPARAMETER max (TYPEPARAMETER x, TYPEPARAMETER vy)
{
if (x <vy)
return y;
else
return x;

}

This template can be called just like a function:

std::cout << max (3, 7); // outputs 7

The compiler determines by examining the arguments that this is a call to
max (int, int) and instantiates a version of the function where the type
TYPEPARAMETER is int.

484

Templates

This works whether the arguments x and y are integers, strings, or any other type
for which it makes sense to say x < y". If you have defined your own data type,
you can use operator overloading to define the meaning of < for your type, thus
allowing you to use the max () function. While this may seem a minor benefit in
this isolated example, in the context of a comprehensive library like the STL it
allows the programmer to get extensive functionality for a new data type, just by
defining a few operators for it. Merely defining < allows a type to be used with
the standard sort (), stable_sort (), and binary_search() algorithms; data
structures such as sets, heaps, and associative arrays; and more.

As a counterexample, the standard type complex does not define the < operator,
because there is no strict order on COMPLEX NUMBER?s. Therefore max (x, V)
will fail with a compile error if x and y are complex values. Likewise, other tem-
plates that rely on < cannot be applied to complex data. Unfortunately, compilers
historically generate somewhat esoteric and unhelpful error messages for this sort
of error. Ensuring that a certain object adheres to a METHOD PROTOCOL® can
alleviate this issue.

{TYPEPARAMETER} is just the arbitrary TYPEPARAMETER name that you want
to use in your function. Some programmers prefer using just T in place of
TYPEPARAMETER.

Let us say you want to create a swap function that can handle more than one data
type... something that looks like this:

template <class SOMETYPE>
void swap (SOMETYPE &x, SOMETYPE &y)

{
SOMETYPE temp = X;

X =y
y = temp;
}

The function you see above looks really similar to any other swap function, with
the differences being the template <class SOMETYPE> line before the function
definition and the instances of SOMETYPE in the code. Everywhere you would
normally need to have the name or class of the datatype that you’re using, you now
replace with the arbitrary name that you used in the template <class SOMETYPE>.
For example, if you had SUPERDUPERTYPE instead of SOMETYPE, the code
would look something like this:

5 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPLEX%$20NUMBER
6 HTTP://EN.WIKIPEDIA.ORG/WIKI/PROTOCOL%20%28COMPUTER%20SCIENCES
29

485

http://en.wikipedia.org/wiki/complex%20number
http://en.wikipedia.org/wiki/protocol%20%28computer%20science%29
http://en.wikipedia.org/wiki/protocol%20%28computer%20science%29

Advanced Features

template <class SUPERDUPERTYPE>
void swap (SUPERDUPERTYPE &x, SUPERDUPERTYPE &y)
{

SUPERDUPERTYPE temp = X;

X =y
y = temp;
}
As you can see, you can use whatever label you wish for the template TYPEPA-
RAMETER, as long as it is not a reserved word.

5.1.2 Class template

A class template extends the same concept to classes. Class templates are often
used to make generic containers. For example, the STL has a LINKED LIST’ con-
tainer. To make a linked list of integers, one writes 1ist<int>. A list of strings is
denoted list<string>. A list has a set of standard functions associated with it,
which work no matter what you put between the brackets.

If you want to have more than one template TYPEPARAMETER, then the syntax
would be:

template <class SOMETYPEl, class SOMETYPE2, ...>

Templates and Classes

Let us say that rather than create a simple templated function, you would like to
use templates for a class, so that the class may handle more than one datatype.
You may have noticed that some classes are able to accept a type as a parameter
and create variations of an object based on that type (for example the classes of
the STL container class hierarchy). This is because they are declared as templates
using syntax not unlike the one presented below:

template <class T> class Foo
{
public:

Foo();

void some_function();

T some_other_function();

private:
int member_variable;

7 HTTP://EN.WIKIPEDIA.ORG/WIKI/LINKED%20LIST

486

http://en.wikipedia.org/wiki/linked%20list

Templates

T parametrized_variable;
}i
Defining member functions of a template class is somewhat like defining a function
template, except for the fact, that you use the scope resolution operator to indicate
that this is the template classes’ member function. The one important and non-
obvious detail is the requirement of using the template operator containing the
parametrized type name after the class name.

The following example describes the required syntax by defining functions from
the example class above.

template <class T> Foo<T>::Foo ()
{
member_variable = 0;

}

template <class T> void Foo<T>::some_function ()
{
cout << "member_variable = " << member_variable << endl;

}

template <class T> T Foo<T>::some_other_function()
{
return parametrized_variable;

}

As you may have noticed, if you want to declare a function that will return an
object of the parametrized type, you just have to use the name of that parameter as
the function’s return type.

Note:

A class template can be used to avoid the overhead of virtual member func-
tions in inheritance. Since the type of class is known at compile-time, the
class template will not need the virtual pointer table that is required by a class
with virtual member functions. This distinction also permits the inlining of the
function members of a class template.

5.1.3 Advantages and disadvantages

Some uses of templates, such as the max () function, were previously filled by
function-like PREPROCESSOR® MACRO’s.

8 HTTP://EN.WIKIPEDIA.ORG/WIKI/PREPROCESSOR
9 HTTP://EN.WIKIPEDIA.ORG/WIKI/MACRO

487

http://en.wikipedia.org/wiki/preprocessor
http://en.wikipedia.org/wiki/macro

Advanced Features

// a max () macro
#define max(a,b) ((a) < (b) 2 (b) : (a))

Both macros and templates are expanded at compile time. Macros are always ex-
panded inline; templates can also be expanded as inline functions when the com-
piler deems it appropriate. Thus both function-like macros and function templates
have no run-time overhead.

However, templates are generally considered an improvement over macros for
these purposes. Templates are type-safe. Templates avoid some of the common
errors found in code that makes heavy use of function-like macros. Perhaps most
importantly, templates were designed to be applicable to much larger problems
than macros. The definition of a function-like macro must fit on a single logical
line of code.

There are three primary drawbacks to the use of templates. First, many compil-
ers historically have very poor support for templates, so the use of templates can
make code somewhat less portable. Second, almost all compilers produce con-
fusing, unhelpful error messages when errors are detected in template code. This
can make templates difficult to develop. Third, each use of a template may cause
the compiler to generate extra code (an instantiation of the template), so the in-
discriminate use of templates can lead to CODE BLOAT!?, resulting in excessively
large executables.

The other big disadvantage of templates is that to replace a #define like max which
acts identically with dissimilar types or function calls is impossible. Templates
have replaced using #defines for complex functions but not for simple stuff like
max(a,b). For a full discussion on trying to create a template for the #define max,
see the paper "MIN, MAX AND MORE"!! that Scott Meyer wrote for C++ Report
in January 1995.

The biggest advantage of using templates, is that a complex algorithm can have a
simple interface that the compiler then uses to choose the correct implementation
based on the type of the arguments. For instance, a searching algorithm can take
advantage of the properties of the container being searched. This technique is used
throughout the C++ standard library.

10 HTTP://EN.WIKIPEDIA.ORG/WIKI/CODE%20BLOAT
11 HTTP://WWW.ARISTEIA.COM/PAPERS/C%2B%2BREPORTCOLUMNS/JANIOS5.PDF

488

http://en.wikipedia.org/wiki/code%20bloat
http://www.aristeia.com/Papers/C%2B%2BReportColumns/jan95.pdf

Templates

5.1.4 Linkage problems

While linking a template-based program consisting over several modules spread
over a couple files, it is a frequent and mystifying situation to find that the object
code of the modules won’t link due to 'unresolved reference to (insert template
member function name here) in (...)’. The offending function’s implementation
is there, so why is it missing from the object code? Let us stop a moment and
consider how can this be possible.

Assume you have created a template based class called Foo and put its declaration
in the file Util.hpp along with some other regular class called Bar:

template <class T> Foo
{
public:
Foo();
T some_function();
T some_other_function();
T some_yet_other_ function();
T member;
}i

class Bar
{
Bar();
void do_something();
bi
Now, to adhere to all the rules of the art, you create a file called Util.cc, where you
put all the function definitions, template or otherwise:

#include "Util.hpp"

template <class T> T Foo<T>::some_function()

{
}

template <class T> T Foo<T>::some_other_function(

{
}

template <class T> T Foo<T>::some_yet_other_function()
{

}

and, finally:

void Bar::do_something()

489

Advanced Features

Foo<int> my_foo;
int x = my_foo.some_function();
int y = my_foo.some_other_function();

}

Next, you compile the module, there are no errors, you are happy. But suppose
there is an another (main) module in the program, which resides in MyProg.cc:

#include "Util.hpp" // imports our utility classes’ declarations, including
the template

int main()

{
Foo<int> main_foo;
int z = main_foo.some_yet_other_function();
return 0;

}

This also compiles clean to the object code. Yet when you try to link the two
modules together, you get an error saying there is an undefined reference to
Foo<int>::some_yet_other function() in MyProg.cc. You defined the template
member function correctly, so what is the problem?

As you remember, templates are instantiated at compile-time. This helps avoid
code bloat, which would be the result of generating all the template class and func-
tion variants for all possible types as its parameters. So, when the compiler pro-
cessed the Util.cc code, it saw that the only variant of the Foo class was Foo<int>,
and the only needed functions were:

int Foo<int>::some_function();
int Foo<int>::some_other_function();

No code in Util.cc required any other variants of Foo or its methods to exist, so
the compiler generated no code other than that. There is no implementation of
some_yet_other_function() in the object code, just as there is no implementation
for

double Foo<double>::some_function();

or

string Foo<string>::some_function();

The MyProg.cc code compiled without errors, because the member function of Foo
it uses is correctly declared in the Util.hpp header, and it is expected that it will be
available upon linking. But it is not and hence the error, and a lot of nuisance if

490

Templates

you are new to templates and start looking for errors in your code, which ironically
is perfectly correct.

The solution is somewhat compiler dependent. For the GNU compiler, try experi-
menting with the -frepo flag, and also reading the template-related section of ’info
gcc’ (node "Template Instantiation”: "Where is the Template?") may prove en-
lightening. In Borland, supposedly, there is a selection in the linker options, which
activates ‘smart’ templates just for this kind of problem.

The other thing you may try is called explicit instantiation. What you do is create
some dummy code in the module with the templates, which creates all variants
of the template class and calls all variants of its member functions, which you
know are needed elsewhere. Obviously, this requires you to know a lot about what
variants you need throughout your code. In our simple example this would go like
this:

1. Add the following class declaration to Util.hpp:

class Instantiations
{
private:

void Instantiate();
}i

2. Add the following member function definition to Util.cc:

void Instantiations::Instantiate()
{
Foo<int> my_foo;
my_foo.some_yet_other_function();
// other explicit instantiations may follow

}

Of course, you never need to actual instantiate the Instantiations class, or call any
of its methods. The fact that they just exist in the code makes the compiler gener-
ate all the template variations which are required. Now the object code will link
without problems.

There is still one, if not elegant, solution. Just move all the template functions’
definition code to the Util.hpp header file. This is not pretty, because header files
are for declarations, and the implementation is supposed to be defined elsewhere,
but it does the trick in this situation. While compiling the MyProg.cc (and any
other modules which include Util.hpp) code, the compiler will generate all the
template variants which are needed, because the definitions are readily available.

491

Advanced Features

12

5.1.5 Template Meta-programming Overview

Template meta-programming (TMP) refers to uses of the C++ template system to
perform computation at compile-time within the code. It can, for the most part,
be considered to be "programming with types" — in that, largely, the "values"
that TMP works with are specific C++ types. Using types as the basic objects of
calculation allows the full power of the type-inference rules to be used for general-
purpose computing.

Compile-time programming

The preprocessor allows certain calculations to be carried out at compile time,
meaning that by the time the code has finished compiling the decision has already
been taken, and can be left out of the compiled executable. The following is a very
contrived example:

#define myvar 17

#1if myvar % 2

cout << "Constant is odd" << endl;
#else

cout << "Constant is even" << endl;
#endif

This kind of construction does not have much application beyond conditional in-
clusion of platform-specific code. In particular there’s no way to iterate, so it can
not be used for general computing. Compile-time programming with templates
works in a similar way but is much more powerful, indeed it is actually Turing
complete.

Traits classes are a familiar example of a simple form of template meta-
programming: given input of a type, they compute as output properties associated
with that type (for example, std::iterator_traits<> takes an iterator type as input,
and computes properties such as the iterator’s difference_type, value_type and so
on).

12 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

492

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Templates

The nature of template meta-programming

Template meta-programming is much closer to functional programming than or-
dinary idiomatic C++ is. This is because ’variables’ are all immutable, and hence
it is necessary to use recursion rather than iteration to process elements of a set.
This adds another layer of challenge for C++ programmers learning TMP: as well
as learning the mechanics of it, they must learn to think in a different way.

Limitations of Template Meta-programming

Because template meta-programming evolved from an unintended use of the tem-
plate system, it is frequently cumbersome. Often it is very hard to make the intent
of the code clear to a maintainer, since the natural meaning of the code being used
is very different from the purpose to which it is being put. The most effective way
to deal with this is through reliance on idiom; if you want to be a productive tem-
plate meta-programmer you will have to learn to recognize the common idioms.

It also challenges the capabilities of older compilers; generally speaking, compilers
from around the year 2000 and later are able to deal with much practical TMP code.
Even when the compiler supports it, the compile times can be extremely large and
in the case of a compile failure the error messages are frequently impenetrable.

Some coding standards go as far as to outlaw template meta-programming, at least
outside of third-party libraries like Boost.

History of TMP

Historically TMP is something of an accident; it was discovered during the process
of standardizing the C++ language that its template system happens to be Turing-
complete, i.e., capable in principle of computing anything that is computable.
The first concrete demonstration of this was a program written by Erwin Unruh
which computed prime numbers although it did not actually finish compiling: the
list of prime numbers was part of an error message generated by the compiler
on attempting to compile the code.HTTP://ASZT.INF.ELTE.HU/"GSD/HALADO_-
CPP/CHO06S04.HTML#STATIC-METAPROGRAMMING!® TMP has since advanced
considerably, and is now a practical tool for library builders in C++, though its

13 HTTP://ASZT.INF.ELTE.HU/~{}GSD/HALADO_CPP/CHO06504.HTML#
STATIC—METAPROGRAMMING

493

http://aszt.inf.elte.hu/~{}gsd/halado_cpp/ch06s04.html#Static-metaprogramming
http://aszt.inf.elte.hu/~{}gsd/halado_cpp/ch06s04.html#Static-metaprogramming

Advanced Features

complexities mean that it is not generally appropriate for the majority of applica-
tions or systems programming contexts.

#include <iostream>

template <int p, int i>
class is_prime {

public:
enum { prim = (p==2) || (p%l) && is_prime<(i>2?p:0),i-1>::prim
bi

bi

template<>

class is_prime<0,0> {

public:

enum {prim=1};
bi

template<>
class is_prime<0,1> {
public:

enum {prim=1};
i

template <int i>
class Prime_print { // primary template for loop to print prime numbers
public:

Prime_print<i-1> a;

enum { prim = is_prime<i,i-1>::prim

bi

void £() {
a.ft();
if (prim)
{
std::cout << "prime number:" << i << std::endl;
}
}
bi
template<>
class Prime_print<1l> { // full specialization to end the loop
public:
enum {prim=0};
void f£() {

i

#ifndef LAST
#define LAST 18
#endif

int main()

{
Prime_print<LAST> a;
a.f();

494

Templates

Building Blocks

Values

The ’variables’ in TMP are not really variables since their values can not be al-
tered, but you can have named values that you use rather like you would variables
in ordinary programming. When programming with types, named values are type-
defs:

struct ValueHolder
{
typedef int value;

bi
You can think of this as ’storing’ the int type so that it can be accessed under the
value name. Integer values are usually stored as members in an enum:

struct ValueHolder
{

enum { value = 2 };
b
This again stores the value so that it can be accessed under the name value. Nei-
ther of these examples is any use on its own, but they form the basis of most other
TMP, so they are vital patterns to be aware of.

Functions
A function maps one or more input parameters into an output value. The TMP
analogue to this is a template class:

template<int X, int Y>
struct Adder
{

enum { result = X + Y };
bi
This is a function that adds its two parameters and stores the result in the result
enum member. You can call this at compile time with something like Adder<1,
2>::result, which will be expanded at compile time and act exactly like a literal
3 in your program.

495

Advanced Features

Branching

A conditional branch can be constructed by writing two alternative specialisations
of a template class. The compiler will choose the one that fits the types provided,
and a value defined in the instantiated class can then be accessed. For example,
consider the following partial specialisation:

template<typename X, typename Y>
struct SameType
{

enum { result = 0 };

}i

template<typename T>
struct SameType<T, T>
{

enum { result =1 };
bi
This tells us if the two types it is instantiated with are the same. This might not
seem very useful, but it can see through typedefs that might otherwise obscure
whether types are the same, and it can be used on template arguments in template
code. You can use it like this:

if (SameType<SomeThirdPartyType, int>::result)
{

// ... Use some optimised code that can assume the type is an int
}
else
{
// ... Use defensive code that doesn’t make any assumptions about the type

}

The above code isn’t very idiomatic: since the types can be identified at compile-
time, the 1f () block will always have a trivial condition (it’ll always resolve to
eitherif (1) { ... }orif (0) { ... }). However, this does illustrate the
kind of thing that can be achieved.

Recursion

Since you don’t have mutable variables available when you’re programming with
templates, it’s impossible to iterate over a sequence of values. Tasks that might be
achieved with iteration in standard C++ have to be redefined in terms of recursion,
i.e. a function that calls itself. This usually takes the shape of a template class
whose output value recursively refers to itself, and one or more specialisations
that give fixed values to prevent infinite recursion. You can think of this as a
combination of the function and conditional branch ideas described above.

496

Templates

Calculating factorials is naturally done recursively: 0! = 1, and for n > 0, n! =
n#*(n—1)!. In TMP, this corresponds to a class template "factorial" whose general
form uses the recurrence relation, and a specialization of which terminates the
recursion.

First, the general (unspecialized) template says that factorial<n>::value is
given by n*factorial<n-1>::value:

template <unsigned n>
struct factorial
{
enum { value = n * factorial<n-1>::value };
i

Next, the specialization for zero says that factorial<0>::value evaluates to 1:

template <>
struct factorial<0>
{

enum { value = 1 };
bi

And now some code that "calls" the factorial template at compile-time:

int main() {
// Because calculations are done at compile-time, they can be
// used for things such as array sizes.
int array[factorial<7>::value];

}

Observe that the factorial<N>::value member is expressed in terms of the
factorial<N> template, but this can’t continue infinitely: each time it is eval-
uated, it calls itself with a progressively smaller (but non-negative) number. This
must eventually hit zero, at which point the specialisation kicks in and evaluation
doesn’t recurse any further.

Example: Compile-time "'If"'

The following code defines a meta-function called "if_"; this is a class template
that can be used to choose between two types based on a compile-time constant,
as demonstrated in main below:

template <pool Condition, typename TrueResult, typename FalseResult>
class if_;

template <typename TrueResult, typename FalseResult>
struct if_<true, TrueResult, FalseResult>

497

Advanced Features

{
typedef TrueResult result;

bi

template <typename TrueResult, typename FalseResult>
struct if <false, TrueResult, FalseResult>

{

typedef FalseResult result;

bi

int main()

{
typename if <true, int, void*>::result number (3);
typename if <false, int, void*>::result pointer (&number);

typedef typename if <(sizeof (void *) > sizeof (uint32_t)), uint64 t,
uint32_t>::result
integral_ptr_t;

integral_ptr_t converted_pointer = reinterpret_cast<integral ptr_t>(pointer);

}

On line 18, we evaluate the if_ template with a true value, so the type used
is the first of the provided values. Thus the entire expression if_<true, int,
void*>::result evaluates to int. Similarly, on line 19 the template code eval-
uates to void *. These expressions act exactly the same as if the types had been
written as literal values in the source code.

Line 21 is where it starts to get clever: we define a type that depends on the value
of a platform-dependent sizeof expression. On platforms where pointers are ei-
ther 32 or 64 bits, this will choose the correct type at compile time without any
modification, and without preprocessor macros. Once the type has been chosen, it
can then be used like any other type.

Note:
This code is just an illustration of the power of template meta-programming, it
is not meant to illustrate good cross-platform practice with pointers.

For comparison, this problem is best attacked in C90 as follows

include <stddef.h>
typedef size_t integral ptr_t;
typedef int the_correct_size_was_chosen [sizeof (integral_ptr_t) >= sizeof (void

*)? 1: -11;
As it happens, the library-defined type size_t should be the correct choice for
this particular problem on any platform. To ensure this, line 3 is used as a compile
time check to see if the selected type is actually large enough; if not, the array type
the_correct_size_was_chosen will be defined with a negative length, causing

498

Standard Template Library (STL)

a compile-time error. In C99, <stdint.h> may define the types intptr_h and
uintptr_h.

Conventions for ''Structured'' TMP

14

5.2 Standard Template Library (STL)

The Standard Template Library (STL), part of the C++ STANDARD LI-
BRARY 'S, offers collections of algorithms, containers, iterators, and other funda-
mental components, implemented as templates, classes, and functions essential to
extend functionality and standardization to C++. STL main focus is to provide
improvements implementation standardization with emphasis in performance and
correctness.

Instead of wondering if your array would ever need to hold 257 records or having
nightmares of string buffer overflows, you can enjoy vector and string that au-
tomatically extend to contain more records or characters. For example, vector is
just like an array, except that vector’s size can expand to hold more cells or shrink
when fewer will suffice. One must keep in mind that the STL does not conflict with
OOP but in itself is not object oriented; In particular it makes no use of runtime
polymorphism (i.e., has no virtual functions).

The true power of the STL lies not in its CONTAINER'® classes, but in the fact
that it is a framework, combining algorithms with data structures using indirection
through iterators to allow generic implementations of higher order algorithms to
work efficiently on varied forms of data. To give a simple example, the same
std::copy function can be used to copy elements from one array to another, or to
copy the bytes of a file, or to copy the whitespace-separated words in "text like
this" into a container such as std::vector<std::string>.

// std::copy from array a to array b

int a(10] = { 3,1,4,1,5,9,2,6,5,4 };
int b[10];
std::copy (&a[0], &a[l0], Db);

14 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
15 Chapter 3.1.2 on page 45
16 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23CONTAINERS

499

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/%23Containers

Advanced Features

// std::copy from input stream a to an arbitrary OutputIterator
template <typename OutputIterator>
void f(std::istream &a, OutputIterator destination) ({
std::copy (std::istreambuf_iterator<char>(a),
std::istreambuf_iterator<char>(),
destination);

}

// std::copy from a buffer containing text, inserting items in
// order at the back of the container called words.
std::istringstream buffer ("text like this");
std::vector<std::string> words;
std::copy(std::istream_iterator<std::string>(buffer),
std::istream_iterator<std::string>(),
std::back_inserter (words));

assert (words[0] == "text");
assert (words[1] == "like");
assert (words[2] == "this");

5.2.1 History

Figure 25: Alexander
Stepanov

The C++ Standard Library incorporated part of the STL (published as a software
library by SGI'7/Hewlett-Packard Company). The primary implementer of the

C++ Standard Template Library was ALEXANDER STEPANOV '8,

Today we call STL to what was adopted into the C++ Standard. The ISO C++
does not specify header content, and allows implementation of the STL either in

the headers, or in a true library.

17 HTTP://EN.WIKIPEDIA.ORG/WIKI/SILICON$20GRAPHICS
18 HTTP://EN.WIKIPEDIA.ORG/WIKI/ALEXANDER%20STEPANOV

500

http://en.wikipedia.org/wiki/Silicon%20Graphics
http://en.wikipedia.org/wiki/Alexander%20Stepanov

Standard Template Library (STL)

Note:

In an interview Alexander Stepanov, stated that he originally, wanted all auxil-
iary functions in STL to be visible but it was not politically possible, especially
the heap functions. That Bjarne did reduce the number of components in STL
by a factor of two as to permit the adoption into the standard.

Compilers will already have one implementation included as part of the C++ Stan-
dard (i.e., MS Visual Studio uses the Dinkum STL). All implementations will have
to comply to the standard’s requirements regarding functionality and behavior, but
consistency of programs across all major hardware implementations, operating
systems, and compilers will also depends on the portability of the STL implemen-
tation. They may also offer extended features or be optimized to distinct setups.

List of STL implementations.

* libstdc++ from gnu (was part of libg++)

« SGI STL library (HTTP://WWW.SGI.COM/TECH/STL/)'® free STL implementa-
tion.

* Rogue Wave standard library (HP, SGI, SunSoft, Siemens-Nixdorf) / APACHE
C++ STANDARD LIBRARY (STDCXX)%

* Dinkum STL library by P.J. Plauger (HTTP://WWW.DINKUMWARE.COM/)?!
commercial STL implementation widely used, since it was licensed in is co-
maintained by Microsoft and it is the STL implementation that ships with Visual
Studio.

There are many different implementations of the STL, all based on the language
standard but nevertheless differing from each other, making it transparent for the
programmer, enabling specialization and rapid evolution of the code base.

Open Source versions of the STL are available (can be useful to consult)

* Apache C++ Standard Library (STDCXX) (HTTP://STDCXX.APACHE.ORG/??

).

19 &HTTP://WWW.SGI.COM/TECH/STL/)

20 HTTP://EN.WIKIPEDIA.ORG/WIKI/APACHE%20C%2B%2B%20STANDARD%
20LIBRARY

21 HTTP://WWW.DINKUMWARE.COM/)

22 HTTP://STDCXX.APACHE.ORG/

501

http://www.sgi.com/tech/stl/)
http://en.wikipedia.org/wiki/Apache%20C%2B%2B%20Standard%20Library
http://en.wikipedia.org/wiki/Apache%20C%2B%2B%20Standard%20Library
http://www.dinkumware.com/)
http://stdcxx.apache.org/

Advanced Features

 STLport STL library (HTTP://WWW.STLPORT.COM/)?? free and highly cross-
platform implementation based on the SGI implementation.

Note:

There are advantages on having compartmentalized functionalities, some de-
velopers actively avoid using some of the language features, for a multitude of
reasons. C++ permits the programmer to chose how to express himself, have
control over the development paradigms and not be constricted by an higher
level of abstraction.

5.2.2 Containers

The containers we will discuss in this section of the book are part of the standard
namespace (std::). They all originated in the original SGI implementation of the
STL.

Note:

When choosing a container, you should have in mind what makes them differ-
ent, this will help you produce more efficient code. See also the OPTIMIZA-
TION SECTION“ of the book, about USING THE RIGHT DATA IN THE RIGHT
CONTAINER’.

a Chapter 6.7.2 on page 628
b Chapter 6.8.1 on page 630

Sequence Containers

Sequences - easier than arrays

Sequences are similar to C arrays, but they are easier to use. Vector is usually
the first sequence to be learned. Other sequences, list and double-ended queues,
are similar to vector but more efficient in some special cases. (Their behavior is
also different in important ways concerning validity of iterators when the container
is changed; iterator validity is an important, though somewhat advanced, concept
when using containers in C++.)

23 HTTP://WWW.STLPORT.COM/)

502

http://www.stlport.com/)

Standard Template Library (STL)

* vector - "an easy-to-use array"

e list - in effect, a doubly-linked list

* deque - double-ended queue (properly pronounced "deck", often mispronounced
as "dee-queue")

vector

The vector is a template class in itself, it is a Sequence Container and allows you
to easily create a DYNAMIC ARRAY>* of elements (one type per instance) of almost
any data-type or object within a programs when using it. The vector class handles
most of the memory management for you.

Since a vector contain contiguous elements it is an ideal choice to replace the old
C style array, in a situation where you need to store data, and ideal in a situation
where you need to store dynamic data as an array that changes in size during the
program’s execution (old C style arrays can’t do it). However, vectors do incur a
very small overhead compared to static arrays (depending on the quality of your
compiler), and cannot be initialized through an initialization list.

Note:
Vector is known to be slow when using the MSVC compiler due to the
SECURE_SCL flag, that, by default, forces bounds checking even in optimized
builds.

Accessing members of a vector or appending elements takes a fixed amount of
time, no matter how large the vector is, whereas locating a specific value in a vec-
tor element or inserting elements into the vector takes an amount of time directly
proportional to its location in it (size dependent).

24 HTTP://EN.WIKIPEDIA.ORG/WIKI/DYNAMIC%20ARRAY

503

http://en.wikipedia.org/wiki/dynamic%20array

Advanced Features

Note:
If you create a vector you can access its data using consecutive pointers:
std::vector<type> myvector (8); type * ptr = myvector[0]; ptr[0],

ptr(7]; // access the first and last objects in myvector

this information is present in INCITS/ISO/IEC 14882-2003 but was not
properly documented in the 1998 version of the C++ standard.

Be aware that ptr[i] is faster than myvector.at(i) because no error checking is
performed. Watch out for how long that pointer is valid. The contiguous nature
of vectors is most often important when interfacing to C code.

You should also keep in mind that std::vector<T>::iterator may not be a pointer;
using an iterator is the safest mode to access a container but safety has always
a cost in performance.

Example

/%
David Cary 2009-03-04
quick demo for wikibooks

*/

#include <iostream>
#include <vector>
using namespace std;

vector<int> pick_vector_with_biggest_fifth_element (vector<int> left,vector<int>
right)
{

if (left[5] < right[5])

{

return(right);

}

// else

return left ;

}

int* pick_array_with_biggest_fifth_element (int * left,int * right)
{

if (left[5] < right[5])

{

return(right);

}

// else

return left ;

504

Standard Template Library (STL)

int vector_demo (void)

{
cout << "vector demo" << endl;
vector<int> left(7);
vector<int> right (7);

left[5] = 7;

right[5] = 8;

cout << left[5] << endl;

cout << right[5] << endl;

vector<int> biggest (pick_vector_with_biggest_fifth_element (left, right));
cout << biggest[5] << endl;

return 0;

int array_demo (void)

cout << "array demo" << endl;

int left[7];
int right[7];
left[5] = 7;
right[5] = 8;

cout << left[5] << endl;
cout << right[5] << endl;
int * biggest =
pick_array_with biggest_fifth element(left, right);
cout << biggest[5] << endl;

return 0;
int main(void)

vector_demo () ;
array_demo () ;

Member Functions

The vector class models the CONTAINER? CONCEPT2®, which means it has
begin(), end(), size (), max_size (), empty (), and swap () methods.

25 HTTP://WWW.SGI.COM/TECH/STL/CONTAINER.HTML
26 HTTP://EN.WIKIPEDIA.ORG/WIKI/CONCEPT%20%28GENERICS
20PROGRAMMING%29

505

http://www.sgi.com/tech/stl/Container.html
http://en.wikipedia.org/wiki/concept%20%28generic%20programming%29
http://en.wikipedia.org/wiki/concept%20%28generic%20programming%29

Advanced Features

Note:

Since most vector (or deque) implementations typically reserves some extra
internal storage for future growth. Prefer the swap () method when altering
a standard vector size (or freeing the memory used) when memory resources

becomes a factor.

¢ informative

L]

vector: : front - Returns reference to first element of vector.
vector: :back - Returns reference to last element of vector.
vector: :size - Returns number of elements in the vector.
vector: :empty - Returns true if vector has no elements.

* standard operations

vector::insert - Inserts elements into a vector (single & range), shifts later
elements up. Inefficient.

vector: :push_back - Appends (inserts) an element to the end of a vector,
allocating memory for it if necessary. AMORTIZED?” O(1) time.

vector: :erase - Deletes elements from a vector (single & range), shifts later
elements down. Inefficient.

vector: :pop_back - Erases the last element of the vector, (possibly reducing
capacity - usually it isn’t reduced, but this depends on particular STL imple-
mentation). AMORTIZED?® O(1) time.

vector::clear - Erases all of the elements. Note however that if the data
elements are pointers to memory that was created dynamically (e.g., the new
operator was used), the memory will not be freed.

« allocation/size modification

L]

vector::assign - Used to delete a origin vector and copies the specified
elements to an empty farget vector.

vector: :reserve - Changes capacity (allocates more memory) of vector, if
needed. In many STL implementations capacity can only grow, and is never
reduced.

vector::capacity - Returns current capacity (allocated memory) of vector.
vector::resize - Changes the vector size.

e iteration

vector: :begin - Returns an iterator to start traversal of the vector.

vector: :end - Returns an iterator that points just beyond the end of the vector.
vector::at - Returns a reference to the data element at the specified location
in the vector, with bounds checking.

27
28

506

HTTP://EN.WIKIPEDIA.ORG/WIKI/AMORTIZED%20ANALYSIS
HTTP://EN.WIKIPEDIA.ORG/WIKI/AMORTIZED%20ANALYSIS

http://en.wikipedia.org/wiki/Amortized%20analysis
http://en.wikipedia.org/wiki/Amortized%20analysis

Standard Template Library (STL)

Note:
It is important to remember the distinctions of capacity(), size() and empty()
when dealing with containers.

vector<int> v;
for (vector<int>::iterator it = v.begin(); it!=v.end(); ++it/* increment operand
is used to move to next elementx*/) {
cout << *it << endl;

vector::Iterators

std::vector<T> provides Random Access Iterators; as with all containers, the
primary access to iterators is via begin() and end() member functions. These
are overloaded for const- and non-const containers, returning iterators of types
std::vector<T>::const_iterator and std::vector<T>::iterator respectively.

vector examples

/% Vector sort example x/
#include <iostream>
#include <vector>

int main()
{
using namespace std;

cout << "Sorting STL vector, \"the easier array\"... " << endl;
cout << "Enter numbers, one per line. Press ctrl-D to quit." << endl;

vector<int> vec;

int tmp;

while (cin>>tmp) {
vec.push_back (tmp) ;

}

cout << "Sorted: " << endl;
sort (vec.begin(), vec.end());
int 1 = 0;

for (i=0; i<vec.size(); 1i++) {

cout << vec[i] << endl;;

}

return 0;

507

Advanced Features

The call to sort above actually calls an instantiation of the function template
std::sort, which will work on any half-open range specified by two random
access iterators.

If you like to make the code above more "STLish" you can write this program in
the following way:

#include <iostream>
#include <vector>

#include <algorithm>
#include <iterator>

int main()
{

using namespace std;

cout << "Sorting STL vector, \"the easier array\"... " << endl;
cout << "Enter numbers, one per line. Press ctrl-D to quit." << endl;

vector<int> vec(istream_iterator<int>(cin), istream_iterator<int>());

sort (vec.begin(), vec.end());

cout << "Sorted: " << endl;
copy (vec.begin(), vec.end(), ostream_iterator<int>(cout, "\n"));
return 0;
}
Linked lists

The STL provides a class template called list (part of the standard namespace
(std::)) which implements a non-intrusive doubly-LINKED LIST?’. Linked lists can
insert or remove elements in the middle in constant time, but do not have random
access. One useful feature of std::list is that references, pointers and iterators to
items inserted into a list remain valid so long as that item remains in the list.

Note:

Consider using vector instead of list for better cache coherency and avoid
"death by swapping", see the OPTIMIZATION SECTION“, about using the
RIGHT DATA IN THE RIGHT CONTAINER”.

a Chapter 6.7.2 on page 628
b Chapter 6.8.1 on page 630

29 HTTP://EN.WIKIPEDIA.ORG/WIKI/LINKED%20LIST

508

http://en.wikipedia.org/wiki/linked%20list

Standard Template Library (STL)

list examples

Associative Containers (key and value)

This type of container point to each element in the container with a key value, thus
simplifying searching containers for the programmer. Instead of iterating through
an array or vector element by element to find a specific one, you can simply ask
for people["tero"]. Just like vectors and other containers, associative containers
can expand to hold any number of elements.

Maps and Multimaps

map and multimap are associative containers that manage key/value pairs as ele-
ments as seen above. The elements of each container will sort automatically using
the actual key for sorting criterion. The difference between the two is that maps do
not allow duplicates, whereas, multimaps does.

* map - unique keys

* multimap - same key can be used many times

* set - unique key is the value

* multiset - key is the value, same key can be used many times

/+* Map example - character distribution x*/
#include <iostream>

#include <map>

#include <string>

#include <cctype>

using namespace std;

int main()
{
/# Character counts are stored in a map, so that
* character is the key.
* Count of char a is chars[’a’]. */
map<char, long> chars;

cout << "chardist - Count character distributions" << endl;

cout << "Type some text. Press ctrl-D to quit." << endl;

char c;

while (cin.get(c)) {
// Upper A and lower a are considered the same
c=tolower (static_cast<unsigned char>(c));
chars[c]l=chars[c]+l; // Could be written as ++chars/[c];

}

cout << "Character distribution: " << endl;

509

Advanced Features

string alphabet ("abcdefghijklmnopgrstuvwxyz") ;

for (string::iterator letter_index=alphabet.begin(); letter_index !=
alphabet.end(); letter_index++) {
if (chars[*letter_index] != 0) {
cout << char (toupper (*letter_index))
<< ":" << chars[*letter_index]

<< "\t" << endl;
}
}

return 0;

Container Adapters

e stack - last in, first out (LIFO)
* queue - first in, first out (FIFO)
* priority queue

5.2.3 Iterators

C++’s iterators are one of the foundation of the STL. Iterators exist in languages
other than C++, but C++ uses an unusual form of iterators, with pros and cons.

In C++, an iterator is a concept rather than a specific type, they are a generalization
of the pointers as an abstraction for the use of containers. Iterators are further
divided based on properties such as traversal properties.

The basic idea of an iterator is to provide a way to navigate over some collection
of objects concept.

Some (overlapping) categories of iterators are:

* Singular iterators

* Invalid iterators

* Random access iterators
 Bidirectional iterators

* Forward iterators

* Input iterators

* Qutput iterators

e Mutable iterators

510

Standard Template Library (STL)

A pair of iterators [begin, end) is used to define a HALF OPEN RAN GEY, which
includes the element identified from begin to end, except for the element identified
by end. As a special case, the half open range [x, X) is empty, for any valid iterator
X.

Note:

The range notation may vary, the meaning is to express the inclusion or exclu-
sion of the range limits. An also common notation is [begin, end[(meaning
begin is part of the range and end is not).

The most primitive examples of iterators in C++ (and likely the inspiration for their
syntax) are the built-in pointers, which are commonly used to iterate over elements
within arrays.

Iteration over a Container

Accessing (but not modifying) each element of a container group of type C<T>
using an iterator.

for (
typename C<T>::const_iterator iter = group.begin();
iter != group.end();
ttiter

)
T const &element = *iter;

// access element here

}

Note the usage of typename. It informs the compiler that *const_iterator’ is a type
as opposed to a static member variable. (It is only necessary inside templated code,
and indeed in C++98 is invalid in regular, non-template, code. This may change
in the next revision of the C++ standard so that the typename above is always
permitted.)

Modifying each element of a container group of type C<T> using an iterator.

for (
typename C<T>::iterator iter = group.begin();
iter != group.end();
ttiter

)

30 HTTP://EN.WIKIBOOKS.ORG/WIKI/ALGEBRA%2FINTERVAL%20NOTATION

511

http://en.wikibooks.org/wiki/Algebra%2FInterval%20Notation

Advanced Features

T &element = *iter;

// modify element here
}

When modifying the container itself while iterating over it, some containers (such
as vector) require care that the iterator doesn’t become invalidated, and end up
pointing to an invalid element. For example, instead of:

for (i = v.begin(); 1 != v.end(); ++i) {

if (erase_required) {
v.erase(i);
}
}

Do:

for (i = v.begin(); 1 != v.end();) {

if (erase_required) {
i = v.erase(i);
} else {
++1;
}
}

The erase () member function returns the next valid iterator, or end (), thus end-
ing the loop. Note that ++i is not executed when erase () has been called on an
element.

5.2.4 Functors

A functor or function object, is an object that has an operator (). The impor-
tance of functors is that they can be used in many contexts in which C++ functions
can be used, whilst also having the ability to maintain state information. Next to
iterators, functors are one of the most fundamental ideas exploited by the STL.

The STL provides a number of pre-built functor classes; std::less, for example,
is often used to specify a default comparison function for algorithms that need to
determine which of two objects comes "before" the other.

#include <vector>
#include <algorithm>
#include <iostream>

512

Standard Template Library (STL)

// Define the Functor for AccumulateSquareValues
template<typename T>
struct AccumulateSquareValues
{
AccumulateSquareValues() : sumOfSquares ()
{
}
void operator () (const T& value

{

sumOfSquares += value*value;
}
T Result () const
{
return sumOfSquares;
}
T sumOfSquares;
}i

std::vector<int> intVec;
intVec.reserve (10);
for(int idx = 0; idx < 10; ++idx)
{
intVec.push_back (idx) ;
}
AccumulateSquareValues<int> sumOfSquare = std::for_each(intVec.begin(),
intVec.end(),

AccumulateSquareValues<int>());

std::cout << "The sum of squares for 1-10 is " << sumOfSquare.Result () <<
std::endl;

// note: this problem can be solved in another, more clear way:

// int sum_of_squares = std::inner._product (intVec.begin(), intVec.end(),
intVec.begin(), 0);

5.2.5 Algorithms

The STL also provides several useful algorithms, in the form of template functions,
that are provided to, with the help of the iterator concept, manipulate the STL
containers (or derivations).

The STL algorithms aren’t restricted to STL containers, for instance:

#include <algorithm>
int array(10] = { 2,3,4,5,6,7,1,9,8,0 }

int* begin = &arrayl[0];
int* end = &array([0] + 10;

std::sort (begin, end);// the sort algorithm will work on a C style array

The _if suffix

513

Advanced Features

The _copy suffix

* Non-modifying algorithms
* Modifying algorithms

* Removing algorithms

* Mutating algorithms

* Sorting algorithms

* Sorted range algorithms

* Numeric algorithms

Permutations
Sorting and related operations

sort

stable_sort

partial_sort

Minimum and maximum

The standard library provides function templates min and max, which return the
minimum and maximum of their two arguments respectively. Each has an overload
available that allows you to customize the way the values are compared.

template<class T>
const T& min(const T& a, const T& b);

template<class T, class Compare>
const T& min(const T& a, const T& b, Compare c);

template<class T>
const T& max(const T& a, const T& b);

template<class T, class Compare>
const T& max(const T& a, const T& b, Compare c);

514

Smart Pointers

5.2.6 Allocators

Allocators are used by the Standard C++ Library (and particularly by the STL) to
allow parameterization of memory allocation strategies.

The subject of allocators is somewhat obscure, and can safely be ignored by most
application software developers. All standard library constructs that allow for spec-
ification of an allocator have a default allocator which is used if none is given by
the user.

Custom allocators can be useful if the memory use of a piece of code is unusual in
a way that leads to performance problems if used with the general-purpose default
allocator. There are also other cases in which the default allocator is inappropriate,
such as when using standard containers within an implementation of replacements
for global operators new and delete.

31

5.3 Smart Pointers

Using raw pointers to store allocated data and then cleaning them up in the de-
structor can generally be considered a very bad idea since it is error-prone. Even
temporarily storing allocated data in a raw pointer and then deleting it when done
with it should be avoided for this reason. For example, if your code throws an
exception, it can be cumbersome to properly catch the exception and delete all
allocated objects.

Smart pointers can alleviate this headache by using the compiler and language
semantics to ensure the pointer content is automatically released when the pointer
itself goes out of scope.

#include <memory>
class A
{
public:
virtual ~A() {}
virtual char val() = 0;
i

class B : public A
{
public:

31 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

515

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Advanced Features

virtual char val() { return 'B’; }
bi

A* get_a_new_b()
{

return new B();

}

bool some_func()

{

bool rval = true;
std::auto_ptr<A> a(get_a_new_b());
try {
std::cout << a->val();
} eatch(...) {
if(la.get()) {
throw "Memory allocation failure!";

}

rval = false;

}

return rval;

5.4 Semantics

The auto_ptr has semantics of strict ownership, meaning that the auto_ptr instance
is the sole entity responsible for the object’s lifetime. If an auto_ptr is copied, the
source loses the reference. For example:

#include <iostream>
#include <memory>
using namespace std;

int main(int argc, char **arv)
{
int *i = new int;
auto_ptr<int> x(1i);
auto_ptr<int> y;

v = %

cout << x.get () << endl;
cout << y.get() << endl;
}

This code will print a NULL address for the first auto_ptr object and some non-
NULL address for the second, showing that the source object lost the reference
during the assignment (=). The raw pointer i in the example should not be deleted,
as it will be deleted by the auto_ptr that owns the reference. In fact, new int could
be passed directly into x, eliminating the need for i.

516

Exception Handling

Notice that the object pointed by an auto_ptr is destructed using operator
delete; this means that you should only use auto_ptr for pointers obtained with
operator new. This excludes pointers returned by malloc(), calloc() or
realloc () and operator new/[].

32

5.5 Exception Handling

EXCEPTION HANDLING>? is a construct designed to handle the occurrence of ex-
ceptions, that is special conditions that changes the normal flow of program exe-
cution. Since when designing a programming task (a class or even a function), one
cannot always assume that application/task will run or be completed correctly (exit
with the result it was intended to). It may be the case that it will be just inappropri-
ate for that given task to report an error message (return an error code) or just exit.
To handle these types of cases, C++ supports the use of language constructs to
separate error handling and reporting code from ordinary code, that is, constructs
that can deal with these exceptions (errors and abnormalities) and so we call this
global approach that adds uniformity to program design the exception handling.

An exception is said to be thrown at the place where some error or abnormal con-
dition is detected. The throwing will cause the normal program flow to be aborted,
in a raised exception. An exception is thrown programmatic, the programmer
specifies the conditions of a throw.

In handled exceptions, execution of the program will resume at a designated block
of code, called a catch block, which encloses the point of throwing in terms of
program execution. The catch block can be, and usually is, located in a different
function/method than the point of throwing. In this way, C++ supports non-local
error handling. Along with altering the program flow, throwing of an exception
passes an object to the catch block. This object can provide data that is necessary
for the handling code to decide in which way it should react on the exception.

Consider this next code example of a try and catch block combination for clarifi-
cation:

void AFunction()
{
// This function does not return normally,
// instead execution will resume at a catch block.

32 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
33 HTTP://EN.WIKIPEDIA.ORG/WIKI/EXCEPTION%20HANDLING

517

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikipedia.org/wiki/Exception%20handling

Advanced Features

// The thrown object is in this case of the type char constx,
// i.e. it is a C-style string. More usually, exception

// objects are of class type.

throw "This is an exception!";

}

void AnotherFunction ()

{

// To catch exceptions, you first have to introduce

// a try block via " try { ... } ". Then multiple catch
// blocks can follow the try block.
// " try { ... } catch(type 1) { ... } catch(type 2) { ... }"
try
{
AFunction();

// Because the function throws an exception,
// the rest of the code in this block will not
// be executed
}
catch(char const* pch) // This catch block
// will react on exceptions
// of type char constx*

// Execution will resume here.
// You can handle the exception here.
}
// As can be seen
catch(...) // The ellipsis indicates that this
// block will catch exceptions of any type.
{
// In this example, this block will not be executed,
// because the preceding catch block is chosen to
// handle the exception.

}

Unhandled exceptions on the other hand will result in a function termination and
the STACK WILL BE UNWOUND?>* (stack allocated objects will have destructors
called) as it looks for an exception handler. If none is found it will ultimately
result in the termination of the program.

From the point of view of a programmer, raising an exception is a useful way
to signal that a routine could not execute normally. For example, when an input
argument is invalid (e.g. a zero denominator in division) or when a resource it
relies on is unavailable (like a missing file, or a hard disk error). In systems without
exceptions, routines would need to return some special error code. However, this
is sometimes complicated by the SEMI-PREDICATE PROBLEM?, in which users
of the routine need to write extra code to distinguish normal return values from
€IToneous ones.

34 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23STACK%20UNWINDING
35 HrTP://EN.WIKIPEDIA.ORG/WIKI/SEMIPREDICATE%20PROBLEM

518

http://en.wikibooks.org/wiki/%23Stack%20unwinding
http://en.wikipedia.org/wiki/semipredicate%20problem

Exception Handling

Because it is hard to write exception safe code, you should only use an exception
when you have to - when an error has occurred that you can not handle. Do not
use exceptions for the normal flow of the program. This example is WRONG.

void sum(int iA, int iB)
{

throw iA + iB;
}

int main()
{

int iResult;

try
{
sum (2, 3);
}
catch(int iTmpResult)
{
// Here the exception is used instead of a return value!
// This is wrong!
iResult = iTmpResult;
}

return 0;

5.5.1 Stack unwinding
Consider the following code

void g()
{
throw std::exception();

}
void f()
{
std::string str = "Hello"; // This string is newly allocated

g();
}

int main{()

try

{1}

The flow of the program:

519

Advanced Features

e main () calls £ ()

e f () creates a local variable named str

* str constructor allocates a memory chunk to hold the string
"Hello"

e £() callsg()

* g () throws an exception

e f () does not catch the exception.

Because the exception was not caught, we now need to exit £ () in a clean fashion.
At this point, all the destructors of local variables previous to the throw
are called - This is called ’stack unwinding’.

* The destructor of str is called, which releases the memory occupied by it.

As you can see, the mechanism of ’stack unwinding’ is essential to prevent re-
source leaks - without it, str would never be destroyed, and the memory it used
would be lost forever.

* main () catches the exception
* The program continues.

The ’stack unwinding’ guarantees destructors of local variables (stack variables)
will be called when we leave its scope.

5.5.2 Throwing objects

There are several ways to throw an exception object.

Throw a pointer to the object:

void foo ()
{
throw new MyApplicationException();

}

void bar ()

{

try
{
foo();
}
catch (MyApplicationException* e)
{

520

Exception Handling

// Handle exception
}

But now, who is responsible to delete the exception? The handler? This makes
code uglier. There must be a better way!

How about this:

void foo ()

{
throw MyApplicationException();
}

void bar ()
{
try
{
foo();
}
catch (MyApplicationException e)
{
// Handle exception
}
}

Looks better! But now, the catch handler that catches the exception, does it by
value, meaning that a copy constructor is called. This can cause the program to
crash if the exception caught was a bad_alloc caused by insufficient memory. In
such a situation, seemingly safe code that is assumed to handle memory allocation
problems results in the program crashing with a failure of the exception handler.
Moreover, catching by value may cause the copy to have different behavior because
of object slicing.

The correct approach is:

void foo ()
{

throw MyApplicationException();
}

void bar ()
{
try
{
foo();
}
catch (MyApplicationException consté& e)
{
// Handle exception
}

521

Advanced Features

This method has all the advantages - the compiler is responsible for destroying the
object, and no copying is done at catch time!

The conclusion is that exceptions should be thrown by value, and caught by (usu-
ally const) reference.

5.5.3 Constructors and destructors

When an exception is thrown from a constructor, the object is not considered in-
stantiated, and therefore its destructor will not be called. But all destructors of
already successfully constructed base and member objects of the same master ob-
ject will be called. Constructors of not yet constructed base or member objects of
the same master object will not be executed. Example:

class A : public B, public C
{
public:

D sD;

E sE;

A(void)

:B(), C(), sD(), sE()

{

}
bi
Let’s assume the constructor of base class C throws. Then the order of execution
is:

* B
* C (throws)
e B

Let’s assume the constructor of member object sE throws. Then the order of exe-
cution is:

B

e C

e sD

e sE (throws)

e "sD

e °C

e "B

Thus if some constructor is executed, one can rely on that all other constructors of
the same master object executed before, were successful. This enables one, to use

an already constructed member or base object as an argument for the constructor
of one of the following member or base objects of the same master object.

522

Exception Handling

What happens when we allocate this object with new?

* Memory for the object is allocated
* The object’s constructor throws an exception
* The object was not instantiated due to the exception
* The memory occupied by the object is deleted
* The exception is propagated, until it is caught

The main purpose of throwing an exception from a constructor is to inform the pro-
gram/user that the creation and initialization of the object did not finish correctly.
This is a very clean way of providing this important information, as constructors do
not return a separate value containing some error code (as an initialization function
would).

In contrast, it is strongly recommended not to throw exceptions inside a destructor.
It is important to note when a destructor is called:

* as part of a normal deallocation (exit from a scope, delete)
* as part of a stack unwinding that handles a previously thrown exception.

In the former case, throwing an exception inside a destructor can simply cause
memory leaks due to incorrectly deallocated object. In the latter, the code must be
more clever. If an exception was thrown as part of the stack unwinding caused by
another exception, there is no way to choose which exception to handle first. This
is interpreted as a failure of the exception handling mechanism and that causes the
program to call the function terminate.

To address this problem, it is possible to test if the destructor was called as part
of an exception handling process. To this end, one should use the standard library
function uncaught_exception, which returns true if an exception has been thrown,
but hasn’t been caught yet. All code executed in such a situation must not throw
another exception.

Situations where such careful coding is necessary are extremely rare. It is far safer
and easier to debug if the code was written in such a way that destructors did not
throw exceptions at all.

5.5.4 Writing exception safe code

Exception safety

523

Advanced Features

A piece of code is said to be exception-safe, if run-time failures within the code
will not produce ill effects, such as MEMORY LEAK>®s, garbled stored data, or
invalid output. Exception-safe code must satisfy INVARIANT?’s placed on the code
even if exceptions occur. There are several levels of exception safety:

1.

Failure transparency, also known as the no throw guarantee: Operations
are guaranteed to succeed and satisfy all requirements even in presence of
exceptional situations. If an exception occurs, it will not throw the exception
further up. (Best level of exception safety.)

Commiit or rollback semantics, also known as strong exception safety or
no-change guarantee: Operations can fail, but failed operations are guar-
anteed to have no side effects so all data retain original values.

. Basic exception safety: Partial execution of failed operations can cause side

effects, but invariants on the state are preserved. Any stored data will contain
valid values even if data has different values now from before the exception.

. Minimal exception safety also known as no-leak guarantee: Partial exe-

cution of failed operations may store invalid data but will not cause a crash,
and no resources get leaked.

. No exception safety: No guarantees are made. (Worst level of exception

safety)

Partial handling

Consider the following case:

void g()

{

throw "Exception";

}

void £()

{

int* pI = new int(0);
g();
delete pI;

}

int main()

{

£0;
return 0;

36
37

524

HTTP://EN.WIKIPEDIA.ORG/WIKI/MEMORY$20LEAK
HTTP://EN.WIKIPEDIA.ORG/WIKI/INVARIANT%20%28COMPUTERS
20SCIENCE%29

http://en.wikipedia.org/wiki/memory%20leak
http://en.wikipedia.org/wiki/Invariant%20%28computer%20science%29
http://en.wikipedia.org/wiki/Invariant%20%28computer%20science%29

Exception Handling

Can you see the problem in this code? If g () throws an exception, the variable pI
is never deleted and we have a memory leak.

To prevent the memory leak, f () must catch the exception, and delete pI. But £ ()
can’t handle the exception, it doesn’t know how!

What is the solution then? £ () shall catch the exception, and then re-throw it:

void g()
{

throw "Exception";

}

void f()
{

int* pI = new int (0)

try
{
g();
}
catch (...)
{
delete pI;
throw; // This empty throw re-throws the exception we caught
// An empty throw can only exist in a catch block

}

delete pI;
}

int main()

{
£0;
return 0;

}

There’s a better way though; using RAII classes to avoid the need to use exception
handling.

Guards
If you plan to use exceptions in your code, you must always try to write your code
in an exception safe manner. Let’s see some of the problems that can occur:
Consider the following code:
void g()
{

throw std::exception();

}

void £()

525

Advanced Features

int* pI = new int(2);

*pI = 3;

g();

// Oops, 1if an exception is thrown, pI is never deleted
// and we have a memory leak

delete pI;

int main()

try
{

£0;
}
catch(...)
{1}

return 0;

}

Can you see the problem in this code? When an exception is thrown, we will never
run the line that deletes pI!

What’s the solution to this? Earlier we saw a solution based on f () ability to
catch and re-throw. But there is a neater solution using the ’stack unwinding’
mechanism. But ’stack unwinding’ only applies to destructors for objects, so how
can we use it?

We can write a simple wrapper class:

// Note: This type of class is best implemented using templates, discussed in

the next chapter.
class IntDeleter {
public:
IntDeleter (int* piValue)
{
m_pivValue = pivValue;

}

~IntDeleter()

{
delete m_piValue;

}

// operator #, enables us to dereference the object and use it
// like a regular pointer.
int& operator *()
{
return *m_piValue;

}

private:

526

Exception Handling

int* m_pivalue;
i

The new version of £ ():

void f()
{
IntDeleter pI(new int(2));

*pl = 3;

g()i

// No need to delete pI, this will be done in destruction.
// This code is also exception safe.

}

The pattern presented here is called a guard. A guard is very useful in other cases,
and it can also help us make our code more exception safe. The guard pattern is
similar to a finally block in other languages.

Note that the C++ Standard Library provides a templated guard by the name of
auto_ptr.

Exception hierarchy

You may throw as exception an object (like a class or string), a pointer (like char*),
or a primitive (like int). So, which should you choose? You should throw objects,
as they ease the handling of exceptions for the programmer. It is common to create
a class hierarchy of exception classes:

* class MyApplicationException { };
* class MathematicalException : public MyApplicationException { };
* class DivisionByZeroException : public MathematicalException { };
* class InvalidArgumentException : public MyApplicationException { };

An example:

float divide (float fNumerator, float fDenominator)

{

if (fDenominator == 0.0)

{
throw DivisionByZeroException();

}

return fNumerator/fDenominator;

}
enum MathOperators {DIVISION, PRODUCT};

float operate(int iAction, float fArgLeft, float fArgRight)
{

527

Advanced Features

if (iAction == DIVISION)
{
return divide (fArgLeft, fArgRight);
}
else if (iAction == PRODUCT))
{
// call the product function
/).
}

// No match for the action! iAction is an invalid agument
throw InvalidArgumentException();

int main(int iArgc, char* a_pchArgv[])

try
{
operate (atoi (a_pchArgv[0]), atof(a_pchArgv[l]), atof(a_pchArgv[2]));
}
catch (MathematicalExceptiong)

{
// Handle Error

}
catch (MyApplicationExceptioné&)

{

// This will catch in InvalidArgumentException too.

// Display help to the user, and explain about the arguments.
}

return 0;

Note:

The order of the catch blocks is important. A thrown object (say, InvalidAr-
gumentException) can be caught in a catch block of one of its super-classes.
(e.g. catch (MyApplicationException&) will catch it too). This is why it
is important to place the catch blocks of derived classes before the catch block
of their super classes.

5.5.5 Exception specifications

The range of exceptions that can be thrown by a function are an important part of
that function’s public interface. Without this information, you would have to as-
sume that any exception could occur when calling any function, and consequently
write code that was extremely defensive. Knowing the list of exceptions that can
be thrown, you can simplify your code since it doesn’t need to handle every case.

528

Exception Handling

This exception information is specifically part of the public interface. Users of a
class don’t need to know anything about the way it is implemented, but they do
need to know about the exceptions that can be thrown, just as they need to know
the number and type of parameters to a member function. One way of providing
this information to clients of a library is via code documentation, but this needs to
be manually updated very carefully. Incorrect exception information is worse than
none at all, since you may end up writing code that is less exception-safe than you
intended to.

C++ provides another way of recording the exception interface, by means of ex-
ception specifications. An exception specification is parsed by the compiler, which
provides a measure of automated checking. An exception specification can be ap-
plied to any function, and looks like this:

double divide (double dNumerator, double dDenominator) throws
(DivideByZeroException);

You can specify that a function cannot throw any exceptions by using an empty
exception specification:

void safeFunction(int iFoo) throws();

Shortcomings of exception specifications

C++ does not programmatically enforce exception specifications at compile time.
For example, the following code is legal:

void DubiousFunction (int iFoo) throws ()
{
if (iFoo < 0)
{
throw RangeException();
}
}

Rather than checking exception specifications at compile time, C++ checks them
at run time, which means that you might not realize that you have an inaccurate
exception specification until testing or, if you are unlucky, when the code is already
in production.

If an exception is thrown at run time that propagates out of a function that doesn’t
allow the exception in its exception specification, the exception will not propa-
gate any further and instead, the function RangeException () will be called. The

529

Advanced Features

RangeException () function doesn’t return, but can throw a different type of ex-
ception that may (or may not) satisfy the exception specification and allow excep-
tion handling to carry on normally. If this still doesn’t recover the situation, the
program will be terminated.

Many people regard the behavior of attempting to translate exceptions at run time
to be worse than simply allowing the exception to propagate up the stack to a
caller who may be able to handle it. The fact that the exception specification has
been violated does not mean that the caller can’t handle the situation, only that
the author of the code didn’t expect it. Often there will be a catch (...) block
somewhere on the stack that can deal with any exception.

Note:

Some coding standards require that exception specifications are not used. In the
upcoming C++ language standard (C++0x), the use of exception specifications
as specified in the current version of the standard (C++03), is deprecated.

38

5.6 Run-Time Type Information (RTTI)

RTTI refers to the ability of the system to report on the dynamic type of an object
and to provide information about that type at runtime (as opposed to at compile
time), when utilized consistently can be a powerful tool to ease the work of the
programmer in managing resources.

5.6.1 dynamic_cast

Consider what you have already learned about the dynamic_cast keyword and
let’s say that we have the following class hierarchy:

class Interface
{
public:
virtual void GenericOp() = 0;// pure virtual function
bi

class SpecificClass : public Interface

38 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

530

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Run-Time Type Information (RTTI)

{
public:
virtual void GenericOp ()
virtual void SpecificOp()
bi

Let’s say that we also have a pointer of type Interface*, like so:

Interface* ptr_interface;

Supposing that a situation emerges that we are forced to presume but have no guar-
antee that the pointer points to an object of type SpecificClass and we would
like to call the member SpecificOp () of that class. To dynamically convert to a
derived type we can use dynamic_cast, like so:

SpecificClass* ptr_specific = dynamic_cast<SpecificClass*>(ptr_interface);
if (ptr_specific){

// our suspicions are confirmed -- it really was a SpecificClass
ptr_specific->SpecificOp();

}else{
// our suspicions were incorrect —-— it is definitely not a SpecificClass.

// The ptr_interface points to an instance of some other child class of the
base InterfaceClass.
ti
ptr_interface->GenericOp();

With dynamic_cast, the program converts the base class pointer to a derived
class pointer and allows the derived class members to be called. Be very care-
ful, however: if the pointer that you are trying to cast is not of the correct type,
then dynamic_cast will return a null pointer.

We can also use dynamic_cast with references.

SpecificClass& ref_specific = dynamic_cast<SpecificClass&> (ref_interface);

This works almost in the same way as pointers. However, if the real type of the
object being cast is not correct then dynamic_cast will not return null (there’s no
such thing as a null reference). Instead, it will throw a std: :bad_cast exception.

5.6.2 typeid

Syntax

typeid(object);

531

Advanced Features

The typeid operator, used to determine the class of an object at runtime. It returns
areference to a std: : type_info object, which exists until the end of the program,
that describes the "object". If the "object" is a dereferenced null pointer, then the
operation will throw a std: :bad_typeid exception.

Objects of class std::bad_typeid are derived from std::exception, and
thrown by typeid and others.

Note:

The C++98 standard requires that header file <typeinfo> to be included before
operator typeid is used within a compilation unit. Otherwise, the program is
considered ill-formed.

The use of typeid is often preferred over dynamic_cast<class_type> in situ-
ations where just the class information is needed, because typeid, applied on
a type or non de-referenced value is a CONSTANT-TIME® procedure, whereas
dynamic_cast must traverse the class derivation lattice of its argument at runtime.
Though one should never rely on the exact content, like for example returned by
std::type_info: :name (), as this is implementation specific with respect to the
compile.

It is generally only useful to use typeid on the dereference of a pointer or reference
(i.e. typeid(*ptr) or typeid (ref)) to an object of polymorphic class type (a
class with at least one VIRTUAL MEMBER FUNCTION*?). This is because these are
the only expressions that are associated with run-time type information. The type
of any other expression is statically known at compile time.

Example

#include <iostream>
#include <typeinfo> //for ’typeid’ to work

class Person {

public:
// ... Person members ...
virtual ~Person() {}

bi

class Employee : public Person {
// ... Employee members ...
bi

30 HTTP://EN.WIKIPEDIA.ORG/WIKI/CONSTANT%20TIME
40 Chapter 4.3.1 on page 394

532

http://en.wikipedia.org/wiki/Constant%20time

Run-Time Type Information (RTTI)

int main () {

Person person;

Employee employee;

Person *ptr = &employee;

// The string returned by typeid::name is implementation-defined

std::cout << typeid (person).name() << std::endl; // Person (statically known
at compile-time)

std::cout << typeid (employee).name() << std::endl; // Employee (statically
known at compile-time)

std::cout << typeid(ptr).name() << std::endl; // Person * (statically
known at compile-time)
std::cout << typeid (*ptr).name() << std::endl; // Employee (looked up
dynamically at run-time
// because it is
the dereference of a
// pointer to a

polymorphic class)
}

Output (exact output varies by system):

Person
Employee
Person*
Employee

In RTTT it is used in this setup:

const std::type_infos& info = typeid(object_expression);

Sometimes we need to know the exact type of an object. The typeid operator
returns a reference to a standard class std: : type_info that contains information
about the type. This class provides some useful members including the == and !=
operators. The most interesting method is probably:

const char* std::type_info::name() const;
This member function returns a pointer to a C-style string with the name of the

object type. For example, using the classes from our earlier example:

const std::type_info &info = typeid(*ptr_interface);
std::cout << info.name() << std::endl;

This program would print something like*! SpecificClass because that is the
dynamic type of the pointer ptr_interface.

typeid is actually an operator rather than a function, as it can also act on types:

41 (The exact string returned by std::type_info::name() is compiler-dependent).

533

Advanced Features

const std::type_infos info = typeid (type);

for example (and somewhat circularly)

const std::type_infos& info = typeid(std::type_info);

will give a type_info object which describes type_info objects. This latter use
is not RTTI, but rather CTTI (compile-time type identification).

5.6.3 Limitations

There are some limitations to RTTL. First, RTTI can only be used with polymorphic
types. That means that your classes must have at least one virtual function, either
directly or through inheritance. Second, because of the additional information
required to store types some compilers require a special switch to enable RTTI.

Note that references to pointers will not work under RTTI:

void example(int*& refptrTest)

{

std::cout << "What type is *&refptrTest : " << typeid(refptrTest
) .name () << std::endl;

}

Will report int*, as typeid () does not support reference types.

5.6.4 Misuses of RTTI

RTTI should only be used sparingly in C++ programs. There are several reasons
for this. Most importantly, other language mechanisms such as polymorphism
and templates are almost always superior to RTTI. As with everything, there are
exceptions, but the usual rule concerning RTTI is more or less the same as with
goto statements. Do not use it as a shortcut around proper, more robust design.
Only use RTTT if you have a very good reason to do so and only use it if you know
what you are doing.

42

42 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

534

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Chapter Summary

5.7 Chapter Summary

1. TEMPLATES®

a) TEMPLATE META-PROGRAMMING (TMP)*
. STANDARD TEMPLATE LIBRARY (STL)*
. SMART POINTERS*®

2
3
4. EXCEPTION HANDLING*’
5

. RUN-TIME TYPE INFORMATION (RTTI)*

43
44
45
46
47
48
49
50

Chapter 5 on page 483

Chapter 5.1.4 on page 492

Chapter 5.1.5 on page 499

Chapter 5.2.6 on page 515

Chapter 5.4 on page 517

Chapter 5.5.5 on page 530

HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3A
HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

535

http://en.wikibooks.org/wiki/Category%3A
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Advanced Features

536

6 Beyond the Standard

6.1 Resource Acquisition Is Initialization (RAII)

The RAII technique is often used for controlling thread locks in multi-threaded
applications. Another typical example of RAII is file operations, e.g. the C++
standard library’s file-streams. An input file stream is opened in the object’s con-
structor, and it is closed upon destruction of the object. Since C++ allows objects
to be allocated on the STACK!, C++’s scoping mechanism can be used to control
file access.

With RAII we can use, for instance, Class destructors to guarantee clean up, similar
to the finally keyword in other languages. Doing this automates the task and so
avoids errors but gives the freedom not to use it.

RAII is also used (as shown in the example below) to ensure exception safety.
RAII makes it possible to avoid resource leaks without extensive use of try/catch
blocks and is widely used in the software industry.

The ownership of dynamically allocated memory (memory allocated with new) can
be controlled with RAII. For this purpose, the C++ Standard Library defines AUTO
PTR?. Furthermore, lifetime of shared objects can be managed by a smart pointer
with shared-ownership semantics such as boost : : shared_ptr defined in C++ by
the BOOST LIBRARY? or policy based Loki : : SmartPtr from LOKI LIBRARY.

The following RAII class is a lightweight wrapper to the C standard library file
system calls.

#include <cstdio>

// exceptions
class file_error { } ;
class open_error : public file_error { } ;

HTTP://EN.WIKIPEDIA.ORG/WIKI/CALL%20STACK
HTTP://EN.WIKIPEDIA.ORG/WIKI/AUTO%20PTR

Chapter 6.4.2 on page 588
HTTP://EN.WIKIPEDIA.ORG/WIKI/LOKI%20%28C%2B%2B%29

AW N =

537

http://en.wikipedia.org/wiki/call%20stack
http://en.wikipedia.org/wiki/auto%20ptr
http://en.wikipedia.org/wiki/Loki%20%28C%2B%2B%29

Beyond the Standard

class close_error : public file error { } ;
class write_error : public file error { } ;

class file

{
public:
file(const char* filename)

m_file_handle (std::fopen(filename, "w+"))

if(m_file_handle == NULL)
{

throw open_error() ;

~file()
{
std::fclose(m_file_handle) ;

void write(const char* str)

{
if(std::fputs(str, m_file_handle) == EOF)

{

throw write_error() ;

void write(const char* buffer, std::size_t num_chars)

{

if(num_chars != 0
&&
std::fwrite (buffer, num_chars, 1, m_file_handle) == 0)

throw write_error() ;

private:
std::FILE* m_file_handle ;

// copy and assignment not implemented; prevent their use by
// declaring private.
file(const file &) ;
file & operator=(const file &) ;
b

This RAII class can be used as follows :

void example_with_ RAII()

{
// open file (acquire resource)
file logfile("logfile.txt")

logfile.write("hello logfile!™)
// continue writing to logfile.txt

538

Resource Acquisition Is Initialization (RAII)

// logfile.txt will automatically be closed because logfile’s
// destructor is always called when example with RAII() returns or
// throws an exception.

}

Without using RAII, each function using an output log would have to manage the
file explicitly. For example, an equivalent implementation without using RAII is
this:

void example_without_RAII ()

{
// open file
std::FILE* file_handle = std::fopen("logfile.txt", "wt") ;

if(file_handle == NULL)
{

throw open_error() ;

}

try
{

if(std::fputs("hello logfile!", file_handle) == EOF)
{

throw write_error() ;

}

// continue writing to logfile.txt ... do not return
// prematurely, as cleanup happens at the end of this function

}
catch(...)

{
// manually close logfile.txt
std::fclose(file_handle) ;

// re-throw the exception we just caught
throw ;
}

// manually close logfile.txt
std::fclose(file_handle) ;
}

The implementation of file and example_without_RAII () becomes more com-
plex if fopen () and fclose () could potentially throw exceptions; example_-
with_RAII () would be unaffected, however.

The essence of the RAII idiom is that the class file encapsulates the management
of any finite resource, like the FILE* file handle. It guarantees that the resource will
properly be disposed of at function exit. Furthermore, file instances guarantee
that a valid log file is available (by throwing an exception if the file could not be
opened).

539

Beyond the Standard

There’s also a big problem in the presence of exceptions: in example_without_-
RAII (), if more than one resource were allocated, but an exception was to be
thrown between their allocations, there’s no general way to know which resources
need to be released in the final catch block - and releasing a not-allocated resource
is usually a bad thing. RAII takes care of this problem; the automatic variables are
destructed in the reverse order of their construction, and an object is only destruc-
ted if it was fully constructed (no exception was thrown inside its constructor). So
example_without_RAII () can never be as safe as example_with_RAII () with-
out special coding for each situation, such as checking for invalid default values
or nesting try-catch blocks. Indeed, it should be noted that example_without_-
RAII () contained resource bugs in previous versions of this article.

This frees example_with_RAII () from explicitly managing the resource as would
otherwise be required. When several functions use file, this simplifies and re-
duces overall code size and helps ensure program correctness.

example_without_RAII () resembles the idiom used for resource management
in non-RAII languages such as Java. While Java’s try-finally blocks allow for
the correct release of resources, the burden nonetheless falls on the programmer
to ensure correct behavior, as each and every function using £ile may explicitly
demand the destruction of the log file with a fry-finally block.

5

6.2 Garbage collection

Garbage collection is a form of automatic memory management. The garbage
collector or collector attempts to reclaim garbage, or memory used by objects that
will never be accessed or mutated again by the application.

Tracing garbage collectors require some implicit runtime overhead that may be be-
yond the control of the programmer, and can sometimes lead to performance prob-
lems. For example, commonly used Stop-The-World garbage collectors, which
pause program execution at arbitrary times, may make garbage collecting lan-
guages inappropriate for some embedded systems, high-performance server soft-
ware, and applications with real-time needs.

A more fundamental issue is that garbage collectors violate locality of reference,
since they deliberately go out of their way to find bits of memory that haven’t been

5 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

540

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Garbage collection

accessed recently. The performance of modern computer architectures is increas-
ingly tied to caching, which depends on the assumption of locality of reference
for its effectiveness. Some garbage collection methods result in better locality of
reference than others. Generational garbage collection is relatively cache-friendly,
and copying collectors automatically defragment memory helping to keep related
data together. Nonetheless, poorly timed garbage collection cycles could have a
severe performance impact on some computations, and for this reason many run-
time systems provide mechanisms that allow the program to temporarily suspend,
delay or activate garbage collection cycles.

Despite these issues, for many practical purposes, allocation/deallocation-intensive
algorithms implemented in modern garbage collected languages can actually be
faster than their equivalents using explicit memory management (at least without
heroic optimizations by an expert programmer). A major reason for this is that the
garbage collector allows the runtime system to amortize allocation and dealloca-
tion operations in a potentially advantageous fashion. For example, consider the
following program in C++:

#include <iostream>

class A {

int x;
public:

A() { x = 0; ++x; }
bi

int main() {
for (int i = 0; i < 1000000000; ++i) {
A *a = new A();
delete 3a;

}
std::cout << "DING!" << std::endl;

}
One of more widely used libraries that provides this function is HANS BOEHM’S
CONSERVATIVE GC®. As we have seen earlier C++ also supports a powerful idiom

called RAII (resource acquisition is initialization)’ that can be used to safely and
automatically manage resources including memory.

8

6 HTTP://WWW.HPL.HP.COM/PERSONAL/HANS_BOEHM/GC/
7 Chapter 6 on page 537
8 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

541

http://www.hpl.hp.com/personal/Hans_Boehm/gc/
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Beyond the Standard

6.3 Programming Patterns

"To understand is to perceive patterns"

—ISAIAH BERLIN®

Software design patterns are abstractions that help structure system designs. While
not new, since the concept was already described by CHRISTOPHER ALEXAN-
DER!? in its architectural theories, it only gathered some traction in program-
ming due to the publication of DESIGN PATTERNS: ELEMENTS OF REUSABLE
OBJECT-ORIENTED SOFTWARE!! book in October 1994 by ERICH GAMMA 2,
RICHARD HELM!3, RALPH JOHNSON! and JOHN VLISSIDES!?, known as the
Gang of Four (GoF), that identifies and describes 23 classic software design pat-
terns.

A design pattern is neither a static solution, nor is it an algorithm. A pattern
is a way to describe and address by name (mostly a simplistic description of its
goal), a repeatable solution or approach to a common design problem, that is, a
common way to solve a generic problem (how generic or complex, depends on how
restricted the target goal is). Patterns can emerge on their own or by design. This
is why design patterns are useful as an abstraction over the implementation and a
help at design stage. With this concept, an easier way to facilitate communication
over a design choice as normalization technique is given so that every person can
share the design concept.

Depending on the design problem they address, design patterns can be classified
in different categories, of which the main categories are:

o CREATIONAL PATTERNS!®
e STRUCTURAL PATTERNS!?
e BEHAVIORAL PATTERNS!S.

9 HTTP://EN.WIKIPEDIA.ORG/WIKI/ISATIAH%20BERLIN

10 HTTP://EN.WIKIPEDIA.ORG/WIKI/CHRISTOPHER%20ALEXANDER
11 HTTP://EN.WIKIPEDIA.ORG/WIKI/DESIGN%20PATTERNS

12 HTTP://EN.WIKIPEDIA.ORG/WIKI/ERICH%20GAMMA

13 HTTP://EN.WIKIPEDIA.ORG/WIKI/RICHARD$20HELM

14 HTTP://EN.WIKIPEDIA.ORG/WIKI/RALPH%20JOHNSON

15 &HTTP://EN.WIKIPEDIA.ORG/WIKI/JOHN%20VLISSIDES

16 Chapter 6.3 on page 543

17 Chapter 6.3.1 on page 559

18 Chapter 6.3.2 on page 564

542

http://en.wikipedia.org/wiki/Isaiah%20Berlin
http://en.wikipedia.org/wiki/Christopher%20Alexander
http://en.wikipedia.org/wiki/Design%20Patterns
http://en.wikipedia.org/wiki/Erich%20Gamma
http://en.wikipedia.org/wiki/Richard%20Helm
http://en.wikipedia.org/wiki/Ralph%20Johnson
http://en.wikipedia.org/wiki/John%20Vlissides

Programming Patterns

Patterns are commonly found in objected-oriented programming languages like
C++ or Java. They can be seen as a template for how to solve a problem that
occurs in many different situations or applications. It is not code reuse, as it usu-
ally does not specify code, but code can be easily created from a design pattern.
Object-oriented design patterns typically show relationships and interactions be-
tween classes or objects without specifying the final application classes or objects
that are involved.

Each design pattern consists of the following parts:
Problem/requirement

To use a design pattern, we need to go through a mini analysis design that may be
coded to test out the solution. This section states the requirements of the problem
we want to solve. This is usually a common problem that will occur in more than
one application.

Forces

This section states the technological boundaries, that helps and guides the cre-
ation of the solution.

Solution

This section describes how to write the code to solve the above problem. This
is the design part of the design pattern. It may contain class diagrams, sequence
diagrams, and or whatever is needed to describe how to code the solution.

Design patterns can be considered as a standardization of commonly agreed best
practices to solve specific design problems. One should understand them as a way
to implement good design patterns within applications. Doing so will reduce the
use of inefficient and obscure solutions. Using design patterns speeds up your
design and helps to communicate it to other programmers.

6.3.1 Creational Patterns

In SOFTWARE ENGINEERING!®, creational design patterns are DESIGN PAT-
TERNS?? that deal with OBJECT CREATION?! mechanisms, trying to create objects
in a manner suitable to the situation. The basic form of object creation could result

19 HTTP://EN.WIKIPEDIA.ORG/WIKI/SOFTWARE%20ENGINEERING

20 HTTP://EN.WIKIPEDIA.ORG/WIKI/DESIGN%20PATTERN%20%28COMPUTERS
20SCIENCES®29

21 HTTP://EN.WIKIPEDIA.ORG/WIKI/OBJECT%20LIFETIME

543

http://en.wikipedia.org/wiki/software%20engineering
http://en.wikipedia.org/wiki/design%20pattern%20%28computer%20science%29
http://en.wikipedia.org/wiki/design%20pattern%20%28computer%20science%29
http://en.wikipedia.org/wiki/object%20lifetime

Beyond the Standard

in design problems or added complexity to the design. Creational design patterns
solve this problem by somehow controlling this object creation.

In this section of the book we assume that the reader has enough familiarity with
functions, global variables, stack vs. heap, classes, pointers, and static member
functions as introduced before.

As we will see there are several creational design patterns, and all will deal with
a specific implementation task, that will create a higher level of abstraction to the
code base, we will now cover each one.

Builder

The Builder Creational Pattern is used to separate the construction of a complex
object from its representation so that the same construction process can create
different objects representations.

Problem

We want to construct a complex object, however we do not want to have a com-
plex constructor member or one that would need many arguments.

Solution

Define an intermediate object whose member functions define the desired object
part by part before the object is available to the client. Build Pattern lets us defer
the construction of the object until all the options for creation have been specified.

#include <string>
#include <iostream>

using namespace std;

// "Product"
class Pizza
{
public:
void setDough(const stringé& dough)

m_dough = dough;

void setSauce (const string& sauce)

m_sauce = sauce;

}
void setTopping(const string& topping)

m_topping = topping;

544

Programming Patterns

and "

private:

bi

void open() const

{

cout << "Pizza with " << m_dough << " dough,
<< m_topping << " topping. Mmm." << endl;
string m_dough;

string m_sauce;
string m_topping;

// "Abstract Builder"
class PizzaBuilder

{
public:

Pizza* getPizza()
{
return m_pizza;
}
void createNewPizzaProduct ()

{

m_pizza = new Pizza;
}
virtual void buildDough() = 0;
virtual void buildSauce() = 0
virtual void buildTopping() = 0;

’

protected:

Pizza* m_pizza;

class HawaiianPizzaBuilder : public PizzaBuilder

{
public:

bi

virtual void buildDough ()

{ m_pizza->setDough("cross");
iirtual void buildSauce ()

{ m_pizza->setSauce("mild");
iirtual void buildTopping()

{

m_pizza->setTopping ("ham+tpineapple");

class SpicyPizzaBuilder : public PizzaBuilder

{
public:

virtual void buildDough ()
{

m_pizza->setDough ("pan baked");
}

virtual void buildSauce()

" << m_sauce << " sauce

545

Beyond the Standard

m_pizza->setSauce ("hot");
}
virtual void buildTopping ()
{

m_pizza->setTopping ("pepperoni+salami");

class Cook

{

public:
void setPizzaBuilder (PizzaBuilder* pb)
{
m_pizzaBuilder = pb;
}
Pizza* getPizza()
{
return m_pizzaBuilder->getPizza();
}
void constructPizza ()
{
m_pizzaBuilder->createNewPizzaProduct () ;
m_pizzaBuilder->buildDough () ;
m_pizzaBuilder->buildSauce();
m_pizzaBuilder->buildTopping();
}
private:
PizzaBuilder* m_pizzaBuilder;
bi
int main()
{
Cook cook;
PizzaBuilder* hawaiianPizzaBuilder = new HawaiianPizzaBuilder;
PizzaBuilder* spicyPizzaBuilder = new SpicyPizzaBuilder;

cook.setPizzaBuilder (hawaiianPizzaBuilder);
cook.constructPizza();

Pizza* hawaiian = cook.getPizza();
hawaiian->open () ;

cook.setPizzaBuilder (spicyPizzaBuilder);
cook.constructPizzal();

Pizza* spicy = cook.getPizza();
spicy->open();

delete hawaiianPizzaBuilder;
delete spicyPizzaBuilder;
delete hawaiian;

delete spicy;

546

Programming Patterns

Factory

Definition: A utility class that creates an instance of a class from a family of
derived classes

Abstract Factory
Definition: A utility class that creates an instance of several families of classes. It
can also return a factory for a certain group.

Factory Method

The Factory Design Pattern is useful in a situation that requires the creation of
many different types of objects, all derived from a common base type. The Fac-
tory Method defines a method for creating the objects, which subclasses can then
override to specify the derived type that will be created. Thus, at run time, the
Factory Method can be passed a description of a desired object (e.g., a string read
from user input) and return a base class pointer to a new instance of that object.
The pattern works best when a well-designed interface is used for the base class,
so there is no need to cast the returned object.

Problem

We want to decide at run time what object is to be created based on some config-
uration or application parameter. When we write the code, we do not know what
class should be instantiated.

Solution

Define an interface for creating an object, but let subclasses decide which class to
instantiate. Factory Method lets a class defer instantiation to subclasses.

In the following example, a factory method is used to create laptop or desktop
computer objects at run time.

Let’s start by defining Computer, which is an abstract base class (interface) and its
derived classes: Laptop and Desktop.

class Computer

{

public:
virtual void Run() = 0;
virtual void Stop() = 0;

}i
class Laptop: public Computer

547

Beyond the Standard

{
public:
virtual void Run() {mHibernating = false;}
virtual void Stop() {mHibernating = true;}
private:
bool mHibernating; // Whether or not the machine is hibernating
bi
class Desktop: public Computer
{
public:
virtual void Run() {mOn = true;}
virtual void Stop() {mOn = false;}
private:
bool mOn; // Whether or not the machine has been turned on
}i

The actual ComputerFactory class returns a Computer, given a real world de-
scription of the object.

class ComputerFactory
{
public:
static Computer *NewComputer (const std::string &description)

{

if (description == "laptop")
return new Laptop;
if (description == "desktop")

return new Desktop;
return NULL;

bi

Let’s analyze the benefits of this design. First, there is a compilation benefit. If we
move the interface Computer into a separate header file with the factory, we can
then move the implementation of the NewComputer () function into a separate im-
plementation file. Now the implementation file for NewComputer () is the only one
that requires knowledge of the derived classes. Thus, if a change is made to any de-
rived class of Computer, or a new Computer subtype is added, the implementation
file for NewComputer () is the only file that needs to be recompiled. Everyone who
uses the factory will only care about the interface, which should remain consistent
throughout the life of the application.

Also, if there is a need to add a class, and the user is requesting objects through
a user interface, no code calling the factory may be required to change to support
the additional computer type. The code using the factory would simply pass on the
new string to the factory, and allow the factory to handle the new types entirely.

Imagine programming a video game, where you would like to add new types of
enemies in the future, each of which has different Al functions and can update
differently. By using a factory method, the controller of the program can call to

548

Programming Patterns

the factory to create the enemies, without any dependency or knowledge of the
actual types of enemies. Now, future developers can create new enemies, with
new Al controls and new drawing member functions, add it to the factory, and
create a level which calls the factory, asking for the enemies by name. Combine
this method with an XML?? description of levels, and developers could create new
levels without having to recompile their program. All this, thanks to the separation
of creation of objects from the usage of objects.

Another example:

#include <stdexcept>
#include <iostream>
#include <memory>

class Pizza {
public:

virtual int getPrice() const = 0;
i

class HamAndMushroomPizza : public Pizza {
public:

virtual int getPrice() const { return 850; }
i

class DeluxePizza : public Pizza {
public:

virtual int getPrice() const { return 1050; }
i

class HawaiianPizza : public Pizza {
public:

virtual int getPrice() const { return 1150; }
i

class PizzaFactory {
public:
enum PizzaType {
HamMushroom,
Deluxe,
Hawaiian

i

static Pizza* createPizza(PizzaType pizzaType) {
switch (pizzaType) {
case HamMushroom:
return new HamAndMushroomPizza ()
case Deluxe:
return new DeluxePizzal();
case Hawaiian:
return new HawaiianPizza();
}

throw "invalid pizza type.";

22 HTTP://EN.WIKIBOOKS.ORG/WIKI/XML

549

http://en.wikibooks.org/wiki/XML

Beyond the Standard

bi

/%
* Create all available pizzas and print their prices
*/
void pizza_information(PizzaFactory::PizzaType pizzatype)
{
Pizza* pizza = PizzaFactory::createPizza(pizzatype);
std::cout << "Price of " << pizzatype << " is " << pizza->getPrice() <<
std::endl;
delete pizza;

}

int main ()

{
pizza_information(PizzaFactory::HamMushroom);
pizza_information(PizzaFactory::Deluxe);
pizza_information(PizzaFactory::Hawaiian);

Prototype

A prototype pattern is used in software development when the type of objects to
create is determined by a prototypical instance, which is cloned to produce new
objects. This pattern is used, for example, when the inherent cost of creating a new
object in the standard way (e.g., using the new keyword) is prohibitively expensive
for a given application.

Implementation: Declare an abstract base class that specifies a pure virtual
clone () method. Any class that needs a "polymorphic constructor” capability
derives itself from the abstract base class, and implements the clone () operation.

Here the client code first invokes the factory method. This factory method, de-
pending on the parameter, finds out concrete class. On this concrete class call to
the clone () method is called and the object is returned by the factory method.

* This is sample code which is a sample implementation of Prototype method. We

have the detailed description of all the components here.

* Record class, which is a pure virtual class that has a pure virtual method
clone().

* CarRecord, BikeRecord and PersonRecord as concrete implementation of a
Record class.

* An enum RECORD_TYPE_en as one to one mapping of each concrete imple-
mentation of Record class.

550

Programming Patterns

* RecordFactory class that has a Factory method CreateRecord(...). This
method requires an enum RECORD_TYPE_en as parameter and depending on
this parameter it returns the concrete implementation of Record class.

J

* Implementation of Prototype Method

* %/

#include <iostream>
#include <map.h>
#include <string>

using namespace std;

enum RECORD_TYPE_en

{

CAR,
BIKE,
PERSON

i

J

* Record is the Prototype

*/

class Record

{

public

Record() {}

virtual ~Record() {

virtual Record* clone()=0;

virtual void print()=0;

i

J xk

* CarRecord is a Concrete Prototype

*/

class CarRecord : public Record

{

private:
string m_carName;
int m_ID;

public:
CarRecord(string carName, int ID)

{
}

: Record(), m_carName (carName),

m_ID (ID)

CarRecord(CarRecord& carRecord)

: Record()

551

Beyond the Standard

m_carName = carRecord.m_carName;
m_ID = carRecord.m_ID;

~CarRecord() {}

Record* clone()

{

return new CarRecord(*this);

void print ()
{
cout << "Car Record" << endl
<< "Name : " << m_carName << endl
<< "Number: " << m_ID << endl << endl;

Ve
* BikeRecord is the Concrete Prototype
*/

class BikeRecord : public Record
{
private :
string m_bikeName;

int m_ID;
public :
BikeRecord(string bikeName, int ID)
: Record(), m_bikeName (bikeName),
m_ID(ID)

BikeRecord (BikeRecords bikeRecord)
¢ Record()

m_bikeName = bikeRecord.m_bikeName;
m_ID = bikeRecord.m_ID;

~BikeRecord() {}

Record* clone()

{

return new BikeRecord(*this);

void print ()
{
cout << "Bike Record" << endl
<< "Name : " << m_bikeName << endl
<< "Number: " << m_ID << endl << endl;

552

Programming Patterns

J xk

* PersonRecord is the Concrete Prototype

*/

class PersonRecord : public Record

{

private
string m_personName;

int m_age;

public
PersonRecord (string personName, int age)
: Record(), m_personName (personName),
m_age (age)

PersonRecord (PersonRecord& personRecord)
: Record()

m_personName = personRecord.m_personName;
m_age = personRecord.m_age;

~PersonRecord () {}

Record* clone()

{

return new PersonRecord(*this);

void print ()
{

cout << "Person Record" << endl

<< "Name : " << m_personName << endl
<< "Age : " << m_age << endl << endl ;
}
}i
J xk
* RecordFactory is the client
*/

class RecordFactory
{
private
map<RECORD_TYPE_en, Record* > m_recordReference;

public
RecordFactory ()
{

m_recordReference[CAR] = new CarRecord("Ferrari", 5050);

553

Beyond the Standard

}i

m_recordReference [BIKE] = new BikeRecord("Yamaha",
m_recordReference [PERSON] = new PersonRecord("Tom",
}
~RecordFactory ()

{
delete m_recordReference[CAR]
delete m_recordReference[BIKE];
delete m_recordReference [PERSON];

}

Record* createRecord (RECORD_TYPE_en enType)
{

return m_recordReference[enType]->clone();

}

int main()

{

}

RecordFactory* poRecordFactory = new RecordFactory();

Record* poRecord;
poRecord = poRecordFactory->createRecord(CAR);
poRecord->print () ;
delete poRecord;

poRecord = poRecordFactory->createRecord (BIKE);
poRecord->print () ;
delete poRecord;

poRecord = poRecordFactory->createRecord (PERSON) ;
poRecord->print () ;
delete poRecord;

delete poRecordFactory;
return 0;

Another example:

To implement the pattern, declare an abstract base class that specifies a pure vir-
tual clone () member function. Any class that needs a "polymorphic constructor”
capability derives itself from the abstract base class, and implements the clone ()

operation.

The client, instead of writing code that invokes the new operator on a hard-wired
class name, calls the clone () member function on the prototype, calls a factory
member function with a parameter designating the particular concrete derived class
desired, or invokes the clone () member function through some mechanism pro-

vided by another design pattern.

class CPrototypeMonster

{

protected:

554

2525);
25);

Programming Patterns

CString _name;
public:
CPrototypeMonster () ;
CPrototypeMonster (const CPrototypeMonster& copy);
virtual ~CPrototypeMonster();

virtual CPrototypeMonster* Clone() const=0; // This forces every derived
class to provide an overload for this function.

void Name (CString name);

CString Name () const;

bi

class CGreenMonster : public CPrototypeMonster

{

protected:
int _numberOfArms;
double _slimeAvailable;
public:

CGreenMonster () ;
CGreenMonster (const CGreenMonster& copy);
~CGreenMonster () ;

virtual CPrototypeMonster* Clone() const;
void NumberOfArms(int numberOfArms);
void SlimeAvailable(double slimeAvailable);

int NumberOfArms () const;
double SlimeAvailable() const;
i

class CPurpleMonster : public CPrototypeMonster
{

protected:
int _intensityOfBadBreath;
double _lengthOfWhiplikeAntenna;
public:

CPurpleMonster () ;
CPurpleMonster (const CPurpleMonster& copy);
~CPurpleMonster () ;

virtual CPrototypeMonster* Clone() const;

void IntensityOfBadBreath(int intensityOfBadBreath);
void LengthOfWhiplikeAntenna(double lengthOfWhiplikeAntenna);

int IntensityOfBadBreath() const;
double LengthOfWhiplikeAntenna() const;

bi

class CBellyMonster : public CPrototypeMonster
{
protected:
double _roomAvailableInBelly;
public:
CBellyMonster () ;
CBellyMonster (const CBellyMonster& copy);
~CBellyMonster();

555

Beyond the Standard

virtual CPrototypeMonster* Clone() const;
void RoomAvailableInBelly(double roomAvailableInBelly);
double RoomAvailableInBelly () const;

}i

CPrototypeMonster* CGreenMonster::Clone() const

{

return new CGreenMonster (*this);

}

CPrototypeMonster* CPurpleMonster::Clone() const

{
return new CPurpleMonster (*this);

}

CPrototypeMonster* CBellyMonster::Clone() const
{

return new CBellyMonster (*this);

}

A client of one of the concrete monster classes only needs a reference (pointer)
to a CPrototypeMonster class object to be able to call the ‘Clone’ function and
create copies of that object. The function below demonstrates this concept:

void DoSomeStuffWithAMonster (const CPrototypeMonster* originalMonster
{

CPrototypeMonster* newMonster = originalMonster->Clone();
ASSERT (newMonster);

newMonster->Name ("MyOwnMonster") ;
// Add code doing all sorts of cool stuff with the monster.
delete newMonster;

}

Now originalMonster can be passed as a pointer to CGreenMonster, CPurpleMon-
ster or CBellyMonster.

Singleton

The term Singleton refers to an object that can only be instantiated once. This
pattern is generally used where a global variable would have otherwise been used.
The main advantage of the singleton is that its existence is guaranteed. Other
advantages of the design pattern include the clarity, from the unique access, that the
object used is not on the local stack. Some of the downfalls of the object include
that, like a global variable, it can be hard to tell what chunk of code corrupted
memory, when a bug is found, since everyone has access to it.

Let’s take a look at how a Singleton differs from other variable types.

556

Programming Patterns

Like a global variable, the Singleton exists outside of the scope of any functions.
Traditional implementation uses a static member function of the Singleton class,
which will create a single instance of the Singleton class on the first call, and
forever return that instance. The following code example illustrates the elements
of a C++ singleton class, that simply stores a single string.

class StringSingleton
{
public:
// Some accessor functions for the class, itself
std::string GetString() const
{return mString;}
void SetString(const std::string &newStr)
{mString = newStr;}

// The magic function, which allows access to the class from anywhere
// To get the value of the instance of the class, call:
// StringSingleton: :Instance () .GetString();
static StringSingleton &Instance()
{
// This line only runs once, thus creating the only instance in
existence
static StringSingleton *instance = new StringSingleton;
// dereferencing the variable here, saves the caller from having to use
// the arrow operator, and removes tempation to try and delete the
// returned instance.
return *instance; // always returns the same instance

private:

// We need to make some given functions private to finish the definition of
the singleton

StringSingleton(){} // default constructor available only to members or
friends of this class

// Note that the next two functions are not given bodies, thus any attempt
// to call them implicitly will return as compiler errors. This prevents
// accidental copying of the only instance of the class.
StringSingleton (const StringSingleton &old); // disallow copy constructor
const StringSingleton &operator=(const StringSingleton &old); //disallow

assignment operator

// Note that although this should be allowed,

// some compilers may not implement private destructors

// This prevents others from deleting our one single instance, which was
otherwise created on the heap

~StringSingleton () {}
private: // private data for an instance of this class

std::string mString;
ti

Variations of Singletons:

Applications of Singleton Class:

557

Beyond the Standard

One common use of the singleton design pattern is for application configurations.
Configurations may need to be accessible globally, and future expansions to the
application configurations may be needed. The subset C’s closest alternative would
be to create a single global struct. This had the lack of clarity as to where this
object was instantiated, as well as not guaranteeing the existence of the object.

Take, for example, the situation of another developer using your singleton inside
the constructor of their object. Then, yet another developer decides to create an
instance of the second class in the global scope. If you had simply used a global
variable, the order of linking would then matter. Since your global will be ac-
cessed, possibly before main begins executing, there is no definition as to whether
the global is initialized, or the constructor of the second class is called first. This
behavior can then change with slight modifications to other areas of code, which
would change order of global code execution. Such an error can be very hard to
debug. But, with use of the singleton, the first time the object is accessed, the
object will also be created. You now have an object which will always exist, in
relation to being used, and will never exist if never used.

A second common use of this class is in updating old code to work in a new ar-
chitecture. Since developers may have used globals liberally, moving them into
a single class and making it a singleton, can be an intermediary step to bring the
program inline to stronger object oriented structure.

Another example:

#include <iostream>
using namespace std;

/#* Place holder for thread synchronization mutex x/

class Mutex

{ /* placeholder for code to create, use, and free a mutex x/
i

/# Place holder for thread synchronization lock =/
class Lock

{ public:
Lock (Mutex& m) : mutex(m) { /* placeholder code to acquire the mutex */ }
~Lock() { /* placeholder code to release the mutex #*/ }
private:

Mutex & mutex;
i

class Singleton

{ public:
static Singleton* GetInstance();
int a;
~Singleton() { cout << "In Dtor" << endl; }
private:
Singleton(int _a) : a(_a) { cout << "In Ctor" << endl; }

558

Programming Patterns

static Mutex mutex;
// Not defined, to prevent copying
Singleton (const Singleton&);
Singleton& operator =(const Singletoné& other);
bi
Mutex Singleton::mutex;
Singleton* Singleton::GetInstance ()
{
Lock lock (mutex);

cout << "Get Inst" << endl;

// Initialized during first access
static Singleton inst(1);

return &inst;

int main()
Singleton* singleton = Singleton::GetInstance();

cout << "The value of the singleton: " << singleton->a << endl;
return 0;

Note:

In the above example, the first call to Singleton: :GetInstance will initial-
ize the singleton instance. This example is for illustrative purposes only; for
anything but a trivial example program, this code contains errors.

23

6.3.2 Structural Patterns
Adapter

Convert the interface of a class into another interface clients expect. Adapter lets
classes work together that couldn’t otherwise because of incompatible interfaces.

23 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

559

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Beyond the Standard

Bridge

The Bridge Pattern is used to separate out the interface from its implementation.
Doing this gives the flexibility so that both can vary independently.

The following example will output:
APIl.circle at 1:2 7.5
API2.circle at 5:7 27.5

#include <iostream>
using namespace std;

/* Implementor=*/

class DrawingAPI {
public:
virtual void drawCircle(double x, double y, double radius) = 0;
virtual ~DrawingAPI() {}

bi

/# Concrete ImplementorAx/
class DrawingAPIl : public DrawingAPI {
public:
void drawCircle (double x, double y, double radius) {
cout << "APIl.circle at " << x << '/ <<y << ' 7 << radius << endl;

}i

/% Concrete ImplementorBx*/
class DrawingAPI2 : public DrawingAPI ({
public:
void drawCircle(double x, double y, double radius) {
cout << "API2.circle at " << x << ':f <<y << ' ' << radius << endl;

}
}i

/+ Abstraction*/
class Shape {

public:

virtual ~Shape() {}

virtual void draw() = 0;

virtual void resizeByPercentage (double pct) = 0;

bi

/+ Refined Abstractionx/
class CircleShape : public Shape {
public:
CircleShape (double x, double y,double radius, DrawingAPI *drawingAPI)
m_x(x), m_y(y), m_radius(radius), m_drawingAPI (drawingAPI)

{}
void draw() {
m_drawingAPI->drawCircle (m_x, m_y, m_radius);

560

Programming Patterns

void resizeByPercentage (double pct) {
m_radius *= pct;

}
private:
double m_x, m_y, m_radius;
DrawingAPI *m_drawingAPI;
}i

int main(void) {

CircleShape circlel(l,2,3,new DrawingAPI1())
CircleShape circle2(5,7,11,new DrawingAPI2 ()

circlel.resizeByPercentage (2.5);
circle2.resizeByPercentage (2.5);
circlel.draw();

circle2.draw();

return 0;

Composite

)i

Composite lets clients treat individual objects and compositions of objects uni-
formly. The Composite pattern can represent both the conditions. In this pattern,
one can develop tree structures for representing part-whole hierarchies.

<vector>

<iostream> // std::cout
<memory> // std::auto_ptr
#include <algorithm> // std::for_each
#include <functional> // std::mem_fun
using namespace std;

#include
#include
#include

class Graphic

{

public:
virtual void print() const = 0;
virtual ~Graphic() {}

bi

class Ellipse
{
public:
void print () const {
cout << "Ellipse \n";
}
i

: public Graphic

class CompositeGraphic
{
public:
void print () const {
// for each element in graphicList_,

: public Graphic

for_each(graphicList_.begin(), graphicList_

}

call the print member function

.end (), mem_fun (&Graphic::print));

561

Beyond the Standard

void add(Graphic *aGraphic) {
graphicList_.push_back (aGraphic);
}

private:
vector<Graphic*> graphicList_;

}i

int main()

{
// Initialize four ellipses
const auto_ptr<Ellipse> ellipsel (new Ellipse());
const auto_ptr<Ellipse> ellipse2(new Ellipse());
const auto_ptr<Ellipse> ellipse3 (new Ellipse()
const auto_ptr<Ellipse> ellipse4 (new Ellipse()

12
// Initialize three composite graphics
const auto_ptr<CompositeGraphic> graphic (new CompositeGraphic ()

i
const auto_ptr<CompositeGraphic> graphicl (new CompositeGraphic());
const auto_ptr<CompositeGraphic> graphic2 (new CompositeGraphic ()

’

// Composes the graphics

graphicl->add(ellipsel.get());
graphicl->add(ellipse2.get());
graphicl->add(ellipse3.get());

graphic2->add(ellipsed.get());

graphic->add(graphicl.get());
graphic->add (graphic2.get());

// Prints the complete graphic (four times the string "Ellipse")
graphic->print () ;
return 0;

Decorator

The decorator pattern helps to attach additional behavior or responsibilities to an
object dynamically. Decorators provide a flexible alternative to subclassing for
extending functionality. This is also called “Wrapper”.

Facade

The Facade Pattern hides the complexities of the system by providing an interface
to the client from where the client can access the system on an unified interface.
Facade defines a higher-level interface that makes the subsystem easier to use. For
instance making one class method perform a complex process by calling several
other classes.

562

Programming Patterns

Flyweight

It is the use of sharing mechanism by which you can avoid creating a large number
of object instances to represent the entire system by using a smaller set fine-grained
objects efficiently. A flyweight is a shared object that can be used in multiple con-
texts simultaneously. The flyweight will act as an independent object in each con-
text, becoming indistinguishable from an instance of the object that’s not shared.
To decide if some part of a program is a candidate for using Flyweights, consider
whether it is possible to remove some data from the class and make it extrinsic.

Proxy

The Proxy Pattern will provide an object a surrogate or placeholder for another
object to control access to it. It is used when you need to represent a complex object
with a simpler one. If creation of an object is expensive, it can be postponed until
the very need arises and meanwhile a simpler object can serve as a placeholder.
This placeholder object is called the “Proxy” for the complex object.

Curiously Recurring Template

This technique is known more widely as a mixin. Mixins are described in the
literature to be a powerful tool for expressing abstractions.

Interface-based Programming (IBP)

Interface-based programming is closely related with Modular Programming and
Object-Oriented Programming, it defines the application as a collection of inter-
coupled modules (interconnected and which plug into each other via interface).
Modules can be unplugged, replaced, or upgraded, without the need of compro-
mising the contents of other modules.

The total system complexity is greatly reduced. Interface Based Programming adds
more to modular Programming in that it insists that Interfaces are to be added to
these modules. The entire system is thus viewed as Components and the interfaces
that helps them to co-act.

Interface-based Programming increases the modularity of the application and
hence its maintainability at a later development cycles, especially when each mod-
ule must be developed by different teams. It is a well-known methodology that has

563

Beyond the Standard

been around for a long time and it is a core technology behind frameworks such as
CORBA.

This is particularly convenient when third parties develop additional components
for the established system. They just have to develop components that satisfy the
interface specified by the parent application vendor.

Thus the publisher of the interfaces assures that he will not change the interface and
the subscriber agrees to implement the interface as whole without any deviation.
An interface is therefore said to be a Contractual agreement and the PROGRAM-
MING PARADIGM?* based on this is termed as "interface based programming".

25

6.3.3 Behavioral Patterns
Chain of Responsibility

Chain of Responsibility pattern has the intent to avoid coupling the sender of a re-
quest to its receiver by giving more than one object a chance to handle the request.
Chains the receiving objects and passes the requests along the chain until an object
handles it.

Command

Command pattern is an Object behavioral pattern that decouples sender and re-
ceiver by encapsulating a request as an object, thereby letting you parameterize
clients with different requests, queue or log requests, and support undo-able oper-
ations. It can also be thought as an object oriented equivalent of call back method.

Call Back: It is a function that is registered to be called at later point of time based
on user actions.

#include <iostream>

using namespace std;

/*the Command interfacex*/

class Command

{

24 HTTP://EN.WIKIPEDIA.ORG/WIKI/PROGRAMMING%20PARADIGM
25 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

564

http://en.wikipedia.org/wiki/programming%20paradigm
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Programming Patterns

public:
virtual void execute()=0;
bi

/#*Receiver classx*/
class Light {

public:
Light () { }

<

oid turnOn()

cout << "The light is on" << endl;

void turnOff ()

cout << "The light is off" << endl;
ti

/+the Command for turning on the lightx*/
class FlipUpCommand: public Command

{

public:

FlipUpCommand (Light& light) :theLight (1ight)
{

virtual void execute()

{

theLight.turnOn();

private:
Light& thelLight;
ti

/+the Command for turning off the light#*/
class FlipDownCommand: public Command
{
public:
FlipDownCommand (Light& light) :theLight (light)
{

}
virtual void execute()
{
theLight.turnOff();
}
private:
Light& thelLight;
i

class Switch {
public:

565

Beyond the Standard

Switch (Command& flipUpCmd, Command& flipDownCmd)
:flipUpCommand (f1ipUpCmd) , f1ipDownCommand (f1ipDownCmd)
{

}

void flipUp()

flipUpCommand.execute () ;

void flipDown ()

flipDownCommand.execute () ;

}

private:
Commands& flipUpCommand;
Command& flipDownCommand;

/+The test class or client#*/

int main()

{
Light lamp;
FlipUpCommand switchUp (lamp);
FlipDownCommand switchDown (lamp);

Switch s(switchUp, switchDown);
s.flipUp();
s.flipDown () ;

Interpreter

Given a language, define a representation for its grammar along with an interpreter
that uses the representation to interpret sentences in the language.

Iterator

The ’iterator’ design pattern is used liberally within the STL for traversal of various
containers. The full understanding of this will liberate a developer to create highly
reusable and easily understandable data containers.

The basic idea of the iterator is that it permits the traversal of a container (like a
pointer moving across an array). However, to get to the next element of a container,
you need not know anything about how the container is constructed. This is the
iterators job. By simply using the member functions provided by the iterator, you

566

Programming Patterns

can move, in the intended order of the container, from the first element to the last
element.

Let us start by considering a traditional single dimensional array with a pointer
moving from the start to the end. This example assumes knowledge of pointer
arithmetic. Note that the use of "it" or "itr," henceforth, is a short version of "iter-
ator."

const int ARRAY_LEN = 42;
int *myArray = new int [ARRAY_LEN];
// Set the iterator to point to the first memory location of the array
int *arrayItr = myArray;
// Move through each element of the array, setting it equal to its position in
the array
for(int i = 0; i < ARRAY_LEN; ++i)
{
// set the value of the current location in the array
*arrayltr = i;
// by incrementing the pointer, we move it to the next position in the array.
// This is easy for a contiguous memory container, since pointer arithmetic
// handles the traversal.
t++arrayltr;
}
// Do not be messy, clean up after yourself
delete[] myArray;

This code works very quickly for arrays, but how would we traverse a linked list,
when the memory is not contiguous? Consider the implementation of a rudimen-
tary linked list as follows:

class IteratorCannotMoveToNext{}; // Error class
class MyIntLList

// The Node class represents a single element in the linked list.
// The node has a next node and a previous node, so that the user
// may move from one position to the next, or step back a single
// position. Notice that the traversal of a linked list is O(N),
// as 1s searching, since the list is not ordered.
class Node
{
public:

Node () :mNextNode (0) ,mPrevNode (0) ,mValue (0) {}

Node *mNextNode;

Node *mPrevNode;

int mvalue;
bi
MyIntLList () :mSize (0)
{}
~MyIntLList ()
{

while (!Empty ()

pop_£front ();

567

Beyond the Standard

} // See expansion for further implementation;
int Size() const {return mSize;}
// Add this value to the end of the list
void push_back (int value)
{
Node *newNode = new Node;
newNode->mValue = value;
newNode->mPrevNode = mTail;
mTail->mNextNode = newNode;
mTail = newNode;
++mSize;
}
// Remove the value from the beginning of the list
void pop_front ()
{
if (Empty())
return;
Node *tmpnode = mHead;
mHead = mHead->mNextNode
delete tmpnode;
--mSize;
}
bool Empty ()
{return mSize == 0;}

// This is where the iterator definition will go,
// but lets finish the definition of the list, first

private:

bi

Node *mHead;
Node *mTail;
int mSize;

This linked list has non-contiguous memory, and is therefore not a candidate for
pointer arithmetic. And we do not want to expose the internals of the list to other
developers, forcing them to learn them, and keeping us from changing it.

This is where the iterator comes in. The common interface makes learning the
usage of the container easier, and hides the traversal logic from other developers.

Let us examine the code for the iterator, itself.

568

J/ *

chosen the classic traversal method of overloading the increment
operators. More thorough implementations of a bi-directional linked
list would include decrement operators so that the iterator may move
in the opposite direction.

Ok % % % %

*/
class Iterator
{
public:
Iterator (Node *position):mCurrNode (position) {}

The iterator class knows the internals of the linked 1list, so that it
may move from one element to the next. In this implementation, I have

Programming Patterns

// Prefix increment
const Iterator &operator++ ()
{
if (mCurrNode == | | mCurrNode->mNextNode == 0)
throw IteratorCannotMoveToNext ();e
mCurrNode = mCurrNode->mNextNode;
return *this;
}
// Postfix increment
Iterator operator++ (int)
{
Iterator tempItr = *this;
++(*this);
return templtr;
}
// Dereferencing operator returns the current node, which should then
// be dereferenced for the int. TODO: Check syntax for overloading
// dereferencing operator
Node * operator* ()
{return mCurrNode; }
// TODO: implement arrow operator and clean up example usage following
private:
Node *mCurrNode;
bi
// The following two functions make it possible to create
// iterators for an instance of this class.
// First position for iterators should be the first element in the
container.
Iterator Begin() {return Iterator (mHead);}
// Final position for iterators should be one past the last element in the
container.
Iterator End() {return Iterator(0);}

With this implementation, it is now possible, without knowledge of the size of
the container or how its data is organized, to move through each element in order,
manipulating or simply accessing the data. This is done through the accessors in
the MylIntLList class, Begin() and End().

// Create a list

MyIntLList mylist;

// Add some items to the list

for(int i = 0; 1 < 10; ++1i)
myList.push_back(i);

// Move through the list, adding 42 to each item.

for (MyIntLList::Iterator it = myList.Begin(); it != myList.End(); ++it)
(*it)->mValue += 42;

The following program gives the implementation of iterator design pattern with a
generic template:

/**/

/% Iterator.h */

/K Sk kK ok ke kK ok ok koK ok koK ok ok ok ok ok ok ok ok ko ok ok ok koK ok ok ok Kk kK ok ok ok ok ok koK ok ko ok ok Kk ok ok ok ok ok ok ko ok Kk kK ok ok k)
#ifndef MY_ITERATOR_HEADER
#define MY_ITERATOR_HEADER

569

Beyond the Standard

#include <iterator>
#include <vector>
#include <set>

LSS S S S S S S S S S S S S S S SSSSSSSSSSSS
template<class T, class U>
class Iterator
{
public:

typedef typename std::vector<T>::iterator iter_type;

Iterator (U *pData):m_pData (pData) {

m_it = m_pData->m_data.begin();

}
void first()

m_it = m_pData->m_data.begin();

void next ()

m_it++;

bool isDone ()

return (m_it == m_pData->m_data.end());

}

iter_type current ()
{
return m_it;
}
private:
U *m_pData;
iter_type m_it;
bi

template<class T, class U, class A>
class setlterator

{
public:
typedef typename std::set<T,U>::iterator iter_type;

setIterator (A *pData) :m_pData (pData)
{

m_it = m_pData->m_data.begin();
}

void first()
{

m_it = m_pData->m_data.begin();
}

void next ()

{

m_it++;

570

Programming Patterns

bool isDone()
{

return (m_it == m_pData->m_data.end());

iter_type current ()

{

return m_it;

private:
A *m_pData;
iter_type m_it;

i

#endif

/**/
/+* Aggregate.h */
/*******/(**/
#ifndef MY_DATACOLLECTION_HEADER

#define MY_DATACOLLECTION_HEADER

#include "Iterator.h"

template <class T>
class aggregate
{
friend class Iterator<T, aggregate>;
public:
void add(T a)
{

m_data.push_back (a);

Iterator<T, aggregate> *create_iterator ()

{

return new Iterator<T, aggregate>(this);

private:
std::vector<T> m_data;
i
template <class T, class U>
class aggregateSet
{
friend class setIterator<T, U, aggregateSet>;
public:
void add(T a)
{

m_data.insert (a);

setIterator<T, U, aggregateSet> *create_iterator(
{

return new setlterator<T,U,aggregateSet>(this);

571

Beyond the Standard

void Print ()
{
copy (m_data.begin(), m_data.end(), std::ostream_iterator<T>(std::cout,
"\n"));
}

private:
std::set<T,U> m_data;
bi

#endif

/**/
/% Iterator Test.cpp */
/**/
#include <iostream>

#include <string>

#include "Aggregate.h"

using namespace std;

class Money

{
public:
Money (int a = 0): m_data(a) {}

void SetMoney (int a)
{

m_data = a;

int GetMoney ()
{

return m_data;

private:
int m_data;
}i

class Name
{
public:
Name (string name): m_name (name) {}

const string &GetName () const

{

return m_name;

friend ostream &operator<<(ostream& out, Name name
{

out << name.GetName ();

return out;

572

Programming Patterns

private:
string m_name;

i

struct Nameless
{
bool operator() (const Name &lhs, const Name &rhs) const
{
return (lhs.GetName() < rhs.GetName());

bi

int main()
{
//sample 1
cout << " Iterator with
int " << endl;
aggregate<int> agg;

for (int 1 = 0; 1 < 10; i++)
agg.add(i);

Iterator< int,aggregate<int> > *it = agg.create_iterator();
for (it->first(); !it->isDone(); it->next())
cout << *it->current() << endl;

//sample 2
aggregate<Money> agg2;
Money a(100), b(1000), c(10000);

agg2.add(a);

agg2.add(b);

aggz.add(c);

cout << " Iterator with Class
Money. " << endl;

Iterator<Money, aggregate<Money> > *it2 = agg2.create_iterator();
for (it2->first(); !'it2->isDone(); it2->next())
cout << it2->current () ->GetMoney () << endl;

//sample 3
cout << " Set Iterator with Class
Name " << endl;

aggregateSet<Name, NameLess> aset;
aset.add (Name ("Omt")) ;
aset.add (Name ("Bmt")) ;
aset.add (Name ("Cmt"));
aset.add (Name ("Amt"));

setIterator<Name, Nameless, aggregateSet<Name, NamelLess> > *it3 =
aset.create_iterator();

for (it3->first(); !it3->isDone(); it3->next())

cout << (*it3->current()) << endl;

}

Console output:

Iterator with int

573

Beyond the Standard

W W oY s W N P O

Iterator with Class Money.

100
1000
10000

Set Iterator with Class Name

Amt
Bmt
Cmt
Omt

Mediator

Define an object that encapsulates how a set of objects interact. Mediator promotes
loose coupling by keeping objects from referring to each other explicitly, and it lets
you vary their interaction independently.

Memento

Without violating encapsulation the Memento Pattern will capture and external-
ize an object’s internal state so that the object can be restored to this state later.
Though the GANG OF FOUR?® uses friend as a way to implement this pattern it
is not the best design. It can also be implemented using PIMPL (POINTER TO
IMPLEMENTATION OR OPAQUE POINTER)?’. Best Use case is 'Undo-Redo’ in an
editor.

26 HTTP://EN.WIKIPEDIA.ORG/WIKI/DESIGN%20PATTERNS
27 HTTP://EN.WIKIPEDIA.ORG/WIKI/OPAQUE$20POINTER

574

http://en.wikipedia.org/wiki/Design%20Patterns
http://en.wikipedia.org/wiki/Opaque%20pointer

Programming Patterns

The Originator (the object to be saved) creates a snap-shot of itself as a Memento
object, and passes that reference to the Caretaker object. The Caretaker object
keeps the Memento until such a time as the Originator may want to revert to a
previous state as recorded in the Memento object.

Observer

The Observer Pattern defines a one-to-many dependency between objects so that
when one object changes state, all its dependents are notified and updated auto-
matically.

Problem

In one place or many places in the application we need to be aware about a sys-
tem event or an application state change. We’d like to have a standard way of
subscribing to listening for system events and a standard way of notifying the
interested parties. The notification should be automated after an interested party
subscribed to the system event or application state change. There also should be
a way to unsubscribe.

Forces

Observers and observables probably should be represented by objects. The ob-
server objects will be notified by the observable objects.

Solution

After subscribing the listening objects will be notified by a way of method call.

#include <list>
#include <algorithm>
#include <iostream>
using namespace std;

// The Abstract Observer
class ObserverBoardInterface
{
public:
virtual void update(float a,float b,float c) = 0;
i

// Abstract Interface for Displays
class DisplayBoardInterface
{
public:
virtual void show() = 0;
ti

// The Abstract Subject

575

Beyond the Standard

class WeatherDatalnterface

{

public:
virtual void registerOb (ObserverBoardInterface* ob) = 0;
virtual void removeOb (ObserverBoardInterface* ob) = 0;
virtual void notifyOb() = 0;

bi

// The Concrete Subject
class ParalleatherData: public WeatherDatalnterface
{
public:
void SensorDataChange (float a,float b, float c)
{

m_humidity = a;
m_temperature = b;
m_pressure = c;
notifyOb();

void registerOb (ObserverBoardInterface* ob)
{
m_obs.push_back (ob) ;

void removeOb (ObserverBoardInterface* ob)
{
m_obs.remove (ob) ;
}
protected:
void notifyOb()
{
list<ObserverBoardInterface*>::iterator pos = m_obs.begin();
while (pos != m_obs.end()
{
((ObserverBoardInterface*
) (*pos))->update (m_humidity,m_temperature,m_pressure);
(dynamic_cast<DisplayBoardInterface*> (*pos))->show();

++pos;
}
}
private:
float m_humidity;
float m_temperature;
float m_pressure;

list<ObserverBoardInterface* > m_obs;
bi

// A Concrete Observer
class CurrentConditionBoard : public ObserverBoardInterface, public
DisplayBoardInterface
{
public:

CurrentConditionBoard (ParaWleatherData& a):m_data(a)

{

m_data.registerOb (this);

576

Programming Patterns

void show ()

{
cout<<" CurrentConditionBoard
cout<<"humidity: "<<m_h<<endl;
cout<<"temperature: "<<m_t<<endl;
cout<<"pressure: "<<m_p<<endl;
cout<<"

void update(float h, float t, float p)
{

m_h = h;
mt =t;
mp =p;

private:
float m_h;
float m_t;
float m_p;
ParaWeatherDatas& m_data;
i

// A Concrete Observer

class StatisticBoard : public ObserverBoardInterface, public

DisplayBoardInterface
{
public:
StatisticBoard (ParaWeatherData&

a) :m_maxt (-1000),m_mint (1000),m_avet (0) ,m_count (0),m_data (a)

{
m_data.registerOb(this);

void show()

{

cout<<" StatisticBoard

"<<endl;

"<<endl;

"<<endl;

cout<<"lowest temperature: "<<m_mint<<endl;
cout<<"highest temperature: "<<m_maxt<<endl;
cout<<"average temperature: "<<m_avet<<endl;

cout<<"

void update(float h, float t, float p)
{

++m_count;
if (t>m_maxt)
{

m_maxt = t;

if (t<m_mint)

m_mint = t;

}

"<<endl;

m_avet = (m_avet * (m_count-1) + t)/m_count;

private:

577

Beyond the Standard

float m_maxt;

float m_mint;

float m_avet;

int m_count;
ParaWeatherDatas& m_data;

int main(int argc, char *argv[])

ParaWeatherData * wdata = new ParaWeatherData;
CurrentConditionBoard* currentB = new CurrentConditionBoard (*wdata);
StatisticBoard* statisticB = new StatisticBoard(*wdata);

wdata->SensorDataChange (10.2, 28.2, 1001);
wdata->SensorDataChange (12, 30.12, 1003);
wdata->SensorDataChange (10.2, 26, 806);
wdata->SensorDataChange (10.3, 35.9, 900);
wdata->removeOb (currentB) ;
wdata->SensorDataChange (100, 40, 1900);
delete statisticB;

delete currentB;

delete wdata;

return 0;

State

The State Pattern allows an object to alter its behavior when its internal state
changes. The object will appear as having changed its class.

Strategy

Defines a family of algorithms, encapsulates each one, and make them interchange-
able. Strategy lets the algorithm vary independently from clients who use it.

#include <iostream>
using namespace std;

class StrategyInterface
{
public:
virtual void execute() const = 0;

}i

class ConcreteStrategyA: public StrategylInterface

578

Programming Patterns

public:
virtual void execute() const

{

cout << "Called ConcreteStrategyA execute method" << endl;

bi

class ConcreteStrategyB: public StrategyInterface
{
public:
virtual void execute() const

{

cout << "Called ConcreteStrategyB execute method" << endl;

i

class ConcreteStrategyC: public StrategyInterface
{
public:
virtual void execute() const

{

cout << "Called ConcreteStrategyC execute method" << endl;

bi

class Context
{
private:
StrategyInterface * strategy_;

public:
explicit Context (StrategyInterface *strategy):strategy_(strategy)
{
}

void set_strategy(StrategyInterface *strategy)
{

strategy_ = strategy;

void execute () const

{

strategy_->execute();
i

int main(int argec, char *argv[])

{
ConcreteStrategyA concreteStrategyA;
ConcreteStrategyB concreteStrategyB;
ConcreteStrategyC concreteStrategyC;

Context contextA(&concreteStrategyA);
Context contextB(&concreteStrategyB);
Context contextC(&concreteStrategyC);

contextA.execute(); // output: "Called ConcreteStrategyA execute

method"

579

Beyond the Standard

contextB.execute(); // output: "Called ConcreteStrategyB execute method"
contextC.execute(); // output: "Called ConcreteStrategyC execute method"

contextA.set_strategy (&concreteStrategyB);
contextA.execute(); // output: "Called ConcreteStrategyB execute method"
contextA.set_strategy (&concreteStrategyC);
contextA.execute(); // output: "Called ConcreteStrategyC execute method"

return 0;

Template Method

By defining a skeleton of an algorithm in an operation, deferring some steps to
subclasses, the Template Method lets subclasses redefine certain steps of that al-
gorithm without changing the algorithms structure.

Visitor

The Visitor Pattern will represent an operation to be performed on the elements
of an object structure by letting you define a new operation without changing the
classes of the elements on which it operates.

#include <string>
#include <iostream>
#include <vector>

using namespace std;

class lheel;
class Engine;
class Body;
class Car;

// interface to all car ’parts’
struct CarElementVisitor
{

virtual void visit (Wheel& wheel) const = 0;

virtual void visit (Engine& engine) const 0;
virtual void visit (Body& body) const = 0;
virtual void visitCar(Car& car) const = 0;
virtual ~CarElementVisitor() {}
bi
// interface to one part
struct CarElement
{
virtual void accept (const CarElementVisitor& visitor) = 0;

virtual ~CarElement () {}

580

Programming Patterns

bi

// wheel element, there are four wheels with unique names

class Wheel : public CarElement
{
public:
explicit Wheel (const string& name)
name_ (name)
{
}
const string& getName () const
{
return name_;
}
void accept (const CarElementVisitor& visitor)
{
visitor.visit (*this);
}
private:
string name_;

}bi

// engine
class Engine : public CarElement
{
public:
void accept (const CarElementVisitor& visitor)
{
visitor.visit (*this);
}
i

// body
class Body : public CarElement
{
public:
void accept (const CarElementVisitor& visitor)
{
visitor.visit (*this);
}
i

// car, all car elements (parts) together
class Car
{
public:

vector<CarElement*>& getElements ()

{

return elements_;

}

Car ()

{

// assume that neither push_back nor Wheel (const stringé&) may throw

elements_.push_back (new Wheel ("front left")
elements_.push_back
elements_.push_back
elements_.push_back
elements_.push_back

new Wheel ("back left")
new Wheel ("back right")

(
(
(
(new Body ());

new Wheel ("front right")
)

)i

)i

)i

581

Beyond the Standard

elements_.push_back(new Engine());
}
~Car ()
{

for (vector<CarElement*>::iterator it = elements_.begin();
it != elements_.end(); ++it)

delete *it;

}
private:
vector<CarElement*> elements_;

i

// PrintVisitor and DoVisitor show by using a different implementation the Car
class is unchanged
// even though the algorithm is different in PrintVisitor and DoVisitor.
class CarElementPrintVisitor : public CarElementVisitor
{
public:

void visit (Wheel& wheel) const

{

cout << "Visiting " << wheel.getName() << " wheel" << endl;
}
void visit (Engine& engine) const

{

cout << "Visiting engine" << endl;

}

void visit (Body& body) const

{
cout << "Visiting body" << endl;

}

void visitCar (Car& car) const

{
cout << endl << "Visiting car" << endl;
vector<CarElement*>& elems = car.getElements();
for (vector<CarElement*>::iterator it = elems.begin();

it != elems.end(); ++it)
{
(*it)->accept (*this); // this issues the callback i.e. to this from the
element

}
cout << "Visited car" << endl;
}
bi

class CarElementDoVisitor : public CarElementVisitor
{
public:

// these are specific implementations added to the original object without
modifying the original struct

void visit (Wheel& wheel) const

{

cout << "Kicking my " << wheel.getName() << " wheel" << endl;
}
void visit (Engine& engine) const

{

cout << "Starting my engine" << endl;

582

Programming Patterns

}
void visit (Body& body) const
{
cout << "Moving my body" << endl;
}
void visitCar (Car& car) const
{
cout << endl << "Starting my car" << endl;
vector<CarElement*>& elems = car.getElements();
for (vector<CarElement*>::iterator it = elems.begin();

it != elems.end(); ++it)
{
(*it)->accept (*this); // this issues the callback i.e. to this from the
element

}
cout << "Stopped car" << endl;

}
bi

int main()

{
Car car;
CarElementPrintVisitor printVisitor;
CarElementDoVisitor doVisitor;

printVisitor.visitCar (car);
doVisitor.visitCar (car);

return 0;

Model-View-Controller (MVC)

A pattern often used by applications that need the ability to maintain multiple
views of the same data. The model-view-controller pattern was until recently a
very common pattern especially for graphic user interlace programming, it splits
the code in 3 pieces. The model, the view, and the controller.

The Model is the actual data representation (for example, Array vs Linked List)
or other objects representing a database. The View is an interface to reading the
model or a fat client GUI. The Controller provides the interface of changing or
modifying the data, and then selecting the "Next Best View" (NBV).

Newcomers will probably see this "MVC" model as wasteful, mainly because you
are working with many extra objects at runtime, when it seems like one giant object
will do. But the secret to the MVC pattern is not writing the code, but in maintain-
ing it, and allowing people to modify the code without changing much else. Also,
keep in mind, that different developers have different strengths and weaknesses, so
team building around MVC is easier. Imagine a View Team that is responsible for
great views, a Model Team that knows a lot about data, and a Controller Team that

583

Beyond the Standard

see the big picture of application flow, handing requests, working with the model,
and selecting the most appropriate next view for that client.

For example: A naive central database can be organized using only a "model", for
example, a straight array. However, later on, it may be more applicable to use a
linked list. All array accesses will have to be remade into their respective Linked
List form (for example, you would change myarray[5] into mylist.at(5) or whatever
is equivalent in the language you use).

Well, if we followed the MVC pattern, the central database would be accessed
using some sort of a function, for example, myarray.at(5). If we change the model
from an array to a linked list, all we have to do is change the view with the model,
and the whole program is changed. Keep the interface the same but change the
underpinnings of it. This would allow us to make optimizations more freely and
quickly than before.

One of the great advantages of the Model-View-Controller Pattern is obviously the
ability to reuse the application’s logic (which is implemented in the model) when
implementing a different view. A good example is found in web development,
where a common task is to implement an external API inside of an existing piece
of software. If the MVC pattern has cleanly been followed, this only requires
modification to the controller, which can have the ability to render different types
of views dependent on the content type requested by the user agent.

28

29

6.4 Libraries

Libraries allow existing code to be reused in a program. Libraries are like pro-
grams except that instead of relying on main() to do the work you call the specific
functions provided by the library to do the work. Functions provide the interface
between the program being written and the library being used. This interface is
called Application Programming Interface®® or APL

Libraries should and tend to be domain specific as to permit greater mobility across
applications, and provide extended specialization. Libraries that are not, are often

28 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3AC%2B%2B%$20PROGRAMMING

29 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

30 HTTP://EN.WIKIPEDIA.ORG/WIKI/APPLICATION$20PROGRAMMINGS
20INTERFACE

584

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikipedia.org/wiki/Application%20programming%20interface
http://en.wikipedia.org/wiki/Application%20programming%20interface

Libraries

header only distribution, intended for static linking as to permit the compiler and
the application, only to use the needed bits of code.

What is an API?

To a programmer, an operating system is defined by its API. API stands for Ap-
plication Programming Interface. An API encompasses all the function calls that
an application program can communicate with the hardware or the operating sys-
tem, or any other application that provides a set of interfaces to the programmer
(i.e.: a library), as well as definitions of associated data types and structures. Most
APIs are defined on the application Software Development Kit (SDK) for program
development.

In simple terms the API can be considered as the interface through which the user
(or user programs) will be able interact with the operating system, hardware or
other programs to make them to perform a task that may also result in obtaining a
result message.

Can an API be called a framework?

No, a framework may provide an API, but a framework is more than a simple
API. By default a framework also defines how the code is written, it is a set of
solutions, even classes, that as a group addresses the handling of a limited set
of related problems and provides not only an API but a default functionality, well
designed frameworks enable its interchangeability for a similar framework, striving
to provides the same API.

31

As seen in the FILE ORGANIZATION SECTION’2, compiled libraries consists in
C++ headers files that are included by the preprocessor and binary library files
which are used by the linker to generate the resulting compilation. For a dynam-
ically linked library, only the loading code is added to the compilation that uses
them, the actual loading of the library is done in the memory at run-time.

Programs can make use of libraries in two forms, as static or dynamic depending
on how the programmer decides to distribute its code or even due to the licensing

31 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%$3AC%2B%2B%$20PROGRAMMING
32 Chapter 3.1.5 on page 49

585

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Beyond the Standard

used by third party libraries, the STATIC AND DYNAMIC LIBRARIES>? section of
this book will cover in depth this subject.

Note:
As we will see when covering MULTI-THREADING“ when selecting libraries.
Remember to verify if they conform to the your requirements on that area.

a Chapter 6.6.2 on page 606

6.4.1 Third party libraries

Additional functionality that goes beyond the standard libraries (like GARBAGE
COLLECTION>*) are available (often free) by third party libraries, but remember
that third party libraries do not necessarily provide the same ubiquitous cross-
platform functionality or an API style conformant with as standard libraries. The
main motivation for their existence is for preventing one tho reinvent the wheel
and to make efforts converge; too much energy has been spent by generations of
programmers to write safe and "portable” code.

There are several libraries a the programmer is expected to know about or have at
least a passing idea of what they are. Time, consistency and extended references
will make a few libraries pop-out from the rest. One notable example is the highly
respected collection of BOOST LIBRARIES® that we will examine ahead.

Licensing on third party libraries

The programmer may also be limited by the requirements of the license used on
external libraries that he has no direct control, for instance the use of the GNU
GENERAL PUBLIC LICENSE*® (GNU GPL) code in closed source applications
isn’t permitted to address this issue the FSF provides an alternative in the form of
the GNU LGPL license that permits such uses but only in the dynamically linked
form, this is mirrored by several other legal requirements a programmer must at-
tend and comply to.

33 Chapter 6.4.1 on page 586

34 Chapter 6.1 on page 540

35 Chapter 6.4.2 on page 588

36 HTTP://EN.WIKIPEDIA.ORG/WIKI/GNU%20GENERAL%20PUBLIC%20LICENSE

586

http://en.wikipedia.org/wiki/GNU%20General%20Public%20License

Libraries

6.4.2 Static and Dynamic Libraries

Libraries come in two forms, either in source form or in compiled/binary form.
Libraries in source-form must first be compiled before they can be included in
another project. This will transform the libraries’ cpp-files into a lib-file. If a
program must be recompiled to run with a new version of a library, but does not
need any further changes, the library is said to be source compatible. If a program
does not need to be modified and recompiled to use a new version of a library, the
library is then classified as being binary compatible.

Advantages of using static binaries:

 Simplification of program distribution (fewer files).
* Code simplification (no version checks as required in dynamic libraries).
* Will only compile the code that is used.

Disadvantages of using static binaries:

* Waste of resources: Generates larger binaries, since the library is compiled into
the executable. Wastes memory as the library cannot be shared (in memory)
between processes (depending on the operating system).

* Program will not benefit from bug fixes or extensions in the libraries without
being recompiled.

Binary/Source Compatibility of libraries

A library is said to be binary compatible if the program that dynamically links to
an earlier version of that library, continues to work using another versions of the
same library. If a recompilation of the program is needed for it to run with each
new version the library is said to be source compatible.

Producing binary compatible libraries is beneficial for distribution but harder to
maintain by the programmer. It is often seen as a better solution to do static linking,
if the library is only source compatible, since it will not cause problems to the end-
user.

Binary compatibility saves a lot of trouble and is a signal that the library reached
a status of stability. It makes it easier to distribute software for a certain platform.
Without ensuring binary compatibility between releases, people will be forced to
offer statically linked binaries.

header-only libraries

587

Beyond the Standard

Another distinction that is commonly made about libraries are on how they are
distributed (regarding structure and use). A library that is contained only on header
files is considered header-only library. Often this means that they are simpler and
easy to use, however this will not be the ideal solution for complex code, it will
not only hamper readability but result in larger compile times. Also depending on
the compiler and it’s optimizing capabilities (or options) can, due to the resulting
inlining, generate larger binaries. This may not be as important in libraries mostly
implemented with templates. Header-only libraries will always contain the source
code to the implementation, commercial is rare.

37

38

6.5 Boost Library

The Boost library’® (HTTP://WWW.BOOST.ORG/)* provides free PEER-
REVIEWED*! | OPEN SOURCE*? LIBRARIES* that extend the functionality of C++.
Most of the libraries are licensed under the BOOST SOFTWARE LICENSE*, de-
signed to allow Boost to be used with both open and CLOSED SOURCE® projects.

Many of Boost’s founders are on the C++ STANDARD*® committee and several
Boost libraries have been accepted for incorporation into the TECHNICAL REPORT
147 of C++0x*8. Although Boost was begun by members of the C++ Standards
Committee Library Working Group, participation has expanded to include thou-
sands of programmers from the C++ community at large.

The emphasis is on libraries which work well with the C++ Standard Library. The
libraries are aimed at a wide range of C++ users and application domains, and are

37 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

38 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

39 HTTP://EN.WIKIPEDIA.ORG/WIKI/B00ST%20%28PROGRAMMINGS%29

40 HTTP://WWW.BOOST.ORG/)

41 HTTP://EN.WIKIPEDIA.ORG/WIKI/PEER—REVIEW

42 HTTP://EN.WIKIPEDIA.ORG/WIKI/OPEN%20SOURCE

43 HTTP://EN.WIKIPEDIA.ORG/WIKI/LIBRARY%20%28COMPUTER%20SCIENCES
29

44 HTTP://WWW.BOOST.ORG/MORE/LICENSE_INFO.HTML

45 HTTP://EN.WIKIPEDIA.ORG/WIKI/CLOSED%20SOURCE

46 HTTP://EN.WIKIPEDIA.ORG/WIKI/ISO%2FIEC%2014882

47 HTTP://EN.WIKIPEDIA.ORG/WIKI/TECHNICAL%20REPORT%201

48 HTTP://EN.WIKIPEDIA.ORG/WIKI/C%2B%2B0X

588

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikipedia.org/wiki/Boost%20%28programming%29
http://www.boost.org/)
http://en.wikipedia.org/wiki/peer-review
http://en.wikipedia.org/wiki/open%20source
http://en.wikipedia.org/wiki/Library%20%28computer%20science%29
http://en.wikipedia.org/wiki/Library%20%28computer%20science%29
http://www.boost.org/more/license_info.html
http://en.wikipedia.org/wiki/closed%20source
http://en.wikipedia.org/wiki/ISO%2FIEC%2014882
http://en.wikipedia.org/wiki/Technical%20Report%201
http://en.wikipedia.org/wiki/C%2B%2B0x

Boost Library

in regular use by thousands of programmers. They range from general-purpose
libraries like SMARTPTR?*, to OS Abstractions like FILESYSTEM, to libraries
primarily aimed at other library developers and advanced C++ users, like MPL>!.

A further goal is to establish "existing practice" and provide reference implemen-
tations so that Boost libraries are suitable for eventual standardization. Ten Boost
libraries will be included in the C++ STANDARDS COMMITTEE’S>? upcoming
C++ STANDARD LIBRARY TECHNICAL REPORT™ as a step toward becoming
part of a future C++ Standard.

In order to ensure efficiency and flexibility, Boost makes extensive use of TEM-
PLATE*s. Boost has been a source of extensive work and research into GENERIC
PROGRAMMING>> and METAPROGRAMMING?® in C++.

6.5.1 extension libraries

* Algorithms
« Concurrent programming (THREADS>')
» CONTAINERS™®
» ARRAY - Management of fixed-size arrays with STL container semantics
+ B0OST GRAPH LIBRARY (BGL)% - Generic graph containers, components
and algorithms
* MULTI-ARRAY®! - Simplifies creation of N-dimensional arrays
* MULTI-INDEX CONTAINERS®? - Containers with built in indexes that allow
different sorting and access semantics
* POINTER CONTAINERS®? - Containers modeled after most standard STL con-
tainers that allow for transparent management of pointers to values

49 HTTP://WWW.BOOST.ORG/LIBS/SMART_PTR

50 HTTP://WWW.BOOST.ORG/LIBS/FILESYSTEM

51 HTTP://WWW.BOOST.ORG/LIBS/MPL

52 HTTP://WWW.OPEN—STD.ORG/JTCl/sc22/wc2l/

53 HTTP://STD.DKUUG.DK/JTCl/Sc22/wG21/D0CS/LIBRARY_TECHNICAL_
REPORT.HTML

54 HTTP://EN.WIKIPEDIA.ORG/WIKI/TEMPLATE%20%28PROGRAMMINGS%29

55 HTTP://EN.WIKIPEDIA.ORG/WIKI/GENERIC%20PROGRAMMING

56 HTTP://EN.WIKIPEDIA.ORG/WIKI/METAPROGRAMMING

57 HTTP://EN.WIKIPEDIA.ORG/WIKI/THREAD%20%28COMPUTER%20SCIENCE%29

58 HTTP://EN.WIKIPEDIA.ORG/WIKI/DATA%20STRUCTURE

59 HTTP://BOOST.ORG/DOC/HTML/ARRAY.HTML

60 HTTP://BOOST.ORG/LIBS/GRAPH/DOC/TABLE_OF_CONTENTS.HTML

61 HTTP://BOOST.ORG/LIBS/MULTI_ARRAY/DOC/INDEX.HTML

62 HTTP://BOOST.ORG/LIBS/MULTI_INDEX/DOC/INDEX.HTML

63 HTTP://BOOST.ORG/LIBS/PTR_CONTAINER/DOC/PTR_CONTAINER.HTML

589

http://www.boost.org/libs/smart_ptr
http://www.boost.org/libs/filesystem
http://www.boost.org/libs/mpl
http://www.open-std.org/jtc1/sc22/wg21/
http://std.dkuug.dk/jtc1/sc22/wg21/docs/library_technical_report.html
http://std.dkuug.dk/jtc1/sc22/wg21/docs/library_technical_report.html
http://en.wikipedia.org/wiki/template%20%28programming%29
http://en.wikipedia.org/wiki/generic%20programming
http://en.wikipedia.org/wiki/metaprogramming
http://en.wikipedia.org/wiki/thread%20%28computer%20science%29
http://en.wikipedia.org/wiki/Data%20structure
http://boost.org/doc/html/array.html
http://boost.org/libs/graph/doc/table_of_contents.html
http://boost.org/libs/multi_array/doc/index.html
http://boost.org/libs/multi_index/doc/index.html
http://boost.org/libs/ptr_container/doc/ptr_container.html

Beyond the Standard

PROPERTY MAP% - Interface specifications in the form of concepts and a
general purpose interface for mapping key values to objects

VARIANT® - A safe and generic stack-based object container that allows for
the efficient storage of and access to an object of a type that can be chosen
from among a set of types that must be specified at compile time.

e Correctness and TESTING®®

L]

CONCEPT CHECK®’ - Allows for the enforcement of actual template parameter
requirements (concepts)

STATIC ASSERT®® - Compile time assertion support

BooOST TEST LIBRARY® - A matched set of components for writing test
programs, organizing tests into test cases and test suites, and controlling their
runtime execution

e Data structures

DYNAMIC_BITSET’? - Dynamic std: :bitset-like data structure

» Function objects and HIGHER-ORDER PROGRAMMING!

BIND’? and MEM_FN’? - General binders for functions, function objects,
function pointers and member functions

FUNCTION’* - Function object wrappers for deferred calls. Also, provides a
generalized mechanism for callbacks

FUNCTIONAL” - Enhancements to the function object adapters specified in
the C++ Standard Library, including:
* FUNCTION OBJECT TRAITS’®
* NEGATORS'’
+ BINDERS’®
* ADAPTERS FOR POINTERS TO FUNCTIONS’?

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

590

HTTP://BOOST.ORG/LIBS/PROPERTY_MAP/PROPERTY_MAP.HTML
HTTP://BOOST.ORG/DOC/HTML/VARIANT.HTML
HTTP://EN.WIKIPEDIA.ORG/WIKI/SOFTWARE%20TESTING
HTTP://BOOST.ORG/LIBS/CONCEPT_CHECK/CONCEPT_CHECK.HTM
HTTP://BOOST.ORG/DOC/HTML/BOOST_STATICASSERT.HTML
HTTP://BOOST.ORG/LIBS/TEST/DOC/INDEX.HTML
HTTP://BOOST.ORG/LIBS/DYNAMIC_BITSET/
HTTP://EN.WIKIPEDIA.ORG/WIKI/HIGHER-—ORDER$20PROGRAMMING
HTTP://BOOST.ORG/LIBS/BIND/BIND.HTML
HTTP://WWW.BOOST.ORG/LIBS/BIND/MEM_FN.HTML
HTTP://BOOST.ORG/DOC/HTML/FUNCTION.HTML
HTTP://BOOST.ORG/LIBS/FUNCTIONAL/INDEX.HTML
HTTP://BOOST.ORG/LIBS/FUNCTIONAL/FUNCTION_TRAITS.HTML
HTTP://BOOST.ORG/LIBS/FUNCTIONAL/NEGATORS.HTML
HTTP://BOOST.ORG/LIBS/FUNCTIONAL/BINDERS.HTML
HTTP://BOOST.ORG/LIBS/FUNCTIONAL/PTR_FUN.HTML

http://boost.org/libs/property_map/property_map.html
http://boost.org/doc/html/variant.html
http://en.wikipedia.org/wiki/Software%20testing
http://boost.org/libs/concept_check/concept_check.htm
http://boost.org/doc/html/boost_staticassert.html
http://boost.org/libs/test/doc/index.html
http://boost.org/libs/dynamic_bitset/
http://en.wikipedia.org/wiki/higher-order%20programming
http://boost.org/libs/bind/bind.html
http://www.boost.org/libs/bind/mem_fn.html
http://boost.org/doc/html/function.html
http://boost.org/libs/functional/index.html
http://boost.org/libs/functional/function_traits.html
http://boost.org/libs/functional/negators.html
http://boost.org/libs/functional/binders.html
http://boost.org/libs/functional/ptr_fun.html

Boost Library

* ADAPTERS FOR POINTERS TO MEMBER FUNCTIONS®

« HASH®! - An implementation of the hash function object specified by the
C++ Technical Report 1 (TR1). Can be used as the default hash function for
unordered associative containers

» LAMBDA®? - In the spirit of LAMBDA ABSTRACTIONS®?, allows for the defi-
nition of small anonymous function objects and operations on those objects at
a call site, using placeholders, especially for use with deferred callbacks from
algorithms.

« REF® - Provides utility class templates for enhancing the capabilities of stan-
dard C++ references, especially for use with generic functions

e RESULT_OF® - Helps in the determination of the type of a call expression

* SIGNALS AND SLOTS®® - Managed signals and slots callback implementation

GENERIC PROGRAMMING?’

GRAPHS®®

Input/output

Interlanguage support (for PYTHON®?)

ITERATORS”

* ITERATORS”!

» OPERATORS®? - Class templates that help with overloaded operator defini-
tions for user defined iterators and classes that can participate in arithmetic
computation.

e TOKENIZER® - Provides a view of a set of tokens contained in a sequence
that makes them appear as a container with iterator access

Math and Numerics

« MEMORY*

80 HTTP://BOOST.ORG/LIBS/FUNCTIONAL/MEM_FUN.HTML

81 HTTP://BOOST.ORG/DOC/HTML/HASH.HTML

82 HTTP://BOOST.ORG/DOC/HTML/LAMBDA.HTML

83 HTTP://EN.WIKIPEDIA.ORG/WIKI/LAMBDA%20CALCULUS

8 HTTP://BOOST.ORG/DOC/HTML/REF.HTML

85 HTTP://BOOST.ORG/LIBS/UTILITY/UTILITY.HTM#RESULT_OF

8 HTTP://BOOST.ORG/DOC/HTML/SIGNALS.HTML

87 HTTP://EN.WIKIPEDIA.ORG/WIKI/GENERIC$20PROGRAMMING

88 HTTP://EN.WIKIPEDIA.ORG/WIKI/GRAPH%20%28DATA%20STRUCTURE%29

89 HTTP://EN.WIKIPEDIA.ORG/WIKI/PYTHON%20%28PROGRAMMINGS
20LANGUAGES®29

90 HTTP://EN.WIKIPEDIA.ORG/WIKI/ITERATOR%23C.2B.2B

91 HTTP://BOOST.ORG/LIBS/ITERATOR/DOC/INDEX.HTML

92 HTTP://BOOST.ORG/LIBS/UTILITY/OPERATORS.HTM

93 HTTP://BOOST.ORG/LIBS/TOKENIZER/INDEX.HTML

94 HTTP://EN.WIKIPEDIA.ORG/WIKI/MAIN%20MEMORY

591

http://boost.org/libs/functional/mem_fun.html
http://boost.org/doc/html/hash.html
http://boost.org/doc/html/lambda.html
http://en.wikipedia.org/wiki/Lambda%20calculus
http://boost.org/doc/html/ref.html
http://boost.org/libs/utility/utility.htm#result_of
http://boost.org/doc/html/signals.html
http://en.wikipedia.org/wiki/Generic%20programming
http://en.wikipedia.org/wiki/Graph%20%28data%20structure%29
http://en.wikipedia.org/wiki/Python%20%28programming%20language%29
http://en.wikipedia.org/wiki/Python%20%28programming%20language%29
http://en.wikipedia.org/wiki/Iterator%23C.2B.2B
http://boost.org/libs/iterator/doc/index.html
http://boost.org/libs/utility/operators.htm
http://boost.org/libs/tokenizer/index.html
http://en.wikipedia.org/wiki/Main%20memory

Beyond the Standard

POOL?? - Provides a simple segregated storage based memory management
scheme

SMART_PTR? - A collection of smart pointer class templates with different
pointee management semantics

+ sCcoPED_PTR”’ - Owns the pointee (single object)

* SCOPED_ARRAY® - Like scoped_ptr, but for arrays

* SHARED_PTR - Potentially shares the pointer with other shared_ptrs.
Pointee is destroyed when last shared_ptr to it is destroyed

« SHARED_ARRAY'® - Like shared_ptr, but for arrays

» WEAK_PTR'?! - Provides a "weak" reference to an object that is already
managed by a shared_ptr

e INTRUSIVE_PTR'9? - Similared to shared_ptr, but uses a reference count
provided by the pointee

UTILITY'? - Miscellaneous support classes, including:

* BASE FROM MEMBER IDIOM!% - Provides a workaround for a class that
needs to initialize a member of a base class inside its own (i.e., the derived
class’) constructor’s initializer list

* CHECKED DELETE'® - Check if an attempt is made to destroy an object or
array of objects using a pointer to an incomplete type

* NEXT AND PRIOR FUNCTIONS'% - Allow for easier motion of a forward or
bidirectional iterator, especially when the results of such a motion need to
be stored in a separate iterator (i.e., should not change the original iterator)

» NONCOPYABLE!"” - Allows for the prohibition of copy construction and
copy assignment

» ADDRESSOF!®® - Allows for the acquisition of an object’s real address,

bypassing any overloads of operator&(), in the process

RESULT_OF!% - Helps in the determination of the type of a call expression

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

592

HTTP://BOOST.ORG/LIBS/POOL/DOC/INDEX.HTML
HTTP://BOOST.ORG/LIBS/SMART_PTR/SMART_PTR.HTM
HTTP://BOOST.ORG/LIBS/SMART_PTR/SCOPED_PTR.HTM
HTTP://BO0OST.ORG/LIBS/SMART_PTR/SCOPED_ARRAY.HTM
HTTP://BOOST.ORG/LIBS/SMART_PTR/SHARED_PTR.HTM
HTTP://BOOST.ORG/LIBS/SMART_PTR/SHARED_ARRAY.HTM
HTTP://BOOST.ORG/LIBS/SMART_PTR/WEAK_PTR.HTM
HTTP://BOOST.ORG/LIBS/SMART_PTR/INTRUSIVE_PTR.HTML
HTTP://BOOST.ORG/LIBS/UTILITY/UTILITY.HTM
HTTP://BOOST.ORG/LIBS/UTILITY/BASE_FROM_MEMBER.HTML
HTTP://BOOST.ORG/LIBS/UTILITY/CHECKED_DELETE.HTML
HTTP://BOOST.ORG/LIBS/UTILITY/UTILITY.HTM#FUNCTIONS_NEXT_PRIOR
HTTP://BOOST.ORG/LIBS/UTILITY/UTILITY.HTM#CLASS NONCOPYABLE
HTTP://BOOST.ORG/LIBS/UTILITY/UTILITY.HTM#ADDRESSOF
HTTP://BOOST.ORG/LIBS/UTILITY/UTILITY.HTM#RESULT_OF

http://boost.org/libs/pool/doc/index.html
http://boost.org/libs/smart_ptr/smart_ptr.htm
http://boost.org/libs/smart_ptr/scoped_ptr.htm
http://boost.org/libs/smart_ptr/scoped_array.htm
http://boost.org/libs/smart_ptr/shared_ptr.htm
http://boost.org/libs/smart_ptr/shared_array.htm
http://boost.org/libs/smart_ptr/weak_ptr.htm
http://boost.org/libs/smart_ptr/intrusive_ptr.html
http://boost.org/libs/utility/utility.htm
http://boost.org/libs/utility/base_from_member.html
http://boost.org/libs/utility/checked_delete.html
http://boost.org/libs/utility/utility.htm#functions_next_prior
http://boost.org/libs/utility/utility.htm#Class_noncopyable
http://boost.org/libs/utility/utility.htm#addressof
http://boost.org/libs/utility/utility.htm#result_of

Boost Library

* Miscellaneous

 PARSERS'!?

* Preprocessor metaprogramming

 STRING!'! and text processing

LEXICAL_CAST!!? - Type conversions to/from text

FORMAT 3 - Type safe argument formatting according to a format string
IOSTREAMS''* - C++ streams and stream buffer assistance for new

sources/sinks, filters framework

REGEX!!” - Support for regular expressions

SPIRIT'!® - An object-oriented recursive-descent parser generator framework
STRING ALGORITHMS'!'7 - A collection of various algorithms related to

strings

TOKENIZER!'® - Allows for the partitioning of a string or other character

sequence into TOKEN

119S

wAVE!?0 - Standards conformant implementation of the mandated C99'?! /
C++ pre-processor functionality packed behind an easy to use interface
» TEMPLATE METAPROGRAMMING %2

MPL!'Z - A general purpose high-level metaprogramming framework of
compile-time algorithms, sequences and metafunctions

* STATIC ASSERT!?* - Compile time assertion support

* TYPE TRAITS'? - Templates that define the fundamental properties of types
» Workarounds for broken compilers

The current Boost release contains 87 individual libraries, including the following
three:

110
111
112
113
114
115

116
117
118
119
120
121
122
123
124
125

HTTP
HTTP
HTTP
HTTP
HTTP
HTTP

://EN.WIKIPEDIA.ORG/WIKI/SPIRIT$20PARSER$20FRAMEWORK
://EN.WIKIPEDIA.ORG/WIKI/STRING%20%28COMPUTER%20SCIENCES%29
://BOOST.ORG/LIBS/CONVERSION/LEXICAL_CAST.HTM
://BOOST.ORG/LIBS/FORMAT/INDEX.HTML
://BOOST.ORG/LIBS/IOSTREAMS/DOC/INDEX.HTML
://WWwWw.B0OST.ORG/DOC/LIBS/1_44_0/L1BS/REGEX/DOC/HTML/

INDEX.HTML

HTTP:
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP

//EN.WIKIPEDIA.ORG/WIKI/SPIRIT$20PARSER%20FRAMEWORK

://BOOST.ORG/DOC/HTML/STRING_ALGO.HTML
://BOOST.ORG/LIBS/TOKENIZER/INDEX.HTML
://EN.WIKIPEDIA.ORG/WIKI/TOKEN$20%28PARSER%29
://BOOST.ORG/LIBS/WAVE/INDEX.HTML
://EN.WIKIPEDIA.ORG/WIKI/C99
://EN.WIKIPEDIA.ORG/WIKI/TEMPLATE%20METAPROGRAMMING
://BOOST.ORG/LIBS/MPL/DOC/INDEX.HTML
://BOOST.ORG/DOC/HTML/BOOST_STATICASSERT.HTML
://BOOST.ORG/DOC/HTML/BOOST_TYPETRAITS.HTML

593

http://en.wikipedia.org/wiki/Spirit%20parser%20framework
http://en.wikipedia.org/wiki/String%20%28computer%20science%29
http://boost.org/libs/conversion/lexical_cast.htm
http://boost.org/libs/format/index.html
http://boost.org/libs/iostreams/doc/index.html
http://www.boost.org/doc/libs/1_44_0/libs/regex/doc/html/index.html
http://www.boost.org/doc/libs/1_44_0/libs/regex/doc/html/index.html
http://en.wikipedia.org/wiki/Spirit%20Parser%20Framework
http://boost.org/doc/html/string_algo.html
http://boost.org/libs/tokenizer/index.html
http://en.wikipedia.org/wiki/token%20%28parser%29
http://boost.org/libs/wave/index.html
http://en.wikipedia.org/wiki/C99
http://en.wikipedia.org/wiki/Template%20metaprogramming
http://boost.org/libs/mpl/doc/index.html
http://boost.org/doc/html/boost_staticassert.html
http://boost.org/doc/html/boost_typetraits.html

Beyond the Standard

6.5.2 noncopyable

The boost::noncopyable utility class that ENSURES THAT OBJECTS OF A
CLASS ARE NEVER COPIED!2°.

class C : boost::noncopyable

{

i

6.5.3 Linear algebra — uBLAS

Boost includes the uBLAS LINEAR ALGEBRA!?7 library, with BLAS!?® support
for vectors and matrices. uBlas supports a wide range of linear algebra operations,
and has bindings to some widely used numerics libraries, such as ATLAS, BLAS
and LAPACK.

» Example showing how to multiply a vector with a matrix:

#include <boost/numeric/ublas/vector.hpp>
#include <boost/numeric/ublas/matrix.hpp>
#include <boost/numeric/ublas/io.hpp>
#include <iostream>

using namespace boost::numeric::ublas;

/* "y = Ax" example */
int main ()
{
vector<double> x(2);
x(0) = 1; x(1) = 2;

matrix<double> A(2,2);
A(0,0) = 0; A(0,1) = 1;
A(1,0) = 2; A(1,1) = 3;

vector<double> y = prod(d, x);

std::icout << y << std::endl;
return 0;

126 Chapter 4.3.1 on page 394

127 uTtTP://EN.WIKIPEDIA.ORG/WIKI/LINEAR%20ALGEBRA

128 HTTP://EN.WIKIPEDIA.ORG/WIKI/BASIC%20LINEAR$20ALGEBRAS
20SUBPROGRAMS

594

http://en.wikipedia.org/wiki/linear%20algebra
http://en.wikipedia.org/wiki/Basic%20Linear%20Algebra%20Subprograms
http://en.wikipedia.org/wiki/Basic%20Linear%20Algebra%20Subprograms

Boost Library

6.5.4 Generating random numbers — Boost.Random

Boost provides distribution-independent PSEUDORANDOM NUMBER GENERA-
TOR'?s and PRNG-independent probability distributions, which are combined to
build a concrete generator.

« Example showing how to sample from a NORMAL DISTRIBUTION '3

MERSENNE TWISTER!3! generator:

using the

#include <boost/random.hpp>
#include <ctime>

using namespace boost;

double SampleNormal (double mean, double sigma)

{

// Create a Mersenne twister random number generator
// that is seeded once with #seconds since 1970
static mt19937 rng(static_cast<unsigned> (std::time(0)));

// select Gaussian probability distribution
normal_distribution<double> norm_dist (mean, sigma);

// bind random number generator to distribution, forming a function
variate_generator<mt19937&, normal_distribution<double> >
normal_sampler (rng, norm_dist);
// sample from the distribution
return normal_sampler();

}

See BOOST RANDOM NUMBER LIBRARY !32 for more details.

6.5.5 Multi-threading — Boost.Thread
Example code that demonstrates creation of threads:

#include <boost/thread/thread.hpp>
#include <iostream>

using namespace std;
void hello_world()

{

cout << "Hello world, I’'m a thread!" << endl;

129 HTTP://EN.WIKIPEDIA.ORG/WIKI/PSEUDORANDOM%20NUMBER%20GENERATOR
130 HTTP://EN.WIKIPEDIA.ORG/WIKI/NORMAL%20DISTRIBUTION

131 #TTP://EN.WIKIPEDIA.ORG/WIKI/MERSENNE$20TWISTER

132 HTTP://BOOST.ORG/LIBS/RANDOM/

595

http://en.wikipedia.org/wiki/pseudorandom%20number%20generator
http://en.wikipedia.org/wiki/normal%20distribution
http://en.wikipedia.org/wiki/Mersenne%20Twister
http://boost.org/libs/random/

Beyond the Standard

}

int main(int argc, char* argvl])

{

// start two new threads that calls the "hello _world" function
boost::thread my_threadl (¢hello_world);

boost::thread my_thread2 (¢hello_world);

// wait for both threads to finish

my_threadl. join();

my_thread2.join();

return 0;

}

See also THREADING WITH BOOST - PART I: CREATING THREADS!33

6.5.6 Thread locking

Example usage of a mutex to enforce exclusive access to a function:

#include <iostream>
#include <boost/thread.hpp>

void locked_function ()

{

// function access mutex
static boost::mutex m;

// wait for mutex lock
boost::mutex::scoped_lock lock(m);

// critical section
// TODO: Do something

// auto-unlock on return

}

int main (int argc, char* argvl])
{

locked_function();

return 0;

}
Example of read/write locking of a property:

#include <iostream>
#include <boost/thread.hpp>

/+% General class for thread-safe properties of any type. #*/
template <class T>

133 uTTP://ANTONYM.ORG/2009/05/THREADING-WITH-BOOST———PART—-I—-CREATING-THREADS.
HTML

596

http://antonym.org/2009/05/threading-with-boost---part-i-creating-threads.html
http://antonym.org/2009/05/threading-with-boost---part-i-creating-threads.html

Boost Library

class lock_prop : boost::noncopyable {
public:
lock_prop () {}

/%% Set property value. */

void operator = (const T & v) {
// wait for exclusive write access
boost::unique_lock<boost::shared_mutex> lock (mutex);

value = v;

}

/++ Get property value. */

T operator () () const {
// wait for shared read access
boost::shared_lock<boost::shared_mutex> lock (mutex);

return value;

}

private:
/// Property value.
T value;
/// Mutex to restrict access
mutable boost::shared_mutex mutex;
i

int main () {
// read/write locking property
lock_prop<int> pl;
pl = 10;
int a = pl();

return 0;

¢ INTRODUCTION TO BOOST.THREADS'** in DR.
(2002)

DOBB’S JOURNAL!33,

» WHAT’S NEW IN BOOST THREADS?'3¢ in DR. DOBB’S JOURNAL!37. (2008)

» Boost.Threads API REFERENCE!3%,
e THREADPOOL LIBRARY ! based on Boost.Thread

140

134 uTTP://WWwW.DDJ.COM/DEPT/CPP/184401518

135 HTTP://EN.WIKIPEDIA.ORG/WIKI/DR.%20D0BB%275%20J0URNAL

136 umTTP://WWW.DDJ.COM/CPP/211600441

137 HTTP://EN.WIKIPEDIA.ORG/WIKI/DR.%20D0BB%275%20JOURNAL

138 HTTP://WWW.BOOST.ORG/DOC/HTML/THREAD.HTML
139 HTTP://THREADPOOL.SOURCEFORGE.NET

140 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

597

http://www.ddj.com/dept/cpp/184401518
http://en.wikipedia.org/wiki/Dr.%20Dobb%27s%20Journal
http://www.ddj.com/cpp/211600441
http://en.wikipedia.org/wiki/Dr.%20Dobb%27s%20Journal
http://www.boost.org/doc/html/thread.html
http://threadpool.sourceforge.net
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Beyond the Standard

6.6 Cross-Platform development

The section is to introduce programmer to programming with the aim of portability
across several OSs environments. In today’s world it does not seem appropriate to
constrain applications to a single operating system or computer platform, and there
is an increasing need to address programming in a cross platform manner.

141

6.6.1 The Windows 32 API

Win32 API is a set of functions defined in the Windows OS, in other words it is the
Windows API, this is the name given by Microsoft to the core set of APPLICATION
PROGRAMMING INTERFACE!'#?s available in the MICROSOFT WINDOWS'43 OP-
ERATING SYSTEMS'#. Tt is designed for usage by C!*/C++!%® programs and is
the most direct way to interact with a Windows system for SOFTWARE APPLICA-
TIONS'#". Lower level access to a Windows system, mostly required for DEVICE
DRIVERS 8, is provided by the WINDOWS DRIVER MODEL'#? in current versions
of Windows.

One can get more information about the API and support from Microsoft itself,
using the MSDN Library (HTTP://MSDN.MICROSOFT.cOM/!1?) essentially a re-
source for developers using Microsoft tools, products, and technologies. It con-
tains a bounty of technical programming information, including sample code, doc-
umentation, technical articles, and reference guides. You can also check out Wik-
ibooks WINDOWS PROGRAMMING 3! book for some more detailed information
that goes beyond the scope of this book.

141 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY33AC%2B%2B%20PROGRAMMING

142 HTTP://EN.WIKIPEDIA.ORG/WIKI/APPLICATION$20PROGRAMMINGS
20INTERFACE

143 HTTP://EN.WIKIPEDIA.ORG/WIKI/MICROSOFT%20WINDOWS

144 HTTP://EN.WIKIPEDIA.ORG/WIKI/OPERATING%20SYSTEMS

145 uwTTP://EN.WIKIPEDIA.ORG/WIKI/C

146 HTTP://EN.WIKIPEDIA.ORG/WIKI/C%20PLUS%20PLUS

147 HTTP://EN.WIKIPEDIA.ORG/WIKI/APPLICATION%20SOFTWARE

148 HTTP://EN.WIKIPEDIA.ORG/WIKI/DEVICE$20DRIVERS

149 HTTP://EN.WIKIPEDIA.ORG/WIKI/WINDOWS$20DRIVER$20MODEL

150 HTTP://MSDN.MICROSOFT.COM/

151 HTTP://EN.WIKIBOOKS.ORG/WIKI/WINDOWS%20PROGRAMMING

598

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikipedia.org/wiki/application%20programming%20interface
http://en.wikipedia.org/wiki/application%20programming%20interface
http://en.wikipedia.org/wiki/Microsoft%20Windows
http://en.wikipedia.org/wiki/operating%20systems
http://en.wikipedia.org/wiki/C
http://en.wikipedia.org/wiki/C%20Plus%20Plus
http://en.wikipedia.org/wiki/Application%20software
http://en.wikipedia.org/wiki/device%20drivers
http://en.wikipedia.org/wiki/Windows%20Driver%20Model
http://msdn.microsoft.com/
http://en.wikibooks.org/wiki/Windows%20Programming

Cross-Platform development

A SOFTWARE DEVELOPMENT KIT'9? (SDK) is available for Windows,
which provides documentation and tools to enable developers to create soft-
ware using the Windows API and associated Windows technologies. (
HTTP://WWW.MICROSOFT.COM/DOWNLOADS/123)

History

The Windows API has always exposed a large part of the underlying structure of
the various Windows systems for which it has been built to the programmer. This
has had the advantage of giving Windows programmers a great deal of flexibil-
ity and power over their applications. However, it also has given Windows ap-
plications a great deal of responsibility in handling various low-level, sometimes
tedious, operations that are associated with a GRAPHICAL USER INTERFACE !4,

CHARLES PETZOLD '3, writer of various well read Windows API books, has said:
"The original hello-world program in the Windows 1.0 SDK was a bit of a scan-
dal. HELLO.C was about 150 lines long, and the HELLO.RC resource script had
another 20 or so more lines. (...) Veteran C programmers often curled up in hor-
ror or laughter when encountering the Windows hello-world program.”. A HELLO
WORLD PROGRAM!® is a often used programming example, usually designed to
show the easiest possible application on a system that can actually do something
(i.e. print a line that says "Hello World").

Over the years, various changes and additions were made to the Windows Operat-
ing System, and the Windows API changed and grew to reflect this. The windows
API for WINDOWS 1.0'57 supported less than 450 FUNCTION CALLS!%®, where in
modern versions of the Windows API there are thousands. In general, the interface
has remained fairly consistent however, and a old Windows 1.0 application will
still look familiar to a programmer who is used to the modern Windows API.

A large emphasis has been put by MICROSOFT'>® on maintaining software BACK-
WARDS COMPATIBILITY'®?. To achieve this, Microsoft sometimes went as far as
supporting software that was using the API in a undocumented or even (program-

152 HTTP://EN.WIKIPEDIA.ORG/WIKI/SOFTWARE%20DEVELOPMENT%20KIT
153 #TTP://WWW.MICROSOFT.COM/DOWNLOADS/

154 HTTP://EN.WIKIPEDIA.ORG/WIKI/GRAPHICAL%20USER%20INTERFACE
155 HTTP://EN.WIKIPEDIA.ORG/WIKI/CHARLES%20PETZOLD

156 #TTP://EN.WIKIPEDIA.ORG/WIKI/HELLO%20WORLD%20PROGRAM

157 HTTP://EN.WIKIPEDIA.ORG/WIKI/WINDOWS%201.0

158 HTTP://EN.WIKIPEDIA.ORG/WIKI/SUBROUTINE

159 uTTP://EN.WIKIPEDIA.ORG/WIKI/MICROSOFT

160 HTTP://EN.WIKIPEDIA.ORG/WIKI/BACKWARDS%20COMPATIBILITY

599

http://en.wikipedia.org/wiki/software%20development%20kit
http://www.microsoft.com/downloads/
http://en.wikipedia.org/wiki/Graphical%20user%20interface
http://en.wikipedia.org/wiki/Charles%20Petzold
http://en.wikipedia.org/wiki/hello%20world%20program
http://en.wikipedia.org/wiki/Windows%201.0
http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/backwards%20compatibility

Beyond the Standard

matically) illegal way. RAYMOND CHEN'®!, a Microsoft developer who works on

the Windows API, has said that he "could probably write for months solely about
bad things apps do and what we had to do to get them to work again (often in
spite of themselves). Which is why I get particularly furious when people accuse
Microsoft of maliciously breaking applications during OS upgrades. If any appli-
cation failed to run on Windows 95, I took it as a personal failure."”

Variables and Win32

Win32 uses an extended set of data types, using C’s typedef mechanism These
include:

* BYTE - unsigned 8 bit integer.

* DWORD - 32 bit unsigned integer.

* LONG - 32 bit signed integer.

* LPDWORD - 32 bit pointer to DWORD.

* LPCSTR - 32 bit pointer to constant character string.
* LPSTR - 32 bit pointer to character string.

e UINT - 32 bit unsigned int.

* WORD - 16 bit unsigned int.

* HANDLE - opaque pointer to system data.

Of course standard data types are also available when programming with Win32
APL

Windows Libraries (DLLSs)

In Windows, library code exists in a number of forms, and can be accessed in
various ways.

Normally, the only thing that is needed is to include in the appropriate header file
on the source code the information to the compiler, and linking to the .1ib file will
occur during the linking phase.

This .lib file either contains code which is to be statically linked into compiled
object code or contains code to allow access to a dynamically link to a binary
library(.DLL) on the system.

It is also possible to generate a binary library .DLL within C++ by including ap-
propriate information such as an import/export table when compiling and linking.

161 uwTTP://EN.WIKIPEDIA.ORG/WIKI/RAYMOND%20CHEN

600

http://en.wikipedia.org/wiki/Raymond%20Chen

Cross-Platform development

DLLs stand for Dynamic Link Libraries, the basic file of functions that are used in
some programs. Many newer C++ IDEs such as Dev-CPP support such libraries.

Common libraries on Windows include those provided by the Platform Software
Development Kit, Microsoft Foundation Class and a C++ interface to .Net Frame-
work assemblies.

Although not strictly use as library code, the Platform SDK and other libraries
provide a set of standardized interfaces to objects accessible via the COMPONENT
OBJECT MODEL'®? implemented as part of Windows.

API conventions and Win32 API Functions (by focus)

Time

Time measurement has to come from the OS in relation to the hardware it is run,
unfortunately most computers don’t have a standard high-accuracy, high-precision
time clock that is also quick to access.

MSDN Time Functions (HTTP://MSDN.MICROSOFT.COM/LIBRARY/DEFAULT.ASP?URL=/LIBRA]
US/SYSINFO/BASE/TIME_FUNCTIONS.ASP!63)

Timer Function Performance (HTTP://DEVELOPER.NVIDIA.COM/OBJECT/TIMER_ -
FUNCTION_PERFORMANCE.HTML'®*)

GetTickCount has a precision (dependent on your timer tick rate) of one millisec-
ond, its accuracy typically within a 10-55ms expected error, the best thing is that
it increments at a constant rate. (WaitForSingleObject uses the same timer).

GetSystemTimeAsFileTime has a precision of 100-nanoseconds, its accuracy is
similar to GetTickCount.

QueryPerformanceCounter can be slower to obtain but has higher accuracy, uses
the HAL (with some help from ACPI) a problem with it is that it can travel back in
time on over-clocked PCs due to garbage on the LSBs, note that the functions fail
unless the supplied LARGE_INTEGER is DWORD aligned.

162 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPONENT%200BJECT%20MODEL

163 HTTP://MSDN.MICROSOFT.COM/LIBRARY/DEFAULT.ASP?URL=/LIBRARY/
EN-US/SYSINFO/BASE/TIME_FUNCTIONS.ASP

164 HTTP://DEVELOPER.NVIDIA.COM/OBJECT/TIMER_FUNCTION_PERFORMANCE.
HTML

601

http://en.wikipedia.org/wiki/Component%20Object%20Model
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sysinfo/base/time_functions.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sysinfo/base/time_functions.asp
http://developer.nvidia.com/object/timer_function_performance.html
http://developer.nvidia.com/object/timer_function_performance.html

Beyond the Standard

Performance counter value may unexpectedly leap forward (
HTTP://SUPPORT.MICROSOFT.COM/DEFAULT.ASPX?SCID=KB;EN-
US;Q274323&'9)

timeGetTime (via winmm.dll) has a precision of “Sms.

File System
MakeSureDirectoryPathExists (via Image Help Library - IMAGHLP.DLL,
#pragma comment (lib, "imagehlp.lib"), #include <imagehlp.h>)

creates directories, only useful to create/force the existence of a given dir tree
or multiple directories, or if the linking is already present, note that it is single
threaded.

Network
Network applications are often built in C++ on windows utilizing the WinSock
API functions.

Resources

Resources files are perhaps one of the most useful elements included on the WIN32
API, they are how we program menu’s, add icons, backgrounds, music and many
more aesthetically pleasing elements to our programs. Sadly the use in compilation
use of resource files is today to those using the MS Visual Studio IDE (resource
editor, resource structure understanding).

Note:

This is similar to the approach of the QT library in dealing with GUI elements,
but in this case the OS programing API has direct support for the handling of
the resource elements.

The resources are defined in a .rc file (resource c) and are included at the linking
phase of compile. Resource files work hand in hand with a header file (usually
called resource.h) which carries the definitions of each ID.

For example a simple RC file might contain a menu:

165 HTTP://SUPPORT.MICROSOFT.COM/DEFAULT.ASPX?SCID=KB;EN-US;
0274323¢&

602

http://support.microsoft.com/default.aspx?scid=KB;EN-US;Q274323&
http://support.microsoft.com/default.aspx?scid=KB;EN-US;Q274323&

Cross-Platform development

1711077777
IDR_MYMENU MENU
BEGIN
POPUP "&File"
BEGIN

MENUITEM "&About",
MENUITEM "E&xit",

END
POPUP "&Edit"

BEGIN

// Insert menu here :

END

POPUP "&Links"

BEGIN

MENUITEM "&Visit Lukem_95’s Website",

MENUITEM "G&oogle.com",

END
END
1T

And the corresponding H file:

#define IDR_MYMENU 9000

#define ID_FILE_EXIT 9001

#define ID_LINK_WEBSITE 9002

#define ID_LINK_GOOGLE 9003 #define ID_FILE_ABOUT 9004

166

Win32 API Wrappers

ID_FILE_ABOUT

ID_LINK_GOOGLE

ID_LINK_WEBSITE

Since the Win32 API is C based and also a moving target and since some alter-
ations are done in each OS version some wrappers were created, in this section
you will find some of the approaches available to facilitate the use of the APl in a
C++ setup and provide abstraction from the low level stuff with higher level imple-

166 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY33AC%2B%2B%20PROGRAMMING

603

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Beyond the Standard

mentations of common needed features, dealing with the GUI, complex controls
even communications and database access.

Microsoft Foundation Classes (MFC);

a C++ library for developing Windows applications and UI components. Created
by Microsoft for the C++ Windows programmer as an abstraction layer for the
Win32 API, the use of the new STL enabled capabilities is scarce on the MFC.
It’s also compatible with Windows CE (the pocket PC version of the OS). MFC
was designed to use the Document-View pattern a variant of the Model View
Controller (MVC) pattern.

More info about MFC can be obtained on the WINDOWS PROGRAMMING 67
Wikibook.

Windows Template Library (WTL);

a C++ library for developing Windows applications and Ul components. It ex-
tends ATL (Active Template Library) and provides a set of classes for controls,
dialogs, frame windows, GDI objects, and more. This library is not supported by
Microsoft Services (but is used internally at MS and available for download at
MSDN).

Win32 Foundation Classes (WFC);

(HTTP://WWW.SAMBLACKBURN.COM/WFC/)'%® a library of C++ classes that
extend Microsoft Foundation Classes (MFC) to do NT specific things.

Borland Visual Component Library (VCL);

a Delphi/C++ library for developing Windows applications, Ul components and
different kinds of service applications. Created by Borland as an abstraction layer
for the Win32 API, but also implementing many non-visual, and non windows-
specific objects, like AnsiString class for example.

Note:

There are more generic wrapper that do not focus exclusively on the Windows
API, like the Qf (framework) or WxWidgets these are covered on the GENERIC
WRAPPERS SECTION of the book.

a Chapter 6.6.1 on page 605

167 HTTP://EN.WIKIBOOKS.ORG/WIKI/WINDOWS$20PROGRAMMINGS23SECTION_
3%3A_MICROSOFT_FOUNDATION_CLASSES_AND_COM
168 uTTP://WWW.SAMBLACKBURN.COM/WEFC/)

604

http://en.wikibooks.org/wiki/Windows%20Programming%23Section_3%3A_Microsoft_Foundation_Classes_and_COM
http://en.wikibooks.org/wiki/Windows%20Programming%23Section_3%3A_Microsoft_Foundation_Classes_and_COM
http://www.samblackburn.com/wfc/)

Cross-Platform development

169

6.6.2 Generic wrappers

Generic GUI/API wrappers are programming libraries that provide a uniform plat-
form neutral interface (API) to the operating system regardless of underlying plat-
form. Such libraries greatly simplify development of cross-platform software.

Using a wrapper as a portability layer will offer applications some or all following
benefits:

* Independence from the hardware.

* Independence from the Operating System.
* Independence from changes made to specific releases.
* Independence from API styles and error codes.

Cross-platform programming is more than only GUI programming. Cross-
platform programming deals with the minimum requirements for the sections of
code that aren’t specified by the C++ Standard Language, so as programs can be
compiled and run across different hardware platforms.

Here is some cross-platform GUI toolkit:

« GTKMM!7? - an interface for the C GUI library GTK+. It is not cross-platform
by design, but rather mutli-platform i.e. can be used on many platform.

e QT (HTTP://QT.NOKIA.COM)!7?> - a cross-platform (Qt is the basis for
the Linux KDE desktop environment and supports the X Window System
(Unix/X11), Apple Mac OS X, Microsoft Windows NT/9x/2000/XP/Vista/7 and
the Symbian OS), it is an object-oriented application development framework,
widely used for the development of GUI programs (in which case it is known as
a widget toolkit), and for developing non-GUI programs such as console tools
and servers. Used in numerous commercial applications such as Google Earth,
Skype for Linux and Adobe Photoshop Elements. Released under the LGPL or
a commercial license.

« WXWIDGETS!”? (HTTP://WWW.WXWINDOWS.ORG/)!7* - a widget toolkit for
creating graphical user interfaces (GUIs) for cross-platform applications on

169 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
170 #TTP://EN.WIKIPEDIA.ORG/WIKI/GTKMM

171 HTTP://EN.WIKIBOOKS.ORG/WIKI/QT

172 uTTP://QT.NOKIA.COM)

173 #TTP://EN.WIKIPEDIA.ORG/WIKI/WXWIDGETS

174 HTTP://WWW.WXWINDOWS.ORG/)

605

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikipedia.org/wiki/Gtkmm
http://en.wikibooks.org/wiki/Qt
http://qt.nokia.com)
http://en.wikipedia.org/wiki/WxWidgets
http://www.wxwindows.org/)

Beyond the Standard

Win32, Mac OS X, GTK+, X11, Motif, WinCE, and more using one codebase.
It can be used from languages such as C++, Python, Perl, and C#/.NET. Unlike
other cross-platform toolkits, wxWidgets applications look and feel native. This
is because wxWidgets uses the platform’s own native controls rather than em-
ulating them. It’s also extensive, free, open-source, and mature. wxWidgets is
more than a GUI development toolkit it provides classes for files and streams,
application settings, multiple threads, interprocess communication, database ac-
cess and more.
« FLTK'75 The "Fast, Light Toolkit"

176

6.6.3 Multi-tasking

MULTI-TASKING'”7 is a process by which multiple tasks (also known as PRO-
CESSES!’®), share common processing resources such as a CPU!7°.

A computer with a single CPU, will only run one process at a time. By running
it means that in a specific point in time, the CPU is actively executing instructions
for that process. With a single CPU, systems using SCHEDULING'# can achieve
multi-tasking, by which the time of the processor is time-shared by several pro-
cesses, permitting each to advance their computations, seemingly in parallel. A
process runs for some time and another waiting gets a turn.

The act of reassigning a CPU from one task to another one is called a CONTEXT
swITCH!8!. When context switches occur frequently enough, the illusion of PAR-
ALLELISM'82 is achieved.

Note:
Context switching has a cost; when deciding to use multi-tasks, a programmer
must be aware of trade-offs in performance.

175 HTTP://EN.WIKIPEDIA.ORG/WIKI/FLTK

176 uTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
177 uTTP://EN.WIKIPEDIA.ORG/WIKI/COMPUTER$20MULTITASKING

178 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23PROCESSES

179 uTTP://EN.WIKIPEDIA.ORG/WIKI/CENTRAL%20PROCESSING%20UNIT

180 uHTTP://EN.WIKIPEDIA.ORG/WIKI/SCHEDULING%20%28COMPUTING%29

181 HTTP://EN.WIKIPEDIA.ORG/WIKI/CONTEXT%20SWITCH

182 HTTP://EN.WIKIPEDIA.ORG/WIKI/PARALLEL%20COMPUTING

606

http://en.wikipedia.org/wiki/Fltk
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikipedia.org/wiki/Computer%20multitasking
http://en.wikibooks.org/wiki/%23Processes
http://en.wikipedia.org/wiki/Central%20processing%20unit
http://en.wikipedia.org/wiki/Scheduling%20%28computing%29
http://en.wikipedia.org/wiki/context%20switch
http://en.wikipedia.org/wiki/Parallel%20computing

Cross-Platform development

Even on computers with more than one CPU, MULTIPROCESSOR!8?

multi-tasking allows many more tasks to be run than there are CPUs.

machines,

Operating systems may adopt one of many different SCHEDULING STRATE-
GIES'®*, which generally fall into the following categories:

* In MULTIPROGRAMMING'® systems, the running task keeps running until it
performs an operation that requires waiting for an external event (e.g. reading
from a tape) or until the computer’s scheduler forcibly swaps the running task out
of the CPU. Multiprogramming systems are designed to maximize CPU usage.

* In TIME-SHARING/® systems, the running task is required to relinquish the
CPU, either voluntarily or by an external event such as a HARDWARE INTER-
RUPT!®”. Time sharing systems are designed to allow several programs to ex-
ecute apparently simultaneously. The term time-sharing used to define this be-
havior is no longer in use, having been replaced by the term multi-tasking.

* In REAL-TIME’®3 systems, some waiting tasks are guaranteed to be given the
CPU when an external event occurs. Real time systems are designed to control
mechanical devices such as industrial robots, which require timely processing.

Multi-tasking has already been successfully integrated into current Operating
Systems. Most computers in use today supports running several processes at
a time. This is required for systems using SYMMETRIC MULTIPROCESSOR
(SMP)'® in distributed computing and MULTI-CORE OR CHIP MULTIPROCES-
SORS (CMPs)!'? computing, where processors have gone from dual-core to quad-
core and core number will continue to increase. Each technology has its specific
limitations and applicability, but all these technologies share the common objective
of performing concurrent processing.

Note:

Due to the general adoption of the new paradigm it becomes extremely im-
portant to prepare your code for it (plan for scalability), understand guarantees
regarding parallelization, and select external libraries that provide the required
support.

183 uTTP://EN.WIKIPEDIA.ORG/WIKI/MULTIPROCESSOR

184 HTTP://EN.WIKIPEDIA.ORG/WIKI/SCHEDULING%20%28COMPUTING%29
185 HTTP://EN.WIKIPEDIA.ORG/WIKI/MULTIPROGRAMMING

186 uTTP://EN.WIKIPEDIA.ORG/WIKI/TIME—SHARING

187 HTTP://EN.WIKIPEDIA.ORG/WIKI/HARDWARE%20INTERRUPT

188 HTTP://EN.WIKIPEDIA.ORG/WIKI/REAL-TIME%$20COMPUTING

189 HTTP://EN.WIKIPEDIA.ORG/WIKI/SYMMETRIC%20MULTIPROCESSING
190 HTTP://EN.WIKIPEDIA.ORG/WIKI/MULTI-CORE%20PROCESSOR

607

http://en.wikipedia.org/wiki/multiprocessor
http://en.wikipedia.org/wiki/Scheduling%20%28computing%29
http://en.wikipedia.org/wiki/multiprogramming
http://en.wikipedia.org/wiki/time-sharing
http://en.wikipedia.org/wiki/hardware%20interrupt
http://en.wikipedia.org/wiki/Real-time%20computing
http://en.wikipedia.org/wiki/Symmetric%20multiprocessing
http://en.wikipedia.org/wiki/Multi-core%20processor

Beyond the Standard

6.6.4 Processes

PROCESS!?!es are independent execution units that contain their own state infor-
mation, use their own address spaces, and only interact with each other via INTER-
PROCESS COMMUNICATION'?? (IPC) mechanisms . A process can be said to at
least contain one thread of execution (not to be confused to a complete thread con-
struct). Processes are managed by the hosting OS in a process data structure. The
maximum number of processes that can run concurrently, depend on the OS and
on the available resources of that system.

Child Process

A child process (also SPAWN PROCESS!??), is a process that was created by an-
other process (the PARENT PROCESS!%%), inheriting most of the parent attributes,
such as opened files. Each process may create many child processes but will have
at most one parent process; if a process does not have a parent this usually indicates
that it was created directly by the KERNEL'?.

In UNIX'%, a child process is in fact created (using FORK'®”) as a copy of the
parent. The child process can then OVERLAY'?® itself with a different program
(using xec'®’) as required. The very first process, called INIT?%, is started by
the kernel at booting time and never terminates; other parentless processes may be
launched to carry out various DAEMON?Y! tasks in USERSPACE?"?. Another way
for a process to end up without a parent is, if its parent dies leaving an ORPHAN
PROCESS??3; but in this case it will shortly be adopted by init.

191 HTTP://EN.WIKIPEDIA.ORG/WIKI/PROCESS%20%28COMPUTINGS%29

192 #TTP://EN.WIKIPEDIA.ORG/WIKI/INTER—PROCESS_COMMUNICATION

193 HTTP://EN.WIKIPEDIA.ORG/WIKI/SPAWN$20PROCESS

194 HTTP://EN.WIKIPEDIA.ORG/WIKI/PARENT%20PROCESS

195 HTTP://EN.WIKIPEDIA.ORG/WIKI/KERNEL%20%28COMPUTER%20SCIENCES29

196 uTTP://EN.WIKIPEDIA.ORG/WIKI/UNIX

197 HTTP://EN.WIKIPEDIA.ORG/WIKI/FORK%20%280PERATING%20SYSTEM%29

198 HTTP://EN.WIKIPEDIA.ORG/WIKI/OVERLAY%20%280PERATING%20SYSTEMS
29

199 HTTP://EN.WIKIPEDIA.ORG/WIKI/EXEC%20%280PERATING%20SYSTEM%29

200 HTTP://EN.WIKIPEDIA.ORG/WIKI/INIT

201 HTTP://EN.WIKIPEDIA.ORG/WIKI/DAEMON%20%28COMPUTING%29

202 HTTP://EN.WIKIPEDIA.ORG/WIKI/USERSPACE

203 HTTP://EN.WIKIPEDIA.ORG/WIKI/ORPHAN%$20PROCESS

608

http://en.wikipedia.org/wiki/process%20%28computing%29
http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/spawn%20process
http://en.wikipedia.org/wiki/parent%20process
http://en.wikipedia.org/wiki/kernel%20%28computer%20science%29
http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/fork%20%28operating%20system%29
http://en.wikipedia.org/wiki/overlay%20%28operating%20system%29
http://en.wikipedia.org/wiki/overlay%20%28operating%20system%29
http://en.wikipedia.org/wiki/Exec%20%28operating%20system%29
http://en.wikipedia.org/wiki/init
http://en.wikipedia.org/wiki/daemon%20%28computing%29
http://en.wikipedia.org/wiki/userspace
http://en.wikipedia.org/wiki/orphan%20process

Cross-Platform development

Inter-Process Communication (IPC)

IPC is generally managed by the operating system.

Shared Memory

Most of more recent OSs provide some sort of memory protection. In a Unix
system, each process is given its own virtual address space, and the system, in
turn, guarantees that no process can access the memory area of another. If an error
occurs on a process, only that process memory’s contents can be corrupted.

With shared memory, the need of enabling random-access to shared data between
different processes is addressed. But declaring a given section of memory as si-
multaneously accessible by several processes raises the need for control and syn-
chronization, since several processes might try to alter this memory area at the
same time.

6.6.5 Multi-Threading

Until recently, the C++ standard did not include any specification or built-in sup-
port for multi-threading. Therefore, THREADING%* had to be implemented using
special threading libraries, which are often platform dependent, as an extension to
the C++ standard.

Note:
The new C++0x standard supports multi-threading, reducing the need to know
multiple APIs and increasing the portability of code.

Some popular C++ threads libraries include:

(This list is not intended to be complete.)

« BoosT?% - This package includes several libraries, one of which is threads (con-
current programming). the boost threads library is not very full featured, but is
complete, portable, robust and in the flavor of the C++ standard. Uses the boost
license that is similar to the BSD license.

204 HTTP://EN.WIKIPEDIA.ORG/WIKI/THREAD%20%28COMPUTER%20SCIENCE%29
205 Chapter 6.4.2 on page 588

609

http://en.wikipedia.org/wiki/Thread%20%28computer%20science%29

Beyond the Standard

+ INTEL® THREADING BUILDING BLOCKS?" (TBB)*"7 offers a rich approach
to expressing parallelism in a C++ program. The library helps you take ad-
vantage of multi-core processor performance without having to be a threading
expert. Threading Building Blocks is not just a threads-replacement library. It
represents a higher-level, task-based parallelism that abstracts platform details
and threading mechanism for performance and scalability and performance. It
is an open source project under the GNU General Public License version two
(GPLv2) with the runtime exception.

e ADAPTIVE COMMUNICATION ENVIRONMENT2%® (often referred to as ACE) -
Another toolkit which includes a portable threads abstraction along with many
many other facilities, all rolled into one library. Open source released under a
nonstandard but nonrestrictive license.

« ZTHREADS?? - A portable thread abstraction library. This library is feature rich,
deals only with concurrency and is open source licensed under the MIT license.

Of course, you can access the full POSIX and the C language threads interface
from C++ and on Windows the API. So why bother with a library on top of that?

The reason is that things like locks are resources that are allocated, and C++
provides abstractions to make managing these things easier. For instance,
boost : :scoped_lock<> uses object construction/destruction to insure that a mu-
tex is unlocked when leaving the lexical scope of the object. Classes like this can be
very helpful in preventing deadlock, race conditions, and other problems unique to
threaded programs. Also, these libraries enable you to write cross-platform multi-
threading code, while using platform-specific function cannot.

In any case when using threading methodology, dictates that you must identify
hotspots, the segments of code that take the most execution time. To determine
the best chance at achieving the maximum performance possible, the task can be
approached from bottom-up and top-down to determine those code segments that
can run in parallel.

In the bottom-up approach, one focus solely on the hotspots in the code. This
requires a deep analysis of the call stack of the application to determine the sections
of code that can be run in parallel and reduce hotspots. In hotspot sections that

206 HTTP://EN.WIKIPEDIA.ORG/WIKI/INTEL_ _THREADING_BUILDING_BLOCKS

207 HTTP://WWW.THREADINGBUILDINGBLOCKS.ORG

208 HTTP://EN.WIKIPEDIA.ORG/WIKI/ADAPTIVE%20COMMUNICATIONS
20ENVIRONMENT

209 HTTP://EN.WIKIPEDIA.ORG/WIKI/ZTHREADS

610

http://en.wikipedia.org/wiki/Intel_Threading_Building_Blocks
http://www.threadingbuildingblocks.org
http://en.wikipedia.org/wiki/Adaptive%20Communication%20Environment
http://en.wikipedia.org/wiki/Adaptive%20Communication%20Environment
http://en.wikipedia.org/wiki/ZThreads

Cross-Platform development

employ concurrency, it is still required to move that concurrency at a point higher
up in the call stack as to increase the GRANULARITY?!? of each thread execution.

Using the fop-down approach, the focus is on all the parts of the application, in
determining what computations can be coded to run in parallel, at a higher level of
abstraction. Reducing the level of abstraction until the overall performance gains
are sufficient to reach the necessary goals, the benefit being speed of implemen-
tation and code re-usability. This is also the best method for archiving a optimal
level of GRANULARITY?!! for all computations.

Threads vs. Processes

Both threads and processes are methods of parallelizing an application, its imple-
mentation may differ from one OPERATING SYSTEM?!? to another. A process has
always one thread of execution, also known as the primary thread. In general, a
thread is contained inside a process (in the address space of the process) and dif-
ferent threads of the same process share some resources while different processes
do not.

Atomicity

Atomicity refers to atomic operations that are indivisible and/or uninterruptible.
Even on a single core, you cannot assume that an operation will be atomic. In that
regard only when using assembler can one guarantee the atomicity of an operation.
Therefore, the C++ standard provides some guarantees as do operating systems and
external libraries.

An atomic operation can also be seen as any given set of OPERATION?!3s that can

be combined so that they appear to the rest of the system to be a single operation
with only two possible outcomes: success or failure. This all depends on the level
of abstraction and underling guarantees.

All modern processors provide basic atomic primitives which are then used to
build more complex atomic objects. In addition to atomic read and write oper-
ations, most platforms provide an atomic read-and-update operation like TEST-

210 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23COMPUTATION_GRANULARITY

211 HTTP://EN.WIKIBOOKS.ORG/WIKI/%$23COMPUTATION_GRANULARITY

212 HTTP://EN.WIKIPEDIA.ORG/WIKI/OPERATING%20SYSTEM

213 HTTP://EN.WIKIPEDIA.ORG/WIKI/INSTRUCTION%20%28COMPUTERS
20SCIENCE%29

611

http://en.wikibooks.org/wiki/%23Computation_granularity
http://en.wikibooks.org/wiki/%23Computation_granularity
http://en.wikipedia.org/wiki/operating%20system
http://en.wikipedia.org/wiki/Instruction%20%28computer%20science%29
http://en.wikipedia.org/wiki/Instruction%20%28computer%20science%29

Beyond the Standard

AND-SET?'* or COMPARE-AND-SWAP?'>, or a pair of operations like LOAD-

LINK/STORE-CONDITIONAL?!'® that only have an effect if they occur atomically
(that is, with no intervening, conflicting update). These can be used to implement
LOCKS?!7, a vital mechanism for multi-threaded programming, allowing invariants
and atomicity to be enforced across groups of operations.

Many PROCESSORS?!®, especially 32-BIT?!® ones with 64-BIT?? FLOATING
POINT??! support, provide some read and write operations that are not atomic: one
THREAD??? reading a 64-bit register while another thread is writing to it may see
a combination of both "before" and "after" values, a combination that may never
actually have been written to the register. Further, only single operations are guar-
anteed to be atomic; threads arbitrarily performing groups of reads and writes will
also observe a mixture of "before" and "after" values. Clearly, invariants cannot be
relied on when such effects are possible.

If not dealing with known guaranteed atomic operations, one should rely on the
synchronization primitives at the level of abstraction that one is coding to.

Example - One process

For example, imagine a single process is running on a computer incrementing a
value in a given MEMORY LOCATION??3, To increment the value in that memory
location:

1. the process reads the value in the memory location;
2. the process adds one to the value;
3. the process writes the new value back into the memory location.

Example - Two processes

214 HTTP://EN.WIKIPEDIA.ORG/WIKI/TEST—AND—SET

215 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPARE—AND—SWAP

216 HTTP://EN.WIKIPEDIA.ORG/WIKI/LOAD-LINK$2FSTORE-CONDITIONAL

217 HTTP://EN.WIKIPEDIA.ORG/WIKI/LOCK%$20%28SOFTWARES20ENGINEERINGS
29

218 HTTP://EN.WIKIPEDIA.ORG/WIKI/CENTRAL%20PROCESSING%20UNIT

219 HTTP://EN.WIKIPEDIA.ORG/WIKI/32-BIT

220 HTTP://EN.WIKIPEDIA.ORG/WIKI/64-BIT

221 HTTP://EN.WIKIPEDIA.ORG/WIKI/FLOATING%20POINT

222 HTTP://EN.WIKIPEDIA.ORG/WIKI/THREAD%20%28COMPUTER%20SCIENCES29

223 HTTP://EN.WIKIPEDIA.ORG/WIKI/MEMORY%$20LOCATION

612

http://en.wikipedia.org/wiki/test-and-set
http://en.wikipedia.org/wiki/compare-and-swap
http://en.wikipedia.org/wiki/Load-Link%2FStore-Conditional
http://en.wikipedia.org/wiki/Lock%20%28software%20engineering%29
http://en.wikipedia.org/wiki/Lock%20%28software%20engineering%29
http://en.wikipedia.org/wiki/central%20processing%20unit
http://en.wikipedia.org/wiki/32-bit
http://en.wikipedia.org/wiki/64-bit
http://en.wikipedia.org/wiki/floating%20point
http://en.wikipedia.org/wiki/Thread%20%28computer%20science%29
http://en.wikipedia.org/wiki/memory%20location

Cross-Platform development

Now, imagine two processes are running incrementing a single, shared memory
location:

1. the first process reads the value in memory location;
2. the first process adds one to the value;

but before it can write the new value back to the memory location it is suspended,
and the second process is allowed to run:

1. the second process reads the value in memory location, the same value that
the first process read;

2. the second process adds one to the value;

3. the second process writes the new value into the memory location.

The second process is suspended and the first process allowed to run again:

1. the first process writes a now-wrong value into the memory location, un-
aware that the other process has already updated the value in the memory
location.

This is a trivial example. In a real system, the operations can be more complex
and the errors introduced extremely subtle. For example, reading a 64-bit value
from memory may actually be implemented as two SEQUENTIAL??* reads of two
32-bit memory locations. If a process has only read the first 32-bits, and before it
reads the second 32-bits the value in memory gets changed, it will have neither the
original value nor the new value but a mixed-up GARBAGE?? value.

Furthermore, the specific order in which the processes run can change the results,
making such an error difficult to detect and debug.

OS and portability

Considerations are not only necessary with regard to the underling hardware but
also in dealing with the different OS APIs. When porting code across different
OSs one should consider what guarantees are provided. Similar considerations are
necessary when dealing with external libraries.

224 HTTP://EN.WIKIPEDIA.ORG/WIKI/SEQUENCE
225 HTTP://EN.WIKIPEDIA.ORG/WIKI/GARBAGE%20%28COMPUTER%20SCIENCES
29

613

http://en.wikipedia.org/wiki/sequence
http://en.wikipedia.org/wiki/garbage%20%28computer%20science%29
http://en.wikipedia.org/wiki/garbage%20%28computer%20science%29

Beyond the Standard

Note:
For instance on the Macintosh, the set file position call is atomic, whereas on
Windows, it’s a pair of calls.

Race condition

A RACE CONDITION?2® (data race, or simply race), occurs when data is accessed
concurrently from multiple execution paths. It happens for instance when multiple
threads have shared access to the same resource such as a file or a block of memory,
and at least one of the accesses is a write. This can lead to interference with one
another.

Threaded programming is built around predicates and shared data. It is necessary
to identify all possible execution paths and identify truly independent computa-
tions. To avoid problems it is best to implement concurrency at the highest level
possible.

Most race conditions occur due to an erroneous assumption about the order in
which threads will run. When dealing with shared variables, never assume that
a threaded write operation will precede a threaded read operation. If you need
guarantees you should see if synchronization primitives are available, and if not,
you should implement your own.

Locking
LOCKING??7 temporarily prevents un-shareable resources from being used simul-
taneously. Locking can be achieved by using a synchronization object.

One of the biggest problems with threading is that locking requires analysis and
understanding of the data and code relationships. This complicates software
development--especially when targeting multiple operating systems. This makes
multi-threaded programming more like art than science.

The number of locks (depending on the synchronization object) may be limited by
the OS. A lock can be set to protect more than one resource, if always accessed in
the same critical region.

226 HTTP://EN.WIKIPEDIA.ORG/WIKI/RACE_CONDITION%23COMPUTING
227 uTTP://EN.WIKIPEDIA.ORG/WIKI/LOCK_%28COMPUTER_SCIENCE%29

614

http://en.wikipedia.org/wiki/Race_condition%23Computing
http://en.wikipedia.org/wiki/Lock_%28computer_science%29

Cross-Platform development

Critical section

A CRITICAL SECTION?? is a region defined as critical to the parallelization of
code execution. The term is used to define code sections that need to be executed
in isolation with respect to other code in the program.

This is a common fundamental concept. These sections of code need to be pro-
tected by a synchronization technique as they can create race conditions.

Deadlock
A DEADLOCK?? is said to happen whenever there is a lock operation that results
in a never-ending waiting cycle among concurrent threads.

Synchronization

Except when used to guarantee the correct execution of a parallel computation,
synchronization is an overhead. Attempt to keep it to a minimum by taking advan-
tage of the THREAD’S LOCAL STORAGE?*" or by using exclusive memory loca-
tions.

Computation granularity

Computation granularity is loosely defined as the amount of computation per-
formed before any synchronization is needed. The longer the time between syn-
chronizations, the less granularity the computation will have. When dealing with
the requirements for parallelism, it will mean being easier to scale to an increased
number of threads and having lower overhead costs. A high level of granularity
can mean that any benefit from using threads will be lost due to the requirements
of synchronization and general thread overhead.

Mutex

MUTEX??! is an abbreviation for mutual exclusion. It relies on a synchronization
facility supplied by the operating system (not the CPU). Since this system objects
can only be owned by a single thread at any given time, the mutex object facilitates
protection against data races and allows for thread-safe synchronization of data

228 HTTP://EN.WIKIPEDIA.ORG/WIKI/CRITICAL_ _SECTION

229 HTTP://EN.WIKIPEDIA.ORG/WIKI/DEADLOCK

230 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23THREAD%20LOCAL%20STORAGES20%
28TLS%29

231 HTTP://EN.WIKIPEDIA.ORG/WIKI/MUTUAL%20EXCLUSION

615

http://en.wikipedia.org/wiki/Critical_section
http://en.wikipedia.org/wiki/Deadlock
http://en.wikibooks.org/wiki/%23Thread%20local%20storage%20%28TLS%29
http://en.wikibooks.org/wiki/%23Thread%20local%20storage%20%28TLS%29
http://en.wikipedia.org/wiki/Mutual%20exclusion

Beyond the Standard

between threads. By calling one of the lock functions, the thread obtains ownership
of a mutex object, it then relinquishes ownership by calling the corresponding
unlock function. Mutexes can be either recursive or non-recursive, and may grant
simultaneous ownership to one or many threads.

Semaphore
A SEMAPHORE?*? is a yielding synchronization object that can be used to synchro-
nize several threads. This is the most commonly used method for synchronization

Spinlock

SPINLOCKS?3 are busy-wait synchronization objects, used as a substitute for
Mutexes. They are an implementation of inter-thread locking using machine de-
pendent assembly instructions (such as test-and-set) where a thread simply waits
(spins) in a loop that repeatedly checks if the lock becomes available (busy wait).
This is why spinlocks perform better if locked for a short period of time. They are
never used on single-CPU machines.

Threads

Threads are by definition a coding construct and part of a PROGRAM?** that
enable it to FORK?® (or split) itself into two or more simultaneously (or
pseudo-simultaneously) running TASK?*®s. Threads use PRE-EMPTIVE MULTI-
TASKING??.

The thread is the basic unit (the smallest piece of code) to which the operating
system can allocate a distinct processor time (schedule) for execution. This means
that, threads in reality, don’t run concurrently but in sequence on any single core
system. Threads often depend on the OS thread scheduler to preempt a busy thread
and resume another thread.

The thread today is not only a key concurrency model supported by most if not all
modern computers, programming languages, and operating systems but is itself at

232 HTTP://EN.WIKIPEDIA.ORG/WIKI/SEMAPHORE_%28PROGRAMMING%29
233 HTTP://EN.WIKIPEDIA.ORG/WIKI/SPINLOCK

234 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPUTER%20PROGRAM

235 HTTP://EN.WIKIPEDIA.ORG/WIKI/FORK_%280PERATING_SYSTEM%29
236 HTTP://EN.WIKIPEDIA.ORG/WIKI/TASK$20%28COMPUTERS%29

237 HTTP://EN.WIKIPEDIA.ORG/WIKI/PRE—EMPTIVE%20MULTITASKING

616

http://en.wikipedia.org/wiki/Semaphore_%28programming%29
http://en.wikipedia.org/wiki/Spinlock
http://en.wikipedia.org/wiki/computer%20program
http://en.wikipedia.org/wiki/Fork_%28operating_system%29
http://en.wikipedia.org/wiki/task%20%28computers%29
http://en.wikipedia.org/wiki/pre-emptive%20multitasking

Cross-Platform development

the core of hardware evolution, such as symmetric multi-processors, understanding
threads is now a necessity to all programmers.

The order of execution of the threads is controlled by the process scheduler of the
0OS, it is non-deterministic. The only control available to the programmer is in
attributing a priority to the thread but never assume a particular order of execution.

User Interface Thread

This type of distinction is reserved to indicate that the particular thread implements
a message map to respond to events and messages generated by user inputs as he
interacts with the application. This is especially common when working with the
Windows platform (Win32 API) because of the way it implements message pumps.

Worker Thread
This distinction serves to specify threads that do not directly depend or are part of
the graphical user interface of the application, and run concurrently with the main
execution thread.

Thread local storage (TLS)

The residence of thread local variables, a thread dedicated section of the global
MEMORY?*®. Each thread (or fiber) will receive its own stack space, residing in a
different memory location. This will consist of both reserved and initially commit-
ted memory. That is freed when the thread exits but will not be freed if the thread
is terminated by other means.

Since all threads in a PROCESS2>? share the same ADDRESS SPACEZ*, it makes
data in a static or GLOBAL VARIABLE?*! to be normally located at the same mem-
ory location, when referred to by threads from the same process. It is important for
software to take in consideration hardware cache coherence. For instance in mul-
tiprocessor environments, each processor has a local cache. If threads on different
processors modify variables residing on the same cache line, this will invalidate
that cache line, forcing a cache update, hurting performance. This is referred to as
false sharing.

This type of storage is indicated for variables that store temporary or even par-
tial results, since condensing the needed synchronization of the partial results in

238 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPUTER%20STORAGE

239 HTTP://EN.WIKIPEDIA.ORG/WIKI/PROCESS%20%28COMPUTING%29
240 HTTP://EN.WIKIPEDIA.ORG/WIKI/ADDRESS%20SPACE

241 HTTP://EN.WIKIPEDIA.ORG/WIKI/GLOBAL%20VARIABLE

617

http://en.wikipedia.org/wiki/Computer%20storage
http://en.wikipedia.org/wiki/Process%20%28computing%29
http://en.wikipedia.org/wiki/address%20space
http://en.wikipedia.org/wiki/global%20variable

Beyond the Standard

as fewer and infrequent instances possible will contribute to the reduction of syn-
chronization overhead.

Thread Synchronization

The synchronization can be defined in several steps the first is the process lock,
where a process is made to halt execution due to find a protected resource locked,
there is a cost for locking especially if the lock lasts for too long.

Obviously there is a performance hit if any synchronization mechanism is heavily
used. Because they are an expensive operation, in certain cases, increasing the use
of TLSs instead of relying only on shared data structures will reduce the need for
synchronization.

Critical Section

Suspend and Resume

Synchronizing on Objects

Cooperative vs. Preemptive Threading

Thread pool

618

Cross-Platform development

Task Queue

(@@ — O —1
Tt [OOIOE

Completed Tasks

-(@@@@@@@@© «— O

Figure 26: A simple thread pool. The task queue has many waiting tasks (blue
circles). When a thread opens up in the queue (green box with dotted circle) a
task comes off the queue and the open thread executes it (red circles in green
boxes). The completed task then "leaves" the thread pool and joins the
completed tasks list (yellow circles)..

O
O

Fibers

A FIBER?*? is a particularly lightweight THREAD OF EXECUTION?*3. Like threads,
fibers share ADDRESS SPACE2**. However, fibers use CO-OPERATIVE MULTI-
TASKING?#, fibers yield themselves to run another fiber while executing.

Operating system support

Less support from the OPERATING SYSTEM>* is needed for fibers than for threads.
They can be implemented in modern UNIX?#’ systems using the library functions

242 HTTP://EN.WIKIPEDIA.ORG/WIKI/FIBER_%28COMPUTER_SCIENCE%29

243 HTTP://EN.WIKIPEDIA.ORG/WIKI/THREAD%200F%20EXECUTION

244 HTTP://EN.WIKIPEDIA.ORG/WIKI/ADDRESS%20SPACE

245 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPUTER%20MULTITASKINGS
23COOPERATIVES20MULTITASKING$2FTIME—SHARING

246 HTTP://EN.WIKIPEDIA.ORG/WIKI/OPERATING%20SYSTEM

247 HTTP://EN.WIKIPEDIA.ORG/WIKI/UNIX

619

http://en.wikipedia.org/wiki/Fiber_%28computer_science%29
http://en.wikipedia.org/wiki/thread%20of%20execution
http://en.wikipedia.org/wiki/address%20space
http://en.wikipedia.org/wiki/Computer%20multitasking%23Cooperative%20multitasking%2Ftime-sharing
http://en.wikipedia.org/wiki/Computer%20multitasking%23Cooperative%20multitasking%2Ftime-sharing
http://en.wikipedia.org/wiki/operating%20system
http://en.wikipedia.org/wiki/Unix

Beyond the Standard

getcontext, setcontext AND swapcontext®® in ucontext .h, asin GNU PORTABLE
THREADS?*,

On MICROSOFT WINDOWS?*?, fibers are created using the ConvertThreadToFiber
and CreateFiber calls; a fiber that is currently suspended may be resumed in any
thread. Fiber-local storage, analogous to THREAD-LOCAL STORAGE?!, may be
used to create unique copies of variables.

SYMBIAN OS?3? uses a similar concept to fibers in its Active Scheduler. An Ac-
TIVE OBJECT (SYMBIAN OS)?3 contains one fiber to be executed by the Active
Scheduler when one of several outstanding asynchronous calls complete. Several
Active objects can be waiting to execute (based on priority) and each one must
restrict is own execution time.

6.6.6 Exploiting parallelism

Most of the parallel architecture research was done in the 1960s and 1970s, provid-
ing solutions for problems that only today are reaching general awareness. As the
need of concurrent programming increases, mostly due to today’s hardware evolu-
tion, we as programmers are pressed to implement programming models that ease
the complicated process of dealing with the old thread model in a way it preserves
development time by abstracting the problem.

248 HTTP://EN.WIKIPEDIA.ORG/WIKI/SETCONTEXT

249 HTTP://EN.WIKIPEDIA.ORG/WIKI/GNU%20PORTABLE%20THREADS

250 HTTP://EN.WIKIPEDIA.ORG/WIKI/MICROSOFT%20WINDOWS

251 HTTP://EN.WIKIPEDIA.ORG/WIKI/THREAD—LOCAL%20STORAGE

252 HTTP://EN.WIKIPEDIA.ORG/WIKI/SYMBIAN%200S

253 HTTP://EN.WIKIPEDIA.ORG/WIKI/ACTIVE%200BJECT%20%28SYMBIANS
2008%29

620

http://en.wikipedia.org/wiki/setcontext
http://en.wikipedia.org/wiki/GNU%20Portable%20Threads
http://en.wikipedia.org/wiki/Microsoft%20Windows
http://en.wikipedia.org/wiki/thread-local%20storage
http://en.wikipedia.org/wiki/Symbian%20OS
http://en.wikipedia.org/wiki/Active%20object%20%28Symbian%20OS%29
http://en.wikipedia.org/wiki/Active%20object%20%28Symbian%20OS%29

Software Internationalization

OpenMP

OpenMP language
extensions

runtime
parallel control) data - X
work sharing . synchronization functions, env.
structures environment
variables
governs flow of distributes work scopes coordinates thread runtime environment
control in the among threads variables execution
program
omp_set num_threads()
do/parallel do shared and critical and omp_get_thread num()
parallel directive and private atomic directives OMP_NUM_THREADS
section directives clauses barrier directive OMP SCHEDULE

Figure 27: Chart of OpenMP constructs.

6.7 Software Internationalization

INTERNATIONALIZATION AND LOCALIZATION>* refer to how computer soft-
ware is adapted for other locations, nations or cultures. This means specifically
those that are non-native to the programmer(s) or the primary user group

In specific, internationalization deals with the process of designing a software ap-
plication in a way that it can be configured or adapted to work with various lan-
guages and regions without heavy changes to the code base. On the other hand
localization deals with the process of enabling the configuration or auto adaptation
of the software to a specific region, timezone or language by adding locale-specific
components and text translation.

6.7.1 Text encoding

Text, in particular the characters are used to generate readable text consists on the
use of a character encoding scheme that pairs a sequence of characters from a given
character set (sometimes referred to as code page) with something else, such as a

254 HTTP://EN.WIKIPEDIA.ORG/WIKI/INTERNATIONALIZATION%20ANDS
20LOCALIZATION

621

http://en.wikipedia.org/wiki/Internationalization%20and%20localization
http://en.wikipedia.org/wiki/Internationalization%20and%20localization

Beyond the Standard

sequence of natural numbers, octets or electrical pulses, in order to facilitate the
use of its digital representation.

A easy to understand example would be Morse code, which encodes letters of the
Latin alphabet as series of long and short depressions of a telegraph key; this is
similar to how ASCII, encodes letters, numerals, and other symbols, as integers.

Text and data

Probably the most important use for a byte is holding a character code. Characters
typed at the keyboard, displayed on the screen, and printed on the printer all have
numeric values. To allow it to communicate with the rest of the world, the IBM
PC uses a variant of the ASCII character set. There are 128 defined codes in
the ASCII CHARACTER SET?”. IBM uses the remaining 128 possible values for
extended character codes including European characters, graphic symbols, Greek
letters, and math symbols.

In earlier days of computing, the introduction of coded character sets such as
ASCII (1963) and EBCDIC (1964) began the process of standardization. The limi-
tations of such sets soon became apparent, and a number of ad-hoc methods devel-
oped to extend them. The need to support multiple writing systems (Languages),
including the CJK family of East Asian scripts, required support for a far larger
number of characters and demanded a systematic approach to character encoding
rather than the previous ad hoc approaches.

6.7.2 What’s this about UNICODE?

UNICODE>® is an industry standard whose goal is to provide the means by which
text of all forms and languages can be encoded for use by computers. Unicode 6.1
was released in January 2012 and is the current version. It currently comprises over
109,000 characters from 93 scripts. Since Unicode is just a standard that assigns
numbers to characters, there also needs to be methods for encoding these numbers
as bytes. The three most common character encodings are UTF-8, UTF-16, and
UTF-32, of which UTF-8 is by far the most frequently used.

In the Unicode standard, PLANES?® are groups of numerical values (code points)
that point to specific characters. Unicode code points are logically divided into 17

255 Chapter 4.8.1 on page 452
256 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE
257 HTTP://EN.WIKIPEDIA.ORG/WIKI/PLANE$20%28UNICODE%29

622

http://en.wikibooks.org/wiki/Unicode
http://en.wikipedia.org/wiki/Plane%20%28Unicode%29

Software Internationalization

planes, each with 65,536 (= 2!) code points. Planes are identified by the numbers
0 to 164ecimal, Which corresponds with the possible values 00-10hexadecimal Of the
first two positions in six position format (h2’hhhh). As of version 6.1, six of these

planes have assigned code points (characters), and are named.

Plane 0 - Basic Multilingual Plane (BMP)

Plane 1 - Supplementary Multilingual Plane (SMP)

Plane 2 - Supplementary Ideographic Plane (SIP)

Planes 3-13 - Unassigned

Plane 14 - Supplement-ary Special-purpose Plane (SSP)

Planes 15-16 - Supplement-ary Private Use Area (S PUA A/B)

BMP and SMP

BMP SMP
0000-0FFF2® 8000—-8FFF?*° 10000-10FFF2° 18000-18FFF
1000—1FFF2%! 9000-9FFF?*2 11000—11FFF2%3 19000-19FFF

258 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES

2F0000-0FFF

259 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES

2F8000-8FFF

260 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES

2F10000-10FFF

261 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES

2F1000-1FFF

262 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES

2F9000-9FFF

263 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES

2F11000-11FFF

623

http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F0000-0FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F0000-0FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F8000-8FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F8000-8FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F10000-10FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F10000-10FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F1000-1FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F1000-1FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F9000-9FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F9000-9FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F11000-11FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F11000-11FFF

Beyond the Standard

2000-2FFF2** A000-AFFF2% 12000-12FFF%%° 1A000-1AFFF
3000-3FFF%7 B0O00O-BFFF*% 13000-13FFF**° 1B000-

1 BFFE270

4000-4FFF?"! CO00-CFFF?2 14000-14FFF 1C000-1CFFF
5000-5FFF?> D000-DFFF?’* 15000-15FFF; 1D000-1DFFF?7
6000—-6FFF?’® E000-EFFF?’7 16000—16FFF?’® 1E000-1EFFF
7000-7FFF?”® FOOO-FFFF?% 17000-17FFF 1F000—1FFFF?8!

ISP and SSP

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

281

624

HTTP://EN.WIKIBOOKS.

2F2000-2FFF

HTTP://EN.WIKIBOOKS.

2FAO000-AFFF

HTTP://EN.WIKIBOOKS.

2F12000-12FFF

HTTP://EN.WIKIBOOKS.

2F3000-3FFF

HTTP://EN.WIKIBOOKS.

2FBO00-BFFF

HTTP://EN.WIKIBOOKS.

2F13000-13FFF

HTTP://EN.WIKIBOOKS.

2F1B000-1BFFF

HTTP://EN.WIKIBOOKS.

2F4000-4FFF

HTTP://EN.WIKIBOOKS.

2FCO00-CFFF

HTTP://EN.WIKIBOOKS.

2F5000-5FFF

HTTP://EN.WIKIBOOKS.

2FDO00-DFFF

HTTP://EN.WIKIBOOKS.

2F1D000-1DFFF

HTTP://EN.WIKIBOOKS.

2F6000-6FFF

HTTP://EN.WIKIBOOKS.

2FEOO0O0-EFFF

HTTP://EN.WIKIBOOKS.

2F16000-16FFF

HTTP://EN.WIKIBOOKS.

2F7000-7FFF

HTTP://EN.WIKIBOOKS.

2FFO000-FFFF

HTTP://EN.WIKIBOOKS.

2F1F000-1FFFF

ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES

ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES

ORG/WIKI/UNICODES2FCHARACTER%20REFERENCES

ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES

ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES

ORG/WIKI/UNICODES2FCHARACTER%20REFERENCES

ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES

ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES

ORG/WIKI/UNICODE$2FCHARACTER$20REFERENCES

ORG/WIKI/UNICODE$2FCHARACTER%20REFERENCES

ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES

ORG/WIKI/UNICODE$2FCHARACTER$20REFERENCES

ORG/WIKI/UNICODE$2FCHARACTER%20REFERENCES

ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES

ORG/WIKI/UNICODE$2FCHARACTER%20REFERENCES

ORG/WIKI/UNICODE$2FCHARACTER%20REFERENCES

ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES

ORG/WIKI/UNICODE$2FCHARACTER%20REFERENCES

http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F2000-2FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F2000-2FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FA000-AFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FA000-AFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F12000-12FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F12000-12FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F3000-3FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F3000-3FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FB000-BFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FB000-BFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F13000-13FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F13000-13FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F1B000-1BFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F1B000-1BFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F4000-4FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F4000-4FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FC000-CFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FC000-CFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F5000-5FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F5000-5FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FD000-DFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FD000-DFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F1D000-1DFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F1D000-1DFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F6000-6FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F6000-6FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FE000-EFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FE000-EFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F16000-16FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F16000-16FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F7000-7FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F7000-7FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF000-FFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF000-FFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F1F000-1FFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F1F000-1FFFF

Software Internationalization

SIP

20000-20FFF282
21000-2 1 FFF?%
22000-22FFF2%7
23000-23FFF?%
24000-24FFF%!
25000-25FFF?%?
26000-26FFF?*3
27000-27FFF2*

28000—28FFF?%3
29000-29FFF?28¢
2A000-2 AFFF238
2B000—2BFFF?

2F000-2FFFF%%

SSP
E0000-EQOFFF28

1BFFF;

PUA

282

283

284

285

286

287

288

289

290

291

292

293

294

295

HTTP://EN.WIKIBOOKS.

2F20000-20FFF

HTTP://EN.WIKIBOOKS.

2F28000-28FFF

HTTP://EN.WIKIBOOKS.

2FEO000-EOFFF

HTTP://EN.WIKIBOOKS.

2F21000-21FFF

HTTP://EN.WIKIBOOKS.

2F29000-29FFF

HTTP://EN.WIKIBOOKS.

2F22000-22FFF

HTTP://EN.WIKIBOOKS.

2F2A000-2AFFF

HTTP://EN.WIKIBOOKS.

2F23000-23FFF

HTTP://EN.WIKIBOOKS.

2F2B000-2BFFF

HTTP://EN.WIKIBOOKS.

2F24000-24FFF

HTTP://EN.WIKIBOOKS.

2F25000-25FFF
HTTP://EN.WIKIBOOKS
2F26000-26FFF

HTTP://EN.WIKIBOOKS.

2F27000-27FFF

HTTP://EN.WIKIBOOKS.

2F2F000-2FFFF

ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES

ORG/WIKI/UNICODE$2FCHARACTER$20REFERENCES

ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES

ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES

ORG/WIKI/UNICODE$2FCHARACTER$20REFERENCES

ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES

ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES

ORG/WIKI/UNICODE$2FCHARACTER$20REFERENCES

ORG/WIKI/UNICODE$2FCHARACTER%20REFERENCES

ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES

ORG/WIKI/UNICODE$2FCHARACTER$20REFERENCES

.ORG/WIKI/UNICODE%2FCHARACTERS20REFERENCES

ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES

ORG/WIKI/UNICODE$2FCHARACTER$20REFERENCES

625

http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F20000-20FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F20000-20FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F28000-28FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F28000-28FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FE0000-E0FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FE0000-E0FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F21000-21FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F21000-21FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F29000-29FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F29000-29FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F22000-22FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F22000-22FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F2A000-2AFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F2A000-2AFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F23000-23FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F23000-23FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F2B000-2BFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F2B000-2BFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F24000-24FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F24000-24FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F25000-25FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F25000-25FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F26000-26FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F26000-26FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F27000-27FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F27000-27FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F2F000-2FFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F2F000-2FFFF

Beyond the Standard

PUA

PUA

FO000-FOFFF29¢
F1000-F1FFF3%
F2000-F2FFF3%
F3000-F3FFF308
F4000-F4FFF312

F8000-F8FFF%7
F9000-F9FFF30!
FA000-FAFFF305
FB000-FBFFF3%°
FC000—FCFFF3!3

100000—100FFF%%8
101000—101FFF302
102000-102FFF306
103000—103FFF310
104000—104FFF314

108000—108 FFF%?
109000—109FFF303
10A000-10AFFF307
10B000-10BFFF3!!
10C000-10CFFF31>

296 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES
2FFO0000—-FOFFF

297 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE$2FCHARACTERS20REFERENCES
2FF8000-F8FFF

298 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES
2F100000-100FFF

299 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE$2FCHARACTER%20REFERENCES
2F108000-108FFF

300 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE$2FCHARACTERS20REFERENCES
2FF1000-F1FFF

301 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES
2FF9000-FOFFF

302 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES
2F101000-101FFF

303 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER$20REFERENCES
2F109000-109FFF

304 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES
2FF2000-F2FFF

305 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER$20REFERENCES
2FFAQOO0Q0—-FAFFF

306 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER$20REFERENCES
2F102000-102FFF

307 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES
2F10A000-10AFFF

308 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES
2FF3000-F3FFF

309 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER$20REFERENCES
2FFBO0O0—-FBFFF

310 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES
2F103000-103FFF

311 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER$20REFERENCES
2F10BO00-10BFFF

312 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER$20REFERENCES
2FF4000-F4FFF

313 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES
2FFCO00—-FCFFF

314 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODES2FCHARACTER$20REFERENCES
2F104000-104FFF

315 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%$20REFERENCES
2F10C000-10CFFF

626

http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF0000-F0FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF0000-F0FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF8000-F8FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF8000-F8FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F100000-100FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F100000-100FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F108000-108FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F108000-108FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF1000-F1FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF1000-F1FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF9000-F9FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF9000-F9FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F101000-101FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F101000-101FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F109000-109FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F109000-109FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF2000-F2FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF2000-F2FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FFA000-FAFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FFA000-FAFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F102000-102FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F102000-102FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F10A000-10AFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F10A000-10AFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF3000-F3FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF3000-F3FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FFB000-FBFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FFB000-FBFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F103000-103FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F103000-103FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F10B000-10BFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F10B000-10BFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF4000-F4FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF4000-F4FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FFC000-FCFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FFC000-FCFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F104000-104FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F104000-104FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F10C000-10CFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F10C000-10CFFF

Software Internationalization

PUA

F5000-F5FFF310 FDO0O-FDFFF3!7 105000—105FFF318 10D000—10DFFF31?
F6000-F6FFF320 FE000-FEFFF32! 106000—106FFF322 10E000-10EFFF323
F7000-F7FFF324 FF000-FFFFF3% 107000—107FFF326 10F000-10FFFF327

Currently, about ten percent of the potential space is used. Furthermore, ranges of
characters have been tentatively mapped out for every current and ancient writing
system (script) the Unicode consortium has been able to identify. While Unicode
may eventually need to use another of the spare 11 planes for ideographic charac-
ters, other planes remain. Even if previously unknown scripts with tens of thou-
sands of characters are discovered, the limit of 1,114,112 code points is unlikely
to be reached in the near future. The Unicode consortium has stated that limit will
never be changed.

The odd-looking limit (it is not a power of 2), is not due to UTF-8, which was
designed with a limit of 23! code points (32768 planes), and can encode 22! code
points (32 planes) even if limited to 4 bytes but is due to the design of UTF-16.
In UTF-16 a "surrogate pair" of two 16-bit WORDS3?® is used to encode 22° code
points 1 to 16, in addition to the use of single words to encode plane 0.

316 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES
2FF5000-F5FFF

317 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES
2FFDO0O—-FDFFF

318 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE$2FCHARACTER%20REFERENCES
2F105000-105FFF

319 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES
2F10D000-10DFFF

320 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES
2FF6000-F6FFF

321 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE$2FCHARACTER%20REFERENCES
2FFEOOO—-FEFFF

322 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES
2F106000-106FFF

323 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES
2F10E0O00-10EFFF

324 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE$2FCHARACTER%20REFERENCES
2FF7000-F7FFF

325 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES
2FFFO000-FFFFF

326 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE%2FCHARACTER%20REFERENCES
2F107000-107FFF

327 HTTP://EN.WIKIBOOKS.ORG/WIKI/UNICODE$2FCHARACTER%20REFERENCES
2F10F000-10FFFF

328 Chapter 3.3.1 on page 122

627

http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF5000-F5FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF5000-F5FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FFD000-FDFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FFD000-FDFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F105000-105FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F105000-105FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F10D000-10DFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F10D000-10DFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF6000-F6FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF6000-F6FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FFE000-FEFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FFE000-FEFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F106000-106FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F106000-106FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F10E000-10EFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F10E000-10EFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF7000-F7FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FF7000-F7FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FFF000-FFFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2FFF000-FFFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F107000-107FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F107000-107FFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F10F000-10FFFF
http://en.wikibooks.org/wiki/Unicode%2FCharacter%20reference%2F10F000-10FFFF

Beyond the Standard

UTF-8

UTF-83% is a variable-length encoding of Unicode, using from 1 to 4 bytes for
each character. It was designed for compatibility with ASCII, and as such, single-
byte values represent the same character in UTF-8 as they do in ASCIIL. Because a
UTEF-8 stream doesn’t contain *\Q’s, you may use it directly in your existing C++
code without any porting (except when counting the *actual’ number of character
in it).

UTF-16

UTF-163% is also variable-length, but works in 16 bit units instead of 8, so each

character is represented by either 2 or 4 bytes. This means that it is not compatible
with ASCII.

UTF-32

Unlike the previous two encodings, UTF-32 is not variable-length: every character
is represented by exactly 32-bits. This makes encoding and decoding easier, be-
cause the 4-byte value maps directly to the Unicode code space. The disadvantage
is in space efficiency, as each character takes 4 bytes, no matter what it is.

331

6.8 Optimizations

Optimization can be regarded as a directed effort to increase the performance of
something, an important concept in engineering, in particular, the case of Software
engineering that we are covering. We will deal with specific computational tasks
and best practices to reduce resources utilizations, not only of system resources
but also of programmers and users, all based in optimal solutions evolved from the
empirical validating of hypothesis and logical steps.

All optimization steps taken should have as a goal the reduction of requirements
and the promotion of the program objectives. Any claims can only be substantiated

329 HTTP://EN.WIKIPEDIA.ORG/WIKI/UTF-8
330 HTTP://EN.WIKIPEDIA.ORG/WIKI/UTF-16
331 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

628

http://en.wikipedia.org/wiki/UTF-8
http://en.wikipedia.org/wiki/UTF-16
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Optimizations

by PROFILING*3? the given problem and the applied solution. Without profiling
any optimization is moot.

Optimization is often a topic of discussion among programmers and not all con-
clusions may be consensual, since they are very closely related to the goals, the
programmer experience, and dependent of specific setups. The level of optimiza-
tion will mostly depend directly from actions and decisions the programmer makes.
Those can be simple things, from basic coding practices to the selection of the tools
one choses to use to create the program. Even selecting the right compiler will have
an impact. A good optimizing compiler permits the programmer to define his aspi-
rations for the optimized outcome; how good the compiler is at optimizing depends
on the level of satisfaction the programmer gets from the resulting compilation.

6.8.1 Code

One of the safest ways of optimization is to reduce complexity, ease organization
and structure and at the same time evading code bloat. This requires the capacity to
plan without losing track of future needs, in fact it is a compromise the programmer
makes between a multitude of factors.

Code optimization techniques, fall into the categories of:

* High Level Optimization
* Algorithmic Optimization (Mathematical Analysis)
» Simplification

* Low Level Optimization
* Loop Unrolling
» Strength Reduction
* Duff’s Device
* Clean Loops

KISS

The "keep it simple, stupid" (KISS333) principle, calls for giving simplicity a high
priority in development. It is very similar to a maxim from Albert Einstein’s that
states, "everything should be made as simple as possible, but no simpler.", the
difficulty for many adopters have is to determine what level of simplicity should

332 HTTP://EN.WIKIBOOKS.ORG/WIKI/%$23PROFILING
333 HTTP://EN.WIKIPEDIA.ORG/WIKI/%$3AKISS%20PRINCIPLE

629

http://en.wikibooks.org/wiki/%23Profiling
http://en.wikipedia.org/wiki/%3AKISS%20principle

Beyond the Standard

be maintained. In any case, analysis of basic and simpler system is always easier,
removing complexity will also open the door for code reutilization and a more
generic approach to tasks and problems.

"Always code as if the guy who ends up maintaining your code will be a violent
psychopath who knows where you live."

—Martin Golding

Code cleanup

Most of the benefits of a code cleanup should be evident to the experienced pro-
grammer, they become a second nature due to the adoption of good programming
style guidelines. But as in any human activity, errors will occur and exceptions
made, so, in this section we will try to remember the small changes that can have
an impact on the optimization of your code.

the use of virtual member functions

Remember the cost on performance of virtual members functions (covered when
introducing the VIRTUAL KEYWORD?**). At the time optimization becomes an
issue most project design change regarding optimization will not be possible, but
artifacts may remain to be cleaned up. Guaranteeing that no superfluous use of
virtual (like in the leaf nodes of your class/structure inheritance trees), will permit
other optimizations to occur (i.e.: compiler OPTIMIZED INLINE33%).

The right data in the right container

One of the top bottleneck on today’s systems is dealing with memory CACHES?3,
be it CPU cACHE® or the physical memory resources, even if PAGING>® prob-
lems are becoming increasingly rare. Since the data (and the load level) a program
will handle is highly predictable at the design level, the better optimizations still
fall to the programmer.

334 Chapter 4.3.1 on page 394

335 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23AUTO0%20INLINE
336 HTTP://EN.WIKIPEDIA.ORG/WIKI/CACHE

337 HTTP://EN.WIKIPEDIA.ORG/WIKI/CPU%20CACHE

338 HTTP://EN.WIKIPEDIA.ORG/WIKI/PAGING

630

http://en.wikibooks.org/wiki/%23auto%20inline
http://en.wikipedia.org/wiki/Cache
http://en.wikipedia.org/wiki/CPU%20cache
http://en.wikipedia.org/wiki/Paging

Optimizations

One should store the appropriate data structure in the appropriate container, prefer
storing pointers to objects rather than the objects themselves, use "smart" pointers
(see the Boost library) and don’t attempt to store auto_ptr<> in STL containers, it
is not allowed by the Standard, but some implementations are known to incorrectly
allow it.

Avoid removing and inserting elements in the middle of a container, doing it at the
end of the container has less overhead. Use STL containers when the number of
objects is unknown; use static array or buffer when it is known. This requires the
understanding of not only each container, but its O(x) guarantees.

Take as an example the STL containers on the issue of using
(myContainer.empty()) versus (myContainer.size() == 0), it is impor-
tant to understand that depending on the container type or its implementation, the
size member function might have to count the number of objects before comparing
it to zero. This is very common with list type containers.

While the STL attempts to provides optimal solutions to general cases, if perfor-
mance does not match your requirements think about writing your own optimal
solution for your case, maybe a custom container (probably based on vector) that
does not call individual object destructors and uses custom allocators that avoid
the delete time overhead.

Using pre-allocation of memory can provide some speed gains and be as simple
remember to use the STL vector<T>::reserve() if permitted. Optimize the use sys-
tem’s memory and the target hardware. In today’s systems, with virtual memory,
threads and multiple-cores (each with its own cache) where I/O operations on the
main memory and the amount of time spent moving it around, can slow things
down. This can become a performance bottleneck. Instead opt for array-based
data structures (cache-coherent data structures), like the STL vector, because data
is stored contiguously in memory, over pointer-linked data structures as in linked
lists. This will avoid "death by swapping", as the program needs to access highly
fragmented data, and will even help the memory pre-fetch that most modern pro-
cessors do today.

Whenever possible avoid returning containers by value, pass containers by refer-
ence.

Consider security costs

Security always has a cost, even in programming. For any algorithm, adding
checks, will result in increase the number of steps it takes to finish. As languages

631

Beyond the Standard

get more complex and abstract, understanding all the finer details (and remember
them) increases the time needed to obtain the required experience. Sadly most of
the steps taken by some of the implementors of the C++ language lack visibility to
the programmer and since they are outside of the standard language, aren’t often
learned. Remember to familiarized yourself with any extensions or particularities
of the C++ implementation you are using.

As a language that puts the power of decision into the programmer’s hands, C++
provides several instances where the a similar result can be archived by similar but
distinct means. Understanding the sometimes subtle differences is important. For
instance, when deciding the needed requirements in ACCESSING MEMBERS OF A
STD::VECTOR>?, you can chose [], at() and the an iterator, all have similar results
but with distinct performance costs and security considerations.

Code reutilization

Optimization is also reflected on the effectiveness of a code. If you can use an
already existing code base/framework that a considerable number of programmers
have access to, you can expect it to be less buggy and optimized to solve your
particular need.

Some of these code repositories are available to programmers as libraries. Be
careful to consider dependencies and check how implementation is done: if used
without considerations this can also lead to code bloat and increased memory foot-
print, as well as decrease the portability of the code. We will take a close look at
them in the LIBRARIES SECTION** of the book.

To increase code reutilization you will probably fragment the code in smaller sec-
tions, files or code, remember to equate that more files and overall complexity also
increases compile time.

Function and algorithmic optimizations

When creating a function or a algorithm to address a specific problem sometimes
we are dealing with mathematical structures that are specifically indicated to be

339 Chapter 5.2.2 on page 503
340 Chapter 6.3.3 on page 584

632

Optimizations

optimized by established methods of mathematical minimization, this falls into the
specific field of ENGINEERING ANALYSIS FOR OPTIMIZATION*!,

Use of inline

As seen before when examining the inline keyword, it allows the definition
of an inline type of function, that works similarly to LOOP UNWINDING>*? for
increasing code performance. A non-inline function requires a call instruction,
several instructions to create a stack frame, and then several more instructions to
destroy the stack frame and return from the function. By copying the body of the
function instead of making a call, the size of the machine code increases, but the
execution time decreases.

In addition to using the inline keyword to declare an inline function, optimiz-
ing compilers may decide to make other functions inline as well (see COMPILER
OPTIMIZATIONS* section).

ASM

If portability is not a problem and you are proficient with assembler you can use it
to optimize computational bottlenecks, even looking at the output of a disassembler
will often help looking for ways to improve it. Using ASM in your code brings
to the table some other problems (maintainability for instance) so use it at a last
resort in you optimization process, and if you use it be sure to document what you
have done well.

The x86 DISASSEMBLY*** Wikibook provides some OPTIMIZATION EXAM-
PLES* using x86 ASM code.

Note:
If using the gcc compiler, the -S option will output the compilation generated
assembly.

341 HTTP://EN.WIKIBOOKS.ORG/WIKI/ENGINEERING%20ANALYSISS
2FOPTIMIZATION

342 HTTP://EN.WIKIBOOKS.ORG/WIKI/X86%20DISASSEMBLY%2FCODE%
200PTIMIZATIONS23L0OOP_UNWINDING

343 Chapter 6.8.3 on page 634

344 HTTP://EN.WIKIBOOKS.ORG/WIKI/X86%20DISASSEMBLY

345 HTTP://EN.WIKIBOOKS.ORG/WIKI/X86%20DISASSEMBLY$2FOPTIMIZATIONS
20EXAMPLES

633

http://en.wikibooks.org/wiki/Engineering%20Analysis%2FOptimization
http://en.wikibooks.org/wiki/Engineering%20Analysis%2FOptimization
http://en.wikibooks.org/wiki/X86%20Disassembly%2FCode%20Optimization%23Loop_Unwinding
http://en.wikibooks.org/wiki/X86%20Disassembly%2FCode%20Optimization%23Loop_Unwinding
http://en.wikibooks.org/wiki/x86%20Disassembly
http://en.wikibooks.org/wiki/x86%20Disassembly%2FOptimization%20Examples
http://en.wikibooks.org/wiki/x86%20Disassembly%2FOptimization%20Examples

Beyond the Standard

6.8.2 Reduction of compile time

Some projects may take a long time to compile. To reduce the time it takes to finish
compiling the first step is to check if you have the any Hardware deficiencies. You
may be low in resources like memory or just have a slow CPU, even having your
HD with a high level of fragmentation can increase compile time.

On the other side, problems may not be due to hardware limitations but in the tools
you use, check if you are using the right tools for the job at hand, see if you have
the latest version, or if do, if that is what is causing trouble, some incompatibilities
may result from updates. In compilers new is always better, but you should check
first what has changed and if it serves your purposes.

Experience tells that most likely if you are suffering from slow compile times, the
program you are trying to compile was probably poorly designed, check the struc-
ture of object dependencies, the includes and take some the time to structure your
own code to minimize re-compilation after changes if the compile time justifies it.

Use pre-compiled headers and external header guards this will reduce the work
done by the compiler.

6.8.3 Compiler optimizations

COMPILER OPTIMIZATION?* is the process of tuning, mostly automatically, the
output of a compiler in an attempt to improve the operations the programmer has
requested, so to minimize or maximize some attribute of an compiled program
while ensuring the result is identical. By rilling in the compiler optimization
programmers can write more intuitive code, and still have them execute in a rea-
sonably fast way, for instance skipping the use of PRE-INCREMENT/DECREMENT
OPERATORS*/,

Generally speaking, optimizations are not, and can not be, defined on the C++
standard. The standard sets rules and best practices that dictate a normalization of
inputs and outputs. The C++ standard itself permits some latitude on how compil-
ers perform their task since some sections are marked as implementation depen-
dent but generally a base line is established, even so some vendors/implementors
do creep in some singular characteristic apparently for security and optimization
benefits.

346 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPILER%200PTIMIZATION
347 Chapter 3.4.3 on page 166

634

http://en.wikipedia.org/wiki/Compiler%20optimization

Optimizations

One notion that is good to keep in mind is that there is not a perfect C++ compiler,
but most recent compilers will do several simple optimizations by default, that
attempt to abstract and take advantage of existing deeper hardware optimizations
or specific characteristics of the target platform, most of these optimizations are
almost always welcomed but it is up to the programmer still to have and idea
of what is going on and if indeed they are beneficial. As a result it is highly
recommended to examine your compiler documentation on how it operates and
what optimizations are under the programmer’s control, just because a compiler
can make some optimization in theory does not mean that it will or even that it will
result in an optimization.

The most common compiler optimizations options available to the programmer
fall into three categories:

* Speed; improving the runtime performance of the generated object code. This is
the most common optimization

* Space; reducing the size of the generated object code

 Safety; reducing the possibility of data structures becoming corrupted (for ex-
ample, ensuring that an illegal array element is not written to)

Unfortunately, many "speed" optimizations make the code larger, and many
"space" optimizations make the code slower -- this is known as the SPACE-TIME
TRADEOFF*8,

auto-inline

Auto-inlining is similar to implicit inline. Inlining can be an optimization, or a
pessimization depending on the code and optimization options selected.

Making use of extended instructions sets
GPU
6.8.4 Run time

As we have seen before runtime is the duration of a program execution, from be-
ginning to termination. This is were all resources needed to run the compiled code

348 HTTP://EN.WIKIPEDIA.ORG/WIKI/SPACE-TIME%20TRADEOFF

635

http://en.wikipedia.org/wiki/space-time%20tradeoff

Beyond the Standard

are allocated and hopefully released, this is the final objective of any program to
be executed, as such it should be the target for ultimate optimizations.

6.8.5 Memory footprint

In the past computer memory has been expensive and technologically limited in
size, and scarce resource for programmers. Large amounts of ingenuity was spent
in implement complex programs and process huge amounts of data using as lit-
tle as possible of this resource. Today, modern systems contain enough memory
for most usages but capacity demands and expectations have increased as well; as
such, techniques to minimize memory usage may still be essential and in fact oper-
ational performance has gained a new momentum with the increasing importance
of mobile computing.

Measuring the memory usage of a program is difficult and time consuming, and the
more complex the program is the harder it becomes to get good metrics. One other
side of the problem is that there are no standard benchmarks (not all memory use
is equal) or practices to deal with the problem beyond the most basic and generic
considerations.

Note:

Take in consideration that performing memory tests in a debug compile will
not, in most circumstances, produce any valid insight on memory use, at best
it can provide you an indication of the expected ceiling for memory use in the
tested functions.

Remember to use swap () on std: :vector (or deque).

When attempting to reduce reduce (or zero) the size of a vector or deque using the
swap (), on a standard container of that type, will guarantee that the memory is
released and no overhead buffer for growth is used. It will also avoid the fallacy of
using erase () or reserve () that will not reduce the memory footprint.

Lazy initialization
It is always needed to maintain the balance between the performance of the system

and the resource consumption. Lazy instantiation is one memory conservation
mechanism, by which the object initialization is deferred until it is required.

636

Optimizations

Look at the following example:

#include <iostream>

class Wheel {
int speed;
public:
int getSpeed () {
return speed;
}
void setSpeed(int speed) {
this->speed = speed;
}
i

class Car{
private:
Wheel wheel;
public:
int getCarSpeed() {
return wheel.getSpeed();
}
char *getName () {
return "My Car is a Super fast car";
}
i

int main() {
Car myCar;
std::cout << myCar.getName();

}

Instantiation of class Car by default instantiates the class Wheel. The purpose of
the whole class is to just print the name of the car. Since the instance wheel doesn’t
serve any purpose, initializing it is a complete resource waste.

It is better to defer the instantiation of the un-required class until it is needed.
Modify the above class Car as follows:

class Car{
private:
Wheel *wheel;
public:
Car() {
wheel=NULL; // a better place would be in the class constructor
initialization list
}
~Car () {
if (wheel) {
delete wheel;
}
}
int getCarSpeed() {
if (wheel == NULL) {
wheel = new Wheel ();

637

Beyond the Standard

}
return wheel->getSpeed();

}
char *getName () {
return "My Car is a Super fast car";
}
bi
Now the Wheel will be instantiated only when the member function getCarSpeed()
is called.

6.8.6 Parallelization

As seen when examining THREADS>*, they can be a "simple" form of taking ad-
vantage of hardware resources and optimize the speed performance of a program.
When dealing with thread you should remember that it has a cost in complexity,
memory and if done wrong when synchronization is required it can even reduce
the speed performance, if the design permits it is best to allow threads to run as
unencumbered as possible.

6.8.7 1/0 reads and writes

o i |

RESTRICTION

Figure 28: A Schematic of a Queue System

349 Chapter 6.6.2 on page 606

638

Optimizations

6.8.8 Profiling

Profiling is a form of DYNAMIC PROGRAM ANALYSIS? (as opposed to STATIC
CODE ANALYSIS®!), consists in the study of program’s behavior using informa-
tion gathered as the program executes. its purpose is usually to determine which
sections of a program to optimize. Mostly by determining which parts of a program
are taking most of the execution time, causing bottleneck on accessing resources
or the level of access to those resources.

Global clock execution time should be the bottom line when comparing applica-
tions performance. Select your algorithms by examining the asymptotic order of
executions, as in a parallel setup they will continue to give the best performance.
In the case you find an hotspot that can not be parallelized, even after examin-
ing higher levels on the call stack, then you should attempt to find a slower but
parallelizable algorithm.

branch-prediction profiler

call-graph generating cache profiler

line-by-line profiling

heap profiler

Profiler
Free Profiling tools
* Valgrind (HTTP://VALGRIND.ORG/?2) an instrumentation framework for

building dynamic analysis tools. Includes a cache and branch-prediction pro-
filer, a call-graph generating cache profiler, and a heap profiler. It runs on the

350 HTTP://EN.WIKIPEDIA.ORG/WIKI/DYNAMIC%20PROGRAMS20ANALYSIS
351 HTTP://EN.WIKIPEDIA.ORG/WIKI/STATIC%20CODE%$20ANALYSIS
352 HTTP://VALGRIND.ORG/

639

http://en.wikipedia.org/wiki/dynamic%20program%20analysis
http://en.wikipedia.org/wiki/static%20code%20analysis
http://valgrind.org/

Beyond the Standard

following platforms: X86/Linux, AMD64/Linux, PPC32/Linux, PPC64/Linux,
and X86/Darwin (Mac OS X). Open Source under the GNU General Public Li-
cense, version 2.

* GNU gprof (HTTP://WWW.GNU.ORG/SOFTWARE/BINUTILS/>?) a profiler
tool. The program was first was introduced on the SIGPLAN Symposium on
Compiler Construction in 1982, and is now part of the binutils that are available
in mostly all flavors of UNIX. It is capable of monitoring time spent in functions
(or even source code lines) and calls to/from them. Open Source under the GNU
General Public License.

6.9 Further reading

e OPTIMIZING C++34

355 w:UNIFIED MODELING LANGUAGE3®

6.10 Modeling Tools

Long gone are the days when you had to do all software designing planing with
pencil and paper, it’s known that bad design can impact the quality and maintain-
ability of products, affecting time to market and long term profitability of a project.

The solution seems to be CASE and modeling tools which improve the design
quality and help to implement design patterns with ease that in turn help to improve
design quality, auto documentation and the shortening the development life cycles.

6.10.1 UML (Unified Modeling Language)

Since the late 80s and early 90s, the software engineering industry as a whole
was in need of standardization, with the emergence and proliferation of many
new competing software design methodologies, concepts, notations, terminolo-
gies, processes, and cultures associated with them, the need for unification was
self evident by the sheer number of parallel developments. A need for a common

353 HTTP://WWW.GNU.ORG/SOFTWARE/BINUTILS/

354 HTTP://EN.WIKIBOOKS.ORG/WIKI/OPTIMIZING%20C%2B%2B

355 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
356 HTTP://EN.WIKIPEDIA.ORG/WIKI/UNIFIED%20MODELING%20LANGUAGE

640

http://www.gnu.org/software/binutils/
http://en.wikibooks.org/wiki/Optimizing%20C%2B%2B
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikipedia.org/wiki/Unified%20Modeling%20Language

Chapter Summary

ground on the representation of software design was badly needed and to archive
it a standardization of geometrical figures, colors, and descriptions.

The UML (Unified Modeling Language) was specifically created to serve this pur-
pose and integrates the concepts of BoocH>Y7 (Grady Booch is one of the orig-
inal developers of UML and is recognized for his innovative work on software
architecture, modeling, and software engineering processes), OMT>%, OOSE3>,
CLASS-RELATION® and OORAM?®!and by fusing them into a single, common
and widely usable modeling language tried to be the unifying force, introducing a
standard notation that was designed to transcend programming languages, operat-
ing systems, application domains and the needed underlying semantics with which
programmers could describe and communicate. With its adoption in November
1997 by the OMG (OBJECT MANAGEMENT GROUP®?) and its support it has be-
come an industry standard. Since then OMG has called for information on object-
oriented methodologies, that might create a rigorous software modeling language.
Many industry leaders had responded in earnest to help create the standard, the last
version of UML (v2.0) was released in 2004.

UML is still widely used by the software industry and engineering community. In
later days a new awareness has emerged (commonly called UML fever) that UML
per se has limitations and is not a good tool for all jobs. Careful study on how and
why it is used is needed to make it useful.

363

6.11 Chapter Summary

1. RESOURCE ACQUISITION IS INITIALIZATION (RAII)364
2. GARBAGE COLLECTION (GC)3%5

357 HTTP://EN.WIKIPEDIA.ORG/WIKI/GRADY%$20BOOCH

358 HTTP://EN.WIKIPEDIA.ORG/WIKI/OBJECT—MODELING%20TECHNIQUE

359 HTTP://EN.WIKIPEDIA.ORG/WIKI/OBJECT—ORIENTED%20SOFTWARES
20ENGINEERING

360 HTTP://EN.WIKIPEDIA.ORG/WIKI/CLASS—RELATION

361 HTTP://EN.WIKIPEDIA.ORG/WIKI/OBJECT%$200RIENTED$20ROLES
20ANALYSIS%20METHOD

362 HTTP://EN.WIKIPEDIA.ORG/WIKI/OBJECT%$20MANAGEMENT%20GROUP

363 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3AC%2B%2B%20PROGRAMMING

364 Chapter 6 on page 537

365 Chapter 6.1 on page 540

641

http://en.wikipedia.org/wiki/Grady%20Booch
http://en.wikipedia.org/wiki/Object-modeling%20technique
http://en.wikipedia.org/wiki/Object-oriented%20software%20engineering
http://en.wikipedia.org/wiki/Object-oriented%20software%20engineering
http://en.wikipedia.org/wiki/Class-Relation
http://en.wikipedia.org/wiki/Object%20Oriented%20Role%20Analysis%20Method
http://en.wikipedia.org/wiki/Object%20Oriented%20Role%20Analysis%20Method
http://en.wikipedia.org/wiki/Object%20Management%20Group
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Beyond the Standard

o

5383

5384

DESIGN PATTERNS®® - CREATIONAL3®7, STRUCTURAL3®® and BEHAV-
10RAL3® patterns.

. LIBRARIES?"® - APIS vs FRAMEWORKS3’! and STATIC AND DYNAMIC

LIBRARIES372.
BOOST LIBRARY>"3
OPTIMIZING YOUR PROGRAMS37#
CROSS-PLATFORM DEVELOPMENT?">
a) WIN32 (AKA WINAPI)376 - including WIN32 WRAPPERS>’’.
b) CROSS-PLATFORM WRAPPERS>
¢) MULTITASKING>"?
SOFTWARE INTERNATIONALIZATION380
a) TEXT ENCODING?!
UNIFIED MODELING LANGUAGE (UML)32

366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

642

Chapter 6.2 on page 541
Chapter 6.3 on page 543
Chapter 6.3.1 on page 559
Chapter 6.3.2 on page 564
Chapter 6.3.3 on page 584
Chapter 6.4 on page 585
Chapter 6.4.1 on page 586
Chapter 6.4.2 on page 588
Chapter 6.7.2 on page 628
Chapter 6.5.6 on page 597
Chapter 6.6 on page 598
Chapter 6.6.1 on page 603
Chapter 6.6.1 on page 605
Chapter 6.6.2 on page 606
Chapter 6.6.6 on page 621
Chapter 6.7 on page 621
Chapter 6.9 on page 640

HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

7 Appendix A: Internal References

* List of Keywords

[included next to The Compiler]

e List of Standard Headers

[included in The preprocessor Chapter (next to the #include keyword)]

* Table of Preprocessors

[included in The preprocessor Chapter]

* Table of Operators

[included in the introduction to Operators]

* Table of Data Types

[included in the introduction to Variables]

To prevent duplication of content references are removed you may find them
on the given locations.

643

Appendix A: Internal References

644

8 Appendix B: External References

8.1 Reference Sites

* http://www.research.att.com/"bs/C++.html

Bjarne Stroustrup’s C++ page.

e HTTP://WWW.OPEN-STD.ORG/JTC1/SC22/WG21/DOCS/LIBRARY_-
TECHNICAL_REPORT.HTML!

C++ Standard Library Technical Report.
* http://www.open-std.org/jtc1/sc22/wg21/

C++ Standards Committee’s official ~ website, previously at
HTTP://ANUBIS.DKUUG.DK/JTC1/8C22/WG21/% , ISO/IEC JTC1/SC22/WG21
is the international standardization working group for the programming language
C++.

* http://www.sgi.com/tech/stl/index.html

The SGI Standard Template Library Programmer’s Guide.

1 HTTP://WWW.OPEN—STD.ORG/JTCl/sc22/wG21/D0CS/LIBRARY_TECHNICAL_
REPORT.HTML
2 HTTP://ANUBIS.DKUUG.DK/JTCcl/sc22/wG21/

645

http://www.open-std.org/jtc1/sc22/wg21/docs/library_technical_report.html
http://www.open-std.org/jtc1/sc22/wg21/docs/library_technical_report.html
http://anubis.dkuug.dk/jtc1/sc22/wg21/

Appendix B: External References

8.2 Compilers and IDEs

8.2.1 Free or with free versions

* http://gcc.gnu.org/

GCC , the GNU Compiler Collection, which includes a compiler for C++.

* http://www.mingw.org/

MinGW, a Win32 port of the GNU Compiler Collection and toolset designed for
compatibility with the host OS.

* http://sourceware.cygnus.com/cygwin

Cygwin, a Win32 port of GCC and GNU Utils designed to simulate a Unix-style
environment.

* http://www.microsoft.com/visualstudio/en-us/products/2010-editions/visual-
Cpp-express

The Microsoft Visual C++ 2010 Express Edition. It also allows you to build ap-
plications that target the Common Language Runtime (CLR). You should read
their license for yourself to make sure. MFC, ATL and the Windows header-
s/libraries are not included with this version. To create Windows programs, you
will need to DOWNLOAD THE MICROSOFT PLATFORM SDK? as well (for the
Windows headers and import libraries).

* http://hpgcc.sourceforge.net/

HP-GCC comprises the GNU C compiler targeted at the ARM processor of
ARM-based HP calculators (like the HP49g+), HP specific libraries, a tool
(ELF2HP) that converts the gcc produced binary to the appropriate format for
the HP calculator, and an emulator (ARM Toolbox/ARM Launcher) that lets you

3 HTTP://WWW.MICROSOFT.COM/DOWNLOADS/DLX/EN—-US/LISTDETAILSVIEW.
ASPX?FAMILYID=6B6C21D2-2006-4AFA-9702-529FrA782D63B

646

http://www.microsoft.com/downloads/dlx/en-us/listdetailsview.aspx?FamilyID=6b6c21d2-2006-4afa-9702-529fa782d63b
http://www.microsoft.com/downloads/dlx/en-us/listdetailsview.aspx?FamilyID=6b6c21d2-2006-4afa-9702-529fa782d63b

Compilers and IDEs

execute ARM programs on your computer. At present, only a Windows version
is available, but the site says that Linux and Mac OS X versions are "on the way".

* http://www.ultimatepp.org/

Ultimate++ a C++ cross-platform and Open Source rapid application develop-
ment suite focused on programmers productivity. It includes a set of libraries
(GUI, SQL, etc..), and an integrated development environment.

The IDE can work with GCC, MinGW and Visual C++ 7.1 or 8.0 compilers (in-
cluding free Visual C++ Toolkit 2003 and Visual C++ 2005 Express Edition) and
contains a full featured debugger.

* http://www.codelite.org/

Codelite, open-source under the terms of the GPL license, cross platform IDE
for the C/C++ programming languages (tested on Windows XP SP3, (K)Ubuntu
8.04, and Mac OSX 10.5.2).

* http://www.codeblocks.org/

Code::Blocks, C++ cross-platform and Open Source (GPL2) IDE, runs on Linux
or Windows (uses wxWidgets), supports GCC (MingW/Linux GCC), MSVC++,
Digital Mars, Borland C++ 5.5 and Open Watcom compilers. Offers syntax high-
lighting (customizable and extensible), code folding, tabbed interface, code com-
pletion, class browser, smart indent and a To-do list management with different
users and more.

* http://www.bloodshed.net/devcpp.html

Dev-C++, a free IDE including a distribution of MinGW. Delphi and C source
code available.

* http://wxdsgn.sourceforge.net/

wxDev-C++, an IDE/RAD tool resulting from extending Dev-C++. With all the
features of the previous plus others. Uses GCC for the compiler, and adds an IDE
and a form designer supporting wxWidgets.

* http://quincy.codecutter.org/

647

Appendix B: External References

Quincy 2005, a simple IDE for C and C++ under Windows. Installs the MinGW
compiler and GDB debugger. Designed as a friendly learning environment. Pub-
lic domain C++ source code.

* http://www.delorie.com/djgpp/

Djgpp, a free compiler for C, C++, Forth, Pascal and more including C sources.
Runs under DOS.

* http://www.digitalmars.com

Digital Mars, a free C and C++ Compiler for DOS, Win & NT by the author of
Zortech C++.

* http://developer.apple.com/tools/mpw-tools/

Macintosh Programmer’s Workshop (MPW). Same software and documentation
as the "Tool Chest:Development Kits:MPW etc." folder on the August 2001 De-
veloper CD.

* http://www.openwatcom.org/

OpenWatcom, the Open Watcom is a joint effort between SciTech Software,
Sybase®, and a select team of developers, which will bring the Sybase Watcom
C, C++ and Fortran compiler products to the Open Source community.

* http://msdn.microsoft.com/mobility/prodtechinfo/devtools/eVisualc/default.aspx

Microsoft eMbedded Visual C++ allows you to develop for Windows CE. It in-
cludes an IDE, which includes an integrated debugger.

* http://www.borland.com/products/downloads/download_cbuilder.html

Borland C++Builder v5.5

* http://www.eclipse.org/

648

Misc. C++ Tools

Eclipse, a multi-language IDE with support for C++ through the CDT plugin. It
requires a GCC backend. There is a download specifically for C++ developers
that does not include the Java libs.

8.2.2 Commercial

* http://www.intel.com/software/products/compilers/

Intel Compiler, a Intel® compilers. Compatible with the tools developers use,
Intel compilers plug into popular development environments and feature source
and binary compatibility with widely-used compilers. Every compiler purchase
includes one year of Intel® Premier Support, providing updates, technical support
and expertise for the Intel® architecture. [Intel CPUs ONLY]

* http://comeaucomputing.com/

Comeau C/C++ Compiler. It is closest to the C++ Standard. Available for pur-
chase Comeau C/C++ supports Core C++03 language enhancements for all major
and minor features of C++ and C, including export.

8.3 Misc. C++ Tools

8.3.1 Free or with a free version

* http://www.stack.nl/"dimitri/doxygen/

Doxygen is a documentation system for C++, C, and other programming lan-
guages.

* http://valgrind.kde.org/

Valgrind, a system for debugging and profiling applications at runtime. The sys-
tem runs on nearly any x86 linux (sorry, no amd64 yet). It can detect memory

649

Appendix B: External References

leaks, illegal memory access, double deletes, cache misses, code coverage and
much, much more.

* http://msdn.microsoft.com/visualc/vctoolkit2003/

Microsoft Visual C++ Toolkit 2003, This is a free optimizing compiler provided
by Microsoft that developers can use to develop and compile applications in C or
C++. It is the same compiler that ships with the professional edition of Visual
Studio. It ships with the standard library and sample code.

* http://ccbuild.sourceforge.net/?page=home

ccbuild, a C++ source scanning build utility for code distributed over directories.
Like a dynamic Makefile, ccbuild finds all programs in the current directory (con-
taining "int main") and builds them. For this, it reads the C++ sources and looks
at all local and global includes. All C++ files surrounding local includes are con-
sidered objects for the main program. The global includes lead to extra compiler
arguments using a configuration file. Next to running g++ it can create simple
Makefiles, A-A-P files, and graph dependencies using DOT (Graphviz) graphs.
(Linux only)

8.4 LIBRARIES?

8.4.1 Free or with free versions

* http://www.boost.org/

The Boost web site. Boost is a large collection of high-quality libraries for C++,
some of which are likely to be included in future C++ standards.

* http://www.samblackburn.com/wfc/index.html/

The WFC (Win32 Foundation Classes) site.

* http://sourceforge.net/projects/wtl/

4 Chapter 6.3.3 on page 584

650

LIBRARIES’

The WTL site.

* http://www.oonumerics.org/blitz/

Blitz++ is a C++ class library for scientific computing which provides perfor-
mance on par with Fortran 77/90. It uses template techniques to achieve high
performance. The current versions provide dense arrays and vectors, random
number generators, and small vectors and matrices. Blitz++ is distributed freely
under an open source LICENSE?, and contributions to the library are welcomed.

* http://www.bdsoft.com/tools/stlfilt.html

STLFilt is a STL Error Message Decryptor for C++. It simplifies and/or refor-
mats long-winded C++ error and warning messages, with a focus on STL-related
diagnostics.

* http://www.swox.com/gmp/

GMP is a free library for arbitrary precision arithmetic, operating on signed in-
tegers, rational numbers, and floating point numbers. There is no practical limit
to the precision except the ones implied by the available memory in the machine
GMP runs on.

* http://www.cryptopp.com/

Crypto++ Library is a free C++ class library of cryptographic schemes.

* http://alleg.sourceforge.net/

Allegro is a game programming library for C/C++ developers distributed
FREELY®, supporting the following platforms: DOS, Unix (Linux, FreeBSD,
Irix, Solaris, Darwin), Windows, QNX, BeOS and MacOS X. It provides many
functions for graphics, sounds, player input (keyboard, mouse and joystick) and

5 HTTP://WWW.OONUMERICS.ORG/BLITZ/LEGAL/
6 HTTP://ALLEG.SOURCEFORGE.NET/LICENSE.HTML

651

http://www.oonumerics.org/blitz/legal/
http://alleg.sourceforge.net/license.html

Appendix B: External References

timers. It also provides fixed and floating point mathematical functions, 3d func-
tions, file management functions, compressed datafile and a GUI.

* http://fitk.org/

FLTK (pronounced "fulltick") is a cross-platform C++ GUI toolkit for
UNIX®/Linux® (X11), Microsoft® Windows®, and MacOS® X. FLTK pro-
vides modern GUI functionality without the bloat and supports 3D graphics via
OpenGL® and its built-in GLUT emulation. FLTK is designed to be small and
modular enough to be statically linked, but works fine as a shared library. FLTK
also includes an excellent UI builder called FLUID that can be used to create
applications in minutes.

* http://www.libsdl.org/

Simple DirectMedia Layer is a cross-platform multimedia library for C/C++. It
provides low-level acces to 2D frame-buffer and hardware accelerated 3D graph-
ics(using OpenGL), audio, threads, timers,user input and event handling. Other
features are available through "plug-in libraries". Linux, Windows, BeOS, Ma-
cOS Classic, MacOS X, FreeBSD, OpenBSD, BSD/OS, Solaris, IRIX, and QNX
are supported and there’s some unofficial support for other platforms. SDL is
available under the GNU LGPLS3 license.

* http://www.hpcfactor.com/developer/

SDKs for older platforms and from third parties. Includes a redistributable that
contains the MFC library’s for Windows CE 1, 2, HPC Pro, Palm-Size PC 1.2,
HPC2000 and a limited number from Windows CE 4.0.

* http://qt.nokia.com

Qt (pronounced "cute"), a multi-platform API that contains a Ul toolkit as well
as a core library. It is extremely modular, but to use it effectively, you should use
at least UI+Core.

* http://loki-lib.sourceforge.net/

8 HTTP://WWW.GNU.ORG/COPYLEFT/LESSER.HTML

652

http://www.gnu.org/copyleft/lesser.html

C++ Coding Conventions

Loki is a C++ library which demonstrates and encourages the use of generic pro-
gramming and design patterns. It was written to accompany the book entitled
"Modern C++ Design." The library includes a parametrized smart pointer class,
generalized functors, a multi-threading abstraction, and some help for important
patterns. Open source released under the MIT license.

* http://tinythread.sourceforge.net/

TinyThread++, a light weight, portable C++ thread library that implements a sub-
set of the C++0x standard, including the thread, mutex and condition_variable
classes. Open source, released under the zlib/libpng License.

8.5 C++ Coding Conventions

8.5.1 Source Code Formatting rules

* http://www.cs.usyd.edu.au/"scilect/tpop/handouts/Style.htm

Kernighan and Ritchie (or K&R) style

* http://www.nongnu.org/style-guide/

GNU Programmer’s Style Guide

* http://Ixr.linux.no/source/Documentation/CodingStyle

Linux kernel coding style

8.5.2 Comprehensive Source Code Convention guidelines

* http://quantlib.org/style.shtml

QuantLib Programming Style Guidelines

653

Appendix B: External References

* http://www.research.att.com/"bs/bs_faq2.html

Bjarne Stroustrup’s C++ Style and Technique FAQ

* http://www.artima.com/intv/goldilocks.html

The C++ Style Sweet Spot A Conversation with Bjarne Stroustrup, Part I by Bill
Venners

* http://developer.kde.org/documentation/other/binarycompatibility.html

KDE Binary Compatibility Issues With C++

* http://www.mozilla.org/hacking/portable-cpp.html

C++ portability guide version 0.8 originally by David Williams, 27 March 1998

* http://www.chris-lott.org/resources/cstyle/Ellemtel-rules-mm.html

Programming in C++, Rules and Recommendations by FN/Mats Henricson and
Erik Nyquist

* http://www.chris-lott.org/resources/cstyle/Wildfire-C++Style.html

Wildfire C++ Programming Style With Rationale by Keith Gabryelski
* http://www.kuroShin.org/story/2002/5/9/205040/3918

Musings on Good C++ Style (Technology) by GoingWare
* http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml

Google C++ Style Guide

* https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageld=637

654

Online C++ books, guides and general information

CERT C++ Secure Coding Standard
* http://www.research.att.com/"bs/JSF-AV-rules.pdf

Joint Strike Fighter air vehicle: C++ coding standards 2005

* http://www.chris-lott.org/resources/cstyle/

C and C++ Style Guides by Chris Lott, lists many popular C++ style guides.

* http://www.misra-cpp.org/

MISRA C++: Guidelines for the use of the C++ language in critical systems
published by The Motor Industry Software Reliability Association (MISRA®)
(based on a subset of C++).

* http://freeworld.thc.org/root/phun/unmaintain.html

A very funny satiric text that turns the tables on the issues concerning coding
style by Roedy Green.

10

8.6 Online C++ books, guides and general information

* MORE C++ ID10MS!!, covering modern C++ idioms.

» WINDOWS PROGRAMMING'2, a Wikibook on Windows API (C and VB Clas-
sic), MFC (C++), COM and creation of ActiveX modules.

» OPTIMIZING C++!3, covering how C++ programmers can improve a program’s
performance.

9 HTTP://EN.WIKIPEDIA.ORG/WIKI/MISRA

10 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
11 HTTP://EN.WIKIBOOKS.ORG/WIKI/MORE%20C%2B%2B%20IDIOMS

12 HTTP://EN.WIKIBOOKS.ORG/WIKI/WINDOWS%20PROGRAMMING

13 HTTP://EN.WIKIBOOKS.ORG/WIKI/OPTIMIZING%20C%2B%2B

655

http://en.wikipedia.org/wiki/MISRA
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/More%20C%2B%2B%20Idioms
http://en.wikibooks.org/wiki/Windows%20Programming
http://en.wikibooks.org/wiki/Optimizing%20C%2B%2B

Appendix B: External References

» LINUX APPLICATIONS DEBUGGING TECHNIQUES'4, a hands-on guide to de-
bugging applications under Linux.

+ C++ IN AcTION', by Bartosz Milewski

e TEACH YOURSELF C++ IN 21 DAYS, SECOND EDITION!®

* MORE C++!7, by Tim Love, July 5, 2001

« INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING USING C++!8, by
Peter Miiller, 1997.

+ C++ PROGRAMMING FOR SCIENTISTS!?, by Roldan Pozo and Karin Reming-
ton

¢ C++ FOR UNIX?, a broken link, a quick reference, with C variations

+ STL QUICK REFERENCE?!, probably by Pablo Halpern,

+ C++ A DIALOG??, by Steve Heller

e LEARNING C++: AN INDEX OF ENTRY POINTS?

e C++ PROGRAMMING HOW-T0%** PDF, by Al Dev (Alavoor Vasudevan), 2001

e THINK LIKE A COMPUTER SCIENTIST: C++%

References to other works that can be relevant to the topic:

« KOHL ET AL. 2004: C/C++ REFERENCE?® at cppreference.com

* THE C++ ANNOTATIONS FOR C PROGRAMMERS?’, by Frank B. Brokken

¢ C/C++ TUTORIALS? at pickatutorial.com, a collection of online C / C++
tutorials

14 HTTP://EN.WIKIBOOKS.ORG/WIKI/LINUX%20APPLICATIONS%20DEBUGGINGS
20TECHNIQUES

15 HTTP://WWW.RELISOFT.COM/BOOK/INDEX.HTM

16 uTTP://WEB.ARCHIVE.ORG/WEB/20070317030353/HTTP://GUIDES.
OERNII.SK/C++/INDEX.HTM

17 #TTP://WWW—-H.ENG.CAM.AC.UK/HELP/TPL/LANGUAGES/C++/D0OC/DOC.HTML

18 HTTP://WEB.ARCHIVE.ORG/WEB/20071030201428/8TTP://WWW.ZIB.DE/
VISUAL/PEOPLE/MUELLER/COURSE/TUTORIAL/TUTORIAL.HTML

19 HTTP://MATH.NIST.GOV/~{}RP0oz0O/C++CLASS/

20 HTTP://WWW.CS.JCU.EDU.AU/~{}DAVID/C++SYNTAX.HTML

21 HTTP://WWW.HALPERNWIGHTSOFTWARE.COM/STDLIB—SCRATCH/QUICKREF.
HTML

22 HTTP://WWW.STEVEHELLER.COM/CPPAD/OUTPUT/DIALOGTOC.HTML

23 HTTP://WEB.ARCHIVE.ORG/WEB/20080508040722/HTTP://CS.NMHU.EDU/
PERSONAL/CURTIS/CSIHTMLFILES/CSITEXT6-2001.HTM

24 HTTP://WWW.DIGILIFE.BE/QUICKREFERENCES/BOOKS/C++%
20PROGRAMMING$20HOW-TO.PDF

25 HTTP://WEB.ARCHIVE.ORG/WEB/20071016111543/HTTP://WWW.IBIBLIO.
ORG/0OBP/THINKCS/CPP/ENGLISH/

26 HTTP://WWW.CPPREFERENCE.COM/

27 HTTP://WWW.ICCE.RUG.NL/DOCUMENTS/CPLUSPLUS/

28 HTTP://WWW.PICKATUTORIAL.COM/TUTORIALS/C_C_PLUSPLUS_1.HTM

656

http://en.wikibooks.org/wiki/Linux%20Applications%20Debugging%20Techniques
http://en.wikibooks.org/wiki/Linux%20Applications%20Debugging%20Techniques
http://www.relisoft.com/book/index.htm
http://web.archive.org/web/20070317030353/http://guides.oernii.sk/c++/index.htm
http://web.archive.org/web/20070317030353/http://guides.oernii.sk/c++/index.htm
http://www-h.eng.cam.ac.uk/help/tpl/languages/C++/doc/doc.html
http://web.archive.org/web/20071030201428/http://www.zib.de/visual/people/mueller/Course/Tutorial/tutorial.html
http://web.archive.org/web/20071030201428/http://www.zib.de/visual/people/mueller/Course/Tutorial/tutorial.html
http://math.nist.gov/~{}RPozo/c++class/
http://www.cs.jcu.edu.au/~{}david/C++SYNTAX.html
http://www.halpernwightsoftware.com/stdlib-scratch/quickref.html
http://www.halpernwightsoftware.com/stdlib-scratch/quickref.html
http://www.steveheller.com/cppad/Output/dialogTOC.html
http://web.archive.org/web/20080508040722/http://cs.nmhu.edu/personal/curtis/cs1htmlfiles/CS1TEXT6-2001.HTM
http://web.archive.org/web/20080508040722/http://cs.nmhu.edu/personal/curtis/cs1htmlfiles/CS1TEXT6-2001.HTM
http://www.digilife.be/quickreferences/Books/C++%20Programming%20HOW-TO.pdf
http://www.digilife.be/quickreferences/Books/C++%20Programming%20HOW-TO.pdf
http://web.archive.org/web/20071016111543/http://www.ibiblio.org/obp/thinkCS/cpp/english/
http://web.archive.org/web/20071016111543/http://www.ibiblio.org/obp/thinkCS/cpp/english/
http://www.cppreference.com/
http://www.icce.rug.nl/documents/cplusplus/
http://www.pickatutorial.com/tutorials/c_c_plusplus_1.htm

Online C++ books, guides and general information

CPLUSPLUS.COM??, an open resource with various web discussion groups

A WEB SITE OF SCOTT MEYERS>?, an expert on C++ software development.
He wrote the best-selling Effective C++ series (Effective C++, More Effective
C++, and Effective STL), wrote and designed Effective C++ CD

CPROGRAMMING.COM?!, a web site designed to help you learn C or C++ and
provide you with C and C++ programming resources.

Misc. Books, NEWS & ARTICLES ON C++32, by orelily.com

FREQUENTLY ASKED QUESTIONS ABOUT WIN32 PROGRAMMING?3, from
iseran.com
CPPHERESY? at c2.com, guidelines about how to keep the C++ bits simple

C++ FAQ?® at parashift.com, sometimes also called C++ FAQ Lite.

DEFECTIVE C++%: a 2009 summary by Yossi Kreinin of the major defects he
finds in the C++ programming language. (Related: PARTICULARITIES OF THE
C PROGRAMMING LANGUAGE?’).

8.6.1 IRC

* #C at (irc://irc.tambov.ru)

C/C++ Channel (HTTP://SILVERSOFT.NET/)® (Russian Channel)

* #C++ at (irc://hub.ptnet.org)

C++ Channel (Portuguese Channel)

o ##C++ at (irc://irc.freenode.net)

C++ Channel

29
30
31
32
33
34
35
36
37

38

HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP

://WWW.CPLUSPLUS.COM/MAIN.HTML
://WWW.ARISTEIA.COM/
://WWW.CPROGRAMMING.COM/
://CPROG.OREILLY.COM/
://WWW.ISERAN.COM/WIN32/FAQ/
://c2.coM/CGI/WIKI?CPPHERESY
://WWW.PARASHIFT.COM/C++-FAQ-LITE/
://YOSEFK.COM/C++FQA/DEFECTIVE.HTML
://EN.WIKIBOOKS.ORG/WIKI/C%$20PROGRAMMINGS

2FPARTICULARITIES%200F%20C

HTTP:

//SILVERSOFT.NET/)

657

http://www.cplusplus.com/main.html
http://www.aristeia.com/
http://www.cprogramming.com/
http://cprog.oreilly.com/
http://www.iseran.com/Win32/FAQ/
http://c2.com/cgi/wiki?CppHeresy
http://www.parashift.com/c++-faq-lite/
http://yosefk.com/c++fqa/defective.html
http://en.wikibooks.org/wiki/C%20Programming%2FParticularities%20of%20C
http://en.wikibooks.org/wiki/C%20Programming%2FParticularities%20of%20C
http://silversoft.net/)

Appendix B: External References

e #c++newbie at (irc://irc.freenode.net)

Channel for those new to C++

* #c++ at (irc://irc.dynastynet.net)

Channel on DynastyNet for discussing C++ topics.

8.6.2 User Groups

* http://www.accu.org/

ACCU, formerly the Association for C and C++ Users, ACCU is a non-profit
organization devoted to professionalism in programming at all levels. Although
primarily focused on C and C++, have now interests in Java, C# and Python also.

8.6.3 Newsgroups (NNTP)

e COMP.STD.C++>? - FAQ*

e COMP.LANG.C++.LEDA*!

e COMP.LANG.C++.MODERATED*?
e COMP.LANG.C++%

e MICROSOFT.PUBLIC.VC.MFC*
e MICROSOFT.PUBLIC.VC.STL®

8.6.4 Blogs and Wikis

* http://www.codepedia.com/1/Cpp

39 HTTP://GROUPS.GOOGLE.COM/GROUP/COMP.STD.C++

40 HTTP://WWW.COMEAUCOMPUTING.COM/CSC/FAQ.HTML

41 HTTP://GROUPS.GOOGLE.COM/GROUP/COMP.LANG.C++.LEDA

42 HTTP://GROUPS.GOOGLE.COM/GROUP/COMP.LANG.C++.MODERATED
43 HTTP://GROUPS.GOOGLE.COM/GROUP/COMP.LANG.C++

44 wBTTP://GROUPS.GOOGLE.COM/GROUP/MICROSOFT.PUBLIC.VC.MFC
45 HTTP://GROUPS.GOOGLE.COM/GROUP/MICROSOFT.PUBLIC.VC.STL

658

http://groups.google.com/group/comp.std.c++
http://www.comeaucomputing.com/csc/faq.html
http://groups.google.com/group/comp.lang.c++.leda
http://groups.google.com/group/comp.lang.c++.moderated
http://groups.google.com/group/comp.lang.c++
http://groups.google.com/group/microsoft.public.vc.mfc
http://groups.google.com/group/microsoft.public.vc.stl

Online C++ books, guides and general information

a Wikipedia-like page with much code examples.

* http://www.gnacademy.org/twiki/bin/view/CPP/TableOfContents%20GNAcademy.Org

TWiki C++ Web is a C++ wiki with GNU Free Documentation License

* http://cpp.wikia.com/

Wikicities C++ is a multi-language C++ wiki (currently English and Polish).

8.6.5 Mailing Lists

* http://www.oonumerics.org/mailman/listinfo.cgi/oon-list/

Object-Oriented Numerics List, forum for discussing scientific computing in
object-oriented environments. An archive is AVAILABLE*.

8.6.6 Forums

* http://stackoverflow.com/questions/tagged/c%2b%?2b

Stackoverflow is a knowledge sharing community including discussing C++ re-
lated topics.

46 HTTP://WWW.OONUMERICS.ORG/MAILARCHIVES/OON—LIST/

659

http://www.oonumerics.org/MailArchives/oon-list/

Appendix B: External References

8.7 Other (dead tree) books on C++

8.7.1 Introductory books

e Thinking in C++, 2nd ed. Volume 1: Introduction to Standard C++ by Bruce
Eckel, ISBN 0139798099 | ISBN-13: 978-0139798092. Available ONLINE*
and also as FREE DOWNLOAD*® PDF.

8.7.2 Advanced topics

* Thinking in C++, 2nd ed. Volume 2: Practical Programming by Bruce Eckel,
0139798099 | ISBN-13: 978-0139798092. Available online as FREE DOWN-
Loap® PDF.

* Effective C++ : 55 Specific Ways to Improve Your Programs and Designs, 3rd
ed. by Scott Meyers, ISBN 0321334876

8.7.3 Reference books

* C++ in a Nutshell by Ray Lischner, ISBN 059600298X
* C++ Pocket Reference by Kyle Loudon, ISBN 0596004966

e C++ FAQS50 by Marshall Cline, Greg Lomow, and Mike Girou, Addison-
Wesley, 1999, ISBN 0-201-30983-1

51

.}52

47 HTTP://WWW.SMARTZ2HELP.COM/E—BOOKS/TICPP—2ND—ED—-VOL—ONE/FRAMES.
HTML

48 HTTP://WWW.LIB.RU.AC.TH/DOWNLOAD/E-BOOKS/TIC2VONE.PDF

49 HTTP://WWW.LIB.RU.AC.TH/DOWNLOAD/E—-BOOKS/TIC2VTWO.PDF

50 HTTP://PARASHIFT.COM/C++—-FAQ-LITE/FAQ—BOOK.HTML

51 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY$3AC%2B%2B%$20PROGRAMMING

52 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

660

http://www.smart2help.com/e-books/ticpp-2nd-ed-vol-one/Frames.html
http://www.smart2help.com/e-books/ticpp-2nd-ed-vol-one/Frames.html
http://www.lib.ru.ac.th/download/e-books/TIC2Vone.pdf
http://www.lib.ru.ac.th/download/e-books/Tic2Vtwo.pdf
http://parashift.com/c++-faq-lite/faq-book.html
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

9 Contributors

Edits

N = = = R =

183

W N = o= = = N WO

User

1EXECI!

3210282
A.K.KARTHIKEYAN?
AK7*

ADRILEY?

ADAM MAJEWSKI®
ADIKASHI’
ADRIGNOLA®
AIM1205°
AKILAA!
ALANUS!!
ALBERTCAHALAN'?
ALcCA IsILON'3
ALEKSEV!*

ALEXANDERSWANG!?

ALSOCAL!®
AMIN.AJANI17Y7

[o =B e SR N S R S

bt e ek e \O
NN kA WD = O

HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP

://EN
://EN
://EN
://EN
://EN
://EN
://EN
://EN
://EN
://EN
://EN
://EN
://EN
://EN
://EN
://EN
://EN

.WIKIBOOKS

.WIKIBOOKS.

.WIKIBOOKS

.WIKIBOOKS.

.WIKIBOOKS
.WIKIBOOKS
.WIKIBOOKS

.WIKIBOOKS.

.WIKIBOOKS
.WIKIBOOKS
.WIKIBOOKS

.WIKIBOOKS.
.WIKIBOOKS.

.WIKIBOOKS
.WIKIBOOKS

.WIKIBOOKS.
.WIKIBOOKS.

.ORG/W/INDEX.
ORG/W/INDEX.
.ORG/W/INDEX.
ORG/W/INDEX.
.ORG/W/INDEX.
.ORG/W/INDEX.
.ORG/W/INDEX.
ORG/W/INDEX.
.ORG/W/INDEX.
.ORG/W/INDEX.
.ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.
.ORG/W/INDEX.
.ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.

PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:

lexeECl

321028
A.K.KARTHIKEYAN
AK7

ADRILEY
ADAM_MAJEWSKI
ADIKASHI
ADRIGNOLA
AgM1205

AKILAA

ALaANUS
ALBERTCAHALAN
ALCA_ISILON
ALEKSEV
ALEXANDERSWANG
ALSOCAL
AMIN.AJANIL17

661

http://en.wikibooks.org/w/index.php?title=User:1exec1
http://en.wikibooks.org/w/index.php?title=User:32to28
http://en.wikibooks.org/w/index.php?title=User:A.K.Karthikeyan
http://en.wikibooks.org/w/index.php?title=User:AK7
http://en.wikibooks.org/w/index.php?title=User:AdRiley
http://en.wikibooks.org/w/index.php?title=User:Adam_majewski
http://en.wikibooks.org/w/index.php?title=User:Adikashi
http://en.wikibooks.org/w/index.php?title=User:Adrignola
http://en.wikibooks.org/w/index.php?title=User:Ajm1205
http://en.wikibooks.org/w/index.php?title=User:Akilaa
http://en.wikibooks.org/w/index.php?title=User:AlanUS
http://en.wikibooks.org/w/index.php?title=User:AlbertCahalan
http://en.wikibooks.org/w/index.php?title=User:Alca_Isilon
http://en.wikibooks.org/w/index.php?title=User:Aleksev
http://en.wikibooks.org/w/index.php?title=User:Alexanderswang
http://en.wikibooks.org/w/index.php?title=User:Alsocal
http://en.wikibooks.org/w/index.php?title=User:Amin.ajani17

Contributors

NN WO W

\S]
98]

DN = = W= = = NN = N \O

ANDRE ENGELs'8
ANUNNAKKIY
ARGENTO?"
ARLEN222!
ASHUTOSH.UKEY??
ATHGORN?
ATRIUM?**
AUTUMNEFIELDS?
AVICENNASISZ®
Az1568%7
BCG999%

BAZKIE BOTSAUTO®
BENFRANTZDALE
Beuc?!
BILLYMAC003?
BIXODEPALHAY
BOGGIE*
BOMBE™®

BORB30

BxJ3’

CARL TURNER?®

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

662

HTTP:
HTTP:
HTTP:
://EN.
://EN.
HTTP:
://EN.
HTTP:
://EN.
HTTP:
://EN.
HTTP:
://EN.
HTTP:
://EN.
HTTP:
://EN.
://EN.
HTTP:
HTTP:
HTTP:

HTTP
HTTP

HTTP

HTTP

HTTP

HTTP

HTTP

HTTP
HTTP

//EN.

//EN.

//EN.

//EN.

//EN.

//EN.

//EN.

//EN.

//EN.

//EN.

//EN.
//EN.

WIKIBOOKS.
WIKIBOOKS.
WIKIBOOKS.
WIKIBOOKS
WIKIBOOKS.
WIKIBOOKS.
WIKIBOOKS
WIKIBOOKS.
WIKIBOOKS
WIKIBOOKS.
WIKIBOOKS
WIKIBOOKS.
WIKIBOOKS
WIKIBOOKS.
WIKIBOOKS
WIKIBOOKS.
WIKIBOOKS
WIKIBOOKS.
WIKIBOOKS.
WIKIBOOKS.
WIKIBOOKS.

ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.
.ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.
.ORG/W/INDEX.
ORG/W/INDEX.
.ORG/W/INDEX.
ORG/W/INDEX.
.ORG/W/INDEX.
ORG/W/INDEX.
.ORG/W/INDEX.
ORG/W/INDEX.
.ORG/W/INDEX.
ORG/W/INDEX.
.ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.

PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER:
PHP?TITLE=USER:

:ANDRE_ENGELS
:ANUNNAKKI
:ARGENTO
:ARLEN22
:ASHUTOSH.UKEY
:ATHGORN
:ATRIUM
:AUTUMNFIELDS
:AVICENNASIS
:Az1568
:BCG999
:BAZKIE_BOTSAUTO
:BENFRANTZDALE
:BEUC
:Brirnnymac0O0
:BIXODEPALHA
:BOGGIE

:BOMBE

:BORB

BxJ
CARL_TURNER

http://en.wikibooks.org/w/index.php?title=User:Andre_Engels
http://en.wikibooks.org/w/index.php?title=User:Anunnakki
http://en.wikibooks.org/w/index.php?title=User:Argento
http://en.wikibooks.org/w/index.php?title=User:Arlen22
http://en.wikibooks.org/w/index.php?title=User:Ashutosh.ukey
http://en.wikibooks.org/w/index.php?title=User:Athgorn
http://en.wikibooks.org/w/index.php?title=User:Atrium
http://en.wikibooks.org/w/index.php?title=User:Autumnfields
http://en.wikibooks.org/w/index.php?title=User:Avicennasis
http://en.wikibooks.org/w/index.php?title=User:Az1568
http://en.wikibooks.org/w/index.php?title=User:BCG999
http://en.wikibooks.org/w/index.php?title=User:Bazkie_botsauto
http://en.wikibooks.org/w/index.php?title=User:BenFrantzDale
http://en.wikibooks.org/w/index.php?title=User:Beuc
http://en.wikibooks.org/w/index.php?title=User:Billymac00
http://en.wikibooks.org/w/index.php?title=User:BixoDePalha
http://en.wikibooks.org/w/index.php?title=User:Boggie
http://en.wikibooks.org/w/index.php?title=User:Bombe
http://en.wikibooks.org/w/index.php?title=User:Borb
http://en.wikibooks.org/w/index.php?title=User:Bxj
http://en.wikibooks.org/w/index.php?title=User:Carl_Turner

Other (dead tree) books on C++

1 CARSRACBoOTY

1 CATSARECOOL*

1 CHESEMONKYLOMA®!

1 CHRICHO*

3 CHRIS.SEEDYK™®

13 CLeos*

1 CLOUDGUITAR®

1 COMMONSDELINKER*®

14 CopprOY

5 COSTANZO*®

1 CowTuNGg*

1 CRUSADEONILLITERACY??

2 Cyp’!

4 DWARRIORY?

1 DALLAS1278%

7 DAN POLANSKY>

2 DANILO.PIAZZALUNGAY?

242 DARKLAMA®

49 DAVIDCARY’’

9 DERBETH®

1 DEVOURER(09*
39 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CARSRACBOT
40 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CATSARECOOL
41 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CHESEMONKYLOMA
42 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CHRICHO
43 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CHRIS.SEEDYK
44 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?2TITLE=USER:CLEOS
45 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CLOUDGUITAR
46 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:COMMONSDELINKER
47 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:COPPRO
48 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?2TITLE=USER:COSTANZO
49 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:COWTUNG
50 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:

CRUSADEONILLITERACY
51 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CYP
52 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DWARRIOR
53 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DALLAS1278
54 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DAN_POLANSKY
55 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DANILO.
PIAZZALUNGA

56 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DARKLAMA
57 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DAVIDCARY
58 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DERBETH
59 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DEVOURERO9

663

http://en.wikibooks.org/w/index.php?title=User:CarsracBot
http://en.wikibooks.org/w/index.php?title=User:Catsarecool
http://en.wikibooks.org/w/index.php?title=User:Chesemonkyloma
http://en.wikibooks.org/w/index.php?title=User:Chricho
http://en.wikibooks.org/w/index.php?title=User:Chris.Seedyk
http://en.wikibooks.org/w/index.php?title=User:Cleos
http://en.wikibooks.org/w/index.php?title=User:Cloudguitar
http://en.wikibooks.org/w/index.php?title=User:CommonsDelinker
http://en.wikibooks.org/w/index.php?title=User:Coppro
http://en.wikibooks.org/w/index.php?title=User:Costanzo
http://en.wikibooks.org/w/index.php?title=User:Cowtung
http://en.wikibooks.org/w/index.php?title=User:Crusadeonilliteracy
http://en.wikibooks.org/w/index.php?title=User:Crusadeonilliteracy
http://en.wikibooks.org/w/index.php?title=User:Cyp
http://en.wikibooks.org/w/index.php?title=User:DWarrior
http://en.wikibooks.org/w/index.php?title=User:Dallas1278
http://en.wikibooks.org/w/index.php?title=User:Dan_Polansky
http://en.wikibooks.org/w/index.php?title=User:Danilo.Piazzalunga
http://en.wikibooks.org/w/index.php?title=User:Danilo.Piazzalunga
http://en.wikibooks.org/w/index.php?title=User:Darklama
http://en.wikibooks.org/w/index.php?title=User:DavidCary
http://en.wikibooks.org/w/index.php?title=User:Derbeth
http://en.wikibooks.org/w/index.php?title=User:Devourer09

Contributors

[\
(@)

BN = o= = = N] =N = = NN = = = N = O

DIRK HUNNIGER®?
DNAs®!

DoprPLE®?
DRESDNHOPE®
DUCKMAN21%
DUNCANPHILIPNORMAN®
DVIR.KAFRI®®
DYSPROSIA®’
DZAJTAI®®

E JAMES®
EDUDOBAY’?
ELIEDEBRAUWER’!
EMANUELE’?
EMPERORBMA’3
EMRY"*
ENCMSTR”?
EPHEMERALJUN’®
ESBEN"’

FASTEN®
FAULKNERCK27?
FDOMAN®?

60

61
62
63
64
65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

664

HTTP://EN.
BCNNIGER

HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.

WIKIBOOKS.

WIKIBOOKS.
WIKIBOOKS.
WIKIBOOKS.
.ORG/W/INDEX.
.ORG/W/INDEX.

WIKIBOOKS
WIKIBOOKS

DUNCANPHILIPNORMAN

HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.

WIKIBOOKS

WIKIBOOKS

WIKIBOOKS

WIKIBOOKS

WIKIBOOKS

ORG/W/INDEX.

ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.

.ORG/W/INDEX.
WIKIBOOKS.
.ORG/W/INDEX.
WIKIBOOKS.
.ORG/W/INDEX.
WIKIBOOKS.
.ORG/W/INDEX.
WIKIBOOKS.
.ORG/W/INDEX.
WIKIBOOKS.
WIKIBOOKS.
WIKIBOOKS.
WIKIBOOKS.
WIKIBOOKS.
WIKIBOOKS.

ORG/W/INDEX.

ORG/W/INDEX.

ORG/W/INDEX.

ORG/W/INDEX.

ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.

PHP?TITLE=USER:

PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER:

PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER:
PHP?TITLE=USER:

DIRK_H%C3%

:DNAS
:DOPPLE
:DRESDNHOPE
:DUCKMANZ21

:DVIR.KAFRI
:DYSPROSIA
:DzAJTAT
:E_JAMES
:EDUDOBAY
:ELIEDEBRAUWER
:EMANUELE
:EMPERORBMA
:EMRY
:ENCMSTR
:EPHEMERALJUN
:ESBEN
:FASTEN

FAULKNERCKZ2
FpOMAN

http://en.wikibooks.org/w/index.php?title=User:Dirk_H%C3%BCnniger
http://en.wikibooks.org/w/index.php?title=User:Dirk_H%C3%BCnniger
http://en.wikibooks.org/w/index.php?title=User:Dnas
http://en.wikibooks.org/w/index.php?title=User:Dopple
http://en.wikibooks.org/w/index.php?title=User:Dresdnhope
http://en.wikibooks.org/w/index.php?title=User:DuckMan21
http://en.wikibooks.org/w/index.php?title=User:Duncanphilipnorman
http://en.wikibooks.org/w/index.php?title=User:Duncanphilipnorman
http://en.wikibooks.org/w/index.php?title=User:Dvir.Kafri
http://en.wikibooks.org/w/index.php?title=User:Dysprosia
http://en.wikibooks.org/w/index.php?title=User:Dzajtai
http://en.wikibooks.org/w/index.php?title=User:E_James
http://en.wikibooks.org/w/index.php?title=User:Edudobay
http://en.wikibooks.org/w/index.php?title=User:ElieDeBrauwer
http://en.wikibooks.org/w/index.php?title=User:Emanuele
http://en.wikibooks.org/w/index.php?title=User:Emperorbma
http://en.wikibooks.org/w/index.php?title=User:Emry
http://en.wikibooks.org/w/index.php?title=User:EncMstr
http://en.wikibooks.org/w/index.php?title=User:EphemeralJun
http://en.wikibooks.org/w/index.php?title=User:Esben
http://en.wikibooks.org/w/index.php?title=User:Fasten
http://en.wikibooks.org/w/index.php?title=User:Faulknerck2
http://en.wikibooks.org/w/index.php?title=User:Fd0man

Other (dead tree) books on C++

1 Ferox®!
55 FIsHPI®?
2 FRANCIS OCcOMA®
3 FREDO®
1 FUNPIKA®
1 GALOUBET®®
10 GARRETTY’
2 GENTGEENS®
1 GEOCACHERNEMESIS®?
1 GEORDIEMCBAIN®
1 GEORGEHERNANDEZ91
90 GHFIDK”?
4 GHOSTZART??
8 GMCFOLEY™
2 GOTOMAN®’
1 GOPALAKRISHNANS96
2 GRAEME’’
1 Grawp?®
1 GRAWP THE GIANT"
1 GREEN CATERPILLAR'®
81 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FEROX
82 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FISHPI
83 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FRANCIS_OCOMA
84 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FREDO
85 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FUNPIKA
8 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GALOUBET
87 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GARRETT
88 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GENTGEEN
89 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:
GEOCACHERNEMESIS
90 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GEORDIEMCBAIN
91 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GEORGE_
HERNANDEZ
92 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GHFJDK
93 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GHOSTZART
94 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GMCFOLEY
95 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GOTOMAN
96 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GOPALAKRISHNANS
97 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GRAEME
98 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GRAWP
99 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GRAWP_THE_GIANT
100 #TTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GREEN_

CATERPILLAR

665

http://en.wikibooks.org/w/index.php?title=User:Ferox
http://en.wikibooks.org/w/index.php?title=User:Fishpi
http://en.wikibooks.org/w/index.php?title=User:Francis_Ocoma
http://en.wikibooks.org/w/index.php?title=User:Fredo
http://en.wikibooks.org/w/index.php?title=User:FunPika
http://en.wikibooks.org/w/index.php?title=User:Galoubet
http://en.wikibooks.org/w/index.php?title=User:Garrett
http://en.wikibooks.org/w/index.php?title=User:Gentgeen
http://en.wikibooks.org/w/index.php?title=User:Geocachernemesis
http://en.wikibooks.org/w/index.php?title=User:Geocachernemesis
http://en.wikibooks.org/w/index.php?title=User:GeordieMcBain
http://en.wikibooks.org/w/index.php?title=User:George_Hernandez
http://en.wikibooks.org/w/index.php?title=User:George_Hernandez
http://en.wikibooks.org/w/index.php?title=User:Ghfjdk
http://en.wikibooks.org/w/index.php?title=User:Ghostzart
http://en.wikibooks.org/w/index.php?title=User:Gmcfoley
http://en.wikibooks.org/w/index.php?title=User:GoToMan
http://en.wikibooks.org/w/index.php?title=User:Gopalakrishnans
http://en.wikibooks.org/w/index.php?title=User:Graeme
http://en.wikibooks.org/w/index.php?title=User:Grawp
http://en.wikibooks.org/w/index.php?title=User:Grawp_the_Giant
http://en.wikibooks.org/w/index.php?title=User:Green_caterpillar
http://en.wikibooks.org/w/index.php?title=User:Green_caterpillar

Contributors

2 GREENVOID'Y!
1 GRONAU'®
1 GRUMBEL'®
1 GuaNaco'™
1 GURUPATHI!®
1 GWYLIM Al0°
5 HAGINDAZ'Y
1 HAMMERJw!08
1 HAO2LIAN!®
55 HERBYTHYME'!?
0 HEeReToOHELP!!!
2 HETHRIRBoOT!'?
1 HYBRIDPRO'!3
1 IBB!'"
1 10 115
2 TAMUNKNOWN!1®
38 IKARSIK!!7
2 ILYAHAYKINSON!!8
7 INVADER02'!?
1 IxTtLi?
3 JAMES BROWN!?!

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

666

HTTP:
HTTP:
HTTP:

HTTP
HTTP

HTTP:

HTTP

HTTP:

HTTP

HTTP:

HTTP

HTTP:

HTTP

HTTP

HTTP:

HTTP
HTTP

HTTP:
HTTP:
HTTP:

//EN.WIKIBOOKS.
//EN.WIKIBOOKS.
//EN.WIKIBOOKS.
://EN.WIKIBOOKS
://EN.WIKIBOOKS.
//EN.WIKIBOOKS.
://EN.WIKIBOOKS.
//EN.WIKIBOOKS.
://EN.WIKIBOOKS.
//EN.WIKIBOOKS.
://EN.WIKIBOOKS.
//EN.WIKIBOOKS.
://EN.WIKIBOOKS
HTTP:

ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.

.ORG/W/INDEX.

ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.

.ORG/W/INDEX.
//EN.WIKIBOOKS.
://EN.WIKIBOOKS.
//EN.WIKIBOOKS.
://EN.WIKIBOOKS.
://EN.WIKIBOOKS.
//EN.WIKIBOOKS.
//EN.WIKIBOOKS.
//EN.WIKIBOOKS.

ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.

PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:

GREENVOID
GRONAU
GRUMBEL
GUANACO
GURUPATHI
GWYLIM_A
HAGINDAZ
HAMMERJW
HAO2LIAN
HERBYTHYME
HERETOHELP
HETHRIRBOT
HYBRIDPRO
IBB

I0
IAMUNKNOWN
IKARSIK
ILYAHAYKINSON
INVADEROZ2
IXTLI
JAMES_BROWN

http://en.wikibooks.org/w/index.php?title=User:GreenVoid
http://en.wikibooks.org/w/index.php?title=User:Gronau
http://en.wikibooks.org/w/index.php?title=User:Grumbel
http://en.wikibooks.org/w/index.php?title=User:Guanaco
http://en.wikibooks.org/w/index.php?title=User:Gurupathi
http://en.wikibooks.org/w/index.php?title=User:Gwylim_a
http://en.wikibooks.org/w/index.php?title=User:Hagindaz
http://en.wikibooks.org/w/index.php?title=User:Hammerjw
http://en.wikibooks.org/w/index.php?title=User:Hao2lian
http://en.wikibooks.org/w/index.php?title=User:Herbythyme
http://en.wikibooks.org/w/index.php?title=User:HereToHelp
http://en.wikibooks.org/w/index.php?title=User:HethrirBot
http://en.wikibooks.org/w/index.php?title=User:Hybridpro
http://en.wikibooks.org/w/index.php?title=User:IBB
http://en.wikibooks.org/w/index.php?title=User:IO
http://en.wikibooks.org/w/index.php?title=User:Iamunknown
http://en.wikibooks.org/w/index.php?title=User:Ikarsik
http://en.wikibooks.org/w/index.php?title=User:IlyaHaykinson
http://en.wikibooks.org/w/index.php?title=User:Invader02
http://en.wikibooks.org/w/index.php?title=User:Ixtli
http://en.wikibooks.org/w/index.php?title=User:James_Brown

Other (dead tree) books on C++

154

p—

Q) = Q) = N =

9,1
|

JAMES DENNETT!22

JAMESCROOK 23
JAMESOFUR!%*
JAYARAM GANAPATHY !?
JAYDEEPMEHTAWIKI'26
JEFFSCHWAB 11?7
JEREMYROMAN!?8
JEMANTIS!??

Jouk!30

JLEEDEV!3!
JLENTHE!3?
JOECO0L94!33
JOHNOWENS 3
JOHNRUBLE'?

JOKES FREE4ME!3¢
JoMEGAT!"?

JONAS NORDLUND!38
JORGENEV!?

JoAo JERONIMO!40

N = == N s = = N =

Juxg!#!

p—

122
123
124
125

126

127
128
129
130
131
132
133
134
135
136
137
138
139
140

141

HTTP
HTTP
HTTP
HTTP

://EN.
://EN.
://EN.
://EN.

GANAPATHY

HTTP

://EN

WIKIBOOKS.
WIKIBOOKS.
WIKIBOOKS.
WIKIBOOKS.

.WIKIBOOKS.

JAYDEEPMEHTAWIKI

HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP

://EN

://EN.
://EN.
://EN.
://EN.
://EN.
://EN.
://EN.
://EN.
://EN.
://EN.
://EN.
://EN.
://EN.

C3%B3NIMO

HTTP

://EN.

.WIKIBOOKS.
WIKIBOOKS.
WIKIBOOKS.
WIKIBOOKS.
WIKIBOOKS.
WIKIBOOKS.
WIKIBOOKS.
WIKIBOOKS.
WIKIBOOKS.
WIKIBOOKS.
WIKIBOOKS.
WIKIBOOKS.
WIKIBOOKS.
WIKIBOOKS.

WIKIBOOKS.

ORG/W/INDEX
ORG/W/INDEX
ORG/W/INDEX
ORG/W/INDEX

ORG/W/INDEX

ORG/W/INDEX
ORG/W/INDEX
ORG/W/INDEX
ORG/W/INDEX
ORG/W/INDEX
ORG/W/INDEX
ORG/W/INDEX
ORG/W/INDEX
ORG/W/INDEX
ORG/W/INDEX
ORG/W/INDEX
ORG/W/INDEX
ORG/W/INDEX
ORG/W/INDEX

ORG/W/INDEX

.PHP?TITLE=USER:
.PHP?TITLE=USER:
.PHP?TITLE=USER:
.PHP?TITLE=USER:

.PHP?TITLE=USER:

.PHP?TITLE=USER:
.PHP?TITLE=USER:
.PHP?TITLE=USER:
.PHP?TITLE=USER:
.PHP?TITLE=USER:
.PHP?TITLE=USER:
.PHP?TITLE=USER:
.PHP?TITLE=USER:
.PHP?TITLE=USER:
.PHP?TITLE=USER:
.PHP?TITLE=USER:
.PHP?TITLE=USER:
.PHP?TITLE=USER:
.PHP?TITLE=USER:

.PHP?TITLE=USER:

JAMES_DENNETT
JAMESCROOK
JAMESOFUR
JAYARAM__

JEFFSCHWABL
JEREMYROMAN
JFMANTIS

JGUK

JLEEDEV
JLENTHE
JOECOOL94
JOHNOWENS
JOHNRUBLE
JOKES_FREE4ME
JOMEGAT
JONAS_NORDLUND
JORGENEV
Jo%C3%A30_JERS

JUXE

667

http://en.wikibooks.org/w/index.php?title=User:James_Dennett
http://en.wikibooks.org/w/index.php?title=User:JamesCrook
http://en.wikibooks.org/w/index.php?title=User:Jamesofur
http://en.wikibooks.org/w/index.php?title=User:Jayaram_Ganapathy
http://en.wikibooks.org/w/index.php?title=User:Jayaram_Ganapathy
http://en.wikibooks.org/w/index.php?title=User:Jaydeepmehtawiki
http://en.wikibooks.org/w/index.php?title=User:Jaydeepmehtawiki
http://en.wikibooks.org/w/index.php?title=User:JeffSchwab1
http://en.wikibooks.org/w/index.php?title=User:Jeremyroman
http://en.wikibooks.org/w/index.php?title=User:Jfmantis
http://en.wikibooks.org/w/index.php?title=User:Jguk
http://en.wikibooks.org/w/index.php?title=User:Jleedev
http://en.wikibooks.org/w/index.php?title=User:Jlenthe
http://en.wikibooks.org/w/index.php?title=User:Joecool94
http://en.wikibooks.org/w/index.php?title=User:JohnOwens
http://en.wikibooks.org/w/index.php?title=User:Johnruble
http://en.wikibooks.org/w/index.php?title=User:Jokes_Free4Me
http://en.wikibooks.org/w/index.php?title=User:Jomegat
http://en.wikibooks.org/w/index.php?title=User:Jonas_Nordlund
http://en.wikibooks.org/w/index.php?title=User:Jorgenev
http://en.wikibooks.org/w/index.php?title=User:Jo%C3%A3o_Jer%C3%B3nimo
http://en.wikibooks.org/w/index.php?title=User:Jo%C3%A3o_Jer%C3%B3nimo
http://en.wikibooks.org/w/index.php?title=User:Juxe

Contributors

—_—J O\ — W

o =
S N

[\®]
e\ B ® B N NS B, B, B I

o
3

}Crcﬂ42
KAKURADY!3
KATE!#

KAyau'#

KJETIL R4
KRISCHIK !
LEANDROGOE!“8
LEMMIO'#
LINUXFREAK !0
MRPROGRAMMER !
MVHOKIES 52
MAHANGA '3
MARCELO PINTO!*
MARCUS256'5
MARKHUDSON!¢
MARTNYM 7
MASLEN!®
MATHWIZARD 123215
MATTB112885160
MATTIEUGA ¢!
MAXBERGER 62

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

668

HTTP:
HTTP:
HTTP:

HTTP
HTTP

HTTP:

HTTP

HTTP:

HTTP

HTTP:

HTTP

HTTP:

HTTP

HTTP:

HTTP

HTTP:
HTTP:

HTTP

HTTP:
HTTP:
HTTP:

//EN.
//EN.
//EN.
://EN.
://EN.
//EN.
://EN.
//EN.
://EN.
//EN.
://EN.
//EN.
://EN.
//EN.
://EN.
//EN.
//EN.
://EN.
//EN.
//EN.
//EN.

WIKIBOOKS
WIKIBOOKS

WIKIBOOKS

WIKIBOOKS

WIKIBOOKS

WIKIBOOKS

WIKIBOOKS

WIKIBOOKS.
WIKIBOOKS.
WIKIBOOKS.
.ORG/W/INDEX.
.ORG/W/INDEX.
WIKIBOOKS.
.ORG/W/INDEX.
WIKIBOOKS.
.ORG/W/INDEX.
WIKIBOOKS.
.ORG/W/INDEX.
WIKIBOOKS.
.ORG/W/INDEX.
WIKIBOOKS.
.ORG/W/INDEX.
WIKIBOOKS.
WIKIBOOKS.
WIKIBOOKS.
WIKIBOOKS.
WIKIBOOKS.
WIKIBOOKS.

ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.

ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.

ORG/W/INDEX.
ORG/W/INDEX.

PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER:
PHP?TITLE=USER:

:KTC
:KAKURADY
:KATE
:Kavau
:KJETIL_R
:KRISCHIK

LEANDROGOE
LEMMIO
LINUXFREAK

:MRPROGRAMMER
:MVHOKIES
:MAHANGA
:MARCELO_PINTO
:MARCUS256
:MARKHUDSON
:MARTNYM
:MASLEN
:MATHWIZARD1232
:MaTTB112885

MATTIEUGA
MAXBERGER

http://en.wikibooks.org/w/index.php?title=User:KTC
http://en.wikibooks.org/w/index.php?title=User:Kakurady
http://en.wikibooks.org/w/index.php?title=User:Kate
http://en.wikibooks.org/w/index.php?title=User:Kayau
http://en.wikibooks.org/w/index.php?title=User:Kjetil_r
http://en.wikibooks.org/w/index.php?title=User:Krischik
http://en.wikibooks.org/w/index.php?title=User:Leandrogoe
http://en.wikibooks.org/w/index.php?title=User:Lemmio
http://en.wikibooks.org/w/index.php?title=User:Linuxfreak
http://en.wikibooks.org/w/index.php?title=User:MRProgrammer
http://en.wikibooks.org/w/index.php?title=User:MVhokies
http://en.wikibooks.org/w/index.php?title=User:Mahanga
http://en.wikibooks.org/w/index.php?title=User:Marcelo_Pinto
http://en.wikibooks.org/w/index.php?title=User:Marcus256
http://en.wikibooks.org/w/index.php?title=User:MarkHudson
http://en.wikibooks.org/w/index.php?title=User:Martnym
http://en.wikibooks.org/w/index.php?title=User:Maslen
http://en.wikibooks.org/w/index.php?title=User:Mathwizard1232
http://en.wikibooks.org/w/index.php?title=User:Mattb112885
http://en.wikibooks.org/w/index.php?title=User:MattieuGA
http://en.wikibooks.org/w/index.php?title=User:Maxberger

Other (dead tree) books on C++

32

i\ Bl i\)

|98
[\

— ()

(O8]
)

MCINTOSH NATURA '3
MERRHEIM !
MICHAELDADMUM 6
MIKE.LIFEGUARD 60
MIKEL'®’

MikLccT!68

MITAL D VORA!6?
MicHAEL!70

thNlﬂ
MORNINGSTAR2651172
MRraAJcok!'”3
MSHONLE!7#
MSILADIN!7
MSKONLINE!7®
N.HARIHARAN 198877
N313T13!'78
NEUVIEMEP!7?
NICHOLASBISHOP!8?
NICKWHALEYISSEXY'8!
NIKIRIY 82

NN = 00N N = =

NIPPLESMECOOL!83

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

178
179
180
181

182
183

HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
1988
HTTP
HTTP
HTTP
HTTP

://EN
://EN
://EN
://EN
://EN
://EN
://EN
://EN
://EN
://EN
://EN
://EN
://EN
://EN
://EN

://EN
://EN
://EN
://EN

.WIKIBOOKS.
.WIKIBOOKS.
.WIKIBOOKS.
.WIKIBOOKS.
.WIKIBOOKS.

.WIKIBOOKS

.WIKIBOOKS.
.WIKIBOOKS.

.WIKIBOOKS

.WIKIBOOKS.

.WIKIBOOKS

.WIKIBOOKS.

.WIKIBOOKS

.WIKIBOOKS.

.WIKIBOOKS

.WIKIBOOKS

.WIKIBOOKS.

.WIKIBOOKS

.WIKIBOOKS.

NICKWHALEYISSEXY

HTTP://EN.WIKIBOOKS.
HTTP://EN.WIKIBOOKS.

ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.
.ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.
.ORG/W/INDEX.
ORG/W/INDEX.
.ORG/W/INDEX.
ORG/W/INDEX.
.ORG/W/INDEX.
ORG/W/INDEX.
.ORG/W/INDEX.

.ORG/W/INDEX.
ORG/W/INDEX.
.ORG/W/INDEX.
ORG/W/INDEX.

ORG/W/INDEX.
ORG/W/INDEX.

PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:

PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:

PHP?TITLE=USER:
PHP?TITLE=USER:

MCINTOSH_NATURA
MERRHEIM
MICHAELDADMUM
MIKE.LIFEGUARD
MIKEL

MIKLCCT
MITAL_D_VORA
MJCHAEL

MKN
MORNINGSTAR2651
MRAJCOK

MSHONLE
MSILADIN
MSKONLINE
N.HARIHARAN_

N313T13

NEUVIEMEP
NICHOLASBISHOP

NIKIRIY
NipPLESMECOOL

669

http://en.wikibooks.org/w/index.php?title=User:McIntosh_Natura
http://en.wikibooks.org/w/index.php?title=User:Merrheim
http://en.wikibooks.org/w/index.php?title=User:Michaeldadmum
http://en.wikibooks.org/w/index.php?title=User:Mike.lifeguard
http://en.wikibooks.org/w/index.php?title=User:Mikel
http://en.wikibooks.org/w/index.php?title=User:Miklcct
http://en.wikibooks.org/w/index.php?title=User:Mital_d_vora
http://en.wikibooks.org/w/index.php?title=User:Mjchael
http://en.wikibooks.org/w/index.php?title=User:Mkn
http://en.wikibooks.org/w/index.php?title=User:Morningstar2651
http://en.wikibooks.org/w/index.php?title=User:Mrajcok
http://en.wikibooks.org/w/index.php?title=User:Mshonle
http://en.wikibooks.org/w/index.php?title=User:Msiladin
http://en.wikibooks.org/w/index.php?title=User:Mskonline
http://en.wikibooks.org/w/index.php?title=User:N.hariharan_1988
http://en.wikibooks.org/w/index.php?title=User:N.hariharan_1988
http://en.wikibooks.org/w/index.php?title=User:N313t3
http://en.wikibooks.org/w/index.php?title=User:Neuviemep
http://en.wikibooks.org/w/index.php?title=User:Nicholasbishop
http://en.wikibooks.org/w/index.php?title=User:NickWhaleyIsSexy
http://en.wikibooks.org/w/index.php?title=User:NickWhaleyIsSexy
http://en.wikibooks.org/w/index.php?title=User:Nikiriy
http://en.wikibooks.org/w/index.php?title=User:NipplesMeCool

Contributors

3 NITHINBEKAL'#
1 NMRTIAN'®
13 NOLDOARAN!80
1 NRCARBALLO'®’
5 OJAN!SS
7 OMAIR.MAJID'®
52 ORDERUD!®
45 PADDU'™!
5976 PANIC2K4!%?
3 PHATENCY!®?
1 PHIL.A'"
6 PHOSGRAM'®
3 PE21!%
14 POETICJUSTICE712182!%7
1 PRADEEP REDDY'?®
1 PRASANNIJIT.GONDCHAWAR'®
1 PrIME?®
27 PUMBAASO?!
2 PURPLEPIEMAN???
2 QUBOT?®
4 QAZSEDCFT?*
184 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NITHINBEKAL
185 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NMRTIAN
186 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NOLDOARAN
187 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:NRCARBALLO
188 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:OJAN
189 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:OMAIR.MAJID
190 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ORDERUD
191 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PADDU
192 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PANIC2K4
193 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PHATENCY
194 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PHIL.A
195 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PHOSGRAM
196 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PIE2]
197 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:

POETICJUSTICE712182

198
199

HTTP://EN.
HTTP://EN.

WIKIBOOKS.
.ORG/W/INDEX.

WIKIBOOKS

GONDCHAWAR

200
201
202
203
204

HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.
HTTP://EN.

670

WIKIBOOKS.
WIKIBOOKS.
WIKIBOOKS.
WIKIBOOKS.
WIKIBOOKS.

ORG/W/INDEX.

ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.

PHP?TITLE=USER
PHP?TITLE=USER

PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER:
PHP?TITLE=USER:

:PRADEEP_REDDY
:PRASANNJIT.

:PRIME
:PuMBAABO
:PURPLEPIEMAN

QUBOT
QAZSEDCEFT

http://en.wikibooks.org/w/index.php?title=User:NithinBekal
http://en.wikibooks.org/w/index.php?title=User:Nmrtian
http://en.wikibooks.org/w/index.php?title=User:Noldoaran
http://en.wikibooks.org/w/index.php?title=User:Nrcarballo
http://en.wikibooks.org/w/index.php?title=User:Ojan
http://en.wikibooks.org/w/index.php?title=User:Omair.majid
http://en.wikibooks.org/w/index.php?title=User:Orderud
http://en.wikibooks.org/w/index.php?title=User:Paddu
http://en.wikibooks.org/w/index.php?title=User:Panic2k4
http://en.wikibooks.org/w/index.php?title=User:Phatency
http://en.wikibooks.org/w/index.php?title=User:Phil.a
http://en.wikibooks.org/w/index.php?title=User:Phosgram
http://en.wikibooks.org/w/index.php?title=User:Pie21
http://en.wikibooks.org/w/index.php?title=User:Poeticjustice712182
http://en.wikibooks.org/w/index.php?title=User:Poeticjustice712182
http://en.wikibooks.org/w/index.php?title=User:Pradeep_reddy
http://en.wikibooks.org/w/index.php?title=User:Prasannjit.gondchawar
http://en.wikibooks.org/w/index.php?title=User:Prasannjit.gondchawar
http://en.wikibooks.org/w/index.php?title=User:Prime
http://en.wikibooks.org/w/index.php?title=User:Pumbaa80
http://en.wikibooks.org/w/index.php?title=User:PurplePieman
http://en.wikibooks.org/w/index.php?title=User:QUBot
http://en.wikibooks.org/w/index.php?title=User:Qazsedcft

Other (dead tree) books on C++

7 QUITEUNUSUAL??
1 RAMAC2%6
1 RamIr?"
2 RAVENSKYZ®
4 RECENT RUNES?”
22 REMI00%10
3 REeNIcH?!!
1 REs1233%12
2 REvOLUS?!3
1 RFROHARDT?'*
6 RizvN213
5 RMcCUE?'®
1 ROBCHURCH?
1 RopasMITH?!®
2 ROHITVIPINZY
20 RoNycLAU??
2 RuAkH?!
7 RWDOUGLA???
11 SBJOHNNY??
SAE19622%*

4 SAFEDOCTOR??

205 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:QUITEUNUSUAL
206 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RAMAC

207 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RAMIR

208 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RAVENSKY
209 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RECENT_RUNES
210 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:REMI0O

211 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RENICH

212 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RES1233
213 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:REVOLUS
214 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RFROHARDT
215 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RIZVN

216 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RMCCUE

217 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ROBCHURCH
218 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RODASMITH
219 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ROHITVIPIN
220 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RONYCLAU
221 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RUAKH

222 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RWDOUGLA
223 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SBJOHNNY
224 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SAE1962
225 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SAFEDOCTOR

671

http://en.wikibooks.org/w/index.php?title=User:QuiteUnusual
http://en.wikibooks.org/w/index.php?title=User:Ramac
http://en.wikibooks.org/w/index.php?title=User:Ramir
http://en.wikibooks.org/w/index.php?title=User:Ravensky
http://en.wikibooks.org/w/index.php?title=User:Recent_Runes
http://en.wikibooks.org/w/index.php?title=User:Remi0o
http://en.wikibooks.org/w/index.php?title=User:Renich
http://en.wikibooks.org/w/index.php?title=User:Res1233
http://en.wikibooks.org/w/index.php?title=User:Revolus
http://en.wikibooks.org/w/index.php?title=User:Rfrohardt
http://en.wikibooks.org/w/index.php?title=User:Rizvn
http://en.wikibooks.org/w/index.php?title=User:Rmccue
http://en.wikibooks.org/w/index.php?title=User:Robchurch
http://en.wikibooks.org/w/index.php?title=User:Rodasmith
http://en.wikibooks.org/w/index.php?title=User:Rohitvipin
http://en.wikibooks.org/w/index.php?title=User:Ronyclau
http://en.wikibooks.org/w/index.php?title=User:Ruakh
http://en.wikibooks.org/w/index.php?title=User:Rwdougla
http://en.wikibooks.org/w/index.php?title=User:SBJohnny
http://en.wikibooks.org/w/index.php?title=User:Sae1962
http://en.wikibooks.org/w/index.php?title=User:Safedoctor

Contributors

O
|

SCR?

W = = W N O\ = =

SJ237

[S T N N e e S I N N e YA

SAMEENZ220
SARANG???
SCHWARZBICHLER?28

Sppoc??
SERAPHIMBLADE?!
SHAKESPEAREFANQ0?3?
SHOKUKU?*3
SIGMA 723
SIKANDARAMINZ
SISINGH?23¢

SLPOSEY?38
SPARTACUS3D?¥
SPAZ MAN2%0
SPOON 1?41
SRIDARSHAN23%42
STEPHENMORRISSON?#3
SUTAMBE?*
SWIFTZ#
SYGMN?#0

226
227
228
229
230
231
232

233
234
235
236
237
238
239
240
241
242
243

244

245
246

672

HTTP:
HTTP:
HTTP:
HTTP:
HTTP:
://EN.
://EN.

HTTP
HTTP

//EN.
//EN.
//EN.
//EN.
//EN.

WIKIBOOKS.
WIKIBOOKS.
WIKIBOOKS.
WIKIBOOKS.
WIKIBOOKS.
.ORG/W/INDEX.
.ORG/W/INDEX.

WIKIBOOKS
WIKIBOOKS

SHAKESPEAREFANOO

HTTP

HTTP

HTTP

HTTP

HTTP

://EN.
HTTP:
://EN.
HTTP:
://EN.
HTTP:
://EN.
HTTP:
://EN.
HTTP:
HTTP:

//EN.

//EN.

//EN.

//EN.

//EN.
//EN.

WIKIBOOKS

WIKIBOOKS

WIKIBOOKS

WIKIBOOKS

WIKIBOOKS

STEPHENMORRISSON

HTTP://EN.WIKIBOOKS.
HTTP://EN.WIKIBOOKS.
HTTP://EN.WIKIBOOKS.

ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.

.ORG/W/INDEX.
WIKIBOOKS.
.ORG/W/INDEX.
WIKIBOOKS.
.ORG/W/INDEX.
WIKIBOOKS.
.ORG/W/INDEX.
WIKIBOOKS.
.ORG/W/INDEX.
WIKIBOOKS.
WIKIBOOKS.

ORG/W/INDEX.

ORG/W/INDEX.

ORG/W/INDEX.

ORG/W/INDEX.

ORG/W/INDEX.
ORG/W/INDEX.

ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.

PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:

PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:

PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:

SAMEEN

SARANG
SCHWARZBICHLER
SCR

SpbocC
SERAPHIMBLADE

SHOKUKU
SiGMA_7
SIKANDARAMIN
SISINGH

SJ

SLPOSEY
SPARTACUS3D
SPAZ_MAN
SPOON%21
SRIDARSHANZ23

SUTAMBE
SWIFT
SYGMN

http://en.wikibooks.org/w/index.php?title=User:Sameen
http://en.wikibooks.org/w/index.php?title=User:Sarang
http://en.wikibooks.org/w/index.php?title=User:Schwarzbichler
http://en.wikibooks.org/w/index.php?title=User:Scr
http://en.wikibooks.org/w/index.php?title=User:Sddoc
http://en.wikibooks.org/w/index.php?title=User:Seraphimblade
http://en.wikibooks.org/w/index.php?title=User:ShakespeareFan00
http://en.wikibooks.org/w/index.php?title=User:ShakespeareFan00
http://en.wikibooks.org/w/index.php?title=User:Shokuku
http://en.wikibooks.org/w/index.php?title=User:Sigma_7
http://en.wikibooks.org/w/index.php?title=User:Sikandaramin
http://en.wikibooks.org/w/index.php?title=User:Sisingh
http://en.wikibooks.org/w/index.php?title=User:Sj
http://en.wikibooks.org/w/index.php?title=User:Slposey
http://en.wikibooks.org/w/index.php?title=User:Spartacus3d
http://en.wikibooks.org/w/index.php?title=User:Spaz_man
http://en.wikibooks.org/w/index.php?title=User:Spoon%21
http://en.wikibooks.org/w/index.php?title=User:Sridarshan23
http://en.wikibooks.org/w/index.php?title=User:StephenMorrisson
http://en.wikibooks.org/w/index.php?title=User:StephenMorrisson
http://en.wikibooks.org/w/index.php?title=User:Sutambe
http://en.wikibooks.org/w/index.php?title=User:Swift
http://en.wikibooks.org/w/index.php?title=User:Sygmn

Other (dead tree) books on C++

=== = = =

32

O\ —

72

23

SykiL?¥

TAIKO**®
TAJENDRAZ

TALLY SOLLENI®Y
TANNERSF?!
TARDIS??
TEKTONIK??

TERO?*

TEWYZ?
THARENTHEL?>®

THE MASTER?

THE BELLMAN??
THENUB3 142
THREEE?%?
TOPSFIELD9926!
TREVOR ANDERSENZ02
UNFORGETTABLEID?%3
UVGROOVYZ**

VAN DER HOORNZ%
VIXFEARZ00

NN W = =

VOEDZ®’

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP

://EN
://EN
://EN
://EN
://EN
://EN
://EN
://EN
://EN
://EN
://EN
://EN
://EN
://EN
://EN
://EN
://EN
://EN
://EN
://EN
://EN

.WIKIBOOKS.
.WIKIBOOKS.
.WIKIBOOKS.

.WIKIBOOKS
.WIKIBOOKS

.WIKIBOOKS.

.WIKIBOOKS

.WIKIBOOKS.

.WIKIBOOKS

.WIKIBOOKS.

.WIKIBOOKS

.WIKIBOOKS.

.WIKIBOOKS

.WIKIBOOKS.

.WIKIBOOKS

.WIKIBOOKS.
.WIKIBOOKS.
.WIKIBOOKS.
.WIKIBOOKS.
.WIKIBOOKS.
.WIKIBOOKS.

ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.
.ORG/W/INDEX.
.ORG/W/INDEX.
ORG/W/INDEX.
.ORG/W/INDEX.
ORG/W/INDEX.
.ORG/W/INDEX.
ORG/W/INDEX.
.ORG/W/INDEX.
ORG/W/INDEX.
.ORG/W/INDEX.
ORG/W/INDEX.
.ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.

PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:

SYKIL

TAIKO
TAJENDRA
TALLY_SOLLENI
TANNERSF
TARDIS
TEKTONIK

TERO

TEWY
THARENTHEL
THE_MASTER
THE_BELLMAN
THENUB314
THREEE
TOPSFIELD99
TREVOR_ANDERSEN
UNFORGETTABLEID
UVGROOVY
VAN_DER_HOORN
VIXFEAR

VOED

673

http://en.wikibooks.org/w/index.php?title=User:Sykil
http://en.wikibooks.org/w/index.php?title=User:Taiko
http://en.wikibooks.org/w/index.php?title=User:Tajendra
http://en.wikibooks.org/w/index.php?title=User:Tally_Solleni
http://en.wikibooks.org/w/index.php?title=User:Tannersf
http://en.wikibooks.org/w/index.php?title=User:Tardis
http://en.wikibooks.org/w/index.php?title=User:Tektonik
http://en.wikibooks.org/w/index.php?title=User:Tero
http://en.wikibooks.org/w/index.php?title=User:Tewy
http://en.wikibooks.org/w/index.php?title=User:Tharenthel
http://en.wikibooks.org/w/index.php?title=User:The_Master
http://en.wikibooks.org/w/index.php?title=User:The_bellman
http://en.wikibooks.org/w/index.php?title=User:Thenub314
http://en.wikibooks.org/w/index.php?title=User:ThreeE
http://en.wikibooks.org/w/index.php?title=User:Topsfield99
http://en.wikibooks.org/w/index.php?title=User:Trevor_Andersen
http://en.wikibooks.org/w/index.php?title=User:Unforgettableid
http://en.wikibooks.org/w/index.php?title=User:Uvgroovy
http://en.wikibooks.org/w/index.php?title=User:Van_der_Hoorn
http://en.wikibooks.org/w/index.php?title=User:Vixfear
http://en.wikibooks.org/w/index.php?title=User:Voed

Contributors

VOXHUMANA?Z68
WEBAWARE2%?
WEEVIL??
WHITEKNIGHT?!
WIKIWIZARD?"?
WIKIMI-DHIANNZ73
WiLLOWTT?7#
WITHINFOCUS?"
WORMSTONE?7®
X10NG CHIAMIOV?"?
XI1XTAS?8
XRABOHROK?"?
XRCHZ280
YAFINE?S8!
YVH]1A%82
ZARTOM?®3
ZORBATHUTZ#

— e = e = NN O 00 = = 00 = = 00 NN

ITnka Iluka

285

268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

674

HTTP:
://EN.
HTTP:
://EN.
HTTP:
HTTP:
HTTP:

HTTP

HTTP

HTTP
HTTP

HTTP:
://EN.
://EN.
://EN.
HTTP:
HTTP:
://EN.
HTTP:

://EN.

HTTP

HTTP

HTTP

HTTP

HTTP

//EN.
//EN.
//EN.

//EN.
//EN.

://EN.
://EN.

//EN.

//EN.
//EN.

//EN.

WIKIBOOKS.
.ORG/W/INDEX.
.ORG/W/INDEX.
.ORG/W/INDEX.
WIKIBOOKS.
WIKIBOOKS.
WIKIBOOKS.
WIKIBOOKS.
.ORG/W/INDEX.
WIKIBOOKS.
.ORG/W/INDEX.
.ORG/W/INDEX.
WIKIBOOKS.
WIKIBOOKS.
WIKIBOOKS.
.ORG/W/INDEX.
WIKIBOOKS.
.ORG/W/INDEX.

WIKIBOOKS
WIKIBOOKS
WIKIBOOKS

WIKIBOOKS

WIKIBOOKS
WIKIBOOKS

WIKIBOOKS

WIKIBOOKS

ORG/W/INDEX.

ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.

ORG/W/INDEX.
ORG/W/INDEX.
ORG/W/INDEX.

ORG/W/INDEX.

ORG/W/INDEX.

PHP?TITLE=USER:
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:
PHP?TITLE=USER:

DO%BA%D0%B0_%D0%9F%D0%$B8%D0%BA%D0%B0

VOXHUMANA

:WEBAWARE
:WEEVIL
:WHITEKNIGHT
:WIKIWIZARD
WIKIMI-DHIANN
:WILLOWTT
:WITHINFOCUS
:WORMSTONE
:XIONG_CHIAMIOV
:XIXTAS
:XRABOHROK
:XRCHZ

YAFINE

YvH1llAa

ZARTOM
ZORBATHUT
$D0%$9F%D0%B8%

http://en.wikibooks.org/w/index.php?title=User:Voxhumana
http://en.wikibooks.org/w/index.php?title=User:Webaware
http://en.wikibooks.org/w/index.php?title=User:Weevil
http://en.wikibooks.org/w/index.php?title=User:Whiteknight
http://en.wikibooks.org/w/index.php?title=User:WikiWizard
http://en.wikibooks.org/w/index.php?title=User:Wikimi-dhiann
http://en.wikibooks.org/w/index.php?title=User:Willowtt
http://en.wikibooks.org/w/index.php?title=User:Withinfocus
http://en.wikibooks.org/w/index.php?title=User:Wormstone
http://en.wikibooks.org/w/index.php?title=User:Xiong_Chiamiov
http://en.wikibooks.org/w/index.php?title=User:Xixtas
http://en.wikibooks.org/w/index.php?title=User:Xrabohrok
http://en.wikibooks.org/w/index.php?title=User:Xrchz
http://en.wikibooks.org/w/index.php?title=User:Yafine
http://en.wikibooks.org/w/index.php?title=User:Yvh11a
http://en.wikibooks.org/w/index.php?title=User:Zartom
http://en.wikibooks.org/w/index.php?title=User:ZorbaTHut
http://en.wikibooks.org/w/index.php?title=User:%D0%9F%D0%B8%D0%BA%D0%B0_%D0%9F%D0%B8%D0%BA%D0%B0
http://en.wikibooks.org/w/index.php?title=User:%D0%9F%D0%B8%D0%BA%D0%B0_%D0%9F%D0%B8%D0%BA%D0%B0

List of Figures

e GFDL: Gnu Free Documentation License. HTTP://WWW.GNU.ORG/
LICENSES/FDL.HTML

e cc-by-sa-3.0: Creative Commons Attribution ShareAlike 3.0 License.
HTTP://CREATIVECOMMONS.ORG/LICENSES/BY—-sa/3.0/

* cc-by-sa-2.5: Creative Commons Attribution ShareAlike 2.5 License.
HTTP://CREATIVECOMMONS.ORG/LICENSES/BY-SA/2.5/

* cc-by-sa-2.0: Creative Commons Attribution ShareAlike 2.0 License.
HTTP://CREATIVECOMMONS.ORG/LICENSES/BY—-5A/2.0/

* cc-by-sa-1.0: Creative Commons Attribution ShareAlike 1.0 License.
HTTP://CREATIVECOMMONS.ORG/LICENSES/BY—5a/1.0/

* cc-by-2.0: Creative Commons Attribution 2.0 License. HTTP://
CREATIVECOMMONS.ORG/LICENSES/BY/2.0/

e cc-by-2.0: Creative Commons Attribution 2.0 License. HTTP://
CREATIVECOMMONS .ORG/LICENSES/BY/2.0/DEED.EN

e cc-by-2.5: Creative Commons Attribution 2.5 License. HTTP://
CREATIVECOMMONS .ORG/LICENSES/BY/2.5/DEED.EN

e cc-by-3.0: Creative Commons Attribution 3.0 License. HuTTP://
CREATIVECOMMONS.ORG/LICENSES/BY/3.0/DEED.EN

e GPL: GNU General Public License. HTTP://WWW.GNU.ORG/
LICENSES/GPL—2.0.TXT

e LGPL: GNU Lesser General Public License. ETTP://WWW.GNU.ORG/
LICENSES/LGPL.HTML

* PD: This image is in the public domain.

* ATTR: The copyright holder of this file allows anyone to use it for any pur-
pose, provided that the copyright holder is properly attributed. Redistribu-
tion, derivative work, commercial use, and all other use is permitted.

675

http://www.gnu.org/licenses/fdl.html
http://www.gnu.org/licenses/fdl.html
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/1.0/
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/deed.en
http://creativecommons.org/licenses/by/2.0/deed.en
http://creativecommons.org/licenses/by/2.5/deed.en
http://creativecommons.org/licenses/by/2.5/deed.en
http://creativecommons.org/licenses/by/3.0/deed.en
http://creativecommons.org/licenses/by/3.0/deed.en
http://www.gnu.org/licenses/gpl-2.0.txt
http://www.gnu.org/licenses/gpl-2.0.txt
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html

List of Figures

EURO: This is the common (reverse) face of a euro coin. The copyright on
the design of the common face of the euro coins belongs to the European
Commission. Authorised is reproduction in a format without relief (draw-
ings, paintings, films) provided they are not detrimental to the image of the
euro.

LFK: Lizenz Freie Kunst. aTtTP://ARTLIBRE.ORG/LICENCE/LAL/
DE

CFR: Copyright free use.

EPL: Eclipse Public License. HTTP://WWW.ECLIPSE.ORG/ORG/
DOCUMENTS/EPL-V10.PHP

Copies of the GPL, the LGPL as well as a GFDL are included in chapter Li-
CENSES?%,

286 Chapter 10 on page 679

676

http://artlibre.org/licence/lal/de
http://artlibre.org/licence/lal/de
http://www.eclipse.org/org/documents/epl-v10.php
http://www.eclipse.org/org/documents/epl-v10.php

List of Figures

1 JTojnar PD

2 - GFDL

3 JOHNMANUEL?®’ GFDL

4 David Vignoni LGPL

5 David Vignoni LGPL

6 David Vignoni LGPL

7 Original uploader ~was EHAMBERG®® at | GPL
EN.WIKIPEDIA?® Later version(s) were uploaded by
WAPCAPLET?Y, AZATOTHZ®!, HEPTITE?2, MINER-
ALA"23 PrOCUS THE MAD?*, BYONDLIMITS??,
JVIHAVAINEN?%® at EN.WIKIPEDIAZY,

8 USER CLEOS ON ENGLISH WIKIBOOKS?® PD

9 USER CLEOS ON ENGLISH WIKIBOOKS?? PD

10 USER CLEOS ON ENGLISH WIKIBOOKS % PD

11 Panic2k7 PD

12 USER CLEOS ON ENGLISH WIKIBOOKS ! PD

13 USER CLEOS ON ENGLISH WIKIBOOKS>0? PD

14 USER CLEOS ON ENGLISH WIKIBOOKS>03 PD

15 USER CLEOS ON ENGLISH WIKIBOOKS 0% PD

16 USER CLEOS ON ENGLISH WIKIBOOKS>0? PD

17 USER CLEOS ON ENGLISH WIKIBOOKS>%° PD

18 USER CLEOS ON ENGLISH WIKIBOOKS>/ PD

287 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AJOHNMANUEL

288 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AEN$3AUSER$3AEHAMBERG
289 HTTP://EN.WIKIPEDIA.ORG

290 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AEN%3AUSERY3AWAPCAPLET
291 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AEN$3AUSER%3AAZATOTH

292 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AENS3AUSERS3AHEPTITE

293 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AEN%3AUSER%3AMINERALSC3%AS8
294 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AEN%3AUSER%3APROCUS%20THES20MAD
295 HTTP://EN.WIKIBOOKS.ORG/WIKI/%$3AEN$3AUSER$3ABYONDLIMITS
296 HTTP://EN.WIKIBOOKS.ORG/WIKI/%3AEN$3AUSER$3AJVIHAVAINEN
297 HTTP://EN.WIKIPEDIA.ORG

298 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%$3ACLEOS

299 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ACLEOS

300 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%$3ACLEOS

301 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%$3ACLEOS

302 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ACLEOS

303 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%$3ACLEOS

304 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ACLEOS

305 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ACLEOS

306 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%$3ACLEOS

307 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%$3ACLEOS

677

http://de.wikibooks.org/wiki/File:C%20plus%20plus.svg
http://de.wikibooks.org/wiki/File:BjarneStroustrup.jpg
http://de.wikibooks.org/wiki/File:TaxonomyofProgrammingLanguages.png
http://de.wikibooks.org/wiki/File:Nuvola%20mimetypes%20source%20cpp.png
http://de.wikibooks.org/wiki/File:Nuvola%20mimetypes%20source%20h.png
http://de.wikibooks.org/wiki/File:Nuvola%20mimetypes%20source%20h.png
http://de.wikibooks.org/wiki/File:Vim.png
http://de.wikibooks.org/wiki/File:byte45.png
http://de.wikibooks.org/wiki/File:byte45.png
http://de.wikibooks.org/wiki/File:byte256.png
http://de.wikibooks.org/wiki/File:PrimitiveTypes.png
http://de.wikibooks.org/wiki/File:byte45.png
http://de.wikibooks.org/wiki/File:byte45flip.png
http://de.wikibooks.org/wiki/File:byte45flip1.png
http://de.wikibooks.org/wiki/File:byte228.png
http://de.wikibooks.org/wiki/File:byte228flip.png
http://de.wikibooks.org/wiki/File:byte228flip1.png
http://de.wikibooks.org/wiki/File:byte5.png
http://en.wikibooks.org/wiki/User%3AJohnManuel
http://en.wikibooks.org/wiki/%3Aen%3AUser%3AEhamberg
http://en.wikipedia.org
http://en.wikibooks.org/wiki/%3Aen%3AUser%3AWapcaplet
http://en.wikibooks.org/wiki/%3Aen%3AUser%3AAzaToth
http://en.wikibooks.org/wiki/%3Aen%3AUser%3AHeptite
http://en.wikibooks.org/wiki/%3Aen%3AUser%3AMineral%C3%A8
http://en.wikibooks.org/wiki/%3Aen%3AUser%3AProcus%20the%20Mad
http://en.wikibooks.org/wiki/%3Aen%3AUser%3AByondlimits
http://en.wikibooks.org/wiki/%3Aen%3AUser%3AJvihavainen
http://en.wikipedia.org
http://en.wikibooks.org/wiki/User%3ACleos
http://en.wikibooks.org/wiki/User%3ACleos
http://en.wikibooks.org/wiki/User%3ACleos
http://en.wikibooks.org/wiki/User%3ACleos
http://en.wikibooks.org/wiki/User%3ACleos
http://en.wikibooks.org/wiki/User%3ACleos
http://en.wikibooks.org/wiki/User%3ACleos
http://en.wikibooks.org/wiki/User%3ACleos
http://en.wikibooks.org/wiki/User%3ACleos
http://en.wikibooks.org/wiki/User%3ACleos

List of Figures

19 | DANIEL B3 GFDL
20 | PaN1C2k7°% GFDL
21 | PaNic2k 7310 GFDL
22 | USER:TUUKKAH’'! PD
23 | USER:TUUKKAH’™? PD
24 | ILYA VOYAGER’" GFDL
25 Paul R. McJones GFDL
26 :EN:USER:CBURNETT>'# GFDL
27 | :EN:USER:KHAZADUM>">, USER:STANNERED"'® PD
28 | ApamD>!7 PD

308 HTTP://DE.WIKIBOOKS.ORG/WIKI/BENUTZER%3ADANIEL%20B

309 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER$3APANIC2KT

310 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3APANIC2K7

311 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER$3ATUUKKAH

312 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER$3ATUUKKAH

313 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER$3AILYA%20VOYAGER

314 HTTP://EN.WIKIBOOKS.ORG/WIKI/%$3AEN$3AUSERS3ACBURNETT

315 HTTP://EN.WIKIBOOKS.ORG/WIKI/$3AENS3AUSERS3AKHAZADUM

316 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ASTANNERED

317 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AADAMD

678

http://de.wikibooks.org/wiki/File:Zeiger.PNG
http://de.wikibooks.org/wiki/File:Ficondforless10.png
http://de.wikibooks.org/wiki/File:Elseifage.png
http://de.wikibooks.org/wiki/File:Callback-notitle.svg
http://de.wikibooks.org/wiki/File:Callback-async-notitle.svg
http://de.wikibooks.org/wiki/File:Herman-ring-1.png
http://de.wikibooks.org/wiki/File:Alexander%20Stepanov.jpg
http://de.wikibooks.org/wiki/File:Thread%20pool.svg
http://de.wikibooks.org/wiki/File:OpenMP%20language%20extensions.svg
http://de.wikibooks.org/wiki/File:%20Queue_System.PNG
http://de.wikibooks.org/wiki/Benutzer%3ADaniel%20B
http://en.wikibooks.org/wiki/User%3APanic2k7
http://en.wikibooks.org/wiki/User%3APanic2k7
http://en.wikibooks.org/wiki/User%3ATuukkaH
http://en.wikibooks.org/wiki/User%3ATuukkaH
http://en.wikibooks.org/wiki/User%3AIlya%20Voyager
http://en.wikibooks.org/wiki/%3Aen%3AUser%3ACburnett
http://en.wikibooks.org/wiki/%3Aen%3AUser%3AKhazadum
http://en.wikibooks.org/wiki/User%3AStannered
http://en.wikibooks.org/wiki/User%3AAdamD

10 Licenses

10.1 GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright © 2007 Free Software
<http://fsf.org/>

Foundation, Inc.

Everyone is permitted to copy and distribute verbatim copies of
this license document, but changing it is not allowed. Preamble

The GNU General Public License is a free, copyleft license for
software and other kinds of works.

The licenses for most software and other practical works are
designed to take away your freedom to share and change the
works. By contrast, the GNU General Public License is in-
tended to guarantee your freedom to share and change all ver-
sions of a program—to make sure it remains free software for all
its users. We, the Free Software Foundation, use the GNU Gen-
eral Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply
it to your programs, too.

When we speak of free software, we are referring to freedom,
not price. Our General Public Licenses are designed to make
sure that you have the freedom to distribute copies of free soft-
ware (and charge for them if you wish), that you receive source
code or can get it if you want it, that you can change the soft-
ware or use pieces of it in new free programs, and that you know
you can do these things.

To protect your rights, we need to prevent others from denying
you these rights or asking you to surrender the rights. There-
fore, you have certain responsibilities if you distribute copies
of the software, or if you modify it: responsibilities to respect
the freedom of others.

For example, if you distribute copies of such a program,
whether gratis or for a fee, you must pass on to the recipients
the same freedoms that you received. You must make sure that
they, too, receive or can get the source code. And you must
show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two
steps: (1) assert copyright on the software, and (2) offer you this
License giving you legal permission to copy, distribute and/or
modify it.

For the developers’ and authors” protection, the GPL clearly ex-
plains that there is no warranty for this free software. For both
users’ and authors’ sake, the GPL requires that modified ver-
sions be marked as changed, so that their problems will not be
attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or
run modified versions of the software inside them, although the
manufacturer can do so. This is

making available to the public, and in some countries other ac-
tivities as well.

To “convey” a work means any kind of propagation that enables
other parties to make or receive copies. Mere interaction with a
user through a computer network, with no transfer of a copy, is
not conveying.

An interactive user interface displays “Appropriate Legal No-
tices” to the extent that it includes a convenient and prominently
visible feature that (1) displays an appropriate copyright notice,
and (2) tells the user that there is no warranty for the work (ex-
cept to the extent that warranties are provided), that licensees
may convey the work under this License, and how to view a
copy of this License. If the interface presents a list of user com-
mands or options, such as a menu, a prominent item in the list
meets this criterion. 1. Source Code.

The “source code” for a work means the preferred form of the
work for making modifications to it. “Object code’ means any
non-source form of a work.

A “Standard Interface” means an interface that either is an offi-
cial standard defined by a recognized standards body, or, in the
case of interfaces specified for a particular programming lan-
guage, one that is widely used among developers working in
that language.

The “System Libraries” of an executable work include any-
thing, other than the work as a whole, that (a) is included in the
normal form of packaging a Major Component, but which is
not part of that Major Component, and (b) serves only to enable
use of the work with that Major Component, or to implement a
Standard Interface for which an implementation is available to
the public in source code form. A “Major Component”, in this
context, means a major essential component (kernel, window
system, and so on) of the specific operating system (if any) on
which the executable work runs, or a compiler used to produce
the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form
means all the source code needed to generate, install, and (for
an executable work) run the object code and to modify the work,
including scripts to control those activities. However, it does
not include the work’s System Libraries, or general-purpose
tools or generally available free programs which are used un-
modified in performing those activities but which are not part
of the work. For example, Corresponding Source includes in-
terface definition files associated with source files for the work,
and the source code for shared libraries and dynamically linked
subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow be-
tween those subprograms and other parts of the work.

The Corresponding Source need not include anything that users

with the aim of protecting users’ freedom to change the soft-
ware. The systematic pattern of such abuse occurs in the area
of products for individuals to use, which is precisely where it
is most unacceptable. Therefore, we have designed this version
of the GPL to prohibit the practice for those products. If such
problems arise substantially in other domains, we stand ready
to extend this provision to those domains in future versions of
the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software
patents. States should not allow patents to restrict development
and use of software on general-purpose computers, but in those
that do, we wish to avoid the special danger that patents applied
to a free program could make it effectively proprietary. To pre-
vent this, the GPL assures that patents cannot be used to render
the program non-free.

The precise terms and conditions for copying, distribution and
modification follow. TERMS AND CONDITIONS 0. Defini-
tions.

“This License” refers to version 3 of the GNU General Public
License.

“Copyright” also means copyright-like laws that apply to other
kinds of works, such as semiconductor masks.

“The Program’” refers to any copyrightable work licensed under
this License. Each licensee is addressed as “you”. “Licensees”
and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part
of the work in a fashion requiring copyright permission, other
than the making of an exact copy. The resulting work is called
a “modified version” of the earlier work or a work “based on”
the earlier work.

A “covered work” means either the unmodified Program or a
work based on the Program.

To “propagate” a work means to do anything with it that, with-
out permission, would make you directly or secondarily liable
for infringement under applicable copyright law, except execut-
ing it on a computer or modifying a private copy. Propagation
includes copying, distribution (with or without modification),

can from other parts of the Corre-
sponding Source.

The Corresponding Source for a work in source code form is
that same work. 2. Basic Permissions.

All rights granted under this License are granted for the term
of copyright on the Program, and are irrevocable provided the
stated conditions are met. This License explicitly affirms your
unlimited permission to run the unmodified Program. The out-
put from running a covered work is covered by this License only
if the output, given its content, constitutes a covered work. This
License acknowledges your rights of fair use or other equiva-
lent, as provided by copyright law.

You may make, run and propagate covered works that you do
not convey, without conditions so long as your license other-
wise remains in force. You may convey covered works to others
for the sole purpose of having them make modifications exclu-
sively for you, or provide you with facilities for running those.
works, provided that you comply with the terms of this License
in conveying all material for which you do not control copy-
right. Those thus making or running the covered works for you
must do so exclusively on your behalf, under your direction and
control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely
under the conditions stated below. Sublicensing is not allowed;
section 10 makes it unnecessary. 3. Protecting Users’ Legal
Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective techno-
logical measure under any applicable law fulfilling obligations
under article 11 of the WIPO copyright treaty adopted on 20
December 1996, or similar laws prohibiting or restricting cir-
cumvention of such measures.

When you convey a covered work, you waive any legal power
to forbid circumvention of technological measures to the ex-
tent such circumvention is effected by exercising rights under
this License with respect to the covered work, and you disclaim
any intention to limit operation or modification of the work as a
means of enforcing, against the work’s users, your or third par-
ties” legal rights to forbid circumvention of technological mea-
sures. 4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code
as you receive it, in any medium, provided that you conspic-
uously and appropriately publish on each copy an appropriate
copyright notice; keep intact all notices stating that this License
and any non-permissive terms added in accord with section 7
apply to the code; keep intact all notices of the absence of any
warranty; and give all recipients a copy of this License along
with the Program.

You may charge any price or no price for cach copy that you
convey, and you may offer support or warranty protection for a
fee. 5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifi-
cations to produce it from the Program, in the form of source
code under the terms of section 4, provided that you also meet
all of these conditions:

* a) The work must carry prominent notices stating that you
modified it, and giving a relevant date. * b) The work must
carry prominent notices stating that it is released under this Li-
cense and any conditions added under section 7. This require-
ment modifies the requirement in section 4 to “keep intact all
notices”. * ¢) You must license the entire work, as a whole,
under this License to anyone who comes into possession of a
copy. This License will therefore apply, along with any appli-
cable section 7 additional terms, to the whole of the work, and
all its parts, regardless of how they are packaged. This License
gives no permission to license the work in any other way, but it
does not invalidate such permission if you have separately re-
ceived it. * d) If the work has interactive user interfaces, each
must display Appropriate Legal Notices; however, if the Pro-
gram has interactive interfaces that do not display Appropriate
Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and inde-
pendent works, which are not by their nature extensions of the
covered work, and which are not combined with it such as to
form a larger program, in or on a volume of a storage or dis-
tribution medium, is called an “aggregate” if the compilation
and its resulting copyright are not used to limit the access or
legal rights of the compilation’s users beyond what the individ-
ual works permit. Inclusion of a covered work in an aggregate
does not cause this License to apply to the other parts of the
aggregate. 6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the
terms of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this
License, in one of these ways:

* a) Convey the object code in, or embodied in, a physical prod-
uct (including a physical distribution medium), accompanied by
the Corresponding Source fixed on a durable physical medium
customarily used for software interchange. * b) Convey the ob-
ject code in, or embodied in, a physical product (including a
physical distribution medium), accompanied by a written offer,
valid for at least three years and valid for as long as you offer
spare parts or customer support for that product model, to give
anyone who possesses the object code either (1) a copy of the
Corresponding Source for all the software in the product that is
covered by this License, on a durable physical medium custom-
arily used for software interchange, for a price no more than
your reasonable cost of physically performing this conveying
of source, or (2) access to copy the Corresponding Source from
a network server at no charge. * ¢) Convey individual copies
of the object code with a copy of the written offer to provide
the Corresponding Source. This alternative is allowed only oc-
casionally and noncommercially, and only if you received the
object code with such an offer, in accord with subsection 6b. *
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place
at no further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place
to copy the object code is a network server, the Corresponding
Source may be on a different server (operated by you or a third
party) that supports equivalent copying facilities, provided you
‘maintain clear directions next to the object code saying where
to find the Corresponding Source. Regardless of what server
hosts the Corresponding Source, you remain obligated to en-
sure that it is available for as long as needed to satisfy these
requirements. * ¢) Convey the object code using peer-to-peer
transmission, provided you inform other peers where the object
code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is
excluded from the Corresponding Source as a System Library,
need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which
means any tangible personal property which is normally used
for personal, family, or household purposes, or (2) anything de-
signed or sold for incorporation into a dwelling. In determining
whether a product is a consumer product, doubtful cases shall
be resolved in favor of coverage. For a particular product re-
ceived by a particular user, “normally used” refers to a typical
or common use of that class of product, regardless of the sta-
tus of the particular user or of the way in which the particular
user actually uses, or expects or is expected to use, the prod-
uct. A product is a consumer product regardless of whether the
product has industrial or

uses, unless such uses represent the only significant mode of use
of the product.

“Installation Information™ for a User Product means any meth-
ods, procedures, authorization keys, or other information re-
quired to install and execute modified versions of a covered
work in that User Product from a modified version of its Cor-
responding Source. The information must suffice to ensure that
the continued functioning of the modified object code is in no
case prevented or interfered with solely because modification
has been made.

If you convey an object code work under this section in, or with,
or specifically for use in, a User Product, and the conveying oc-
curs as part of a transaction in which the right of possession
and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transac-
tion is characterized), the Corresponding Source conveyed un-
der this section must be accompanied by the Installation Infor-
‘mation. But this requirement does not apply if neither you nor
any third party retains the ability to install modified object code
on the User Product (for example, the work has been installed
in ROM).

The requirement to provide Installation Information does not
include a requirement to continue to provide support service,
warranty, or updates for a work that has been modified or in-
stalled by the recipient, or for the User Product in which it has
been modified or installed. Access to a network may be denied
when the modification itself materially and adversely affects the
operation of the network or violates the rules and protocols for
communication across the network.

Corresponding Source conveyed, and Installation Information
provided, in accord with this section must be in a format that
is publicly (and with an i available
to the public in source code form), and must require no special
password or key for unpacking, reading or copying. 7. Addi-
tional Terms.

“Additional permissions” are terms that supplement the terms
of this License by making exceptions from one or more of its
conditions. Additional permissions that are applicable to the
entire Program shall be treated as though they were included in
this License, to the extent that they are valid under applicable
law. If additional permissions apply only to part of the Program,
that part may be used separately under those permissions, but
the entire Program remains governed by this License without
regard to the additional permissions.

When you convey a copy of a covered work, you may at your
option remove any additional permissions from that copy, or
from any part of it. (Additional permissions may be written
to require their own removal in certain cases when you modify
the work.) You may place additional permissions on material,
added by you to a covered work, for which you have or can give
appropriate copyright permission.

Notwithstanding any other provision of this License, for mate-
rial you add to a covered work, you may (if authorized by the
copyright holders of that material) supplement the terms of this
License with terms:

* a) Disclaiming warranty or limiting liability differently from
the terms of sections 15 and 16 of this License; or * b) Requir-
ing preservation of specified reasonable legal notices or author
attributions in that material or in the Appropriate Legal Notices
displayed by works containing it; or * ¢) Prohibiting misrepre-
sentation of the origin of that material, or requiring that modi-
fied versions of such material be marked in reasonable ways as
different from the original version; or * d) Limiting the use for
publicity purposes of names of licensors or authors of the ma-
terial; or * ¢) Declining to grant rights under trademark law for
use of some trade names, trademarks, or service marks; or * f)
Requiring indemnification of licensors and authors of that ma-
terial by anyone who conveys the material (or modified versions
of it) with contractual assumptions of liability to the recipient,
for any liability that these contractual assumptions directly im-
pose on those licensors and authors.

All other non-permissive additional terms are considered “fur-
ther restrictions™ within the meaning of section 10. If the Pro-
gram as you received it, or any part of it, contains a notice
ing that it is governed by this License along with a term that is a
further restriction, you may remove that term. If a license doc-
ument contains a further restriction but permits relicensing or
conveying under this License, you may add to a covered work
material governed by the terms of that license document, pro-
vided that the further restriction does not survive such relicens-
ing or conveying

If you add terms to a covered work in accord with this section,
you must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

dditional terms, or non-permissive, may be stated
in the form of a separately written license, or stated as excep-
tions; the above requirements apply either way. 8. Termination.

You may not propagate or modify a covered work except as ex-
pressly provided under this License. Any attempt otherwise to
propagate or modify it is void, and will automatically terminate

your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a) pro-
visionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copy-
right holder fails to notify you of the violation by some reason-
able means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is re-
instated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you
have received notice of violation of this License (for any work)
from that copyright holder, and you cure the violation prior to
30 days after your receipt of the notice.

Termination of your rights under this section does not terminate
the licenses of parties who have received copies or rights from
you under this License. If your rights have been terminated and
not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10. 9. Acceptance
Not Required for Having Copies.

You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered
work occurring solely as a consequence of using peer-to-peer
transmission to receive a copy likewise does not require ac-
ceptance. However, nothing other than this License grants you
permission to propagate or modify any covered work. These
actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you
indicate your acceptance of this License to do so. 10. Auto-
matic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automati-
cally receives a license from the original licensors, to run, mod-
iy and propagate that work, subject to this License. You are
not responsible for enforcing compliance by third parties with
this License.

An “entity ion” is a control of
an organization, or substantially all assets of one, or subdivid-
ingan ization, or merging izations. If of

a covered work results from an entity transaction, each party to
that transaction who receives a copy of the work also receives
whatever licenses to the work the party’s predecessor in interest
had or could give under the previous paragraph, plus a right to
possession of the Corresponding Source of the work from the
predecessor in interest, if the predecessor has it or can get it
with reasonable efforts.

You may not impose any further restrictions on the exercise of
the rights granted o affirmed under this License. For example,
you may not impose a license fee, royalty, or other charge for
exercise of rights granted under this License, and you may not
initiate litigation (including a cro: im or counterclaim in a
lawsuit) alleging that any patent claim is infringed by making,
using, selling, offering for sale, or importing the Program or
any portion of it. 11. Patents.

A “contributor” is a copyright holder who authorizes use under
this License of the Program or a work on which the Program is
based. The work thus licensed is called the contributor’s “con-
tributor version”.
A contributor’s “essential patent claims” are all patent claims
owned or controlled by the contributor, whether already ac-
quired or hereafter acquired, that would be infringed by some
manner, permitied by this License, of making, using, or sell-
ing its contributor version, but do not include claims that would

be infringed only as a consequence of further modification of
the contributor version. For purposes of this definition, “con-
trol” includes the right to grant patent sublicenses in a manner
consistent with the requirements of this License.

you convey the Program, the only way you could satisfy both
those terms and this License would be to refrain entirely from
conveying the Program. 13. Use with the GNU Affero General
Public License.

Each contributor grants you a 1 5 3
royalty-free patent license under the contributor’s essential
patent claims, to make, use, sell, offer for sale, import and oth-
erwise run, modify and propagate the contents of its contributor
version.

In the following three paragraphs, a “patent license” is any

any other provision of this License, you have
permission to link or combine any covered work with a work
licensed under version 3 of the GNU Affero General Public Li-
cense into a single combined work, and to convey the resulting
work. The terms of this License will continue to apply to the
part which is the covered work, but the special requirements of
the GNU Affero General Public License, section 13, concern-
ingi ion through a network will apply to the combination

express or however i not
to enforce a patent (such as an express permission to practice
a patent or covenant not to sue for patent infringement). To
“grant” such a patent license to a party means to make such an
agreement or commitment not to enforce a patent against the
party.

If you convey a covered work, knowingly relying on a patent
license, and the Corresponding Source of the work is not avail-
able for anyone to copy, free of charge and under the terms
of this License, through a publicly available network server or
other readily accessible means, then you must either (1) cause
the Corresponding Source to be so available, or (2) arrange to
deprive yourself of the benefit of the patent license for this par-
ticular work, or (3) arrange, in a manner consistent with the re-
quirements of this License, to extend the patent license to down-
stream recipients. “Knowingly relying” means you have actual
knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the cov-
ered work in a country, would infringe one or more identifiable
patents in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or ar-
rangement, you convey, or propagate by procuring conveyance
of, a covered work, and grant a patent license to some of the par-
ties receiving the covered work authorizing them to use, prop-
agate, modify or convey a specific copy of the covered work,
then the patent license you grant is automatically extended to
all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within
the scope of its coverage, prohibits the exercise of, or is con-
ditioned on the non-exercise of one or more of the rights that
are specifically granted under this License. You may not con-
vey a covered work if you are a party to an arrangement with a
third party that is in the business of distributing software, under
which you make payment to the third party based on the extent
of your activity of conveying the work, and under which the
third party grants, to any of the parties who would receive the
covered work from you, a discriminatory patent license (a) in
connection with copies of the covered work conveyed by you
(or copies made from those copies), or (b) primarily for and in
connection with specific products or compilations that contain
the covered work, unless you entered into that arrangement, or
that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or lim-
iting any implied license or other defenses to infringement that
may otherwise be available to you under applicable patent law.
12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this
License, they do not excuse you from the conditions of this Li-
cense. If you cannot convey a covered work so as to satisfy si-
multancously your obligations under this License and any other
pertinent obligations, then as a consequence you may not con-
vey itat all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom

10.2 GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software
Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed. 0.
PREAMBLE

The purpose of this License is to make a manual, textbook, or
other functional and useful document "free" in the sense of free-
dom: to assure everyone the effective freedom to copy and re-
distribute it, with or without modifying it, either commercially
or noncommercially. Secondarily, this License preserves for the
author and publisher a way to get credit for their work, while not
being consi for modi made by others.

This License is a kind of "copyleft", which means that deriva-
tive works of the document must themselves be free in the same
sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

‘We have designed this License in order to use it for manuals for
free software, because free software needs free documentation:
a free program should come with manuals providing the same
freedoms that the software does. But this License is not limited
to software manuals; it can be used for any textual work, re-
gardless of subject matter or whether it is published as a printed
book. We recommend this License principally for works whose
purpose is instruction or reference. 1. APPLICABILITY AND
DEFINITIONS

This License applies to any manual or other work, in any
medium, that contains a notice placed by the copyright holder
saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlim-
ited in duration, to use that work under the conditions stated
herein. The "Document", below, refers to any such manual or
work. Any member of the public is a licensee, and is addressed
as "you". You accept the license if you copy, modify or dis-
tribute the work in a way requiring permission under copyright
law.

A "Modified Version" of the Document means any work con-
taining the Document or a portion of it, either copied verbatim,
or with modifications and/or translated into another language.

A "Secondary Section” is a named appendix or a front-matter
section of the Document that deals exclusively with the relation-
ship of the publishers or authors of the Document to the Docu-
ment’s overall subject (or to related matters) and contains noth-
ing that could fall directly within that overall subject. (Thus, if
the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or
with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The "Invariant Sections” are certain Secondary Sections whose
titles are designated, as being those of Invariant Sections, in
the notice that says that the Document is released under this Li-
cense. If a section does not fit the above definition of Secondary
then it is not allowed to be designated as Invariant. The Doc-
ument may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are
listed, as Front-Cover Texts or Back-Cover Texts, in the notice
that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover
Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-
readable copy, represented in a format whose specification is
available to the general public, that is suitable for revising the
document straightforwardly with generic text editors or (for im-
ages composed of pixels) generic paint programs or (for draw-
ings) some widely available drawing editor, and that is suitable
for input to text formatters or for automatic translation to a va-
riety of formats suitable for input to text formatters. A copy
made in an otherwise Transparent file format whose markup, or
absence of markup, has been arranged to thwart or discourage
subsequent modification by readers is not Transparent. An im-
age format is not Transparent if used for any substantial amount
of text. A copy that is not "Transparent" is called "Opaque”.

as such. 14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new
versions of the GNU General Public License from time to time.
Such new versions will be similar in spirit to the present ver-
sion, but may differ in detail to address new problems or con-
cerns.

Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU
General Public License “or any later version” applies to it, you
have the option of following the terms and conditions either of
that numbered version or of any later version published by the
Free Software Foundation. If the Program does not specify a
version number of the GNU General Public License, you may
choose any version ever published by the Free Software Foun-
dation.

If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that
proxy’s public statement of acceptance of a version perma-
nently authorizes you to choose that version for the Program.

Later license versions may give you additional or different per-
missions. However, no additional obligations are imposed on
any author or copyright holder as a result of your choosing to
follow a later version. 15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE
EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT
WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU AS-
SUME THE COST OF ALL NECESSARY SERVICING, RE-
PAIR OR CORRECTION. 16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE
LAW OR AGREED TO IN WRITING WILL ANY COPY-
RIGHT HOLDER, OR ANY OTHER PARTY WHO MOD-
IFIES AND/OR CONVEYS THE PROGRAM AS PERMIT-
TED ABOVE, BE LIABLE TO YOU FOR DAMAGES, IN-
CLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUD-
ING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF
THE PROGRAM TO OPERATE WITH ANY OTHER PRO-
GRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. 17. Interpretation of Sections 15 and 16.

Examples of suitable formats for Transparent copies include
plain ASCIT without markup, Texinfo input format, LaTeX in-
put format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF de-
signed for human modification. Examples of transparent im-
age formats include PNG, XCF and JPG. Opaque formats in-
clude proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, and
the machine-generated HTML, PostScript or PDF produced by
some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the
material this License requires to appear in the title page. For
works in formats which do not have any title page as such, "Ti-
tle Page” means the text near the most prominent appearance of
the work’s title, preceding the beginning of the body of the text.

The "publisher” means any person or entity that distributes
copies of the Document to the public.

A section "Entitled XYZ" means a named subunit of the Doc-
ument whose title either is precisely XYZ or contains XYZ in
parentheses following text that translates XYZ in another lan-
guage. (Here XYZ stands for a specific section name mentioned
below, such as "Acknowledgements", "Dedications", "Endorse-
ments", or "History".) To "Preserve the Title" of such a section
when you modify the Document means that it remains a section
"Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the
notice which states that this License applies to the Document.
These Warranty Disclaimers are considered to be included by
reference in this License, but only as regards disclaiming war-
ranties: any other implication that these Warranty Disclaimers
may have is void and has no effect on the meaning of this Li-
cense. 2. VERBATIM COPYING

You may copy and distribute the Document in any medium, ei-
ther commercially or noncommercially, provided that this Li-
cense, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies,

If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approx-
imates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability ac-
companies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS How to Apply These
Terms to Your New Programs

If you develop a new program, and you want it to be of the
greatest possible use to the public, the best way to achieve this
is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at
least the “copyright™ line and a pointer to where the full notice
is found.

<one line to give the program’s name and a brief idea of what it
does.> Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation, cither version 3
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General
Public License along with this program. If not, see
<http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and
paper mail.

If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author> This pro-
gram comes with ABSOLUTELY NO WARRANTY: for de-
tails type *show w’. This is free software, and you are welcome
to redistribute it under certain conditions; type ‘show ¢’ for de-
tails.

The hypothetical commands ‘show w* and ‘show ¢’ should
show the appropriate parts of the General Public License. Of
course, your program’s commands might be different; for a GUI
interface, you would use an “about box”.

You should also get your employer (if you work as a pro-
grammer) or school, if any, to sign a “copyright disclaimer”
for the program, if necessary. For more information on
this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorpo-

rating your program into proprietary programs. If your pro-

gram is a subroutine library, you may consider it more use-

ful to permit linking proprictary applications with the library.

If this is what you want to do, use the GNU Lesser General

Public License instead of this License. But first, please read
hitp: .gnu. i t-lgpl.hml>.

and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make
or distribute. However, you may accept compensation in ex-
change for copies. If you distribute a large enough number of
copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated
above, and you may publicly display copies. 3. COPYING
IN QUANTITY

If you publish printed copies (or copies in media that commonly
have printed covers) of the Document, numbering more than
100, and the Document’s license notice requires Cover Texts,
you must enclose the copies in covers that carry, clearly and
legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers
must also clearly and legibly identify you as the publisher of
these copies. The front cover must present the full title with all
words of the title equally prominent and visible. You may add
other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verba-
tim copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit rea-
sonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document
numbering more than 100, you must either include a machine-
readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a computer-network loca-
tion from which the general network-using public has access
to download using public-standard network protocols a com-
plete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity,
to ensure that this Transparent copy will remain thus accessible
at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents
or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of
the Document well before redistributing any large number of
copies, to give them a chance to provide you with an updated
version of the Document. 4. MODIFICATIONS

You may copy and distribute a Modified Version of the Docu-
ment under the conditions of sections 2 and 3 above, provided
that you release the Modified Version under precisely this Li-
cense, with the Modified Version filling the role of the Docu-
ment, thus licensing distribution and modification of the Modi-
fied Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

* A. Use in the Title Page (and on the covers, if any) a title
distinct from that of the Document, and from those of previous
versions (which should, if there were any, be listed in the His-
tory section of the Document). You may use the same title as
a previous version if the original publisher of that version gives
permission. * B. List on the Title Page, as authors, one or more
persons or entities responsible for authorship of the modifica-
tions in the Modified Version, together with at least five of the
principal authors of the Document (all of its principal authors, if
it has fewer than five), unless they release you from this require-
ment. * C. State on the Title page the name of the publisher of
the Modified Version, as the publisher. * D. Preserve all the
copyright notices of the Document. * E. Add an appropriate
copyright notice for your modifications adjacent to the other
copyright notices. * F. Include, immediately after the copyright
notices, a license notice giving the public permission to use the
Modified Version under the terms of this License, in the form
shown in the Addendum below. * G. Preserve in that license no-
tice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice. * H. Include an un-
altered copy of this License. * I. Preserve the section Entitled
"History", Preserve its Title, and add to it an item stating at least
the title, year, new authors, and publisher of the Modified Ver-
sion as given on the Title Page. If there is no section Entitled
"History" in the Document, create one stating the title, year, au-
thors, and publisher of the Document as given on its Title Page,
then add an item describing the Modified Version as stated in
the previous sentence. * J. Preserve the network location, if
any, given in the Document for public access to a Transparent
copy of the Document, and likewise the network locations given
in the Document for previous versions it was based on. These
may be placed in the "History" section. You may omit a net-
work location for a work that was published at least four years
before the Document itself, or if the original publisher of the
version it refers to gives permission. * K. For any section Enti-
tled "Acknowledgements" or "Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and
tone of each of the contributor acknowledgements and/or dedi-
cations given therein. * L. Preserve all the Invariant Sections of
the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section
titles. * M. Delete any section Entitled "Endorsements”. Such
a section may not be included in the Modified Version. * N. Do
not retitle any existing section to be Entitled "Endorsements" or
to conflict in title with any Invariant Section. * O. Preserve any
Warranty Disclaimers.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no
material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this,
add their titles to the list of Invariant Sections in the Modified
Version’s license notice. These titles must be distinct from any
other section titles.

You may add a section Entitled "Endorsements”, provided it
contains nothing but endorsements of your Modified Version
by various parties—for example, statements of peer review or
that the text has been approved by an organization as the au-
thoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover
Text, and a passage of up to 25 words as a Back-Cover Text,
to the end of the list of Cover Texts in the Modified Version.
Only one passage of Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made
by the same entity you are acting on behalf of, you may not add
another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this
License give permission to use their names for publicity for or
to assert or imply endorsement of any Modified Version.
COMBINING DOCUMENTS

You may combine the Document with other documents released
under this License, under the terms defined in section 4 above
for modified versions, provided that you include in the combi-
nation all of the Invariant Sections of all of the original doc-
uments, unmodified, and list them all as Tnvariant Sections of
your combined work in its license notice, and that you preserve
all their Warranty Disclaimers.

The combined work need only contain one copy of this License,
and multiple identical Invariant Sections may be replaced with
a single copy. If there are multiple Invariant Sections with
the same name but different contents, make the title of each
such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if
Kknown, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license
notice of the combined work.

In the combination, you must combine any sections Entitled
“History" in the various original documents, forming one sec-
tion Entitled "History"; likewise combine any sections Entitled
"Acknowledgements", and any sections Entitled "Dedications".
You must delete all sections Entitled "Endorsements”. 6. COL-
LECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and
other documents released under this License, and replace the
individual copies of this License in the various documents with
a single copy that is included in the collection, provided that
you follow the rules of this License for verbatim copying of
cach of the documents in all other respects.

You may extract a single document from such a collection, and
distribute it individually under this License, provided you insert
a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of
that document. 7. AGGREGATION WITH INDEPENDENT
WORKS

A compilation of the Document or its derivatives with other sep-
arate and independent documents or works, in or on a volume
of a storage or distribution medium, is called an "aggregate”
if the copyright resulting from the compilation is not used to
limit the legal rights of the compilation’s users beyond what the
individual works permit. When the Document is included in
an aggregate, this License does not apply to the other works in

10.3 GNU Lesser General Public License

GNU LESSER GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright © 2007 Free
<http://fsf.org/>

Software Foundation, Inc.

Everyone is permitted to copy and distribute verbatim copies of
this license document, but changing it is not allowed.

This version of the GNU Lesser General Public License in-
corporates the terms and conditions of version 3 of the GNU
General Public License, supplemented by the additional per-
missions listed below. 0. Additional Definitions.

As used herein, “this License™ refers to version 3 of the GNU
Lesser General Public License, and the “GNU GPL” refers to
version 3 of the GNU General Public License.

“The Library” refers to a covered work governed by this Li-
cense, other than an Application or a Combined Work as de-
fined below.

An “Application” is any work that makes use of an interface
provided by the Library, but which is not otherwise based on
the Library. Defining a subclass of a class defined by the Li-
brary is deemed a mode of using an interface provided by the
Library.

A “Combined Work” i a work produced by combining or link-
ing an Application with the Library. The particular version of
the Library with which the Combined Work was made is also
called the “Linked Version”.

The “Minimal Corresponding Source™ for a Combined Work
means the Corresponding Source for the Combined Work, ex-
cluding any source code for portions of the Combined Work
that, considered in isolation, are based on the Application, and
not on the Linked Version.

The “Corresponding Application Code” for a Combined Work
means the object code and/or source code for the Application,
including any data and utility programs needed for reproduc-
ing the Combined Work from the Application, but excluding
the System Libraries of the Combined Work. 1. Exception to
Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this
License without being bound by section 3 of the GNU GPL. 2.
Conveying Modified Versions

If you modify a copy of the Library, and, in your modifications,
a facility refers to a function or data to be supplied by an Appli-
cation that uses the facility (other than as an argument passed
when the facility is invoked), then you may convey a copy of
the modified version:

* a) under this License, provided that you make a good faith
effort to ensure that, in the event an Application does not sup-
ply the function or data, the facility still operates, and performs
whatever part of its purpose remains meaningful, or * b) under
the GNU GPL, with none of the additional permissions of this
License applicable to that copy.

3. Object Code Incorporating Material from Library Header
Files.

The object code form of an Application may incorporate ma-
terial from a header file that is part of the Library. You may
convey such object code under terms of your choice, provided
that, if the incorporated material is not limited to numerical pa-
rameters, data structure layouts and accessors, or small macros,
inline functions and templates (ten or fewer lines in length), you
do both of the following:

* a) Give prominent notice with each copy of the object code
that the Library is used in it and that the Library and its use are
covered by this License. * b) Accompany the object code with
a copy of the GNU GPL and this license document.

the aggregate which are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one
half of the entire aggregate, the Document’s Cover Texts may
be placed on covers that bracket the Document within the ag-
gregate, or the electronic equivalent of covers if the Document
i in electronic form. Otherwise they must appear on printed
covers that bracket the whole aggregate. 8. TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of sec-
tion 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition
to the original versions of these Invariant Sections. You may in-
clude a translation of this License, and all the license notices
in the Document, and any Warranty Disclaimers, provided that
you also include the original English version of this License and
the original versions of those notices and disclaimers. In case of
a disagreement between the translation and the original version
of this License or a notice or disclaimer, the original version
will prevail.

If a section in the Document is Entitled "Acknowledgements",
"Dedications", or "History", the i (section 4) to Pre-
serve its Title (section 1) will typically require changing the
actual title. 9. TERMINATION

You may not copy, modify, sublicense, or distribute the Doc-
ument except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, or distribute it
is void, and will automatically terminate your rights under this
License.

However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a) pro-
visionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copy-
right holder fails to notify you of the violation by some reason-
able means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is re-
instated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you
have received notice of violation of this License (for any work)
from that copyright holder, and you cure the violation prior to
30 days after your receipt of the notice.

Termination of your rights under this section does not terminate
the licenses of parties who have received copies or rights from
you under this License. If your rights have been terminated and
not permanently reinstated, receipt of a copy of some or all of
the same material does not give you any rights to use it. 10.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised ver-
sions of the GNU Free Documentation License from time to
time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or
concerns. See hitp://www.gnu.org/copylefu.

Each version of the License is given a distinguishing version
number. If the Document specifies that a particular numbered
version of this License "or any later version” applies to it, you
have the option of following the terms and conditions either of

4. Combined Works.

You may convey a Combined Work under terms of your choice
that, taken together, effectively do not restrict modification of
the portions of the Library contained in the Combined Work
and reverse engineering for debugging such modifications, if
you also do each of the following:

* a) Give prominent notice with each copy of the Combined
Work that the Library is used in it and that the Library and its
use are covered by this License. * b) Accompany the Combined
‘Work with a copy of the GNU GPL and this license document. *
¢) For a Combined Work that displays copyright notices during
execution, include the copyright notice for the Library among
these notices, as well as a reference directing the user to the
copies of the GNU GPL and this license document. * d) Do
one of the following: o 0) Convey the Minimal Corresponding
Source under the terms of this License, and the Corresponding
Application Code in a form suitable for, and under terms that
permit, the user to recombine or relink the Application with a
modified version of the Linked Version to produce a modified
Combined Work, in the manner specified by section 6 of the
GNU GPL for conveying Corresponding Source. o 1) Use a
suitable shared library mechanism for linking with the Library.
A suitable mechanism is one that (a) uses at run time a copy
of the Library already present on the user’s computer system,
and (b) will operate properly with a modified version of the Li-
brary that is interface-compatible with the Linked Version. *
e) Provide Installation Information, but only if you would oth-
erwise be required to provide such information under section
6 of the GNU GPL, and only to the extent that such informa-
tion is necessary to install and execute a modified version of the
Combined Work produced by recombining or relinking the Ap-
plication with a modified version of the Linked Version. (If you
use option 4d0, the forma must

the Minimal C Source and Cor Appli-
cation Code. If you use option 4d1, you must provide the In-
stallation Information in the manner specified by section 6 of
the GNU GPL for conveying Corresponding Source.)

that specified version or of any later version that has been pub-
lished (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License,
you may choose any version ever published (not as a draft) by
the Free Software Foundation. If the Document specifies that
a proxy can decide which future versions of this License can
be used, that proxy’s public statement of acceptance of a ver-
sion permanently authorizes you to choose that version for the
Document. 11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site")
‘means any World Wide Web server that publishes copyrightable
works and also provides prominent facilities for anybody to edit
those works. A public wiki that anybody can edit is an example
of such a server. A "Massive Multiauthor Collaboration" (or
"MMC") contained in the site means any set of copyrightable
works thus published on the MMC site

"CC-BY-SA" means the Creative Commons Attribution-Share
Alike 3.0 license published by Creative Commons Corporation,
anot-for-profit corporation with a principal place of business in
San Francisco, California, as well as future copyleft versions of
that license published by that same organization.

"Incorporate” means to publish or republish a Document, in
whole or in part, as part of another Document.

An MMC is "eligible for relicensing"” if it is licensed under this
License, and if all works that were first published under this
License somewhere other than this MMC, and subsequently in-
corporated in whole or in part into the MMC, (1) had no cover
texts or invariant sections, and (2) were thus incorporated prior
to November 1, 2008.

The operator of an MMC Site may republish an MMC con-
tained in the site under CC-BY-SA on the same site at any time
before August 1, 2009, provided the MMC is eligible for reli-
censing. ADDENDUM: How to use this License for your doc-
uments

To use this License in a document you have written, include
a copy of the License in the document and put the following
copyright and license notices just after the title page:

Copyright (C) YEAR YOUR NAME. Permission is granted to
copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled
"GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-
Cover Texts, replace the "with ... Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with
the Front-Cover Texts being LIST, and with the Back-Cover
Texts being LIST.

If you have Invariant Sections without Cover Texts, or some
other combination of the three, merge those two alternatives to
suit the situation.

If your document contains nontrivial examples of program
code, we recommend releasing these examples in parallel under
your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

5. Combined Libraries.

You may place library facilities that are a work based on the
Library side by side in a single library together with other li-
brary facilities that are not Applications and are not covered by
this License, and convey such a combined library under terms
of your choice, if you do both of the following:

* a) Accompany the combined library with a copy of the same
work based on the Library, uncombined with any other library
facilities, conveyed under the terms of this License. * b) Give
prominent notice with the combined library that part of it is a
work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new
versions of the GNU Lesser General Public License from time
to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version number. If the
Library as you received it specifies that a certain numbered ver-
sion of the GNU Lesser General Public License “or any later
version™ applies to it, you have the option of following the terms
and conditions either of that published version or of any later
version published by the Free Software Foundation. If the Li-
brary as you received it does not specify a version number of the
GNU Lesser General Public License, you may choose any ver-
sion of the GNU Lesser General Public License ever published
by the Free Software Foundation.

If the Library as you received it specifies that a proxy can de-
cide whether future versions of the GNU Lesser General Public
License shall apply, that proxy’s public statement of acceptance
of any version is permanent authorization for you to choose that
version for the Library.

	1 About the book
	1.1 Foreword
	1.2 Guide to readers
	1.3 Reader comments

	2 C++ a multi-paradigm language
	2.1 Introducing C++
	2.2 What is a programming language?
	2.3 Programming paradigms
	2.4 Chapter summary

	3 Fundamentals for getting started
	3.1 The code
	3.2 The Compiler
	3.3 Variables
	3.4 Operators
	3.5 Type Conversion
	3.6 Control flow statements
	3.7 Functions
	3.8 Debugging
	3.9 Chapter Summary

	4 Object Oriented Programming
	4.1 Structures
	4.2 union
	4.3 Classes
	4.4 Copy Constructor
	4.5 Equality Operator
	4.6 Inequality Operator
	4.7 Operator overloading
	4.8 I/O
	4.9 Chapter Summary

	5 Advanced Features
	5.1 Templates
	5.2 Standard Template Library (STL)
	5.3 Smart Pointers
	5.4 Semantics
	5.5 Exception Handling
	5.6 Run-Time Type Information (RTTI)
	5.7 Chapter Summary

	6 Beyond the Standard
	6.1 Resource Acquisition Is Initialization (RAII)
	6.2 Garbage collection
	6.3 Programming Patterns
	6.4 Libraries
	6.5 Boost Library
	6.6 Cross-Platform development
	6.7 Software Internationalization
	6.8 Optimizations
	6.9 Further reading
	6.10 Modeling Tools
	6.11 Chapter Summary

	7 Appendix A: Internal References
	8 Appendix B: External References
	8.1 Reference Sites
	8.2 Compilers and IDEs
	8.3 Misc. C++ Tools
	8.4 LibrariesChapter 6.3.3 on page 584
	8.5 C++ Coding Conventions
	8.6 Online C++ books, guides and general information
	8.7 Other (dead tree) books on C++

	9 Contributors
	List of Figures
	10 Licenses
	10.1 GNU GENERAL PUBLIC LICENSE
	10.2 GNU Free Documentation License
	10.3 GNU Lesser General Public License

