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PRELIMINARIES. The C programming language has been around for a long time — the canonical reference
for it is the book written by its creators, Kernighan and Ritchie [1978]. Since then, C has been used in an
incredible number of applications. Programs and systems written in C are all around us: in personal computers,
phones, cameras, set-top boxes, refrigerators, cars, mainframes, satellites, basically in any modern device that has
a programmable interface.

In contrast to the ubiquitous presence of C programs and systems, good knowledge of and about C is
much more scarce. Even experienced C programmers often appear to be stuck in some degree of self-inflicted
ignorance about the modern evolution of the C language. A likely reason for this is that C is seen as an "easy
to learn" language, allowing a programmer with little experience to quickly write or copy snippets of code that
at least appear to do what it’s supposed to. In a way, C fails to motivate its users to climb to higher levels of
knowledge.

This book is intended to change that general attitude. It is organized in chapters called “Levels” that sum-
marize levels of familiarity with the C language and programming in general. Some features of the language are
presented in parts on earlier levels, and elaborated in later ones. Most notably, pointers are introduced at Level 1
but only explained in detail at Level 2. This leads to many forward references for impatient readers to follow.

As the title of this book suggests, today’s C is not the same language as the one originally designed by
its creators Kernighan and Ritchie (usually referred to as K&R C). In particular, it has undergone an important
standardization and extension process now driven by ISO, the International Standards Organization. This led to
three major publications of C standards in the years 1989, 1999 and 2011, commonly referred to as C89, C99 and
C11. The C standards committee puts a lot of effort into guaranteeing backwards compatibility such that code
written for earlier versions of the language, say C89, should compile to a semantically equivalent executable with
a compiler that implements a newer version. Unfortunately, this backwards compatibility has had the unwanted
side effect of not motivating projects that could benefit greatly from the new features to update their code base.

In this book we will mainly refer to C11, as defined in JTC1/SC22/WG14 [2011], but at the time of this
writing many compilers don’t implement this standard completely. If you want to compile the examples of
this book, you will need at least a compiler that implements most of C99. For the changes that C11 adds to
C99, using an emulation layer such as my macro package P99 might suffice. The package is available at http:
//p99.gforge.inria.fr/.

Programming has become a very important cultural and economic activity and C remains an important
element in the programming world. As in all human activities, progress in C is driven by many factors, corporate
or individual interest, politics, beauty, logic, luck, ignorance, selfishness, ego, sectarianism, ... (add your primary
motive here). Thus the development of C has not been and cannot be ideal. It has flaws and artifacts that can only
be understood with their historic and societal context.

An important part of the context in which C developed was the early appearance of its sister language
C++. One common misconception is that C++ evolved from C by adding its particular features. Whereas this is
historically correct (C++ evolved from a very early C) it is not particularly relevant today. In fact, C and C++
separated from a common ancestor more than 30 years ago, and have evolved separately ever since. But this
evolution of the two languages has not taken place in isolation, they have exchanged and adopted each other’s
concepts over the years. Some new features, such as the recent addition of atomics and threads have been designed
in a close collaboration between the C and C++ standard committees.

Nevertheless, many differences remain and generally all that is said in this book is about C and not C++.
Many code examples that are given will not even compile with a C++ compiler.

Rule A C and C++ are different, don’t mix them and don’t mix them up.

ORGANIZATION. This book is organized in levels. The starting level, encounter, will introduce you to the very
basics of programming with C. By the end of it, even if you don’t have much experience in programming, you
should be able to understand the structure of simple programs and start writing your own.

The acquaintance level details most principal concepts and features such as control structures, data types,
operators and functions. It should give you a deeper understanding of the things that are going on when you run
your programs. This knowledge should be sufficient for an introductory course in algorithms and other work at
that level, with the notable caveat that pointers aren’t fully introduced yet at this level.

The cognition level goes to the heart of the C language. It fully explains pointers, familiarizes you with
C’s memory model, and allows you to understand most of C’s library interface. Completing this level should
enable you to write C code professionally, it therefore begins with an essential discussion about the writing and
organization of C programs. I personally would expect anybody who graduated from an engineering school with
a major related to computer science or programming in C to master this level. Don’t be satisfied with less.

The experience level then goes into detail in specific topics, such as performance, reentrancy, atomicity,
threads and type generic programming. These are probably best discovered as you go, that is when you encounter
them in the real world. Nevertheless, as a whole they are necessary to round off the picture and to provide you
with full expertise in C. Anybody with some years of professional programming in C or who heads a software
project that uses C as its main programming language should master this level.

Last but not least comes ambition. It discusses my personal ideas for a future development of C. C as it
is today has some rough edges and particularities that only have historical justification. I propose possible paths
to improve on the lack of general constants, to simplify the memory model, and more generally to improve the
modularity of the language. This level is clearly much more specialized than the others, most C programmers can
probably live without it, but the curious ones among you could perhaps take up some of the ideas.

http://p99.gforge.inria.fr/
http://p99.gforge.inria.fr/
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LEVEL 0

Encounter

This first level of the book may be your first encounter with the programming language
C. It provides you with a rough knowledge about C programs, about their purpose, their
structure and how to use them. It is not meant to give you a complete overview, it can’t and
it doesn’t even try. On the contrary, it is supposed to give you a general idea of what this is
all about and open up questions, promote ideas and concepts. These then will be explained
in detail on the higher levels.

1. Getting started

In this section I will try to introduce you to one simple program that has been chosen
because it contains many of the constructs of the C language. If you already have experi-
ence in programming you may find parts of it feel like needless repetition. If you lack such
experience, you might feel ovewhelmed by the stream of new terms and concepts.

In either case, be patient. For those of you with programming experience, it’s very
possible that there are subtle details you’re not aware of, or assumptions you have made
about the language that are not valid, even if you have programmed C before. For the
ones approaching programming for the first time, be assured that after approximately ten
pages from now your understanding will have increased a lot, and you should have a much
clearer idea of what programming might represent.

An important bit of wisdom for programming in general, and for this book in particu-
lar, is summarized in the following citation from the Hitchhiker’s guide to the Galaxy:

Rule B Don’t panic.

It’s not worth it. There are many cross references, links, side information present in
the text. There is an Index on page 286. Follow those if you have a question. Or just take
a break.

1.1. Imperative programming. To get started and see what we are talking about
consider our first program in Listing 1:

You probably see that this is a sort of language, containing some weird words like
“main”, “include”, “for”, etc. laid out and colored in a peculiar way and mixed with a
lot of weird characters, numbers, and text “Doing some work” that looks like an ordinary
English phrase. It is designed to provide a link between us, the human programmers, and
a machine, the computer, to tell it what to do — give it “orders”.

Rule 0.1.1.1 C is an imperative programming language.

In this book, we will not only encounter the C programming language, but also some
vocabulary from an English dialect, C jargon, the language that helps us to talk about C.
It will not be possible to immediately explain each term the first time it occurs. But I will
explain each one, in time, and all of them are indexed such that you can easily cheat and
jumpC to more explanatory text, at your own risk.

As you can probably guess from this first example, such a C program has different
components that form some intermixed layers. Let’s try to understand it from the inside
out.

1



2 0. ENCOUNTER

LISTING 1. A first example of a C program

1 /* This may look like nonsense , but really is -*- mode: C -*- */
2 #include <stdlib.h>
3 #include <stdio.h>
4
5 /* The main thing that this program does. */
6 int main(void) {
7 // Declarations
8 double A[5] = {
9 [0] = 9.0,

10 [1] = 2.9,
11 [4] = 3.E+25,
12 [3] = .00007 ,
13 };
14
15 // Doing some work
16 for (size_t i = 0; i < 5; ++i) {
17 printf("element␣%zu␣is␣%g,␣\tits␣square␣is␣%g\n",
18 i,
19 A[i],
20 A[i]*A[i]);
21 }
22
23 return EXIT_SUCCESS;
24 }

1.1.1. Giving orders. The visible result of running this program is to output 5 lines
of text on the command terminal of your computer. On my computer using this program
looks something like

Terminal

0 > ./getting-started

1 element 0 is 9, its square is 81

2 element 1 is 2.9, its square is 8.41

3 element 2 is 0, its square is 0

4 element 3 is 7e-05, its square is 4.9e-09

5 element 4 is 3e+25, its square is 9e+50

We can easily identify parts of the text that this program outputs (printsC in the C
jargon) inside our program, namely the blue part of Line 17. The real action (statementC
in C) happens between that line and Line 20. The statement is a callC to a functionC

named printf.

. getting-started.c

17 printf("element␣%zu␣is␣%g,␣\tits␣square␣is␣%g\n",
18 i,
19 A[i],
20 A[i]*A[i]);

Here, the printf functionC receives four argumentsC , enclosed in a pair of parenthe-
sisC , “( ... )” :
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• The funny-looking text (the blue part) is a so-called string literalC that serves as
a formatC for the output. Within the text are three markers (format specifiersC),
that mark the positions in the output where numbers are to be inserted. These
markers start with a "%" character. This format also contains some special escape
charactersC that start with a backslash, namely "\t" and "\n".

• After a comma character we find the word “i”. The thing “i” stands for will be
printed in place of the first format specifier, "%zu".

• Another comma separates the next argument “A[i]”. The thing this stands for
will be printed in place of the second format specifier, the first "%g".

• Last, again separated by comma, appears “A[i]*A[i]”, corresponding to the last
"%g".

We will later explain what all of these arguments mean. Let’s just remember that we
identified the main purpose of that program, namely to print some lines on the terminal,
and that it “orders” function printf to fulfill that purpose. The rest is some sugarC to
specify which numbers will be printed and how many of them.

1.2. Compiling and running. As it is shown above, the program text that we have
listed can not be understood by your computer.

There is a special program, called a compiler, that translates the C text into something
that your machine can understand, the so-called binary codeC or executableC . What that
translated program looks like and how this translation is done is much too complicated to
explain at this stage.1 However, for the moment we don’t need to understand more deeply,
as we have that tool that does all the work for us.

Rule 0.1.2.1 C is a compiled programming language.

The name of the compiler and its command line arguments depend a lot on the plat-
formC on which you will be running your program. There is a simple reason for this:
the target binary code is platform dependentC , that is its form and details depend on the
computer on which you want to run it; a PC has different needs than a phone, your fridge
doesn’t speak the same language as your set-top box. In fact, that’s one of the reasons for
C to exist.

Rule 0.1.2.2 A C program is portable between different platforms.

It is the job of the compiler to ensure that our little program above, once translated for
the appropriate platform, will run correctly on your PC, your phone, your set-top box and
maybe even your fridge.

That said, there is a good chance that a program named c99 might be present on your
PC and that this is in fact a C compiler. You could try to compile the example program
using the following command:

Terminal

0 > c99 -Wall -o getting-started getting-started.c -lm

The compiler should do its job without complaining, and output an executable file
called getting-started in your current directory.[Exs 2] In the above line

• c99 is the compiler program.
• -Wall tells it to warn us about anything that it finds unusual.

1In fact, the translation itself is done in several steps that goes from textual replacement, over proper com-
pilation to linking. Nevertheless, the tool that bundles all this is traditionally called compiler and not translator,
which would be more accurate.

[Exs 2]Try the compilation command in your terminal.
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• -o getting-started tells it to store the compiler outputC in a file named
getting-started.

• getting-started.c names the source fileC , namely the file that contains the C
code that we have written. Note that the .c extension at the end of the file name
refers to the C programming language.

• -lm tells it to add some standard mathematical functions if necessary, we will
need those later on.

Now we can executeC our newly created executableC . Type in:

Terminal

0 > ./getting-started

and you should see exactly the same output as I have given you above. That’s what
portable means, wherever you run that program its behaviorC should be the same.

If you are not lucky and the compilation command above didn’t work, you’d have to
look up the name of your compilerC in your system documentation. You might even have
to install a compiler if one is not available. The names of compilers vary. Here are some
common alternatives that might do the trick:

Terminal

0 > clang -Wall -lm -o getting-started getting-started.c

1 > gcc -std=c99 -Wall -lm -o getting-started getting-started.c

2 > icc -std=c99 -Wall -lm -o getting-started getting-started.c

Some of these, even if they are present on your computer, might not compile the
program without complaining.[Exs 3]

With the program in Listing 1 we presented an ideal world — a program that works
and produces the same result on all platforms. Unfortunately, when programming yourself
very often you will have a program that only works partially and that maybe produces
wrong or unreliable results. Therefore, let us look at the program in Listing 2. It looks
quite similar to the previous one.

If you run your compiler on that one, it should give you some diagnosticC , something
similar to this

Terminal

0 > c99 -Wall -o getting-started-badly getting-started-badly.c

1 getting-started-badly.c:4:6: warning: return type of 'main' is not 'int' [-Wmain]

2 getting-started-badly.c: In function 'main':

3 getting-started-badly.c:16:6: warning: implicit declaration of function 'printf' [-Wimplicit-function-declaration]

4 getting-started-badly.c:16:6: warning: incompatible implicit declaration of built-in function 'printf' [enabled by default]

5 getting-started-badly.c:22:3: warning: 'return' with a value, in function returning void [enabled by default]

Here we had a lot of long “warning” lines that are even too long to fit on a terminal
screen. In the end the compiler produced an executable. Unfortunately, the output when
we run the program is different. This is a sign that we have to be careful and pay attention
to details.

clang is even more picky than gcc and gives us even longer diagnostic lines:

[Exs 3]Start writing a textual report about your tests with this book. Note down which command worked for you.



1. GETTING STARTED 5

LISTING 2. An example of a C program with flaws

1 /* This may look like nonsense , but really is -*- mode: C -*- */
2
3 /* The main thing that this program does. */
4 void main() {
5 // Declarations
6 int i;
7 double A[5] = {
8 9.0,
9 2.9,

10 3.E+25,
11 .00007 ,
12 };
13
14 // Doing some work
15 for (i = 0; i < 5; ++i) {
16 printf("element␣%d␣is␣%g,␣\tits␣square␣is␣%g\n",
17 i,
18 A[i],
19 A[i]*A[i]);
20 }
21
22 return 0;
23 }

Terminal

0 > clang -Wall -o getting-started-badly getting-started-badly.c

1 getting-started-badly.c:4:1: warning: return type of 'main' is not 'int' [-Wmain-return-type]

2 void main() {

3 ^

4 getting-started-badly.c:16:6: warning: implicitly declaring library function 'printf' with type

5 'int (const char *, ...)'

6 printf("element %d is %g, \tits square is %g\n", /*@\label{printf-start-badly}*/

7 ^

8 getting-started-badly.c:16:6: note: please include the header <stdio.h> or explicitly provide a declaration for

9 'printf'

10 getting-started-badly.c:22:3: error: void function 'main' should not return a value [-Wreturn-type]

11 return 0;

12 ^ ~

13 2 warnings and 1 error generated.

This is a good thing! Its diagnostic outputC is much more informative. In particular it
gave us two hints: it expected a different return type for main and it expected us to have a
line such as Line 3 of Listing 1 to specify where the printf function comes from. Notice
how clang, unlike gcc, did not produce an executable. It considers the problem in Line 22
fatal. Consider this to be a feature.

In fact depending on your platform you may force your compiler to reject programs
that produce such diagnostics. For gcc such a command line option would be -Werror.

Rule 0.1.2.3 A C program should compile cleanly without warnings.
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So we have seen two of the points in which Listings 1 and 2 differed, and these two
modifications turned a good, standard conforming, portable program into a bad one. We
also have seen that the compiler is there to help us. It nailed the problem down to the
lines in the program that cause trouble, and with a bit of experience you will be able to
understand what it is telling you.[Exs 4] [Exs 5]

2. The principal structure of a program

Compared to our little examples from above, real programs will be more complicated
and contain additional constructs, but their structure will be very similar. Listing 1 already
has most of the structural elements of a C program.

There are two categories of aspects to consider in a C program: syntactical aspects
(how do we specify the program so the compiler understands it) and semantic aspects (what
do we specify so that the program does what we want it to do). In the following subsections
we will introduce the syntactical aspects (“grammar”) and three different semantic aspects,
namely declarative parts (what things are), definitions of objects (where things are) and
statements (what are things supposed to do).

2.1. Grammar. Looking at its overall structure, we can see that a C program is com-
posed of different types of text elements that are assembled in a kind of grammar. These
elements are:

special words: In Listing 1 we have used the following special words6: #include, int,
void, double, for, and return. In our program text, here, they will usually be printed
in bold face. These special words represent concepts and features that the C language
imposes and that cannot be changed.

punctuationsC: There are several punctuation concepts that C uses to structure the program
text.
• There are five sorts of parenthesis: { ... }, ( ... ), [ ... ], /* ... */ and
< ... >. Parenthesis group certain parts of the program together and should al-
ways come in pairs. Fortunately, the < ... > parenthesis are rare in C, and only
used as shown in our example, on the same logical line of text. The other four are
not limited to a single line, their contents might span several lines, like they did
when we used printf earlier.

• There are two different separators or terminators, comma and semicolon. When we
used printf we saw that commas separated the four arguments to that function, in
line 12 we saw that a comma also can follow the last element of a list of elements.

. getting-started.c

12 [3] = .00007 ,

One of the difficulties for newcomers in C is that the same punctuation characters are
used to express different concepts. For example, {} and [] are each used for two differ-
ent purposes in our program.

Rule 0.2.1.1 Punctuation characters can be used with several different meanings.

commentsC: The construct /* ... */ that we saw as above tells the compiler that every-
thing inside it is a comment, see e.g Line 5.

[Exs 4]Correct Listing 2 step by step. Start from the first diagnostic line, fix the code that is mentioned there,
recompile and so on, until you have a flawless program.

[Exs 5]There is a third difference between the two programs that we didn’t mention, yet. Find it.
6In the C jargon these are directivesC , keywordsC and reservedC identifiers



2. THE PRINCIPAL STRUCTURE OF A PROGRAM 7

. getting-started.c

5 /* The main thing that this program does. */

Comments are ignored by the compiler. It is the perfect place to explain and
document your code. Such “in-place” documentation can (and should) improve
the readability and comprehensibility of your code a lot. Another form of com-
ment is the so-called C++-style comment as in Line 15. These are marked by //.
C++-style comments extend from the // to the end of the line.

literalsC: Our program contains several items that refer to fixed values that are part of the
program: 0, 1, 3, 4, 5, 9.0, 2.9, 3.E+25, .00007, and
"element␣%zu␣is␣%g,␣\tits␣square␣is␣%g\n". These are called literalsC .

identifiersC: These are “names” that we (or the C standard) give to certain entities in
the program. Here we have: A, i, main, printf, size_t, and EXIT_SUCCESS.
Identifiers can play different roles in a program. Amongst others they may refer
to:
• data objectsC (such as A and i), these are also referred to as variablesC
• typeC aliases, size_t, that specify the “sort” of a new object, here of i.

Observe the trailing _t in the name. This naming convention is used by the
C standard to remind you that the identifier refers to a type.
• functions (main and printf),
• constants (EXIT_SUCCESS).

functionsC: Two of the identifiers refer to functions: main and printf. As we have al-
ready seen printf is used by the program to produce some output. The function
main in turn is definedC , that is its declarationC int main(void) is followed
by a blockC enclosed in { ... } that describes what that function is supposed
to do. In our example this function definitionC goes from Line 6 to 24. main
has a special role in C programs as we will encounter them, it must always be
present since it is the starting point of the program’s execution.

operatorsC: Of the numerous C operators our program only uses a few:
• = for initializationC and assignmentC ,
• < for comparison,
• ++ to increment a variable, that is to increase its value by 1
• * to perform the multiplication of two values.

2.2. Declarations. Declarations have to do with the identifiersC that we encountered
above. As a general rule:

Rule 0.2.2.1 All identifiers of a program have to be declared.

That is, before we use an identifier we have to give the compiler a declarationC

that tells it what that identifier is supposed to be. This is where identifiers differ from
keywordsC ; keywords are predefined by the language, and must not be declared or rede-
fined.

Three of the identifiers we use are effectively declared in our program: main, A and
i. Later on, we will see where the other identifiers (printf, size_t, and EXIT_SUCCESS)
come from.

Above, we already mentioned the declaration of the main function. All three declara-
tions, in isolation as “declarations only”, look like this:

1 int main(void);
2 double A[5];
3 size_t i;

These three follow a pattern. Each has an identifier (main, A or i) and a specification
of certain properties that are associated with that identifier.
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• i is of typeC size_t.

• main is additionally followed by parenthesis, ( ... ), and thus declares a function of
type int.

• A is followed by brackets, [ ... ], and thus declares an arrayC . An array is an aggre-
gate of several items of the same type, here it consists of 5 items of type double. These
5 items are ordered and can be referred to by numbers, called indicesC , from 0 to 4.

Each of these declarations starts with a typeC , here int, double and size_t. We will
see later what that represents. For the moment it is sufficient to know that this specifies
that all three identifiers, when used in the context of a statement, will act as some sort of
“numbers”.

For the other three identifiers, printf, size_t and EXIT_SUCCESS, we don’t see any
declaration. In fact they are pre-declared identifiers, but as we saw when we tried to com-
pile Listing 2, the information about these identifiers doesn’t come out of nowhere. We
have to tell the compiler where it can obtain information about them. This is done right at
the start of the program, in the Lines 2 and 3: printf is provided by stdio.h, whereas<stdio.h>

size_t and EXIT_SUCCESS come from stdlib.h. The real declarations of these identi-<stdlib.h>

fiers are specified in .h files with these names somewhere on your computer. They could
be something like:

1 int printf(char const format[static 1], ...);
2 typedef unsigned long size_t;
3 #define EXIT_SUCCESS 0

but this is not important for the moment. This information is normally hidden from
you in these include filesC or header filesC . If you need to know the semantics of these,
it’s usually a bad idea to look them up in the corresponding files, as they tend to be barely
readable. Instead, search in the documentation that comes with your platform. For the
brave, I always recommend a look into the current C standard, as that is where they all
come from. For the less courageous the following commands may help:

Terminal

0 > apropos printf

1 > man printf

2 > man 3 printf

Declarations may be repeated, but only if they specify exactly the same thing.

Rule 0.2.2.2 Identifiers may have several consistent declarations.

Another property of declarations is that they might only be valid (visibleC) in some
part of the program, not everywhere. A scopeC is a part of the program where an identifier
is valid.

Rule 0.2.2.3 Declarations are bound to the scope in which they appear.

In Listing 1 we have declarations in different scopes.
• A is visible inside the definition of main, starting at its very declaration on Line 8

and ending at the closing } on Line 24 of the innermost { ... } block that
contains that declaration.
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• i has a more restricted visibility. It is bound to the for construct in which it is
declared. Its visibility reaches from that declaration in Line 16 to the end of the
{ ... } block that is associated with the for in Line 21.

• main is not enclosed in any { ... } block, so it is visible from its declaration
onwards until the end of the file.

In a slight abuse of terminology, the first two types of scope are called block scopeC .
The third type, as used for main is called file scopeC . Identifiers in file scope are often
referred to as globals.

2.3. Definitions. Generally, declarations only specify the kind of object an identifier
refers to, not what the concrete value of an identifier is, nor where the object it refers to
can be found. This important role is filled by a definitionC .

Rule 0.2.3.1 Declarations specify identifiers whereas definitions specify objects.

We will later see that things are a little bit more complicated in real life, but for now
we can make a simplification

Rule 0.2.3.2 An object is defined at the same time as it is initialized.

Initializations augment the declarations and give an object its initial value. For in-
stance:

1 size_t i = 0;

is a declaration of i that is also a definition with initial valueC 0.
A is a bit more complex

. getting-started.c

8 double A[5] = {
9 [0] = 9.0,

10 [1] = 2.9,
11 [4] = 3.E+25,
12 [3] = .00007 ,
13 };

this initializes the 5 items in A to the values 9.0, 2.9, 0.0, 0.00007 and 3.0E+25, in
that order. The form of an initializer we see here is called designatedC : a pair of brackets
with an integer designate which item of the array is initialized with the corresponding
value. E.g. [4] = 3.E+25 sets the last item of the array A to the value 3.E+25. As a
special rule, any position that is not listed in the initializer is set to 0. In our example the
missing [2] is filled with 0.0.7

Rule 0.2.3.3 Missing elements in initializers default to 0.

You might have noticed that array positions, indicesC , above are not starting at 1 for
the first element, but with 0. Think of an array position as the “distance” of the correspond-
ing array element from the start of the array.

Rule 0.2.3.4 For an array with n the first element has index 0, the last has index n-1.

For a function we have a definition (as opposed to only a declaration) if its declaration
is followed by braces { ... } containing the code of the function.

7We will see later how these number literals with dots . and exponents E+25 work.
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1 int main(void) {
2 ...
3 }

In our examples so far we have seen two different kinds of objects, data objectsC ,
namely i and A, and function objectsC , main and printf.

In contrast to declarations, where several were allowed for the same identifier, defini-
tions must be unique:

Rule 0.2.3.5 Each object must have exactly one definition.

This rule concerns data objects as well as function objects.

2.4. Statements. The second part of the main function consists mainly of statements.
Statements are instructions that tell the compiler what to do with identifiers that have been
declared so far. We have

. getting-started.c

16 for (size_t i = 0; i < 5; ++i) {
17 printf("element␣%zu␣is␣%g,␣\tits␣square␣is␣%g\n",
18 i,
19 A[i],
20 A[i]*A[i]);
21 }
22
23 return EXIT_SUCCESS;

We have already discussed the lines that correspond to the call to printf. There are
also other types of statements: a for and a return statement, and an increment operation,
indicated by the operatorC ++.

2.4.1. Iteration. The for statement tells the compiler that the program should execute
the printf line a number of times. It is the simplest form of domain iterationC that C has
to offer. It has four different parts.

The code that is to be repeated is called loop bodyC , it is the { ... } block that
follows the for ( ... ). The other three parts are those inside ( ... ) part, divided by
semicolons:

(1) The declaration, definition and initialization of the loop variableC i that we al-
ready discussed above. This initialization is executed once before any of the rest
of the whole for statement.

(2) A loop conditionC , i < 5, that specifies how long the for iteration should con-
tinue. This one tells the compiler to continue iterating as long as i is strictly less
than 5. The loop condition is checked before each execution of the loop body.

(3) Another statement, ++i, is executed i after each iteration. In this case it increases
the value of i by 1 each time.

If we put all those together, we ask the program to perform the part in the block 5
times, setting the value of i to 0, 1, 2, 3, and 4 respectively in each iteration. The fact that
we can identify each iteration with a specific value for i makes this an iteration over the
domainC 0, . . . , 4. There is more than one way to do this in C, but a for is the easiest,
cleanest and best tool for the task.

Rule 0.2.4.1 Domain iterations should be coded with a for statement.

A for statement can be written in several ways other than what we just saw. Often
people place the definition of the loop variable somewhere before the for or even reuse the
same variable for several loops. Don’t do that.
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Rule 0.2.4.2 The loop variable should be defined in the initial part of a for.

2.4.2. Function return. The last statement in main is a return. It tells the main func-
tion, to return to the statement that it was called from once it’s done. Here, since main has
int in its declaration, a return must send back a value of type int to the calling statement.
In this case that value is EXIT_SUCCESS.

Even though we can’t see its definition, the printf function must contain a similar
return statement. At the point where we call the function in Line 17, execution of the
statements in main is temporarily suspended. Execution continues in the printf function
until a return is encountered. After the return from printf, execution of the statements
in main continues from where it stopped.

main();

ca
ll

return

return

ca
ll

progam
code

6 int main ( void ) {
7 // Declarations
8 double A [ 5 ] = {
9 [ 0 ] = 9 . 0 ,

10 [ 1 ] = 2 . 9 ,
11 [ 4 ] = 3 . E+25 ,
12 [ 3 ] = . 0 0 0 0 7 ,
13 } ;
14
15 // Doing some work
16 for ( size_t i = 0 ; i < 5 ; ++i ) {
17 printf ( "element␣%zu␣is␣%g,␣\tits␣square␣is␣%g\n" ,
18 i ,
19 A [ i ] ,
20 A [ i ]* A [ i ] ) ;
21 }
22
23 return EXIT_SUCCESS ;
24 }

int printf(char const fmt[], ...) {

return something;

}

pr
oc
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s
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library

FIGURE 1. Execution of a small program

In Figure 1 we have a schematic view of the execution of our little program, its control
flow. First, a process startup routine (on the left) that is provided by our platform calls the
user-provided function main (middle). That in turn calls printf, a function that is part of
the C libraryC , on the right. Once a return is encountered there, control returns back to
main, and when we reach the return in main, it passes back to the startup routine. The
latter transfer of control, from a programmer’s point of view, is the end of the program’s
execution.





LEVEL 1

Acquaintance

This chapter is supposed to get you acquainted with the C programming language,
that is to provide you with enough knowledge to write and use good C programs. “Good”
here refers to a modern understanding of the language, avoiding most of the pitfalls of
early dialects of C, offering you some constructs that were not present before, and that are
portable across the vast majority of modern computer architectures, from your cell phone
to a mainframe computer.

Having worked through this you should be able to write short code for everyday needs,
not extremely sophisticated, but useful and portable. In many ways, C is a permissive
language, a programmer is allowed to shoot themselves in the foot or other body parts if
they choose to, and C will make no effort to stop them. Therefore, just for the moment, we
will introduce some restrictions. We’ll try to avoid handing out guns in this chapter, and
place the key to the gun safe out of your reach for the moment, marking its location with
big and visible exclamation marks.

The most dangerous constructs in C are the so-called castsC , so we’ll skip them at this
level. However, there are many other pitfalls that are less easy to avoid. We will approach
some of them in a way that might look unfamiliar to you, in particular if you have learned
your C basics in the last millennium or if you have been initiated to C on a platform that
wasn’t upgraded to current ISO C for years.

• We will focus primarily on the unsignedC versions of integer types.
• We will introduce pointers in steps: first, in disguise as parameters to functions

(6.1.4), then with their state (being valid or not, 6.2) and then, only when we
really can’t delay it any further (11), using their entire potential.

• We will focus on the use of arrays whenever possible, instead.

Warning to experienced C programmers. If you already have some experience with
C programming, this may need some getting used to. Here are some of the things that may
provoke allergic reactions. If you happen to break out in spots when you read some code
here, try to take a deep breath and let it go.

We bind type modifiers and qualifiers to the left. We want to separate identifiers visu-
ally from their type. So we will typically write things as

1 char* name;

where char* is the type and name is the identifier. We also apply the left binding rule to
qualifiers and write

1 char const* const path_name;

Here the first const qualifies the char to its left, the * makes it to a pointer and the second
const again qualifies what is to its left.

We use array or function notation for pointer parameters to functions. wherever these
assume that the pointer can’t be null. Examples

1 size_t strlen(char const string[static 1]);

13
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2 int main(int argc , char* argv[argc +1]);
3 int atexit(void function(void));

The first stresses the fact that strlen must receive a valid (non-null) pointer and will
access at least one element of string. The second summarizes the fact that main receives
an array of pointers to char: the program name, argc-1 program arguments and one null
pointer that terminates the array. The third emphasizes that semantically atexit receives
a function as an argument. The fact that technically this function is passed on as a function
pointer is usually of minor interest, and the commonly used pointer-to-function syntax
is barely readable. Here are syntactically equivalent declarations for the three functions
above as they would be written by many:

1 size_t strlen(const char *string);
2 int main(int argc , char **argv);
3 int atexit(void (* function)(void));

As you now hopefully see, this is less informative and more difficult to comprehend visu-
ally.

We define variables as close to their first use as possible. Lack of variable initializa-
tion, especially for pointers, is one of the major pitfalls for novice C programmers. This
is why we should, whenever possible, combine the declaration of a variable with the first
assignment to it: the tool that C gives us for this purpose is a definition - a declaration
together with an initialization. This gives a name to a value, and introduces this name at
the first place where it is used.

This is particularly convenient for for-loops. The iterator variable of one loop is
semantically a different object from the one in another loop, so we declare the variable
within the for to ensure it stays within the loop’s scope.

We use prefix notation for code blocks. To be able to read a code block it is important
to capture two things about it easily: its purpose and its extent. Therefore:

• All { are prefixed on the same line with the statement or declaration that intro-
duces them.

• The code inside is indented by one level.
• The terminating } starts a new line on the same level as the statement that intro-

duced the block.
• Block statements that have a continuation after the } continue on the same line.

Examples:

1 int main(int argc , char* argv[argc +1]) {
2 puts("Hello␣world!");
3 if (argc > 1) {
4 while (true) {
5 puts("some␣programs␣never␣stop");
6 }
7 } else {
8 do {
9 puts("but␣this␣one␣does");

10 } while (false);
11 }
12 return EXIT_SUCCESS;
13 }

3. Everything is about control

In our introductory example we saw two different constructs that allowed us to control
the flow of a program execution: functions and the for-iteration. Functions are a way to



3. EVERYTHING IS ABOUT CONTROL 15

transfer control unconditionally. The call transfers control unconditionally to the function
and a return-statement unconditionally transfers it back to the caller. We will come back
to functions in Section 7.

The for statement is different in that it has a controlling condition (i < 5 in the ex-
ample) that regulates if and when the dependent block or statement ({ printf(...)}) is
executed. C has five conditional control statements: if, for, do, while and switch. We
will look at these statements in this section.

There are several other kinds of conditional expressions we will look at later on:
the ternary operatorC , denoted by an expression in the form “cond ? A : B”, and the
compile-time preprocessor conditionals (#if-#else) and type generic expressions (noted
with the keyword _Generic). We will visit these in Sections 4.4 and 17.5, respectively.

3.1. Conditional execution. The first construct that we will look at is specified by
the keyword if. It looks like this:

1 if (i > 25) {
2 j = i - 25;
3 }

Here we compare i against the value 25. If it is larger than 25, j is set to the value i - 25.
In that example i > 25 is called the controlling expressionC , and the part in { ... } is
called the dependent blockC .

This form of an if statement is syntactically quite similar to the for statement that we
already have encountered. It is a bit simpler, the part inside the parenthesis has only one
part that determines whether the dependent statement or block is run.

There is a more general form of the if construct:

1 if (i > 25) {
2 j = i - 25;
3 } else {
4 j = i;
5 }

It has a second dependent statement or block that is executed if the controlling condi-
tion is not fulfilled. Syntactically, this is done by introducing another keyword else that
separates the two statements or blocks.

The if (...)... else ... is a selection statementC . It selects one of the two
possible code pathsC according to the contents of ( ... ). The general form is

1 if (condition) statement0 -or -block0
2 else statement1 -or -block1

The possibilities for the controlling expression “condition” are numerous. They can
range from simple comparisons as in this example to very complex nested expressions. We
will present all the primitives that can be used in Section 4.3.2.

The simplest of such “condition” specifications in an if statement can be seen in the
following example, in a variation of the for loop from Listing 1.

1 for (size_t i = 0; i < 5; ++i) {
2 if (i) {
3 printf("element␣%zu␣is␣%g,␣\tits␣square␣is␣%g\n",
4 i,
5 A[i],
6 A[i]*A[i]);
7 }
8 }
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Here the condition that determines whether printf is executed or not is just i: a
numerical value by itself can be interpreted as a condition. The text will only be printed
when the value of i is not 0.[Exs 1]

There are two simple rules for the evaluation of a numerical “condition”:

Rule 1.3.1.1 The value 0 represents logical false.

Rule 1.3.1.2 Any value different from 0 represents logical true.

The operators == and != allow us to test for equality and inequality, respectively.
a == b is true if the value of a is equal to the value of b and false otherwise; a != b is
false if a is equal to b and true otherwise. Knowing how numerical values are evaluated as
conditions, we can avoid redundancy. For example, we can rewrite

1 if (i != 0) {
2 ...
3 }

as:

1 if (i) {
2 ...
3 }

The type bool, specified in stdbool.h, is what we should be using if we want to store<stdbool.h>

truth values. Its values are false and true. Technically, false is just another name for 0
and true for 1. It’s important to use false and true (and not the numbers) to emphasize
that a value is to be interpreted as a condition. We will learn more about the bool type in
Section 5.5.4.

Redundant comparisons quickly become unreadable and clutter your code. If you have
a conditional that depends on a truth value, use that truth value directly as the condition.
Again, we can avoid redundancy by rewriting something like:

1 bool b = ...;
2 ...
3 if ((b != false) == true) {
4 ...
5 }

as

1 bool b = ...;
2 ...
3 if (b) {
4 ...
5 }

Generally:

Rule 1.3.1.3 Don’t compare to 0, false or true.

Using the truth value directly makes your code clearer, and illustrates one of the basic
concepts of the C language:

Rule 1.3.1.4 All scalars have a truth value.

Here scalarC types include all the numerical types such as size_t, bool or int that
we already encountered, and pointerC types, that we will come back to in Section 6.2.

[Exs 1]Add the if (i) condition to the program and compare the output to the previous.
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TABLE 1. Scalar types used in this book

level name other category where printf
0 size_t unsigned <stddef.h> "%zu" "%zx"
0 double floating builtin "%e" "%f" "%g" "%a"
0 signed int signed builtin "%d"
0 unsigned unsigned builtin "%u" "%x"
0 bool _Bool unsigned <stdbool.h> "%d" as 0 or 1
1 ptrdiff_t signed <stddef.h> "%td"
1 char const* string builtin "%s"
1 char character builtin "%c"
1 void* pointer builtin "%p"

2 unsigned char unsigned builtin "%hhu" "%02hhx"

3.2. Iterations. Previously, we encountered the for statement to iterate over a do-
main; in our introductory example it declared a variable i that was set to the values 0, 1, 2,
3 and 4. The general form of this statement is

1 for (clause1; condition2; expression3) statement -or -block

This statement is actually quite genereric. Usually “clause1” is an assignment ex-
pression or a variable definition. It serves to state an initial value for the iteration domain.
“condition2” tests if the iteration should continue. Then, “expression3” updates the
iteration variable that had been used in “clause1”. It is performed at the end of each
iteration. Some advice

• In view of Rule 0.2.4.2 “clause1” should in most cases be be a variable defini-
tion.

• Because for is relatively complex with its four different parts and not so easy to
capture visually, “statement-or-block” should usually be a { ... } block.

Let’s see some more examples:

1 for (size_t i = 10; i; --i) {
2 something(i);
3 }
4 for (size_t i = 0, stop = upper_bound (); i < stop; ++i) {
5 something_else(i);
6 }
7 for (size_t i = 9; i <= 9; --i) {
8 something_else(i);
9 }

The first for counts i down from 10 to 1, inclusive. The condition is again just the
evaluation of the variable i, no redundant test against value 0 is required. When i becomes
0, it will evaluate to false and the loop will stop. The second for declares two variables,
i and stop. As before i is the loop variable, stop is what we compare against in the
condition, and when i becomes greater than or equal to stop, the loop terminates.

The third for appears like it would go on forever, but actually counts down from 9 to
0. In fact, in the next section we will see that “sizes” in C, that is numbers that have type
size_t, are never negative.[Exs 2]

Observe that all three for statements declare variables named i. These three variables
with the same name happily live side by side, as long as their scopes don’t overlap.

There are two more iterative statements in C, namely while and do.

1 while (condition) statement -or -block

[Exs 2]Try to imagine what happens when i has value 0 and is decremented by means of operator --.
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2 do statement -or-block while(condition);

The following example shows a typical use of the first:

1 #include <tgmath.h>
2
3 double const eps = 1E-9; // desired precision
4 ...
5 double const a = 34.0;
6 double x = 0.5;
7 while (fabs (1.0 - a*x) >= eps) { // iterate until close
8 x *= (2.0 - a*x); // Heron approximation
9 }

It iterates as long as the given condition evaluates true. The do loop is very similar,
except that it checks the condition after the dependent block:

1 do { // iterate
2 x *= (2.0 - a*x); // Heron approximation
3 } while (fabs (1.0 - a*x) >= eps); // iterate until close

This means that if the condition evaluates to false, a while-loop will not run its dependent
block at all, and a do-loop will run it once before terminating.

As with the for statement, for do and while it is advisable to use the { ... } block
variants. There is also a subtle syntactical difference between the two, do always needs a
semicolon ; after the while (condition) to terminate the statement. Later we will see
that this is a syntactic feature that turns out to be quite useful in the context of multiple
nested statements, see Section 10.3.

All three iteration statements become even more flexible with break and continue
statements. A break statement stops the loop without re-evaluating the termination condi-
tion or executing the part of the dependent block after the break statement:

1 while (true) {
2 double prod = a*x;
3 if (fabs (1.0 - prod) < eps) // stop if close enough
4 break;
5 x *= (2.0 - prod); // Heron approximation
6 }

This way, we can separate the computation of the product a*x, the evaluation of the
stop condition and the update of x. The condition of the while then becomes trivial. The
same can be done using a for, and there is a tradition among C programmers to write it in
as follows:

1 for (;;) {
2 double prod = a*x;
3 if (fabs (1.0 - prod) < eps) // stop if close enough
4 break;
5 x *= (2.0 - prod); // Heron approximation
6 }

for(;;) here is equivalent to while(true). The fact that the controlling expression of a
for (the middle part between the ;;) can be omitted and is interpreted as “always true” is
just an historic artifact in the rules of C and has no other special reason.

The continue statement is less frequently used. Like break, it skips the execution of
the rest of the dependent block, so all statements in the block after the continue are not
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executed for the current iteration. However, it then re-evaluates the condition and continues
from the start of the dependent block if the condition is true.

1 for (size_t i =0; i < max_iterations; ++i) {
2 if (x > 1.0) { // check if we are on the correct side of 1
3 x = 1.0/x;
4 continue;
5 }
6 double prod = a*x;
7 if (fabs (1.0 - prod) < eps) // stop if close enough
8 break;
9 x *= (2.0 - prod); // Heron approximation

10 }

In the examples above we made use of a standard macro fabs, that comes with the
tgmath.h header3. It calculates the absolute value of a double. If you are interested in <tgmath.h>

how this works, Listing 1.1 is a program that does the same thing without the use of fabs.
In it, fabs has been replaced by several explicit comparisons.

The task of the program is to compute the inverse of all numbers that are provided to
it on the command line. An example of a program execution looks like:

Terminal

0 > ./heron 0.07 5 6E+23

1 heron: a=7.00000e-02, x=1.42857e+01, a*x=0.999999999996

2 heron: a=5.00000e+00, x=2.00000e-01, a*x=0.999999999767

3 heron: a=6.00000e+23, x=1.66667e-24, a*x=0.999999997028

To process the numbers on the command line the program uses another library function
strtod from stdlib.h.[Exs 4][Exs 5][Exs 6]

<stdlib.h>

LISTING 1.1. A program to compute inverses of numbers

1 #include <stdlib.h>
2 #include <stdio.h>
3
4 /* lower and upper iteration limits centered around 1.0 */
5 static double const eps1m01 = 1.0 - 0x1P -01;
6 static double const eps1p01 = 1.0 + 0x1P -01;
7 static double const eps1m24 = 1.0 - 0x1P -24;
8 static double const eps1p24 = 1.0 + 0x1P -24;
9

10 int main(int argc , char* argv[argc +1]) {
11 for (int i = 1; i < argc; ++i) { // process args
12 double const a = strtod(argv[i], 0); // arg -> double
13 double x = 1.0;
14 for (;;) { // by powers of 2
15 double prod = a*x;
16 if (prod < eps1m01) x *= 2.0;
17 else if (eps1p01 < prod) x *= 0.5;
18 else break;
19 }

3“tgmath” stands for type generic mathematical functions.
[Exs 4]Analyse Listing 1.1 by adding printf calls for intermediate values of x.
[Exs 5]Describe the use of the parameters argc and argv in Listing 1.1.
[Exs 6]Print out the values of eps1m01 and observe the output when you change them slightly.
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20 for (;;) { // Heron approximation
21 double prod = a*x;
22 if ((prod < eps1m24) || (eps1p24 < prod))
23 x *= (2.0 - prod);
24 else break;
25 }
26 printf("heron:␣a=%.5e,\tx=%.5e,\ta*x=%.12f\n",
27 a, x, a*x);
28 }
29 return EXIT_SUCCESS;
30 }

3.3. Multiple selection. The last control statement that C has to offer is called switch
statement and is another selectionC statement. It is mainly used when cascades of if-else
constructs would be too tedious:

1 if (arg == ’m’) {
2 puts("this␣is␣a␣magpie");
3 } else if (arg == ’r’) {
4 puts("this␣is␣a␣raven");
5 } else if (arg == ’j’) {
6 puts("this␣is␣a␣jay");
7 } else if (arg == ’c’) {
8 puts("this␣is␣a␣chough");
9 } else {

10 puts("this␣is␣an␣unknown␣corvid");
11 }

In this case, we have a choice that is more complex than a false-true decision and that
can have several outcomes. We can simplify this as follows:

1 switch (arg) {
2 case ’m’: puts("this␣is␣a␣magpie");
3 break;
4 case ’r’: puts("this␣is␣a␣raven");
5 break;
6 case ’j’: puts("this␣is␣a␣jay");
7 break;
8 case ’c’: puts("this␣is␣a␣chough");
9 break;

10 default: puts("this␣is␣an␣unknown␣corvid");
11 }

Here we select one of the puts calls according to the value of the arg variable. Like
printf, the function puts is provided by stdio.h. It outputs a line with the string that<stdio.h>

is passed as an argument. We provide specific cases for characters ’m’, ’r’, ’j’, ’c’
and a fallbackC case labeled default. The default case is triggered if arg doesn’t match
any of the case values.[Exs 7]

Syntactically, a switch is as simple as

1 switch (expression) statement -or-block

and the semantics of it are quite straightforward: the case and default labels serve as
jump targetsC . According to the value of the expression, control just continues at the

[Exs 7]Test the above switch statement in a program. See what happens if you leave out some of the break
statements.
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statement that is labeled accordingly. If we hit a break statement, the whole switch under
which it appears terminates and control is transferred to the next statement after the switch.

By that specification a switch statement can in fact be used much more widely than
iterated if-else constructs.

1 switch (count) {
2 default:puts("++++␣.....␣+++");
3 case 4: puts("++++");
4 case 3: puts("+++");
5 case 2: puts("++");
6 case 1: puts("+");
7 case 0:;
8 }

Once we have jumped into the block, the execution continues until it reaches a break or the
end of the block. In this case, because there are no break statements, we end up running all
subsequent puts statements. For example, the output when the value of count is 3 would
be a triangle with three lines.

Terminal

0 +++

1 ++

2 +

The structure of a switch can be more flexible than if-else, but it is restricted in
another way:

Rule 1.3.3.1 case values must be integer constant expressions.

In Section 5.4.2 we will see what these expressions are in detail. For now it suffices
to know that these have to be fixed values that we provide directly in the source such as
the 4, 3, 2, 1, 0 above. In particular variables such as count above are only allowed in the
switch part but not for the individual case s.

With the greater flexibility of the switch statement also comes a price: it is more error
prone. In particular, we might accidentally skip variable definitions:

Rule 1.3.3.2 case labels must not jump beyond a variable definition.
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4. Expressing computations

We’ve already made use of some simple examples of expressionsC . These are code
snippets that compute some value based on other values. The simplest such expressions
are certainly arithmetic expressions that are similar to those that we learned in school.
But there are others, notably comparison operators such as == and != that we already saw
earlier.

In this section, the values and objects on which we will do these computations will be
mostly of the type size_t that we already met above. Such values correspond to “sizes”, so
they are numbers that cannot be negative. Their range of possible values starts at 0. What
we would like to represent are all the non-negative integers, often denoted as N, N0, or
“natural” numbers in mathematics. Unfortunately computers are finite so we can’t directly
represent all the natural numbers, but we can do a reasonable approximation. There is a
big upper limit SIZE_MAX that is the upper bound of what we can represent in a size_t.

Rule 1.4.0.1 The type size_t represents values in the range [0, SIZE_MAX].

The value of SIZE_MAX is quite large, depending on the platform it should be one of

216 − 1 = 65535

232 − 1 = 4294967295

264 − 1 = 18446744073709551615

The first value is a minimal requirement, the other two values are much more commonly
used today. They should be large enough for calculations that are not too sophisticated.
The standard header stdint.h provides SIZE_MAX such that you don’t have to figure it out<stdint.h>

yourself to write portable code.
The concept of “numbers that cannot be negative” to which we referred for size_t

corresponds to what C calls unsigned integer typesC . The symbols and combinations like +
or != are called operatorsC and the things to which they are applied are called operandsC ,
so in something like “a + b”, “+” is the operator and “a” and “b” are its operands.

For an overview of all C operators see the following tables; Table 2 lists the operators
that operate on values, Table 3 those that operate on objects and Table 4 those that operate
on types. To work with these, you may have to jump from one table to another. E.g if you
want to work out an expression such as a + 5 where a is some variable of type unsigned,
you’d first have to go to the third line in Table 3 to see that a is evaluated. Then, you
may use the third line in Table 2 to deduce that the value of a and 5 are combined in an
arithmetic operation, namely a +.

Don’t be frustrated if you don’t understand everything in these tables. A lot of the
concepts that are mentioned there are not yet introduced. They are listed here to form a
reference for the whole book.

4.1. Arithmetic. Arithmetic operators form the first group in Table 2 of operators
that operate on values.

4.1.1. +, - and *. Arithmetic operators +, - and * mostly work as we would expect
by computing the sum, the difference and the product of two values.

1 size_t a = 45;
2 size_t b = 7;
3 size_t c = (a - b)*2;
4 size_t d = a - b*2;

must result in c being equal to 76, and d to 31. As you can see from that little example,
sub-expressions can be grouped together with parenthesis to enforce a preferred binding of
the operator.
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TABLE 2. Value operators: “form” gives the syntactic form of the oper-
ation where @ represents the operator and a and possibly b denote values
that serve as operands. For arithmetic and bit operations the type of the
result is a type that reconciles the types of a and b.

type restriction
operator nick form a b result

a narrow wide promotion
+ - a@b pointer integer pointer arithmetic

+ - * / a@b arithmetic arithmetic arithmetic arithmetic
+ - @a arithmetic arithmetic arithmetic
% a@b integer integer integer arithmetic
~ compl @a integer integer bit
& bitand a@b integer integer integer bit
| bitor
^ xor

<< >> a@b integer positive integer bit
== != < > <= >= not_eq a@b scalar scalar 0,1 comparison

!!a a scalar 0,1 logic
!a not @a scalar 0,1 logic

&& || and or a@b scalar scalar 0,1 logic
. a@m struct value member
* @a pointer object reference
[] a[b] pointer integer object member
-> a@m struct pointer object member
() a(b ...) function pointer value call

sizeof @ a none size_t size, ICE
_Alignof alignof @(a) none size_t aligment, ICE

TABLE 3. Object operators: “form” gives the syntactic form of the oper-
ation where @ represents the operator, o denotes an object and a denotes
a suitable additional value (if any) that serve as operands. An additional
* in “type” requires that the object o is addressable.

operator nick form type result

o array* pointer array decay
o function pointer function decay
o other value evaluation

= o@a non-array value assignment

+= -= *= /= o@a arithmetic value arithmetic
+= -= o@a pointer value arithmetic
%= o@a integer value arithmetic

++ -- @o o@ arithmetic or pointer value arithmetic
&= and_eq o@a integer value bit
|= or_eq
^= xor_eq

<<= >>= o@a integer value bit
. o@m struct object member
[] o[a] array* object member
& @o any* pointer address

sizeof @ o data object, non-VLA size_t size, ICE
sizeof @ o VLA size_t size
_Alignof alignof @(o) non-function size_t aligment, ICE

In addition, operators + and - also have unary variants. -b just gives the negative of b,
namely a value a such that b + a is 0. +a simply provides the value of a. The following
would give 76 as well.
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TABLE 4. Type operators: these operators return an integer constant
(ICE) of type size_t. They have function-like syntax with the operands
in parenthesis.

operator nick form type of T
sizeof sizeof(T) any size
_Alignof alignof _Alignof(T) any aligment

offsetof offsetof(T,m) struct member offset

3 size_t c = (+a + -b)*2;

Even though we use an unsigned type for our computation, negation and difference
by means of the operator - is well defined. In fact, one of the miraculous properties of
size_t is that +-* arithmetic always works where it can. This means that as long as the
final mathematical result is within the range [0, SIZE_MAX], then that result will be the
value of the expression.

Rule 1.4.1.1 Unsigned arithmetic is always well defined.

Rule 1.4.1.2 Operations +, - and * on size_t provide the mathematically correct result
if it is representable as a size_t.

In case that we have a result that is not representable, we speak of arithmetic over-
flowC . Overflow can e.g. happen if we multiply two values that are so large that their
mathematical product is greater than SIZE_MAX. We’ll look how C deals with overflow in
the next section.

4.1.2. Division and remainder. The operators / and % are a bit more complicated,
because they correspond to integer division and remainder operation. You might not be
as used to them as to the other three arithmetic operators. a/b evaluates to the number
of times b fits into a, and a%b is the remaining value once the maximum number of b are
removed from a. The operators / and % come in pair: if we have z = a / b the remainder
a % b could be computed as a - z*b:

Rule 1.4.1.3 For unsigned values, a == (a/b)*b + (a%b).

A familiar example for the % operator are the hours on a clock. Say we have a 12
hour clock: 6 hours after 8 o’clock is 2 o’clock. Most people are able to compute time
differences on 12 hour or 24 hour clocks. This computation corresponds to a % 12, in our
example (8 + 6)% 12 == 2.[Exs 8] Another similar use for % is computation with minutes
in the hour, of the form a % 60.

There is only one exceptional value that is not allowed for these two operations: 0.
Division by zero is forbidden.

Rule 1.4.1.4 Unsigned / and % are well defined only if the second operand is not 0.

The % operator can also be used to explain additive and multiplicative arithmetic on
unsigned types a bit better. As already mentioned above, when an unsigned type is given a
value outside its range, it is said to overflowC . In that case, the result is reduced as if the %
operator had been used. The resulting value “wraps around” the range of the type. In the
case of size_t, the range is 0 to SIZE_MAX, therefore

Rule 1.4.1.5 Arithmetic on size_t implicitly does computation %(SIZE_MAX+1).

[Exs 8]Implement some computations using a 24 hour clock, e.g. 3 hours after ten, 8 hours after twenty.
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Rule 1.4.1.6 In case of overflow, unsigned arithmetic wraps around.

This means that for size_t values, SIZE_MAX + 1 is equal to 0 and 0 - 1 is equal to
SIZE_MAX.

This “wrapping around” is the magic that makes the - operators work for unsigned
types. For example, the value -1 interpreted as a size_t is equal to SIZE_MAX and so
adding -1 to a value a, just evaluates to a + SIZE_MAX which wraps around to

a + SIZE_MAX - (SIZE_MAX+1)= a - 1.
Operators / and % have the nice property that their results are always smaller than or equal
to their operands:

Rule 1.4.1.7 The result of unsigned / and % is always smaller than the operands.

And thus

Rule 1.4.1.8 Unsigned / and % can’t overflow.

4.2. Operators that modify objects. Another important operation that we already
have seen is assignment, a = 42. As you can see from that example this operator is not
symmetric, it has a value on the right and an object on the left. In a freaky abuse of
language C jargon often refers to the right hand side as rvalueC (right value) and to the
object on the left as lvalueC (left value). We will try to avoid that vocabulary whenever we
can: speaking of a value and an object is completely sufficient.

C has other assignment operators. For any binary operator @ from the five we have
seen above all have the syntax

1 an_object @= some_expression;

They are just convenient abbreviations for combining the arithmetic operator @ and
assignment, see Table 3. A mostly equivalent form would be

1 an_object = (an_object @ (some_expression));

In other words there are operators +=, -=, *=, /=, and %=. For example in a for loop
operator += could be used:

1 for (size_t i = 0; i < 25; i += 7) {
2 ...
3 }

The syntax of these operators is a bit picky, you aren’t allowed to have blanks between
the different characters, e.g. “i + = 7” instead of “i += 7” is a syntax error.

Rule 1.4.2.1 Operators must have all their characters directly attached to each other.

We already have seen two other operators that modify objects, namely the increment
operatorC ++ and the decrement operatorC --:

• ++i is equivalent to i += 1,
• --i is equivalent to i -= 1.

All these assignment operators are real operators, they return a value (but not an ob-
ject!). You could, if you were crazy enough, write something like

1 a = b = c += ++d;
2 a = (b = (c += (++d))); // same
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But such combinations of modifications to several objects in one go is generally frowned
upon. Don’t do that unless you want to obfuscate your code. Such changes to objects that
are involved in an expression are referred to as side effectsC .

Rule 1.4.2.2 Side effects in value expressions are evil.

Rule 1.4.2.3 Never modify more than one object in a statement.

For the increment and decrement operators there are even two other forms, namely
postfix incrementC and postfix decrementC . They differ from the one that we have seen
in the result when they are used inside a larger expression. But since you will nicely obey
to Rule 1.4.2.2, you will not be tempted to use them.

4.3. Boolean context. Several operators yield a value 0 or 1 depending on whether
some condition is verified or not, see Table 2. They can be grouped in two categories,
comparisons and logical evaluation.

4.3.1. Comparison. In our examples we already have seen the comparison operators
==, !=, <, and >. Whereas the later two perform strict comparison between their operands,
operators <= and >= perform “less or equal” and “greater or equal” comparison, respec-
tively. All these operators can be used in control statements as we have already seen, but
they are actually more powerful than that.

Rule 1.4.3.1 Comparison operators return the values false or true.

Remember that false and true are nothing else then fancy names for 0 and 1 respec-
tively. So they can perfectly used in arithmetic or for array indexing. In the following
code

1 size_t c = (a < b) + (a == b) + (a > b);
2 size_t d = (a <= b) + (a >= b) - 1;

we have that c will always be 1, and d will be 1 if a and b are equal and 0 otherwise. With

1 double largeA[N] = { 0 };
2 ...
3 /* fill largeA somehow */
4
5 size_t sign [2] = { 0, 0 };
6 for (size_t i = 0; i < N; ++i) {
7 sign[( largeA[i] < 1.0)] += 1;
8 }

the array element sign[0] will hold the number of values in largeA that are greater than
or equal to 1.0 and sign[1] those that are strictly less.

Finally, let’s mention that there also is an identifier “not_eq” that may be used as a
replacement for !=. This feature is rarely used. It dates back to the times where some
characters were not properly present on all computer platforms. To be able to use it you’d
have to include the file iso646.h .<iso646.h>

4.3.2. Logic. Logic operators operate on values that are already supposed to represent
values false or true. If they are not, the rules that we described for conditional execu-
tion with Rules 1.3.1.1 and 1.3.1.2 apply first. The operator ! (not) logically negates its
operand, operator && (and) is logical and, operator || (or) is logical or. The results of these
operators are summarized in Table 5.

Similar as for the comparison operators we have

Rule 1.4.3.2 Logic operators return the values false or true.
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TABLE 5. Logical operators

a not a
false true
true false

a and b false true
false false false
true false true

a or b false true
false false true
true true true

Again, remember that these values are nothing else than 0 and 1 and can thus be used
as indices:

1 double largeA[N] = { 0 };
2 ...
3 /* fill largeA somehow */
4
5 size_t isset [2] = { 0, 0 };
6 for (size_t i = 0; i < N; ++i) {
7 isset [!! largeA[i]] += 1;
8 }

Here the expression !!largeA[i] applies the ! operator twice and thus just ensures that
largeA[i] is evaluated as a truth value according to the general Rule 1.3.1.4. As a result,
the array elements isset[0] and isset[1] will hold the number of values that are equal
to 0.0 and unequal, respectively.

Operators && and || have a particular property that is called short circuit evaluationC .
This barbaric term denotes the fact that the evaluation of the second operand is omitted, if
it is not necessary for the result of the operation. Suppose isgreat and issmall are two
functions that yield a scalar value. Then in this code

1 if (isgreat(a) && issmall(b))
2 ++x;
3 if (issmall(c) || issmall(d))
4 ++y;

the second function call on each line would conditionally be omitted during execution:
issmall(b) if isgreat(a) was 0, issmall(d) if issmall(c) was not 0. Equivalent code
would be

1 if (isgreat(a))
2 if (issmall(b))
3 ++x;
4 if (issmall(c)) ++y;
5 else if (issmall(d)) ++y;

4.4. The ternary or conditional operator. The ternary operator is much similar to
an if statement, only that it is an expression that returns the value of the chosen branch:

1 size_t size_min(size_t a, size_t b) {
2 return (a < b) ? a : b;
3 }

Similar to the operators && and || the second and third operand are only evaluated if they
are really needed. The macro sqrt from tgmath.h computes the square root of a non- <tgmath.h>

negative value. Calling it with a negative value raises a domain errorC .

1 #include <tgmath.h>
2
3 #ifdef __STDC_NO_COMPLEX__
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4 # error "we␣need␣complex␣arithmetic"
5 #endif
6
7 double complex sqrt_real(double x) {
8 return (x < 0) ? CMPLX(0, sqrt(-x)) : CMPLX(sqrt(x), 0);
9 }

In this function sqrt is only called once, and the argument to that call is never negative.
So sqrt_real is always well behaved, no bad values are ever passed to sqrt.

Complex arithmetic and the tools used for it need the header complex.h which is<complex.h>

indirectly included by tgmath.h. They will be introduced later in Section 5.5.7.<tgmath.h>

In the example above we also see conditional compilation that is achieved with pre-
processor directivesC , the #ifdef construct ensures that we hit the #error condition only
if the macro __STDC_NO_COMPLEX__ isn’t defined.

4.5. Evaluation order. Of the above operators we have seen that &&, || and ?: con-
dition the evaluation of some of their operands. This implies in particular that for these
operators there is an evaluation order on the operands: the first operand, since it is a con-
dition for the remaining ones is always evaluated first:

Rule 1.4.5.1 &&, ||, ?: and , evaluate their first operand first.

Here, the comma “,” is the only operator that we haven’t introduced, yet. It eval-
uates its operands in order and the result is then the value of the right operand. E.g.
(f(a), f(b)) would first evaluate f(a), then f(b) and the result would be the value of
f(b). This feature is rarely useful in clean code, and is a trap for beginners. E.g. A[i, j]
is not a two dimension index for matrix A, but results just in A[j].

Rule 1.4.5.2 Don’t use the , operator.

Other operators don’t have an evaluation restriction. E.g. in an expression such as
f(a)+g(b) there is no pre-established ordering specifying whether f(a) or g(b) is to be
computed first. If any of functions f or g work with side effects, e.g. if f modifies b behind
the scenes, the outcome of the expression will depend on the chosen order.

Rule 1.4.5.3 Most operators don’t sequence their operands.

That order may depend on your compiler, on the particular version of that compiler,
on compile time options or just on the code that surrounds the expression. Don’t rely on
any such particular sequencing, it will bite you.

The same holds for the arguments of functions. In something like

1 printf("%g␣and␣%g\n", f(a), f(b));

we wouldn’t know which of the last two arguments is evaluated first.

Rule 1.4.5.4 Function calls don’t sequence their argument expressions.

The only reliable way not to depend on evaluation ordering of arithmetic expressions
is to ban side effects:

Rule 1.4.5.5 Functions that are called inside expressions should not have side effects.
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5. Basic values and data

We will now change the angle of view from the way “how things are to be done”
(statements and expressions) to the things on which C programs operate, valuesC and
dataC .

A concrete program at an instance in time has to represent values. Humans have
a similar strategy: nowadays we use a decimal presentation to write numbers down on
paper, a system that we inherited from the arabic culture. But we have other systems to
write numbers: roman notation, e.g., or textual notation. To know that the word “twelve”
denotes the value 12 is a non trivial step, and reminds us that European languages are
denoting numbers not entirely in decimal but also in other systems. English is mixing with
base 12, French with bases 16 and 20. For non-natives in French such as myself, it may be
difficult to spontaneously associate “quatre vingt quinze” (four times twenty and fifteen)
with the number 95.

Similarly, representations of values in a computer can vary “culturally” from architec-
ture to architecture or are determined by the type that the programmer gave to the value.
The representation that a particular value has should in most cases not be your concern; the
compiler is there to organize the translation between values and representations back and
forth.

Not all representations of values are even observable from within your program. They
only are so, if they are stored in addressable memory or written to an output device. This
is another assumptions that C makes: it supposes that all data is stored in some sort of
storage called memory that allows to retrieve values from different parts of the program in
different moments in time. For the moment only keep in mind that there is something like
an observable stateC , and that a C compiler is only obliged to produce an executable that
reproduces that observable state.

5.0.1. Values. A value in C is an abstract entity that usually exists beyond your pro-
gram, the particular implementation of that program and the representation of the value
during a particular run of the program. As an example, the value and concept of 0 should
and will always have the same effects on all C platforms: adding that value to another
value x will again be x, evaluating a value 0 in a control expression will always trigger the
false branch of the control statement. C has the very simple rule

Rule 1.5.0.1 All values are numbers or translate to such.

This really concerns all values a C program is about, whether these are the characters
or texts that we print, truth values, measures that we take, relations that we investigate.
First of all, think of these numbers as of mathematical entities that are independent of your
program and its concrete realization.

The data of a program execution are all the assembled values of all objects at a given
moment. The state of the program execution is determined by:

• the executable
• the current point of execution
• the data
• outside intervention such as IO from the user.

If we abstract from the last point, an executable that runs with the same data from
the same point of execution must give the same result. But since C programs should be
portable between systems, we want more than that. We don’t want that the result of a
computation depends on the executable (which is platform specific) but idealy that it only
depends on the program specification itself.

5.0.2. Types. An important step in that direction is the concept of typesC . A type is an
additional property that C associates with values. Up to now we already have seen several
such types, most prominently size_t, but also double or bool.
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Rule 1.5.0.2 All values have a type that is statically determined.

Rule 1.5.0.3 Possible operations on a value are determined by its type.

Rule 1.5.0.4 A value’s type determines the results of all operations.

5.0.3. Binary representation and the abstract state machine. Unfortunately, the va-
riety of computer platforms is not such that the C standard can impose the results of the
operations on a given type completely. Things that are not completely specified as such by
the standard are e.g. how the sign of signed type is represented, the so-called sign repre-
sentation, or to which precision a double floating point operation is performed, so-called
floating point representation. C only imposes as much properties on all representations,
such that the results of operations can be deduced a priori from two different sources:

• the values of the operands
• some characteristic values that describe the particular platform.

E.g. the operations on the type size_t can be entirely determined when inspecting the
value of SIZE_MAX in addition to the operands. We call the model to represent values of a
given type on a given platform the binary representationC of the type.

Rule 1.5.0.5 A type’s binary representation determines the results of all operations.

Generally, all information that we need to determine that model are in reach of any C
program, the C library headers provide the necessary information through named values
(such as SIZE_MAX), operators and function calls.

Rule 1.5.0.6 A type’s binary representation is observable.

This binary representation is still a model and so an abstract representation in the
sense that it doesn’t completely determine how values are stored in the memory of a com-
puter or on a disk or other persistent storage device. That representation would be the
object representation. In contrast to the binary representation, the object representation
usually is of not much concern to us, as long as we don’t want to hack together values of
objects in main memory or have to communicate between computers that have a different
platform model. Much later, in Section 12.1, we will see that we may even observe the
object representation if such an object is stored in memory and we know its address.

As a consequence all computation is fixed through the values, types and their binary
representations that are specified in the program. The program text describes an abstract
state machineC that regulates how the program switches from one state to the next. These
transitions are determined by value, type and binary representation, only.

Rule 1.5.0.7 (as-if) Programs execute as if following the abstract state machine.

5.0.4. Optimization. How a concrete executable achieves this goal is left to the discre-
tion of the compiler creators. Most modern C compilers produce code that doesn’t follow
the exact code prescription, they cheat wherever they can and only respect the observable
states of the abstract state machine. For example a sequence of additions with constants
values such as

1 x += 5;
2 /* do something else without x in the mean time */
3 x += 7;

may in many cases be done as if it were specified as either
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1 /* do something without x */
2 x += 12;

or

1 x += 12;
2 /* do something without x */

The compiler may perform such changes to the execution order as long as there will be no
observable difference in the result, e.g. as long we don’t print the intermediate value of “x”
and as long as we don’t use that intermediate value in another computation.

But such an optimization can also be forbidden because the compiler can’t prove that
a certain operation will not force a program termination. In our example, much depends on
the type of “x”. If the current value of x could be close to the upper limit of the type, the
innocent looking operation x += 7 may produce an overflow. Such overflows are handled
differently according to the type. As we have seen above, overflow of an unsigned type
makes no problem and the result of the condensed operation will allways be consistent with
the two seperated ones. For other types such as signed integer types (signed) or floating
point types (double) an overflow may “raise an exception” and terminate the program. So
in this cases the optimization cannot be performed.

This allowed slackness between program description and abstract state machine is a
very valuable feature, commonly referred to as optimizationC . Combined with the relative
simplicity of its language description, this is actually one of the main features that allows
C to outperform other programming languages that have a lot more knobs and whistles.
An important consequence about the discussion above can be summarized as follows.

Rule 1.5.0.8 Type determines optimization opportunities.

5.1. Basic types. C has a series of basic types and some means of constructing de-
rived typesC from them that we will describe later in Section 6.

Mainly for historical reasons, the system of basic types is a bit complicated and the
syntax to specify such types is not completely straightforward. There is a first level of
specification that is entirely done with keywords of the language, such as signed, int or
double. This first level is mainly organized according to C internals. On top of that there
is a second level of specification that comes through header files and for which we already
have seen examples, too, namely size_t or bool. This second level is organized by type
semantic, that is by specifying what properties a particular type brings to the programmer.

We will start with the first level specification of such types. As we already discussed
above in Rule 1.5.0.1, all basic values in C are numbers, but there are numbers of dif-
ferent kind. As a principal distinction we have two different classes of numbers, with
two subclasses, each, namely unsigned integersC , signed integersC , real floating point
numbersC and complex floating point numbersC

All these classes contain several types. They differ according to their precisionC ,
which determines the valid range of values that are allowed for a particular type.9 Table 6
contains an overview of the 18 base types. As you can see from that table there are some
types which we can’t directly use for arithmetic, so-called narrow typesC . A a rule of
thumb we get

Rule 1.5.1.1 Each of the 4 classes of base types has 3 distinct unpromoted types.

9The term precision is used here in a restricted sense as the C standard defines it. It is different from the
accuracy of a floating point computation.
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TABLE 6. Base types according to the four main type classes. Types
with a grey background don’t allow for arithmetic, they are promoted
before doing arithmetic. Type char is special since it can be unsigned or
signed, depending on the platform. All types in the table are considered
to be distinct types, even if they have the same class and precision.

class systematic name other name

integers

unsigned

_Bool bool
unsigned char
unsigned short
unsigned int unsigned
unsigned long
unsigned long long

[un]signed char

signed

signed char
signed short short
signed int signed or int
signed long long
signed long long long long

floating point

real
float
double
long double

complex
float _Complex float complex
double _Complex double complex
long double _Complex long double complex

Contrary to what many people believe, the C standard doesn’t even prescribe the pre-
cision of these 12 types, it only constrains them. They depend on a lot of factors that
are implementation dependentC . Thus, to chose the “best” type for a given purpose in a
portable way could be a tedious task, if we wouldn’t get help from the compiler implemen-
tation.

Remember that unsigned types are the most convenient types, since they are the only
types that have an arithmetic that is defined consistently with mathematical properties,
namely modulo operation. They can’t raise signals on overflow and can be optimized best.
They are described in more detail in Section 5.5.1.

Rule 1.5.1.2 Use size_t for sizes, cardinalities or ordinal numbers.

Rule 1.5.1.3 Use unsigned for small quantities that can’t be negative.

If your program really needs values that may both be positive and negative but don’t
have fractions, use a signed type, see Section 5.5.5.

Rule 1.5.1.4 Use signed for small quantities that bear a sign.

Rule 1.5.1.5 Use ptrdiff_t for large differences that bear a sign.

If you want to do fractional computation with values such as 0.5 or 3.77189E+89 use
floating point types, see Section 5.5.7.

Rule 1.5.1.6 Use double for floating point calculations.

Rule 1.5.1.7 Use double complex for complex calculations.
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TABLE 7. Some semantic arithmetic types for specialized use cases

type header context of definition meaning
size_t stddef.h type for “sizes” and cardi-

nalities
ptrdiff_t stddef.h type for size differences
uintmax_t stdint.h maximum width unsigned

integer, preprocessor
intmax_t stdint.h maximum width signed inte-

ger, preprocessor
errno_t errno.h Appendix K error return instead of int
rsize_t stddef.h Appendix K size arguments with bounds

checking
time_t time.h time(0), difftime(t1, t0) calendar time in seconds

since epoch
clock_t time.h clock() processor time

The C standard defines a lot of other types, among them other arithmetic types that
model special use cases. Table 7 list some of them. The second pair represents the types
with maximal width that the platform supports. This is also the type in which the prepro-
cessor does any of its arithmetic or comparison.

The third pair are types that can replace int and size_t in certain context. The first,
errno_t, is just another name for int to emphasize the fact that it encodes an error value;
rsize_t, in turn, is used to indicate that an interface performs bounds checking on its
“size” parameters.

The two types time_t and clock_t are used to handle times. They are semantic types,
because the precision of the time computation can be different from platform to platform.
The way to have a time in seconds that can be used in arithmetic is the function difftime:
it computes the difference of two timestamps. clock_t values present the platforms model
of processor clock cycles, so the unit of time here is usually much below the second;
CLOCKS_PER_SEC can be used to convert such values to seconds.

5.2. Specifying values. We have already seen several ways in which numerical con-
stants, so-called literalsC can be specified:

123 decimal integer constantC . The most natural choice for most of us.
077 octal integer constantC . This is specified by a sequence of digits, the first being

0 and the following between 0 and 7, e.g. 077 has the value 63. This type of
specification has merely historical value and is rarely used nowadays.There is
only one octal literal that is commonly used, namely 0 itself.

0xFFFF hexadecimal integer constantC . This is specified by a start of 0x followed by
a sequence of digits between 0, . . . , 9, a . . .f, e.g. 0xbeaf is value 48815. The
a .. f and x can also be written in capitals, 0XBEAF.

1.7E-13 decimal floating point constantsC . Quite familiar for the version that just has a
decimal point. But there is also the “scientific” notation with an exponent. In the
general form mEe is interpreted as m · 10e.

0x1.7aP-13 hexadecimal floating point constantsC . Usually used to describe floating point
values in a form that will ease to specify values that have exact representations.
The general form 0XhPe is interpreted as h · 2e. Here h is specified as an hexa-
decimal fraction. The exponent e is still specified as a decimal number.
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’a’ integer character constantC . These are characters put into ’ apostrophs, such
as ’a’ or ’?’. These have values that are only implicitly fixed by the C stan-
dard. E.g. ’a’ corresponds to the integer code for the character “a” of the Latin
alphabet.

Inside character constants a “\” character has a special meaning. E.g. we
already have seen ’\n’ for the newline character.

"hello" string literalsC . They specify text, e.g. as we needed it for the printf and puts
functions. Again, the “\” character is special as in character constants.

All but the last are numerical constants, they specify numbers. String literals are an
exception and can be used to specify text that is known at compile time. Integrating larger
text into our could be tedious, if we weren’t allowed to split string literals into chunks:

1 puts("first␣line\n"
2 "another␣line\n"
3 "first␣and␣"
4 "second␣part␣of␣the␣third␣line");

Rule 1.5.2.1 Consecutive string literals are concatenated.

For numerical literals, the first rule is:

Rule 1.5.2.2 Numerical literals are never negative.

That is if we write something like -34 or -1.5E-23, the leading sign is not considered
part of the number but is the negation operator applied to the number that comes after. We
will see below where this is important. Bizarre as this may sound, the minus sign in the
exponent is considered to be part of a floating point literal.

In view of Rule 1.5.0.2 we know that all literals must not only have a value but also a
type. Don’t mix up the fact of a constant having a positive value with its type, which can
be signed.

Rule 1.5.2.3 Decimal integer constants are signed.

This is an important feature, we’d probably expect the expression -1 to be a signed,
negative value.

To determine the exact type for integer literals we always have a “first fit” rule. For
decimal integers this reads:

Rule 1.5.2.4 A decimal integer constant has the first of the 3 signed types that fits it.

This rule can have surprising effects. Suppose that on a platform the minimal signed
value is−215 = −32768 and the maximum value is 215−1 = 32767. The constant 32768
then doesn’t fit into signed and is thus signed long. As a consequence the expression
-32768 has type signed long. Thus the minimal value of the type signed on such a
platform cannot be written as a literal constant.[Exs 10]

Rule 1.5.2.5 The same value can have different types.

Deducing the type of an octal or hexadecimal constant is a bit more complicated.
These can also be of an unsigned type if the value doesn’t fit for a signed one. In our ex-
ample above the hexadecimal constant 0x7FFF has the value 32767 and thus type signed.
Other than for the decimal constant, the constant 0x8000 (value 32768 written in hexadec-
imal) then is an unsigned and expression -0x8000 again is unsigned.[Exs 11]

[Exs 10]Show that if the minimal and maximal values for signed long long have similar properties, the smallest
integer value for the platform can’t be written as a combination of one literal with a minus sign.

[Exs 11]Show that if in that case the maximum unsigned is 216 − 1 that then -0x8000 has value 32768, too.
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Rule 1.5.2.6 Don’t use octal or hexadecimal constants to express negative values.

Or if we formulate it postively

Rule 1.5.2.7 Use decimal constants to express negative values.

Integer constants can be forced to be unsigned or to be of a type of minimal width. This
done by appending “U”, “L” or “LL” to the literal. E.g. 1U has value 1 and type unsigned,
1L is signed long and 1ULL has the same value but type unsigned long long.[Exs 12]

TABLE 8. Examples for constants and their types, under the supposition
that signed and unsigned have the commonly used representation with
32 bit.

constant x value type value of −x
2147483647 +2147483647 signed −2147483647
2147483648 +2147483648 signed long −2147483648
4294967295 +4294967295 signed long −4294967295
0x7FFFFFFF +2147483647 signed −2147483647
0x80000000 +2147483648 unsigned +2147483648
0xFFFFFFFF +4294967295 unsigned +1

1 +1 signed −1
1U +1 unsigned +4294967295

A common error is to try to assign a hexadecimal constant to a signed under the
expectation that it will represent a negative value. Consider a declaration such as int x =
0xFFFFFFFF. This is done under the assumption that the hexadecimal value has the same
binary representation as the signed value −1. On most architectures with 32 bit signed
this will be true (but not on all of them) but then nothing guarantees that the effective value
+4294967295 is converted to the value −1.

You remember that value 0 is important. It is so important that it has a lot of equivalent
spellings: 0, 0x0 and ’\0’ are all the same value, a 0 of type signed int. 0 has no decimal
integer spelling: 0.0 is a decimal spelling for the value 0 but seen as a floating point value,
namely with type double.

Rule 1.5.2.8 Different literals can have the same value.

For integers this rule looks almost trivial, for floating point constants this is less ob-
vious. Floating point values are only an approximation of the value they present literally,
because binary digits of the fractional part may be truncated or rounded.

Rule 1.5.2.9 The effective value of a decimal floating point constant may be different
from its literal value.

E.g. on my machine the constant 0.2 has in fact the value 0.2000000000000000111,
and as a consequence constants 0.2 and 0.2000000000000000111 have the same value.

Hexadecimal floating point constants have been designed because they better corre-
spond to binary representations of floating point values. In fact, on most modern architec-
tures such a constant (that has not too many digits) will exactly correspond to the literal
value. Unfortunately, these beasts are almost unreadable for mere humans.

Finally, floating point constants can be followed by the letters f or F to denote a float
or by l or L to denote a long double. Otherwise they are of type double. Beware that
different types of constants generally lead to different values for the same literal. A typical
example:

[Exs 12]Show that the expressions -1U, -1UL and -1ULL have the maximum values and type of the three usable
unsigned types, respectively.
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float double long double
literal 0.2F 0.2 0.2L

value 0x1.99999AP-3F 0x1.999999999999AP-3 0xC.CCCCCCCCCCCCCCDP-6L

Rule 1.5.2.10 Literals have value, type and binary representation.

5.3. Initializers. We already have seen (Section 2.3) that the initializer is an impor-
tant part of an object definition. Accessing uninitialized objects has undefined behavior,
the easiest way out is to avoid that situation systematically:

Rule 1.5.3.1 All variables should be initialized.

There are only few exception to that rule, VLA, see Section 6.1.3, that don’t allow for
an initializer, or code that must be highly optimized. The latter mainly occurs in situations
that use pointers, so this is not yet relevant to us. For most code that we are able to write
so far, a modern compiler will be able to trace the origin of a value to the last assignment
or the initialization. Superfluous assignments will simply be optimized out.

For scalar types such as integers or floating point, an initializer just contains an ex-
pression that can be converted to that type. We already have seen a lot of examples for
that. Optionally, such an initializer expression may be surrounded with {}. Examples:

1 double a = 7.8;
2 double b = 2 * a;
3 double c = { 7.8 };
4 double d = { 0 };

Initializers for other types must have these {}. E.g. array initializers contain initializers
for the different elements, separated by a comma.

1 double A[] = { 7.8, };
2 double B[3] = { 2 * A[0], 7, 33, };
3 double C[] = { [0] = 7.8, [7] = 0, };

As we have already seen above, arrays that have an incomplete typeC because there is no
length specification are completed by the initializer to fully specify the length. Here A only
has one element, whereas C has eight. For the first two initializers the element to which the
scalar initialization applies is deduced from the position of the scalar in the list: e.g. B[1]
is initialized to 7. Designated initializers as for C are by far preferable, since they make the
code more robust against small changes in declaration.

Rule 1.5.3.2 Use designated initializers for all aggregate data types.

If you don’t know how to initialize a variable of type T, the default initializerCT a =
{0} will almost13 always do.

Rule 1.5.3.3 {0} is a valid initializer for all object types that are not VLA.

There are several things, that ensure that this works. First, if we omit the designation
(the .fieldname for struct, see Section 6.3 or [n] for arrays, see Section 6.1) initializa-
tion is just done in declaration orderC , that is the 0 in the default initializer designates the
very first field that is declared, and all other fields then are initialized per default to 0 as
well. Then, the {} form of initializers for scalars ensures that { 0 } is also valid for these.

Maybe your compiler warns you about this: annoyingly some compiler implementers
don’t know about this special rule. It is explicitly designed as catch-all initializer in the C
standard, so this is one of the rare cases where I would switch off a compiler warning.

13The exception are variable length arrays, see Section 6.1.3.
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5.4. Named constants. A common issue even in small programs is that they use
special values for some purpose that are textually repeated all over. If for one reason or
another this value changes, the program falls apart. Take an artificial setting as an example
where we have arrays of strings, on which we would like to perform some operations:

1 char const*const animal [3] = {
2 "raven",
3 "magpie",
4 "jay",
5 };
6 char const*const pronoun [3] = {
7 "we",
8 "you",
9 "they",

10 };
11 char const*const ordinal [3] = {
12 "first",
13 "second",
14 "third",
15 };
16 ...
17 for (unsigned i = 0; i < 3; ++i)
18 printf("Corvid␣%u␣is␣the␣%s\n", i, animal[i]);
19 ...
20 for (unsigned i = 0; i < 3; ++i)
21 printf("%s␣plural␣pronoun␣is␣%s\n", ordinal[i], pronoun[i]);

Here we use the constant 3 at several places, and with three different “meanings” that
are not much correlated. E.g. an addition to our set of corvids would need two independent
code changes. In a real setting there could be much more places in the code that that would
depend on this particular value, and in a large code base it can be very tedious to maintain.

Rule 1.5.4.1 All constants with particular meaning must be named.

But it is equally important to distinguish constants that are equal, but for which equal-
ity is just a coincidence.

Rule 1.5.4.2 All constants with different meaning must be distinguished.

5.4.1. Read-only objects. Don’t mix the term “constant” which has a very specific
meaning in C with objects that can’t be modified. E.g. in the above code, animal, pronoun
and ordinal are not constants according to our terminology, they are const-qualified ob-
jects. This qualifierC specifies that we don’t have the right to change this object. For
animal neither the array entries nor the actual strings can be modified and your compiler
should give you a diagnostic if you try to do so.

Rule 1.5.4.3 An object of const-qualified type is read-only.

That doesn’t mean that the compiler or run-time system may not perhaps change the
value of such an object: other parts of the program may see that object without the quali-
fication and change it. The fact that you cannot write the summary of your bank account
directly (but only read it), doesn’t mean that it will remain constant over time.

There is another family of read-only objects, that unfortunately are not protected by
their type from being modified: string literals:

Rule 1.5.4.4 String literals are read-only.
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If introduced today, the type of string literals would certainly be char const[], an
array of const-qualified characters. Unfortunately, the const keyword had only been
introduced much later than string literals to the C language, and therefore remained as it is
for backward compatibility.14

5.4.2. Enumerations. C has a simple mechanism for such cases as we see them in the
example, namely enumerationsC :

1 enum corvid { magpie , raven , jay , corvid_num , };
2 char const*const animal[corvid_num] = {
3 [raven] = "raven",
4 [magpie] = "magpie",
5 [jay] = "jay",
6 };
7 ...
8 for (unsigned i = 0; i < corvid_num; ++i)
9 printf("Corvid␣%u␣is␣the␣%s\n", i, animal[i]);

This declares a new integer type enum corvid for which we know four different val-
ues. The rules for these values are simple:

Rule 1.5.4.5 Enumeration constants have either an explicit or positional value.

As you might have guessed, positional values start from 0 onward, so in our example
we have raven with value 0, magpie with 1, jay with 2 and corvid_num with 3. This last
3 is obviously the 3 we are interested in.

Now if we want to add another corvid, we just put it in the list, anywhere before
corvid_num:

1 enum corvid { magpie , raven , jay , chough , corvid_num , };
2 char const*const animal[corvid_num] = {
3 [chough] = "chough",
4 [raven] = "raven",
5 [magpie] = "magpie",
6 [jay] = "jay",
7 };

As for most other narrow types, there is not really much interest of declaring variables
of an enumeration type, for indexing and arithmetic they would be converted to a wider
integer, anyhow. Even the enumeration constants themselves aren’t of the enumeration
type:

Rule 1.5.4.6 Enumeration constants are of type signed int.

So the interest really lies in the constants, not in the newly created type. We may thus
name any signed int constant that we need, without even providing a tagC for the type
name:

1 enum { p0 = 1, p1 = 2*p1, p2 = 2*p1, p3 = 2*p2, };

To define these constants we can use integer constant expressionsC , ICE. Such an
ICE provides a compile time integer value and is much restricted. Not only that its value
must be determinable at compile time (no function call allowed), also no evaluation of an
object must participate as an operand to the value.

14A third class of read-only objects exist, temporary objects. We will see them later in Section 13.2.2.
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1 signed const o42 = 42;
2 enum {
3 b42 = 42, // ok, 42 is a literal
4 c52 = o42 + 10, // error , o42 is an object
5 b52 = b42 + 10, // ok, b42 is not an object
6 };

Here, o52 is an object, const-qualified but still, so the expression for c52 is not an
“integer constant expression”.

Rule 1.5.4.7 An integer constant expression doesn’t evaluate any object.

So principally an ICE may consist of any operations with integer literals, enumer-
ation constants, _Alignof and offsetof sub-expressions and eventually some sizeof
sub-expressions.15

Still, even when the value is an ICE to be able to use it to define an enumeration
constant you’d have to ensure that the value fits into a signed.

5.4.3. Macros. Unfortunately there is no other mechanism to declare constants of
other type than signed int in the strict sense of the C language. Instead, C proposes
another powerful mechanism that introduces textual replacement of the program code,
macrosC . A macro is introduced by a preprocessorC #define:

1 # define M_PI 3.14159265358979323846

This macro definition has an effect that the identifier M_PI is replaced in the then
following program code by the double constant. Such a macro definition consists of 5
different parts:

(1) A starting # character that must be the first non-blank character on the line.
(2) The keyword define.
(3) An identifier that is to be declared, here M_PI.
(4) The replacement text, here 3.14159265358979323846.
(5) A terminating newline character.

With this trick we can declare textual replacement for constants of unsigned, size_t or
double. In fact the implementation imposed bound of size_t, SIZE_MAX, is such defined,
but also many of the other system features that we already have seen: EXIT_SUCCESS,
false, true, not_eq, bool, complex . . . Here, in this book such C standard macros are all
printed in dark red.

These examples should not distract you from the general style requirement that is
almost universally followed in production code:

Rule 1.5.4.8 Macro names are in all caps.

Only deviate from that rule if you have good reasons, in particular not before you
reached Level 3.

5.4.4. Compound literals. For types that don’t have literals that describe their con-
stants, things get even a bit more complicated. We have to use compound literalsC on the
replacement side of the macro. Such a compound literal has the form

1 (T){ INIT }

that is a type, in parenthesis, followed by an initializer. Example:

15We will handle the latter two concepts in Sections 12.7 and 12.1.
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1 # define CORVID_NAME /**/ \
2 (char const*const[corvid_num ]){ \
3 [chough] = "chough", \
4 [raven] = "raven", \
5 [magpie] = "magpie", \
6 [jay] = "jay", \
7 }

With that we could leave out the “animal” array from above and rewrite our for-loop:

1 for (unsigned i = 0; i < corvid_num; ++i)
2 printf("Corvid␣%u␣is␣the␣%s\n", i, CORVID_NAME[i]);

Whereas compound literals in macro definitions can help us to declare something that
behaves similar to a constant of a chosen type, it ain’t a constant in the narrow sense of C.

Rule 1.5.4.9 A compound literal defines an object.

Over all, this form of macro has some pitfalls
• Compound literals aren’t suitable for ICE.
• For our purpose here to declare “named constants” the type T should be const-

qualifiedC . This ensures that the optimizer has a bit more slackness to generate
good binary code for such a macro replacement.

• There must be space between the macro name and the () of the compound literal,
here indicated by the /**/ comment. Otherwise this would be interpreted as the
start of a definition of a function-like macro. We will see these much later.

• A backspace character \ at the very end of the line can be used to continue the
macro definition to the next line.

• There must be no ; at the end of the macro definition. Remember it is all just
text replacement.

Rule 1.5.4.10 Don’t hide a terminating semicolon inside a macro.

Also for readability of macros, please pity the poor occasional reader of your code:

Rule 1.5.4.11 Right-indent continuation markers for macros to the same column.

As you can see above this helps to visualize the whole spread of the macro definition
easily.

5.4.5. Complex constants. Complex types are not necessarily supported by all C plat-
forms. The fact can be checked by inspecting __STDC_NO_COMPLEX__. To have full
support of complex types, the header complex.h should be included. If you use tgmath.h<complex.h>

<tgmath.h> for mathematical functions, this is already done implicitly.
It has several macros that may ease the manipulation of these types, in particular I, a

constant value such that I*I == -1.0F. This can be used to specify constants of complex
types similar to the usual mathematical notation. E.g. 0.5 + 0.5*I would be of type
double complex, 0.5F + 0.5F*I of float complex.

One character macro names in capital are often used in programs for numbers that are
fixed for the whole program. By itself it is not a brilliant idea, the resource of one character
names is limited, but you should definitively leave I alone.

Rule 1.5.4.12 I is reserved for the imaginary unit.

Another possibility to specify complex values is CMPLX, e.g. CMPLX(0.5, 0.5) is the
same double complex value as above, and using CMPLXF is similar for float complex.
But using I as above is probably more convenient since the type of the constant is then
automatically adapted from the two floating point constants that are used for the real and
imaginary part.
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TABLE 9. Bounds for scalar types used in this book

name [min, max] where typical
size_t [0, SIZE_MAX ] <stdint.h> [0, 2w − 1], w = 32, 64

double [±DBL_MIN, ±DBL_MAX ] <float.h> [±2−w−2,±2w], w = 1024
signed [INT_MIN, INT_MAX ] <limits.h> [−2w, 2w − 1], w = 31

unsigned [0, UINT_MAX ] <limits.h> [0, 2w − 1], w = 32

bool [false, true ] <stdbool.h> [0, 1]

ptrdiff_t [PTRDIFF_MIN, PTRDIFF_MAX ] <stdint.h> [−2w, 2w − 1], w = 31, 63
char [CHAR_MIN, CHAR_MAX ] <limits.h> [0, 2w − 1], w = 7, 8

unsigned char [0, UCHAR_MAX ] <limits.h> [0, 255]

5.5. Binary representions.
Rule 1.5.5.1 The same value may have different binary representations.

5.5.1. Unsigned integers. We already have seen that unsigned integer types are those
arithmetic types for which the standard arithmetic operations have a nice and closed math-
ematical description. Namely they are closed to these operations:

Rule 1.5.5.2 Unsigned arithmetic wraps nicely.

It mathematical terms they implement a ring, ZN , the set of integers modulo some
number N . The values that are representable are 0, . . . , N − 1. The maximum value
N − 1 completely determines such an unsigned integer type and is made available through
a macro with terminating _MAX in the name. For the basic unsigned integer types these are
UINT_MAX, ULONG_MAX and ULLONG_MAX and they are provided through limits.h. As we <limits.h>

already have seen the one for size_t is SIZE_MAX from stdint.h. <stdint.h>

The binary representation for non-negative integer values is always exactly what the
term indicates: such a number is represented by binary digits b0, b1, . . . , bp−1 called bitsC .
Each of the bits has a value of 0 or 1. The value of such a number is computed as

(1)
p−1∑
i=0

bi2
i.

The value p in that binary representation is called the precisionC of the underlying
type. Of the bits bi that are 1 the one with minimal index i is called the least significant
bitC , LSB, the one with the highest index is the most significant bitC , MSB. E.g. for an
unsigned type with p = 16, the value 240 would have b4 = 1, b5 = 1, b6 = 1 and b7 = 1.
All other bits of the binary representation are 0, the LSB is b4 the MSB is b7. From (1) we
see immediately that 2p is the first value that cannot be represented with the type. Thus we
have that N = 2p and

Rule 1.5.5.3 The maximum value of any integer type is of the form 2p − 1.

Observe that for this discussion of the representation of non-negative values we hadn’t
argued about the signedness of the type. These rules apply equally to signed or unsigned
types. Only for unsigned types we are lucky and what is said so far completely suffices to
describe such an unsigned type.

Rule 1.5.5.4 Arithmetic on an unsigned integer type is determined by its precision.

Finally, Tab. 9 shows the bounds of some of the commonly used scalars throughout
this book.
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5.5.2. Bit sets and bitwise operators. This simple binary representation of unsigned
types allows us to use them for another purpose that is not directly related to arithmetic,
namely as bit sets. A bit set is a different interpretation of an unsigned value, where we
assume that it represents a subset of the base set V = {0, . . . , p − 1} and where we take
element i to be member of the set, if the bit bi is present.

There are three binary operators that operate on bitsets: |, &, and ^. They represent
the set union A ∪ B, set intersection A ∩ B and symmetric difference A∆B, respectively.
For an example let us chose A = 240, representing {4, 5, 6, 7}, and B = 287, the bit set
{0, 1, 2, 3, 4, 8}. We then have

bit op value hex b15 . . . b0 set op set
V 65535 0xFFFF 1111111111111111 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15}
A 240 0x00F0 0000000011110000 {4, 5, 6, 7}
~A 65295 0xFF0F 1111111100001111 V \A {0, 1, 2, 3, 8, 9, 10,

11, 12, 13, 14, 15}
-A 65296 0xFF10 1111111100010000 {4, 8, 9, 10,

11, 12, 13, 14, 15}
B 287 0x011F 0000000100011111 {0, 1, 2, 3, 4, 8}
A|B 511 0x01FF 0000000111111111 A ∪B {0, 1, 2, 3, 4, 5, 6, 7, 8}
A&B 16 0x0010 0000000000010000 A ∩B {4}
A^B 495 0x01EF 0000000111101111 A∆B {0, 1, 2, 3, 5, 6, 7, 8}

For the result of these operations the total size of the base set, and thus the precision p is
not needed. As for the arithmetic operators, there are corresponding assignment operators
&=, |=, and ^=, respectively.[Exs 16][Exs 17][Exs 18][Exs 19]

There is yet another operator that operates on the bits of the value, the complement
operator ~. The complement ~A would have value 65295 and would correspond to the set
{0, 1, 2, 3, 8, 9, 10, 11, 12, 13, 14, 15}. This bit complement always depends on the preci-
sion p of the type.[Exs 20][Exs 21]

All these operator can be written with identifiers, namely bitor, bitand, xor, or_eq,
and_eq, xor_eq, and compl if you include header iso646.h.<iso646.h>

A typical usage of bit sets is for “flags”, variables that control certain settings of a
program.

1 enum corvid { magpie , raven , jay , chough , corvid_num , };
2 #define FLOCK_MAGPIE 1U
3 #define FLOCK_RAVEN 2U
4 #define FLOCK_JAY 4U
5 #define FLOCK_CHOUGH 8U
6 #define FLOCK_EMPTY 0U
7 #define FLOCK_FULL 15U
8
9 int main(void) {

10 unsigned flock = FLOCK_EMPTY;
11
12 ...
13
14 if (something) flock |= FLOCK_JAY;
15
16 ...

[Exs 16]Show that A \B can be computed by A - (A&B)
[Exs 17]Show that V + 1 is 0.
[Exs 18]Show that A^B is equivalent to (A - (A&B))+ (B - (A&B)) and A + B - 2*(A&B)
[Exs 19]Show that A|B is equivalent to A + B - (A&B)

[Exs 20]Show that ~B can be computed by V - B
[Exs 21]Show that -B = ~B + 1
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17
18 if (flock&FLOCK_CHOUGH)
19 do_something_chough_specific(flock);
20
21 }

Here the constants for each type of corvid are a power of two, and so they have exactly
one bit set in their binary representation. Membership in a “flock” can then be handled
through the operators: |= adds a corvid to flock and & with one of the constants tests if a
particular corvid is present.

Observe the similarity between operators & and && or | and ||: if we see each of
the bits bi of an unsigned as a truth value, & performs the “logical and” of all bits of
its arguments simultaneously. This is a nice analogy that should help to memorize the
particular spelling of these operators. On the other hand have in mind that operators ||
and && have short circuit evaluation, so be sure to distinguish them clearly from the bit
operators.

5.5.3. Shift operators. The next set of operators builds a bridge between interpretation
of unsigned values as numbers and as bit sets. A left shift operation << corresponds to
the multiplication of the numerical value by the corresponding power of two. E.g. for
A = 240, A << 2 is 240 · 22 = 240 · 4 = 960, which represents the set {6, 7, 8, 9}.
Resulting bits that don’t fit into the binary representation for the type are simply omitted.
In our example, A << 9 would correspond to set {13, 14, 15, 16} (and value 122880), but
since there is no bit 16 the resulting set is {13, 14, 15}, value 57344.

Thus for such a shift operation the precision p is important, again. Not only that bits
that don’t fit are dropped it also restricts the possible values of the operand on the right:

Rule 1.5.5.5 The second operand of a shift operation must be less than the precision.

There is an analogous right shift operation >> that shifts the binary representation
towards the less significant bits. Analogously this corresponds to an integer division by a
power of two. Bits in positions less or equal to the shift value are omitted for the result.
Observe that for this operation, the precision of the type isn’t important.[Exs 22]

Again, there are also corresponding assignment operators <<= and >>=.
The left shift operator << has a primary use for specifying powers of two. In our

example from above we may now replace the #define s by:

1 #define FLOCK_MAGPIE (1U << magpie)
2 #define FLOCK_RAVEN (1U << raven)
3 #define FLOCK_JAY (1U << jay)
4 #define FLOCK_CHOUGH (1U << chough)
5 #define FLOCK_EMPTY 0U
6 #define FLOCK_FULL ((1U << corvid_num) -1)

This makes the example more robust against changes to the enumeration.
5.5.4. Boolean values. The Boolean data type in C is also considered to be an un-

signed type. Remember that it only has values 0 and 1, so there are no negative values. For
historical reasons the basic type is called _Bool. The name bool as well as the constants
false and true only come through the inclusion of stdbool.h. But it probably is a good

<stdbool.h>
idea to use the latter to make the semantics of the types and values that you are using clear.

Treating bool as an unsigned type is a certain stretch of the concept. Assignment to a
variable of that type doesn’t follow the Modulus Rule 1.4.1.5, but a the special Rule 1.3.1.1.

You’d probably need bool variables rarely. They are only useful if you’d want to
ensure that the value is always reduced to false or true on assignment. Early versions of
C didn’t have a Boolean type and many experienced C programmers still don’t use it.

[Exs 22]Show that the bits that are “lost” in an operation x>>n correspond to the remainder x % (1ULL << n).
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5.5.5. Signed integers. Signed types are a bit more complicated to handle than un-
signed types, because a C implementation has to decide on two points

• What happens on arithmetic overflow?
• How is the sign of a signed type represented?

Signed and unsigned types come in pairs, with the notable two exceptions from Table 6
char and bool. The binary representation of the signed type is constrained by correspond-
ing unsigned type:

Rule 1.5.5.6 Positive values are represented independently from signedness.

Or stated otherwise, a positive value with a signed type has the same representation
as in the corresponding unsigned type. That is the reason why we were able to express
Rule 1.5.5.3 for all integer types. These also have a precision, p that determines the maxi-
mum value of the type.

The next thing that the standard prescribes is that signed types have exactly one addi-
tional bit, the sign bitC . If it is 0 we have a positive value, if it is 1 the value is negative.
Unfortunately there are different concepts how such a sign bit can be used to obtain a
negative number. C allows three different sign representationsC

• sign and magnitudeC
• ones’ complementC
• two’s complementC

The first two nowadays probably only have historic or exotic relevance: for sign and
magnitude, the magnitude is taken as for positive values, and the sign bit simple specifies
that there is a minus sign. Ones’ complement takes the corresponding positive value and
complements all bits. Both representations have the disadvantage that two values evaluate
to 0, there is a positive and a negative 0.

Commonly used on modern platforms is the two’s complement representation. It per-
forms exactly the same arithmetic as we have already seen for unsigned types, only that
the upper half of the unsigned values is interpreted as being negative. The following two
functions are basically all that is need to interpret unsigned values as signed ones:

1 bool is_negative(unsigned a) {
2 unsigned const int_max = UINT_MAX /2;
3 return a > int_max;
4 }
5 bool is_signed_less(unsigned a, unsigned b) {
6 if (is_negative(b) && !is_negative(a)) return false;
7 else return a < b;
8 }

When realized like that, signed integer arithmetic will again behave more or less
nicely. Unfortunately, there is a pitfall that makes the outcome of signed arithmetic diffi-
cult to predict: overflow. Where unsigned values are forced to wrap around, the behavior
of a signed overflow is undefinedC . The following two loops look quite the same:

1 for (unsigned i = 1; i; ++i) do_something ();
2 for ( signed i = 1; i; ++i) do_something ();

We know what happens for the first one: the counter is increment up to UINT_MAX,
then wraps around to 0. All of this may take some time, but after UINT_MAX-1 iterations
the loop stops because i will have reached 0.

For the second, all looks similar. But because here the behavior of overflow is un-
defined the compiler is allowed to pretend that it will never happen. Since it also knows
that the value at start is positive it may assume that i, as long as the program has defined
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behavior, is never negative or 0. The as-if Rule 1.5.0.7 allows it to optimize the second
loop to

1 while (true) do_something ();

That’s right, an infinite loop. This is a general feature of undefined behavior in C code:

Rule 1.5.5.7 Once the abstract state machine reaches an undefined state no further as-
sumption about the continuation of the execution can be made.

Not only that the compiler is allowed to do what pleases for the operation itself (“un-
defined? so let’s define it”), but it may also assume that it will never reach such a state and
draw conclusions from that.

Rule 1.5.5.8 It is your responsibility to avoid undefined behavior of all operations.

What makes things even worse is that on some platforms with some standard com-
piler options all will just look right. Since the behavior is undefined, on a given platform
signed integer arithmetic might turn out basically the same as unsigned. But changing the
platform, the compiler or just some options can change that. All of a sudden your program
that worked for years crashes out of nowhere.

Basically what we discussed up to this section always had well defined behavior, so
the abstract state machine is always in a well defined state. Signed arithmetic changes this,
so as long as you mustn’t, avoid it.

Rule 1.5.5.9 Signed arithmetic may trap badly.

One of the things that might already overflow for signed types is negation. We have
seen above that INT_MAX has all bits but the sign bit set to 1. INT_MIN has then the “next”
representation, namely the sign bit set to 1 and all other values set to 0. The corresponding
value is not -INT_MAX.[Exs 23]

We then have

Rule 1.5.5.10 In twos’ complement representation INT_MIN < -INT_MAX.

Or stated otherwise, in twos’ complement representation the positive value -INT_MIN
is out of bounds since the value of the operation is larger than INT_MAX.

Rule 1.5.5.11 Negation may overflow for signed arithmetic.

For signed types, bit operations work with the binary representation. So the value of
a bit operation depends in particular on the sign representation. In fact bit operations even
allow to detect the sign representation.

1 char const* sign_rep [4] =
2 {
3 [1] = "sign␣and␣magnitude",
4 [2] = "ones’␣complement",
5 [3] = "two’s␣complement",
6 [0] = "weird",
7 };
8 enum { sign_magic = -1&3, };
9 ...

10 printf("Sign␣representation:␣%s.\n", sign_rep[sign_magic ]);

The shift operations then become really messy. The semantics of what such an opera-
tion is for a negative value is not clear.

Rule 1.5.5.12 Use unsigned types for bit operations.

[Exs 23]Show that INT_MIN+INT_MAX is −1.
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5.5.6. Fixed width integer types. The precision for the integer types that we have seen
so far can be inspected indirectly by using macros from limits.h, such as UINT_MAX or<limits.h>

LONG_MIN. The C standard only gives us a minimal precision for them. For the unsigned
types these are:

type minimal precision
bool 1
unsigned char 8
unsigned short 16
unsigned 16
unsigned long 32
unsigned long long 64

Under some technical constraints such guarantees might not be sufficient and the C
standard provides names for exact-width integer types in stdint.h. As the name indicates<stdint.h>

they are of an exact prescribed “width”, which for provided unsigned types is guaranteed
to be the same as their precision.

Rule 1.5.5.13 If the type uintN_t is provided it is an unsigned integer type with exactly
N bits width and precision.

For signed types this mechanism is even more restrictive:

Rule 1.5.5.14 If the type intN_t is provided it is signed, with two’s complement repre-
sentation, has a width of exactly N bits and a precision of N − 1.

None of these types is guaranteed to exist, but

Rule 1.5.5.15 If types with the required properties exist for values of 8, 16, 32 or 64,
types uintN_t and intN_t respectively must be provided.

And in fact, nowadays platforms usually provide uint8_t, uint16_t, uint32_t and
uint64_t unsigned types and int8_t, int16_t, int32_t and int64_t signed types. Their
presence and bounds can be tested with macros UINT8_MAX, . . . , UINT64_MAX for unsigned
types and INT8_MIN, INT8_MAX, . . . , INT64_MIN and INT64_MAX, respectively.[Exs 24]

To encode literals of the requested type there are macros UINT8_C, . . . , UINT64_C, and
INT8_C, . . . , INT64_C, respectively. E.g on platforms where uint64_t is unsigned long,
INT64_C(1) would expand to 1UL.

Rule 1.5.5.16 For any of the fixed-width types that are provided, _MIN (only signed),
maximum _MAX and literals _C macros are provided, too.

Since we cannot know the type behind such fixed-width type, it would be difficult to
guess the correct format specifier that we would have to use for printf and friends. The
header inttypes.h provides us with macros for that. E.g for N = 64 we are provided<inttypes.h>

with PRId64, PRIi64, PRIo64, PRIu64, PRIx64 and PRIX64, for printf formats "%d",
"%i", "%o", "%u", "%x" and "%X", respectively:

uint32_t n = 78;
int64_t max = (-UINT64_C (1)) >>1; // same value as INT64_MAX
printf("n␣is␣%" PRIu32 ",␣and␣max␣is␣%" PRId64 "\n", n, max);

As you can see, these macros expand to string literals that are combined with other string
literals into the format string. This is certainly not the best candidate for a C coding beauty
contest.

[Exs 24]If they exist, the value of all these macros is precribed by the properties of the types. Think of a closed
formulas in N for these values.
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5.5.7. Floating point data. Where integers come near the mathematical concepts of N
(unsigned) or Z (signed), floating point types are close to R (non-complex) or C (complex).

The way they differ from these mathematical concepts is twofold. First there is a size
restriction of what is presentable. This is similar to what we have seen for integer types.
The include file float.h has e.g. constants DBL_MIN and DBL_MAX that provides us with <float.h>

the minimal and maximal values for double. But beware, here DBL_MIN is the smallest
number that is strictly greater then 0.0; the smallest negative double value is -DBL_MAX.

But real numbers (R) have another difficulty when we want to represent them on a
physical system: they can have an unlimited expansion, such as the value 1

3 which has
an endless repetition of digit 3 in decimal representation or such as the value of π which
is “transcendent” and so has an endless expansion in any representation, and which even
doesn’t repeat in any way.

C and other programming languages deal with these difficulties by cutting off the ex-
pansion. The position where the expansion is cut is “floating”, thus the name, and depends
on the magnitude of the number in question.

In a view that is a bit simplified a floating point value is computed from the following
values:

s sign (±1)
e exponent, an integer

f1, . . . , fp values 0 or 1, the mantissa bits.
For the exponent we have emin ≤ e ≤ emax. p, the number of bits in the mantissa is

called precision. The floating point value is then given by the formula:

s · 2e ·
p∑

k=1

fk2−k.

The values p, emin and emax are type dependent, and therefore not represented ex-
plicitly in each number. They can be obtained through macros such as DBL_MANT_DIG (for
p, typically 53) DBL_MIN_EXP (emin, −1021) and DBL_MAX_EXP (emax, 1024).

If we have e.g. a number that has s = −1, e = −2, f1 = 1, f2 = 0 and f2 = 1, its
value is

−1 · 2−2 · (f12−1 + f22−2 + f22−3) = −1 · 1

4
· (1

2
+

1

8
) = −1 · 1

4
· 4 + 1

8
=
−5

32
which corresponds to the decimal value -0.15625. From that calculation we see also that
floating point values are always representable as a fraction that has some power of two in
the denominator.[Exs 25]

An important thing that we have to have in mind with such floating point representa-
tions is that values can be cut off during intermediate computations.

Rule 1.5.5.17 Floating point operations are neither associative, commutative or dis-
tributive.

So basically they loose all nice algebraic properties that we are used to when doing
pure math. The problems that arise from that are particularly pronounced if we operate
with values that have very different orders of magnitude.[Exs 26] E.g. adding a very small
floating point value x with an exponent that is less than −p to a value y > 1 just returns
y, again. As a consequence it is really difficult to assert without further investigation if
two computations have had the “same” result. Such investigations are often cutting edge
research questions, so we cannot expect to be able to assert equality or not. We are only
able to tell that they are “close”:

[Exs 25]Show that all representable floating point values with e > p are multiples of 2e−p.
[Exs 26]Print the results of the following expressions: 1.0E-13 + 1.0E-13 and
(1.0E-13 + (1.0E-13 + 1.0))- 1.0
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Rule 1.5.5.18 Never compare floating point values for equality.

The representation of the complex types is straightforward, and identical to an array of
two elements of the corresponding real floating point type. To access the real and imaginary
part of a complex number we have two type generic macros that also come with the header
tgmath.h, namely creal and cimag. For any z of one of the three complex types we have<tgmath.h>

that z == creal(z)+ cimag(z)*I.27

27We will learn about such function-like macros in Section 8.
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6. Aggregate data types

All other data types in C are derived from the basic types that we know now. There
are four different strategies for combining types:

arrays These combine items that all have the same base type.
pointers Entities that refer to an object in memory.

structures These combine items that may have different base types.
unions These overlay items of different base types in the same memory location.

Of these four, pointers are by far the most involved concept, and we will delay the
full discussion on them to Section 11. Below, in Section 6.2, we only will present them as
opaque data type, without even mentioning the real purpose they fulfill.

Unions also need a deeper understanding of C’s memory model and are not of much
use in every day’s programmers life, so they are only introduce in Section 12.2. Here, for
this level, we will introduce aggregate data typesC , data types that group together several
data to form one unit.

6.1. Arrays. Arrays allow us to group objects of the same type into an encapsulating
object. We only will see pointer types later (Section 11) but many people come to C with
a confusion of arrays and pointers. And this is completely normal, arrays and pointers
are closely related in C and to explain them we face a hen and egg problem: arrays look
like pointers in many contexts, and pointers refer to array objects. We chose an order of
introduction that is perhaps unusual, namely we start with arrays and try to stay with them
as long as possible before introducing pointers. This may seem “wrong” for some of you,
but remember that everything which stated here has to be taken with the as-if rule: we will
first describe arrays in a way that will be consistent with C’s assumptions about the abstract
state machine.

We start with a very important rule:

Rule 1.6.1.1 Arrays are not pointers.

We will later see on how these two concepts relate, but for the moment it is important
to enter this section without prejudice about arrays, otherwise you will block your ascent
to a better understanding of C for a while.

6.1.1. Array declaration. We have already seen how arrays are declared, namely by
placing something like [N] after another declaration. Examples:

1 double a[16];
2 signed b[N];

Here a comprises 16 subobjects of type double and b N of type signed.
The type that composes an array may itself again be an array to form a so-called

multidimensional arrayC . For those, declarations become a bit more difficult to read since
[] binds to the left. The following two declarations declare variables of exactly the same
type:

1 double C[M][N];
2 double (D[M])[N];

Both, C and D are M objects of array type double[N], we have to read an array declaration
from inside out.

We also already have seen how array elements are accessed and initialized, again with
a pair of []. With the above a[0] is an object of double and can be used wherever we
want to use e.g. a simple variable. As we have seen C[0] is itself an array, and so C[0][0]
which is the same as (C[0])[0] is again an object of type double.

Initializers can use designated initializers to pick the specific position to which an
initialization applies. Example code on pages 38 and 45 contains such initializers.
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6.1.2. Array operations. Arrays are really objects of a different type than we have
seen so far. First an array in a logical operator make not much sense, what would the truth
value of such array be?

Rule 1.6.1.2 An array in a condition evaluates to true.

The “truth” of that comes from the “array decay” operation, that we will see later.
Another important property is that we can’t evaluate arrays like other objects.

Rule 1.6.1.3 There are array objects but no array values.

So arrays can’t be operands for value operators in Table 2, there is no arithmetic de-
clared on arrays (themselves) and also

Rule 1.6.1.4 Arrays can’t be compared.

Arrays also can’t be on the value side of object operators in Table 3. Most of the
object operators are likewise ruled out to have arrays as object operands, either because
they assume arithmetic or because they have a second value operand that would have to be
an array, too. In particular,

Rule 1.6.1.5 Arrays can’t be assigned to.

From that table we see that there are only four operators left that work on arrays as
object operator. We already know the operator []28. The “array decay” operation, the
address operator & and the sizeof operator will be introduced later.

6.1.3. Array length. There are two different categories of arrays, fixed length ar-
raysC , FLA, and variable length arraysC , VLA. The first are a concept that has been
present in C since the beginnings and this feature is shared with many other programming
languages. The second, was introduced in C99 and is relatively unique to C, and has some
restrictions to its usage.

Rule 1.6.1.6 VLA can’t have initializers.

Rule 1.6.1.7 VLA can’t be declared outside functions.

So let’s start at the other end and see which arrays are in fact FLA, such that they don’t
fall under these restrictions.

Rule 1.6.1.8 The length of an FLA is determined by an ICE or an initializer.

In the first case, their length is know at compile time through a integer constant ex-
pression, ICE, as we have introduced them in Section 5.4.2. There is no type restriction for
the ICE, any integer type would do. The only restriction is

Rule 1.6.1.9 An array length specification must be strictly positive.

There is another important special case that leads to a FLA, when there is no length
specification at all. If the [] is left empty, the length of the array is determined from its
initializer, if any:

1 double C[] = { [3] = 42.0, [2] = 37.0, };
2 double D[] = { 22.0, 17.0, 1, 0.5, };

28The real C jargon story about arrays and [] is a bit more complicated. Let us apply the as-if Rule 1.5.0.7 to
our explanation. All C program behaves as if the [] are directly applied to an array object.
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Here C and D both are of type double[4]. Since such an initializer’s structure can always
be determined at compile time without necessarily knowing the values of the items, the
array then still is an FLA.

All other array variable declarations lead to VLA.

Rule 1.6.1.10 An array with a length not an integer constant expression is an VLA.

The length of an array can be computed with the sizeof operator. That operator
provides the “size” of any object29 and so the length of an array can be calculate by a
simple division.

Rule 1.6.1.11 The length of an array A is (sizeof A)/(sizeof A[0]).

Namely the size of the array object itself divided by the size of any of the array ele-
ments.

6.1.4. Arrays as parameters. Yet another special case occurs for arrays as parame-
ters to functions. As we have seen for the prototype of printf above, such parameters
may have empty []. Since there is no initializer possible for such a parameter, the array
dimension can’t be determined.

Rule 1.6.1.12 The innermost dimension of an array parameter to a function is lost.

Rule 1.6.1.13 Don’t use the sizeof operator on array parameters to functions.

Array parameter are even more bizarre, because of Rule 1.6.1.3 array parameters can-
not be passed by value; there is no such thing as an array value in C. As a first approxima-
tion of what is happening for array parameters to functions we have:

Rule 1.6.1.14 Array parameters behave as-if the array is passed by referenceC .

Take the following as an example:

1 #include <stdio.h>
2
3 void swap_double(double a[static 2]) {
4 double tmp = a[0];
5 a[0] = a[1];
6 a[1] = tmp;
7 }
8 int main(void) {
9 double A[2] = { 1.0, 2.0, };

10 swap_double(A);
11 printf("A[0]␣=␣%g,␣A[1]␣=␣%g\n", A[0], A[1]);
12 }

Here, swap_double(A) will act directly on array A and not on a copy. Therefore the pro-
gram will swap the values of the two elements of A.

29Later we will see what the unit of measure for such sizes is.
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6.1.5. Strings are special. There is a special kind of arrays that we already encoun-
tered several times and that in contrast to other arrays even has literals, stringsC .

Rule 1.6.1.15 A string is a 0-terminated array of char.

That is a string as "hello" always has one more element than is visible that contains
the value 0, so here the array has length 6.

As all arrays, strings can’t be assigned to, but they can be initialized from string liter-
als:

1 char chough0 [] = "chough";
2 char chough1 [] = { "chough" };
3 char chough2 [] = { ’c’, ’h’, ’o’, ’u’, ’g’, ’h’, 0, };
4 char chough3 [7] = { ’c’, ’h’, ’o’, ’u’, ’g’, ’h’, };

These are all equivalent declarations. Beware that not all arrays of char are strings, such
as

1 char chough4 [6] = { ’c’, ’h’, ’o’, ’u’, ’g’, ’h’, };

because it is not 0-terminated.
We already briefly have seen the base type char of strings among the integer types.

It is a narrow integer type that can be used to encode all characters of the basic char-
acter setC . This character set contains all characters of the Latin alphabet, Arabic digits
and punctuation characters that we use for coding in C. It usually doesn’t contain special
characters (e.g. “ä”, “á”) or characters from completely different writing systems.

The vast majority of platforms nowadays uses the so-called ASCII30 to encode char-
acters in the type char. We don’t have to know how the particular encoding works as long
as we stay in the basic character set, everything is done in C and its standard library that
this encoding is used transparently.

To deal with char arrays and strings, there are a bunch of functions in the standard
library that come with the header string.h. Those that just suppose an array start their<string.h>

names with “mem” and those that in addition suppose that their arguments are strings start
with “str”.

Functions that operate on char-arrays:

• memcpy(target, source, len) can be use to copy one array to another. These
have to be known to be distinct arrays. The number of char to be copied must
be given as a third argument len.

• memcmp(s0, s1, len) compares two arrays in the lexicographic ordering. That
is it first scans initial parts of the two arrays that happen to be equal and then
returns the difference between the two first characters that are distinct. If no
differing elements are found up to len, 0 is returned.

• memchr(s, c, len) searches array s for the appearance of character c.

String functions:

• strlen(s) returns the length of the string s. This is simply the position of the
first 0-character and not the length of the array. It is your duty to ensure that s is
indeed a string, that is that it is 0-terminated.

• strcpy(target, source) works similar to memcpy. It only copies up to the
string length of the source, and therefore it doesn’t need a len parameter. Again,
source must be 0-terminated. Also, target must be big enough to hold the copy.

30American Standard Code for Information Interchange
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• strcmp(s0, s1) compares two arrays in the lexicographic ordering similar to
memcmp, but may not take some language specialties into account. The compar-
ison stops at the first 0-character that is encountered in either s0 or s1. Again,
both parameters have to be 0-terminated.

• strcoll(s0, s1) compares two arrays in the lexicographic ordering respecting
language specific environment settings. We will learn how to properly ensure to
set this in Section 8.5.

• strchr(s, c) is similar to memchr, only that the string s must be 0-terminated.
• strspn(s0, s1) returns the number of initial characters in s0 that also appear

in s1.
• strcspn(s0, s1) returns the number of initial characters in s0 that do not ap-

pear in s1.

Rule 1.6.1.16 Using a string function with a non-string has undefined behavior.

In real life, common symptoms for such a misuse may be:
• long times for strlen or similar scanning functions because they don’t encounter

a 0-character
• segmentation violations because such functions try to access elements after the

boundary of the array object
• seemingly random corruption of data because the functions write data in places

where they are not supposed to.
In other words, be careful, and make sure that all your strings really are strings. If your plat-
form already supports this, use the functions with bounds checking that were introduced
with C11. There are strnlen_s and strcpy_s that additionally deal with the maximum
length of their string parameters.[Exs 31]

The following is an example that uses many of the features that we talked about.

LISTING 1.2. copying a string

1 #include <string.h>
2 #include <stdio.h>
3 int main(int argc , char* argv[argc +1]) {
4 size_t const len = strlen(argv [0]); // compute the length
5 char name[len +1]; // create VLA
6 // ensure place for 0
7 memcpy(name , argv[0], len); // copy the name
8 name[len] = 0; // ensure 0 character
9 if (! strcmp(name , argv [0])) {

10 printf("program␣name␣\"%s\"␣successfully␣copied\n",
11 name);
12 } else {
13 printf("copying␣%s␣leads␣to␣different␣string␣%s\n",
14 argv[0], name);
15 }
16 }

In the above discussion I have been hiding an important detail to you: the prototypes
of the functions. For the string functions they can be written as

1 size_t strlen(char const s[static 1]);
2 char* strcpy(char target[static 1], char const source[static 1])

;
3 signed strcmp(char const s0[static 1], char const s1[static 1]);

[Exs 31]Use memchr and memcmp to implement a bounds checking version of strcmp.
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4 signed strcoll(char const s0[static 1], char const s1[static 1]);
5 char* strchr(const char s[static 1], int c);
6 size_t strspn(const char s1[static 1], const char s2[static 1]);
7 size_t strcspn(const char s1[static 1], const char s2[static 1]);

Besides the bizarre return type of strcpy, this looks reasonable. The parameter arrays are
arrays of “unknown” length, so the [static 1], they correspond to arrays of at least one
char. strlen, strspn and strcspn are to return a “size” and strcmp a negative, 0 or
positive value according to the sort order of the arguments.

The picture darkens when we look at the declarations of the array functions:

1 void* memcpy(void* target , void const* source , size_t len);
2 signed memcmp(void const* s0, void const* s1, size_t len);
3 void* memchr(const void *s, int c, size_t n);

You are missing knowledge about entities that are specified as void*. These are
“pointers” to objects of unknown type. It is only on Level 2, Section 11, that we will
see why and how these new concept of pointers and void-type occur.

6.2. Pointers as opaque types. As a first approach we only need to know some sim-
ple properties of pointers.

The binary representation of pointer is completely up to the platform and not our
business.

Rule 1.6.2.1 Pointers are opaque objects.

This means that we will only be able to deal with pointers through the operations that
the C language allows for them. As said, most of these operations will be introduced later.
Here we only need one particular property of pointers, they have a state:

Rule 1.6.2.2 Pointers are valid, null or indeterminate.

In fact, the null state of any pointer type corresponds to our old friend 0, sometimes
known under its pseudo false.

Rule 1.6.2.3 Initialization or assignment with 0 makes a pointer null.

Usually we refer to a pointer in the null state as null pointerC . Surprisingly, disposing
of null pointers is really a feature.

Rule 1.6.2.4 In logical expressions, pointers evaluate to false iff they are null.

Note that such test can’t distinguish valid pointers from indeterminate ones. So, the
really “bad” state of a pointer is “indeterminate”, since this state is not observable.

Rule 1.6.2.5 Indeterminate pointers lead to undefined behavior.

In view of Rule 1.5.5.7, we need to make sure that pointers never reach an intermediate
state. Thus, if we can’t ensure that a pointer is valid, we must at least ensure that it is set to
null:

Rule 1.6.2.6 Always initialize pointers.
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6.3. Structures. As we now have seen, arrays combine several objects of the same
base type into a larger object. This makes perfect sense where we want to combine infor-
mation for which the notion of a first, second etc. element is acceptable. If it is not, or if we
have to combine objects of different type, structures, introduced by the keyword struct
come into play.

As a first example, let us revisit the corvids on page 38. There, we used a trick with an
enumeration type to keep track of our interpretation of the individual elements of an array
name. C structures allow for a more systematic approach by giving names to so-called
fields in an aggregate:

1 struct animalStruct {
2 const char* jay;
3 const char* magpie;
4 const char* raven;
5 const char* chough;
6 };
7 struct animalStruct const animal = {
8 .chough = "chough",
9 .raven = "raven",

10 .magpie = "magpie",
11 .jay = "jay",
12 };

That is, from Line 1 to 6 we have the declaration of a new type, denoted as struct
animalStruct. This structure has four fieldsC , who’s declaration look exactly like normal
variable declarations. So instead of declaring four elements that are bound together in an
array, here we name the different fields and declare types for them. Such declaration of a
structure type only explains the type, it is not (yet) the declaration of an object of that type
and even less a definition for such an object.

Then, starting in Line 7 we declare and define a variable (called animal) of the new
type. In the initializer and in later usage, the individual fields are designated in a notation
with a dot (.). Instead of animal[chough] for the array we have animal.chough for the
structure.

Now, for a second example, let us look at a way to organize time stamps. Calendar
time is an complicated way of counting, in years, month, days, minutes and seconds; the
different time periods such as month or years can have different length etc. One possible
way would be to organize such data in an array, say:

1 typedef signed calArray [6];

The use of this array type would be ambiguous: would we store the year in element [0] or
[5]? To avoid ambiguities we could again use our trick with an enum. But the C standard
has chosen a different way, in time.h it uses a struct that looks similar to the following: <time.h>

1 struct tm {
2 int tm_sec; // seconds after the minute [0, 60]
3 int tm_min; // minutes after the hour [0, 59]
4 int tm_hour; // hours since midnight [0, 23]
5 int tm_mday; // day of the month [1, 31]
6 int tm_mon; // months since January [0, 11]
7 int tm_year; // years since 1900
8 int tm_wday; // days since Sunday [0, 6]
9 int tm_yday; // days since January [0, 365]

10 int tm_isdst;// Daylight Saving Time flag
11 };
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This struct has named fields, such as tm_sec for the seconds or tm_year for the year.
Encoding a date, such as the date of this writing

Terminal

0 > LC_TIME=C date -u

1 Sat Mar 29 16:07:05 UTC 2014

is simple:

. yday.c

29 struct tm today = {
30 .tm_year = 2014,
31 .tm_mon = 2,
32 .tm_mday = 29,
33 .tm_hour = 16,
34 .tm_min = 7,
35 .tm_sec = 5,
36 };

This creates a variable of type struct tm and initializes its fields with the appropriate
values. The order or position of the fields in the structure is usually not important: using
the name of the field preceded with a dot . suffices to specify were the corresponding data
should go.

Accessing the fields of the structure is as simple and has similar “.” syntax:

. yday.c

37 printf("this␣year␣is␣%d,␣next␣year␣will␣be␣%d\n",
38 today.tm_year , today.tm_year +1);

A reference to a field such as today.tm_year can appear in expression just as any
variable of the same base type would.

There are three other fields in struct tm that we didn’t even mention in our initializer
list, namely tm_wday, tm_yday and tm_isdst. Since we don’t mention them, they are
automatically set to 0.

Rule 1.6.3.1 Omitted struct initializers force the corresponding field to 0.

This can even go to the extreme that all but one of the fields are initialized.

Rule 1.6.3.2 A struct initializer must initialize at least one field.

In fact, in Rule 1.5.3.3 we have already seen that there is a default initializer that works
for all data types: {0}.

So when we initialize struct tm as above, the data structure is not consistent; the
tm_wday and tm_yday fields don’t have values that would correspond to the values of the
remaining fields. A function that sets this field to a value that is consistent with the others
could be such as

. yday.c

19 struct tm time_set_yday(struct tm t) {
20 // tm_mdays starts at 1
21 t.tm_yday += DAYS_BEFORE[t.tm_mon] + t.tm_mday - 1;
22 // take care of leap years
23 if ((t.tm_mon > 1) && leapyear(t.tm_year))
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24 ++t.tm_yday;
25 return t;
26 }

It uses the number of days of the months preceding the actual one, the tm_mday field
and an eventual corrective for leap years to compute the day in the year. This function
has a particularity that is important at our current level, it modifies only the field of the
parameter of the function, t, and not of the original object.

Rule 1.6.3.3 struct parameters are passed by value.

To keep track of the changes, we have to reassign the result of the function to the
original.

. yday.c

39 today = time_set_yday(today);

Later, with pointer types we will see how to overcome that restriction for functions,
but we are not there, yet. Here we see that the assignment operator “=” is well defined for
all structure types. Unfortunately, its counterparts for comparisons are not:

Rule 1.6.3.4 Structures can be assigned with = but not compared with == or !=.

Listing 1.3 shows the completed example code for the use of struct tm. It doesn’t
contain a declaration of the historical struct tm since this is provided through the stan-
dard header time.h. Nowadays, the types for the individual fields would probably be

<time.h>

chosen differently. But many times in C we have to stick with design decisions that have
been done many years ago.

Rule 1.6.3.5 A structure layout is an important design decision.

You may regret your design after some years, when all the existing code that uses it
makes it almost impossible to adapt it to new situations.

Another use of struct is to group objects of different types together in one larger en-
closing object. Again, for manipulating times with a nanosecond granularity the C standard
already has made that choice:

1 struct timespec {
2 time_t tv_sec; // whole seconds ≥ 0
3 long tv_nsec; // nanoseconds [0, 999999999]
4 };

So here we see the opaque type time_t that we already know from Table 7 for the
seconds, and a long for the nanoseconds.32 Again, the reasons for this choice are just
historic, nowadays the chosen types would perhaps be a bit different. To compute the
difference between two struct timespec times, we can easily define a function.

Whereas the function difftime is part of the C standard, such a functionality here is
very simple and isn’t based on platform specific properties. So it can easily be implemented
by anyone who needs it.[Exs 33]

Any data type besides VLA is allowed as a field in a structure. So structures can also
be nested in the sense that a field of a struct can again of (another) struct type, and the
smaller enclosed structure may even be declared inside the larger one:

32Unfortunately even the semantic of time_t is different, here. In particular, tv_sec may be used in arith-
metic.

[Exs 33]Write a function timespec_diff that computes the difference between two timespec values.
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LISTING 1.3. A sample program manipulating struct tm

1 #include <time.h>
2 #include <stdbool.h>
3 #include <stdio.h>
4
5 int leapyear(unsigned year) {
6 /* All years that are divisible by 4 are leap years , unless
7 they start a new century , provided they don’t start a new
8 millennium. */
9 return !(year % 4) && ((year % 100) || !(year % 1000));

10 }
11
12 #define DAYS_BEFORE \
13 (int const [12]){ \
14 [0] = 0, [1] = 31, [2] = 59, [3] = 90, \
15 [4] = 120, [5] = 151, [6] = 181, [7] = 212, \
16 [8] = 243, [9] = 273, [10] = 304, [11] = 334, \
17 }
18
19 struct tm time_set_yday(struct tm t) {
20 // tm_mdays starts at 1
21 t.tm_yday += DAYS_BEFORE[t.tm_mon] + t.tm_mday - 1;
22 // take care of leap years
23 if ((t.tm_mon > 1) && leapyear(t.tm_year))
24 ++t.tm_yday;
25 return t;
26 }
27
28 int main(void) {
29 struct tm today = {
30 .tm_year = 2014,
31 .tm_mon = 2,
32 .tm_mday = 29,
33 .tm_hour = 16,
34 .tm_min = 7,
35 .tm_sec = 5,
36 };
37 printf("this␣year␣is␣%d,␣next␣year␣will␣be␣%d\n",
38 today.tm_year , today.tm_year +1);
39 today = time_set_yday(today);
40 printf("day␣of␣the␣year␣is␣%d\n", today.tm_yday);
41 }

1 struct person {
2 char name [256];
3 struct stardate {
4 struct tm date;
5 struct timespec precision;
6 } bdate;
7 };

The visibility of declaration struct stardate is the same as for struct person,
there is no “namescope” associated to a struct such as it were e.g. in C++.
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Rule 1.6.3.6 All struct declarations in a nested declaration have the same scope of
visibility.

So a more realistic version of the above would be as follows.

1 struct stardate {
2 struct tm date;
3 struct timespec precision;
4 };
5 struct person {
6 char name [256];
7 struct stardate bdate;
8 };

This version places all struct on the same level, as they end up there, anyhow.

6.4. New names for types: typedef. As we have seen in the previous section, a
structure not only introduces a way to aggregate differing information into one unit, it also
introduces a new type name for the beast. For historical reasons (again!) the name that we
introduce for the structure always has to be preceded by the keyword struct, which makes
the use of it a bit clumsy. Also many C beginners run into difficulties with this when they
forget the struct keyword and the compiler throws an incomprehensible error at them.

There is a general tool that can help us avoid that, by giving a symbolic name to an
otherwise existing type: typedef. By that a type can have several names, and we can even
reuse the tag nameC that we used in the structure declaration:

1 typedef struct animalStruct animalStructure;
2 typedef struct animalStruct animalStruct;

Then, “struct animalStruct”, “animalStruct” or “animalStructure” can all be used
interchangingly. My favorite use of this feature is the following idiom:

1 typedef struct animalStruct animalStruct;
2 struct animalStruct {
3 ...
4 };

That is to precede the proper struct declaration by a typedef using exactly the same
name. This works because the combination of struct with a following name, the tagC is
always valid, a so-called forward declarationC of the structure.

Rule 1.6.4.1 Forward-declare a struct within a typedef using the same identifier as
the tag name.

C++ follows a similar approach by default, so this strategy will make your code easier
to read for people coming from there.

The typedef mechanism can also be used for other types than structures. For arrays
this could look like:

1 typedef double vector [64];
2 typedef vector vecvec [16];
3 vecvec A;
4 typedef double matrix [16][64];
5 matrix B;
6 double C[16][64];
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Here typedef only introduces a new name for an existing type, so A, B and C have exactly
the same type, namely double[16][64].

The C standard also uses typedef a lot internally. The semantic integer types such as
size_t that we have seen in Section 5.1 are declared with this mechanism. Here the stan-
dard often uses names that terminate with “_t” for “typedef”. This naming convention
ensures that the introduction of such a name by an upgraded version of the standard will
not conflict with existing code. So you shouldn’t introduce such names yourself in your
code.

Rule 1.6.4.2 Identifier names terminating with _t are reserved.
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7. Functions

We have already seen the different means that C offers for conditional execution, that
is execution which according to some value will choose one branch of the program over
another to continue. So there, the reason for a potential “jump” to another part of the
program code (e.g. to an else branch) is a runtime decision that depends on runtime data.

This section handles other forms of transfer of control to other parts of our code, that
is unconditional, i.e that doesn’t (by itself) require any runtime data to come up with the
decision where to go. The main reason motivating this kind of tools is modularity.

• Avoid code repetition.
– Avoid copy and paste errors.
– Increase readability and maintainability.
– Decrease compilation times.

• Provide clear interfaces.
– Specify the origin and type of data that flows into a computation.
– Specify the type and value of the result of a computation.
– Specify invariants for a computation, namely pre- and post-conditions.

• Dispose a natural way to formulate algorithms that use a “stack” of intermediate
values.

Besides the concept of functions, C has other means of unconditional transfer of con-
trol, that are mostly used to handle error conditions or other forms of exceptions from the
usual control flow:

• exit, _Exit, quick_exit and abort terminate the program execution, see Sec-
tion 8.6.

• goto transfers control within a function body, see Sections 13.2.2 and 15.
• setjmp and longjmp can be used to return unconditionally to a calling context,

see Section 18.4.
• Certain events of the execution environment or calls to the function raise may

raise so-called signals and that pass control to a specialized function, a signal
handler.

7.1. Simple functions. We already have seen a lot of functions for now, so the basic
concept should hopefully be clear: parenthesis () play an important syntactical role for
functions. They are used for function declaration and definition to encapsulate the list of
parameter declaration. For function calls they hold the list of actual parameters for that
concrete call. This syntactic role is similar to [] for arrays: in declaration and definition
they contain the size of the corresponding dimension. In a designation A[i] they are used
to indicate the position of the accessed element in the array.

All the functions that we have seen so far have a prototypeC , i.e their declaration
and definition included a parameter type-list and a return type. There are two special
conventions that use the keyword void:

• If the function is to be called with no parameter, the list is replaced by the key-
word void.

• If the function doesn’t return a value, the return type is given as void.

Such a prototype helps the compiler in places where the function is to be called. It only
has to know about the parameters that the function expects. Have a look at the following:

1 extern double fbar(double x);
2
3 ...
4 double fbar2 = fbar (2)/2;
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Here the call fbar(2) is not directly compatible with the expectation of function fbar:
it wants a double but receives a signed int. But since the calling code knows this, it can
convert the signed int argument 2 to the double value 2.0 before calling the function.
The same holds for the return: the caller knows that the return is a double, so floating
point division is applied for the result expression.

In C, there are ways to declare functions without prototype, but you will not see them
here. You shouldn’t use them, they should be retired. There were even ways in previous
versions of C that allowed to use functions without any knowledge about them at all. Don’t
even think of using functions that way, nowadays:

Rule 1.7.1.1 All functions must have prototypes.

A notable exception from that rule are functions that can receive a varying number of
parameters, such as printf. This uses a mechanism for parameter handling that is called
variable argument listC that comes with the header stdargs.h.<stdargs.h>

We will see later (17.4.2) how this works, but this feature is to be avoided in any
case. Already from your experience with printf you can imagine why such an interface
poses difficulties. You as a programmer of the calling code have to ensure consistency by
providing the correct "%XX" format specifiers.

In the implementation of a function we must watch that we provide return values for
all functions that have a non-void return type. There can be several return statements in
a function,

Rule 1.7.1.2 Functions only have one entry but several return.

but all must be consistent with the function declaration. For a function that expects a
return value, all return statements must contain an expression; functions that expect none,
mustn’t contain expressions.

Rule 1.7.1.3 A function return must be consistent with its type.

But the same rule as for the parameters on the calling side holds for the return value.
A value with a type that can be converted to the expected return type will converted before
the return happens.

If the type of the function is void the return (without expression) can even be omit-
ted:

Rule 1.7.1.4 Reaching the end of the {} block of a function is equivalent to a return
statement without expression.

This implies

Rule 1.7.1.5 Reaching the end of the {} block of a function is only allowed for void
functions.

7.2. main is special. Perhaps you already have noted some particularities about main.
It has a very special role as the entry point into your program: its prototype is enforced by
the C standard, but it is implemented by the programmer. Being such a pivot between the
runtime system and the application, it has to obey some special rules.

First, to suit different needs it has several prototypes, one of which must be imple-
mented. Two should always be possible:

1 int main(void);
2 int main(int argc , char* argv[argc +1]);
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Then, any specific C platform may provide other interfaces. There are two variations that
are relatively common:

• On some embedded platforms where main is not expected to return to the runtime
system the return type may be void.

• On many platforms a third parameter can give access to the “environment”.
You should better not rely on the existence of such other forms. If you want to write

portable code (which you do) stick to the two “official” forms. For these the return value
of int gives an indication to the runtime system if the execution was successful: values
of EXIT_SUCCESS or EXIT_FAILURE indicate success or failure of the execution from the
programmers point of view. These are the only two values that are guaranteed to work on
all platforms.

Rule 1.7.2.1 Use EXIT_SUCCESS or EXIT_FAILURE as return values of main.

For main as an exception of Rule 1.7.1.4

Rule 1.7.2.2 Reaching the end of the {} block of main is equivalent to a return with
value EXIT_SUCCESS.

The library function exit holds a special relationship with main. As the name indi-
cates, a call to exit terminates the program; the prototype is

1 _Noreturn void exit(int status);

In fact, this functions terminates the program exactly as a return from main would.
The parameter status has the role that the return expression in main would have.

Rule 1.7.2.3 Calling exit(s) is equivalent evaluation of return s in main.

We also see that the prototype of exit is special because it has a void type. Just as
the return statement in main:

Rule 1.7.2.4 exit never fails and never returns to its caller.

The later is indicated by the special keyword _Noreturn. This keyword should only
be used for such special functions. There is even a pretty printed version of it, the macro
noreturn, that comes with the header stdnoreturn.h. <stdnoreturn.h>

There is another feature in the second prototype of main, namely argv, the vector of
commandline arguments. We already have seen some examples where we used this vector
to communicate some values from the commandline to the program. E.g. in Listing 1.1
these commandline arguments were interpreted as double data for the program.

Strictly spoken, each of the argv[i] for i = 0, . . . , argc is a pointer, but since we
don’t know yet what that is, as an easy first approximation we can see them as strings:

Rule 1.7.2.5 All commandline arguments are transferred as strings.

It is up to us to interpret them. In the example we chose the function strtod to decode
a double value that was stored in the string.

Of the strings of argv two elements hold special values:

Rule 1.7.2.6 Of the arguments to main, argv[0] holds the name of the program invoca-
tion.

There is no strict rule of what that “program name” should be, but usually this is just
taken as the name of the program executable.

Rule 1.7.2.7 Of the arguments to main, argv[argc] is 0.

In the argv array, the last argument could always be identified by that property, but
this feature isn’t too useful: we have argc to process that array.
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7.3. Recursion. An important feature of functions is encapsulation: local variables
are only visible and alive until we leave the function, either via an explicit return or
because execution falls out of the last enclosing brace of the function’s block. Their identi-
fiers (“names”) don’t conflict with other similar identifiers in other functions and once we
leave the function all the mess that we leave behind is cleaned up.

Even better: whenever we call a function, even one that we have called before, a
new set of local variables (including function parameters) is created and these are newly
initialized. This holds also, if we newly call a function for which another call is still active
in the hierarchy of calling functions. A function that directly or indirectly calls itself is
called recursive, the concept itself is called recursion.

Recursive functions are crucial for understanding C functions: they demonstrate and
use main features of the function call model and they are only fully functional with these
features. As a first example we show an implementation of Euclid’s algorithm to compute
the greatest common divisor, gcd, of two numbers.

. euclid.h

8 size_t gcd2(size_t a, size_t b) {
9 assert(a <= b);

10 if (!a) return b;
11 size_t rem = b % a;
12 return gcd2(rem , a);
13 }

As you can see, this function is short and seemingly nice. But to understand how it
works we need to understand well how functions work, and how we transform mathemati-
cal statements into algorithms.

Given two integers a, b > 0 the gcd is defined to be the greatest integer c > 0 that
divides both a and b or as formulas:

gcd(a, b) = max{c ∈ N | c|a and c|b}
If we also assume that a < b, we can easily see that two recursive formula hold:

gcd(a, b) = gcd(a, b− a)(2)

gcd(a, b) = gcd(a, b%a)(3)

That is the gcd doesn’t change if we subtract the smaller one or if we replace the larger
of the two by the modulus of the other. These formulas are used since antique Greek
mathematics to compute the gcd. They are commonly attributed to Euclid (Εὐκλείδης,
around 300 B.C) but may have been known even before him.

Our C function gcd2 above uses Equation (3). First (Line 9) it checks if a precondition
for the execution of this function is satisfied, namely if the first argument is less or equal
to the second. It does this by using the macro assert from assert.h. This would abort<assert.h>

the program with some informative message in case the function would be called with
arguments that don’t satisfy that condition, we will see more explanations of assert in
Section 8.6.

Rule 1.7.3.1 Make all preconditions for a function explicit.

Then, Line 10 checks if a is 0, in which case it returns b. This is an important step in
a recursive algorithm:

Rule 1.7.3.2 In a recursive function, first check the termination condition.

A missing termination check leads to infinite recursion; the function repeatedly calls
new copies of itself until all system resources are exhausted and the program crashes. On
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TABLE 10. Recursive call gcd2(18, 30)

call level 0
a = 18
b = 30
!a =⇒ false
rem = 12
gcd2(12, 18) =⇒

call level 1
a = 12
b = 18
!a =⇒ false
rem = 6
gcd2(6, 12) =⇒

call level 2
a = 6
b = 12
!a =⇒ false
rem = 0
gcd2(0, 6) =⇒

call level 3
a = 0
b = 6
!a =⇒ true

⇐= 6 return 6
⇐= 6 return 6

⇐= 6 return 6
return 6

modern systems with large amounts of memory this may take some time, during which the
system will be completely unresponsive. You’d better not try it.

Otherwise, we compute the remainder rem of b modulo a (Line 11) and then the func-
tion is called recursively with rem and a and the return value of that, is directly returned.

Table 10 shows an example for the different recursive calls that are issued from an
initial call gcd2(18, 30). Here, the recursion goes 4 levels deep. Each level implements
its own copies of the variables a, b and rem.

For each recursive call, Rule 1.4.1.7, guarantees that the precondition is always ful-
filled automatically. For the initial call, we have to ensure this ourselves. This is best done
by using a different function, a wrapperC :

. euclid.h

15 size_t gcd(size_t a, size_t b) {
16 assert(a);
17 assert(b);
18 if (a < b)
19 return gcd2(a, b);
20 else
21 return gcd2(b, a);
22 }

Rule 1.7.3.3 Ensure the preconditions of a recursive function in a wrapper function.



66 1. ACQUAINTANCE

This avoids that the precondition has to be checked at each recursive call: the assert
macro is such that it can be disabled in the final “production” object file.

Another famous example for a recursive definition of an integer sequence are Fibon-
nacci numbers, a sequence of numbers that appears as early as 200 B.C in Indian texts. In
modern terms the sequence can be defined as

F1 = 1(4)
F2 = 1(5)
Fi = Fi−1 + Fi−2 for all i > 2(6)

The sequence of Fibonacci numbers is fast growing, its first elements are 1, 1, 2, 3, 5,
8, 13, 21, 34, 55, 89, 144, 377, 610, 987.

With the golden ratio

ϕ =
1 +
√

5

2
= 1.61803...(7)

asymptotically we have

Fn =
ϕn

√
5

(8)

So the growth of Fn is exponential.
The recursive mathematical definition can be translated straightforward into a C func-

tion:

. fibonacci.c

4 size_t fib(size_t n) {
5 if (n < 3)
6 return 1;
7 else
8 return fib(n-1) + fib(n-2);
9 }

Here, again, we first check for the termination condition, namely if the argument to
the call, n, is less then 3. If it is the return value is 1, otherwise we return the sum of calls
with argument values n-1 and n-2.

Table 11 shows an example of a call to fig with a small argument value. We see
that this leads to 3 levels of “stacked” calls to the same function with different arguments.
Because Equation (6) uses two different values of the sequence, the scheme of the recursive
calls is much more involved than the one for gcd2. In particular, there are 3 so-called leaf
calls, calls to the function that fulfill the termination condition, and thus do by themselves
not go into recursion. [Exs 34]

Implemented like that, the computation of the Fibonacci numbers is quite slow. [Exs 35]

In fact it is easy to see that the recursive formula for the function itself also leads to an
analogous formula for the execution time of the function:

Tfib(1) = C0(9)
Tfib(2) = C0(10)
Tfib(i) = Tfib(i-1) + Tfib(i-2) + C1 for all i > 3(11)

where C0 and C1 are some constants that depend on the platform.

[Exs 34]Show that a call fib(n) induces Fn leaf calls.
[Exs 35]Measure times for calls fib(n) with n set to different values. On POSIX systems you can use /bin/time
to measure the run time of a program execution.
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TABLE 11. Recursive call fib(4)

call level 0
n = 4
n<3 =⇒ false
fib(3) =⇒

call level 1
n=3
n<3 =⇒ false
fib(2) =⇒

call level 2
n=2
n<3 =⇒ true

⇐= 1 return 1

fib(1) =⇒
call level 2
n=1
n<3 =⇒ true

⇐= 1 return 1
⇐= 2 return 1 + 1

fib(2) =⇒
call level 1
n=2
n<3 =⇒ true

⇐= 1 return 1
return 2 + 1

It follows that regardless of the platform and our cleverness of the implementation the
execution time of the function will always be something like

Tfib(i) = Fi(C0 + C1) ≈ ϕn · C0 + C1√
5

= ϕn · C2(12)

with some other platform dependent constant C2. So the execution time of fib(n) is
exponential in n, which usually rules out such a function from being used in practice.

Rule 1.7.3.4 Multiple recursion may lead to exponential computation times.

If we look at the nested calls in Table 11, we see that we have the same call fib(2),
twice, and thus all the effort to compute the value for fib(2) is repeated. The following
function fibCacheRec avoids such repetitions. It receives an additional argument, cache,
which is an array that holds all values that already have been computed.

. fibonacciCache.c

4 /* Compute Fibonacci number n with help of a cache that may
5 hold previously computed values. */
6 size_t fibCacheRec(size_t n, size_t cache[n]) {
7 if (!cache[n-1]) {
8 cache[n-1]
9 = fibCacheRec(n-1, cache) + fibCacheRec(n-2, cache);

10 }
11 return cache[n-1];
12 }
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13
14 size_t fibCache(size_t n) {
15 if (n+1 <= 3) return 1;
16 /* Set up a VLA to cache the values. */
17 size_t cache[n];
18 /* A VLA must be initialized by assignment. */
19 cache [0] = 1; cache [1] = 1;
20 for (size_t i = 2; i < n; ++i)
21 cache[i] = 0;
22 /* Call the recursive function. */
23 return fibCacheRec(n, cache);
24 }

By trading storage against computation time, the recursive calls only are effected if
the value has not yet been computed. By that, the call fibCache(i), has an execution time
that is linear in n, namely

TfibCache(n) = n · C3(13)

for some platform dependent parameter C3.[Exs 36] Just by changing the algorithm that
implements our sequence, we are able to reduce the execution time from exponential to
linear! We didn’t (and wouldn’t) even discuss implementation details, nor did we perform
concrete measurements of execution time: [Exs 37]

Rule 1.7.3.5 A bad algorithm will never lead to a performing implementation.

Rule 1.7.3.6 Improving an algorithm can dramatically improve performance.

For the fun of it, fib2Rec shows a third implemented algorithm for the Fibonacci
sequence. It gets away with an FLA instead a VLA.

. fibonacci2.c

4 void fib2rec(size_t n, size_t buf [2]) {
5 if (n > 2) {
6 size_t res = buf[0] + buf [1];
7 buf[1] = buf [0];
8 buf[0] = res;
9 fib2rec(n-1, buf);

10 }
11 }
12
13 size_t fib2(size_t n) {
14 size_t res[2] = { 1, 1, };
15 fib2rec(n, res);
16 return res [0];
17 }

Whether or not this is really faster, and how to prove that this version is still correct,
is left as an exercise.[Exs 38] [Exs 39]

[Exs 36]Show Equation (13).
[Exs 37]Measure times for calls fibCache(n) with the same values as for fib.
[Exs 38]Measure times for calls fib2(n) with the same values as for fib.

[Exs 39]Use an iteration statement to transform fib2rec into a non-recursive function fib2iter.
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8. C Library functions

The functionality that the C standard provides is separated into two big parts. One is
the proper C language, the other is the C library. We already have seen several functions
that come with the C library, e.g. printf, puts or strtod, so you should have a good
idea what you may expect: basic tools that implement features that we need in every day’s
programming and for which we need clear interfaces and semantics to ensure portability.

On many platforms, the clear specification through an application programmable in-
terface, API, also allows to separate the compiler implementation from the one of the
library. E.g. on Linux systems we have the choice between different compilers, most com-
monly gcc and clang, and different C library implementations, e.g. the GNU C library
(glibc), dietlibc or musl, and potentially any of the two choices can be used to produce
an executable.

Roughly, library functions target one or two different purposes:
Platform abstraction layer. Functions that abstract from the specific properties and

needs of the platform. These are functions that that need platform specific bits to imple-
ment basic operations such as IO, that could not be implemented without deep knowledge
of the platform. E.g. puts has to have some concept of a “terminal output” and how to
address that. Implementing these functionalities by herself would exceed the knowledge of
most C programmers, because it needs operating system or even processor specific magic.
Be glad that some people did that job for you.

Basic tools. Functions that implement a task (such as e.g. strtod) that often occurs
in programming in C for which it is important that the interface is fixed. These should be
implemented relatively efficient, because they are used a lot, and they should be well tested
and bug free such that we can rely safely on them. Implementing such functions should in
principle be possible by any confirmed C programmer.[Exs 40]

A function as printf can be seen to target both purposes, it can effectively be sep-
arated in two, a formatting phase and an output phase. There is a function snprintf
(explained much later in Section 14.1) that provides the same formatting functionalities as
printf but stores the result in a string. This string could then be printed with puts to have
the same output as printf as a whole.

The C library has a lot of functions, far more than we can handle in this book. Here
on this level, we will discuss those functions that are necessary for a basic programming
with the elements of the language that we have seen so far. We will complete this on higher
levels, as soon as we discuss a particular concept. Table 12 has an overview of the different
standard header files.

Interfaces. Most interfaces of the C library are specified as functions, but implemen-
tations are free to chose to implement them as macros, were this is appropriate. Compared
to those that we have seen in Section 5.4.3 this uses a second form of macros that are
syntactically similar to functions, functionlike macrosC .

1 #define putchar(A) putc(A, stdout)

As before, these are just textual replacements, and since the replacement text may
contain a macro argument several times, it would be quite bad to pass any expression with
side effects to such a macro-or-function. Fortunately, because of Rule 1.4.2.2 you don’t do
that, anyhow.

Some of the interfaces that we will see below will have arguments or return values
that are pointers. We can’t handle these completely, yet, but in most cases we can get away
by passing in some “known” pointers or 0 for pointer arguments. Pointers as return values
will only occur in situations where they can be interpreted as an error condition.

[Exs 40]Write a function my_strtod that implements the functionality of strtod for decimal floating point con-
stants.
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TABLE 12. C library headers

<assert.h> assert run time conditions 8.6
<complex.h> complex numbers 5.5.7
<ctype.h> character classification and conversion 8.3
<errno.h> error codes 8
<fenv.h> floating-point environment.
<float.h> properties of floating point types 5.5
<inttypes.h> format conversion of integer types 5.5.6
<iso646.h> alternative spellings for operators 4.1
<limits.h> properties of integer types 5.0.3
<locale.h> internationalization 8.5
<math.h> type specific mathematical functions 8.1
<setjmp.h> non-local jumps 18.4
<signal.h> signal handling functions 18.5
<stdalign.h> alignment of objects 12.7
<stdarg.h> functions with varying number of arguments 17.4.2
<stdatomic.h> atomic operations 18.5
<stdbool.h> Booleans 3.1
<stddef.h> basic types and macros 5.1
<stdint.h> exact width integer types 5.5.6
<stdio.h> input and output 8.2
<stdlib.h> basic functions 2
<stdnoreturn.h> non-returning functions 7
<string.h> string handling 8.3
<tgmath.h> type generic mathematical functions 8.1
<threads.h> threads and control structures 19
<time.h> time handling 8.4
<uchar.h> Unicode characters 14.3
<wchar.h> wide string 14.3
<wctype.h> wide character classification and conversion 14.3

Error checking. C library functions usually indicate failure through a special return
value. What value indicates the failure can be different and depends on the function it-
self. Generally you’d have to look up the specific convention in the manual page for the
functions. Table 13 gives an rough overview of the different possibilities. There are three
categories that apply: a special value that indicates an error, a special value that indicates
success, and functions that return some sort of positive counter on success and a negative
value on failure.

A typical error checking code in would look like the following

1 if (puts("hello␣world") == EOF) {
2 perror("can’t␣output␣to␣terminal:");
3 exit(EXIT_FAILURE);
4 }

Here we see that puts falls into the category of functions that return a special value
on error, EOF, “end-of-file”. The function perror from stdio.h is then used provide an<stdio.h>

additional diagnostic that depends on the specific error; exit ends the program execution.
Don’t wipe failures under the carpet, in programming

Rule 1.8.0.1 Failure is always an option.

Rule 1.8.0.2 Check the return value of library functions for errors.
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TABLE 13. Error return strategies for C library functions. Some func-
tions may also indicate a specific error condition through the value of the
macro errno.

failure return test typical case example
0 !value other values are valid fopen
special error code value == code other values are valid puts, clock,

mktime,
strtod, fclose

non-zero value value value otherwise unneeded fgetpos,
fsetpos

special sucess code value != code case distinction for failure
condition

thrd_create

negative value value < 0 positive value is a
“counter”

printf

An immediate failure of the program is often the best way to ensure that bugs are
detected and get fixed in early development.

Rule 1.8.0.3 Fail fast, fail early and fail often.

C has one major state “variable” that tracks errors of C library functions, a dinosaur
called errno. The function perror uses this state under the hood, to provide its diagnostic.
If a function fails in a way that allows us to recover, we have to ensure that the error state
also is reset, otherwise library functions or error checking might get confused.

1 void puts_safe(char const s[static 1]) {
2 static bool failed = false;
3 if (! failed && puts(s) == EOF) {
4 perror("can’t␣output␣to␣terminal:");
5 failed = true;
6 errno = 0;
7 }
8 }

Bounds-checking interfaces. Many of the functions in the C library are vulnerable to
buffer overflowC if they are called with an inconsistent set of parameters. This led (and
still leads) to a lot of security bugs and exploits and is generally something that should be
handled very carefully.

C11 addressed this sort of problems by deprecating or removing some functions from
the standard and by adding an optional series of new interfaces that check consistency of
the parameters at runtime. These are the so-called bounds-checking interfaces of Annex
K of the standard. Other than for most other features, this doesn’t come with its own
header file but adds interfaces to others. Two macros regulate access to theses interfaces,
__STDC_LIB_EXT1__ tells if this optional interfaces is supported, and
__STDC_WANT_LIB_EXT1__ switches it on. The later must be set before any header files
are included:

1 #if !__STDC_LIB_EXT1__
2 # error "This␣code␣needs␣bounds␣checking␣interface␣Annex␣K"
3 #endif
4 #define __STDC_WANT_LIB_EXT1__ 1
5
6 #include <stdio.h>
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7
8 /* Use printf_s from here on. */

Annex K

Optional features such as these are marked as this paragraph, here. The bounds-
checking functions usually use the suffix _s to the name of the library function they re-
place, such as printf_s for printf. So you should not use that suffix for code of your
own.

Rule 1.8.0.4 Identifier names terminating with _s are reserved.

If such a function encounters an inconsistency, a runtime constraint violationC , it
usually should end program execution after printing a diagnostic.

Platform preconditions. An important goal by programming with a standardized lan-
guage such as C is portability. We should make as few assumptions about the execution
platform as possible and leave it to the C compiler and library to fill out the gaps. Unfortu-
nately this is not always possible, but if not, we should mark preconditions to our code as
pronounced as possible.

Rule 1.8.0.5 Missed preconditions for the execution platform must abort compilation.

The classical tool to achieve this are so-called preprocessor conditionalsC as we have
seen them above:

1 #if !__STDC_LIB_EXT1__
2 # error "This␣code␣needs␣bounds␣checking␣interface␣Annex␣K"
3 #endif

As you can see, such a conditional starts with the token sequence # if on a line and
terminates with another line containing the sequence # endif. The # error directive in
the middle is only executed if the condition (here !__STDC_LIB_EXT1__) is true. It aborts
the compilation process with an error message. The conditions that we can place in such a
construct are limited.[Exs 41]

Rule 1.8.0.6 Only evaluate macros and integer literals in a preprocessor condition.

As an extra feature in these conditions we have that identifiers that are unknown just
evaluate to 0. So in the above example the expression is valid, even if __STDC_LIB_EXT1__
is unknown at that point.

Rule 1.8.0.7 In preprocessor conditions unknown identifiers evaluate to 0.

If we want to test a more sophisticated condition there _Static_assert (a keyword)
and static_assert (a macro from the header assert.h) with a similar effect at our dis-<assert.h>

posal.

1 #include <assert.h>
2 static_assert(sizeof(double) == sizeof(long double),
3 "Extra␣precision␣needed␣for␣convergence.");
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8.1. Mathematics. Mathematical functions come with the math.h header, but it is<math.h>

much simpler to use the type generic macros that come with tgmath.h. Basically for all<tgmath.h>

functions this has a macro that dispatches an invocation such as sin(x) or pow(x, n) to
the function that inspects the type of x of its argument and for which the return value then
is of that same type.

The type generic macros that are defined are acos, acosh, asin, asinh, atan,
atan2, atanh, carg, cbrt, ceil, cimag, conj, copysign, cos, cosh, cproj, creal,
erf, erfc, exp, exp2, expm1, fabs, fdim, floor, fma, fmax, fmin, fmod, frexp, hypot,
ilogb, ldexp, lgamma, llrint, llround, log, log10, log1p, log2, logb, lrint, lround,
nearbyint, nextafter, nexttoward, pow, remainder, remquo, rint, round, scalbln,
scalbn, sin, sinh, sqrt, tan, tanh, tgamma, trunc, far too many as we can describe
them in detail, here. Table 14 gives an overview over the functions that are provided.

Nowadays, the implementations of numerical functions should be of high quality, effi-
cient and with well controlled numerical precision. Although any of these functions could
be implemented by a programmer with sufficient numerical knowledge, you should not try
to replace or circumvent these functions. Many of them are not just implemented as C
functions but can use processor specific instructions. E.g. processors may have fast ap-
proximations of sqrt or sin functions, or implement a floating point multiply add, fma, in
one low level instruction. In particular, there are good chances that such low level instruc-
tions are used for all functions that inspect or modify floating point internals, such as carg,
creal, fabs, frexp, ldexp, llround, lround, nearbyint, rint, round, scalbn, trunc.
So replacing them or re-implementing them by handcrafted code is usually a bad idea.

8.2. Input, output and file manipulation. We have already seen some of the IO
functions that come with the header file stdio.h, namely puts and printf. Where the <stdio.h>

second lets you format output in some convenient fashion, the first is more basic, it just
outputs a string (its argument) and an end-of-line character.

8.2.1. Unformated output of text. There is an even more basic function than that,
namely putchar, that just outputs one single character. The interfaces of this two later
functions are as follows:

1 int putchar(int c);
2 int puts(char const s[static 1]);

The type int as parameter for putchar is just a historical accident that shouldn’t hurt
you much. With this functions we could actually reimplement puts ourselves:

1 int puts_manually(char const s[static 1]) {
2 for (size_t i = 0; s[i]; ++i) {
3 if (putchar(s[i]) == EOF) return EOF;
4 }
5 if (putchar(’\n’) == EOF) return EOF;
6 return 0;
7 }

Just take this as an example, this is most probably less efficient than the puts that your
platform provides.

Up to now we have only seen how we can output to the terminal. Often you’ll want
to write results to some permanent storage, the type FILE* for streamsC provides an ab-
straction for this. There are two functions, fputs and fputc, that generalize the idea of
unformatted output to streams.

1 int fputc(int c, FILE* stream);
2 int fputs(char const s[static 1], FILE* stream);

[Exs 41]Write a preprocessor condition that tests if int has two’s complement sign representation.
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TABLE 14. Mathematical functions. Type generic macros are printed in
red, real functions in green.

abs, labs, llabs |x| for integers
acosh hyperbolic arc cosine
acos arc cosine
asinh hyperbolic arc sine
asin arc sine
atan2 arc tangent, two arguments
atanh hyperbolic arc tangent
atan arc tangent
cbrt 3

√
x

ceil dxe
copysign copy the sign from y to x
cosh hyperbolic cosine
cos cosine function, cosx
div, ldiv, lldiv quotient and remainder of integer division
erfc complementary error function, 1− 2√

π

∫ x
0
e−t

2

dt

erf error function, 2√
π

∫ x
0
e−t

2

dt

exp2 2x

expm1 ex − 1
exp ex

fabs |x| for floating point
fdim positive difference
floor bxc
fmax floating point maximum
fma x · y + z
fmin floating point minimum
fmod remainder of the floating point division
fpclassify classify floating point value
frexp significand and exponent
hypot

√
x2 + y2

ilogb blogFLT_RADIX xc as integer
isfinite check if finite
isinf check if infinite
isnan check if NaN
isnormal checks if normal
ldexp x · 2y
lgamma loge Γ(x)
log10 log10 x
log1p loge 1 + x
log2 log2 x
logb blogFLT_RADIX xc as floating point
log loge x
modf, modff, modfl integer and fractional parts
nan, nanf, nanl not-a-number, NaN, of corresponding type
nearbyint nearest integer using current rounding mode
nextafter, nexttoward next representable floating point value
pow xy

remainder signed remainder of division
remquo signed remainder and the last bits of the division
rint, lrint, llrint nearest integer using current rounding mode
round, lround, llround sign(x) ·b|x|+ 0.5c
scalbn, scalbln x · FLT_RADIXy
signbit checks if negative
sinh hyperbolic sine
sin sine function, sinx
sqrt 2

√
x

tanh hyperbolic tangent
tan tangent function, tanx
tgamma gamma function, Γ(x)
trunc sign(x) ·b|x|c
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Here the * in the FILE* type again indicates that this is a pointer type, so we couldn’t
go into details. The only thing that we need for now is Rule 1.6.2.4; a pointer can be tested
if it is null, and so we will be able to test if a stream is valid or not.

More than the fact that this a pointer, the identifier FILE itself is a so-called opaque
typeC , for which don’t know more than is provided by the functional interfaces that we will
see in this section. The facts that it is implemented as a macro and the misuse of the name
“FILE” for a “stream” is a reminder that this is one of the historic interfaces that predate
standardization.

Rule 1.8.2.1 Opaque types are specified through functional interfaces.

Rule 1.8.2.2 Don’t rely on implementation details of opaque types.

If we don’t do anything special, there are two streams that are available for output to
us: stdout and stderr. We already have used stdout implicitly, this is what putchar
and puts use under the hood, and this stream is usually connected to the terminal. stderr
is similar, it also is linked to the terminal by default, with perhaps slightly different prop-
erties. In any case these two are closely related. The purpose to have two of them is to be
able to distinguish “usual” output (stdout) from “urgent” one (stderr).

We can rewrite the former functions in terms of the more general ones:

1 int putchar_manually(int c) {
2 return fputc(c, stdout);
3 }
4 int puts_manually(char const s[static 1]) {
5 if (fputs(s[i], stdout) == EOF) return EOF;
6 if (fputc(’\n’, stdout) == EOF) return EOF;
7 return 0;
8 }

Observe that fputs differs from puts in that it doesn’t append an end-of-line character
to the string.

Rule 1.8.2.3 puts and fputs differ in their end of line handling.

8.2.2. Files and streams. If we want to write some output to real files, we have to
attach the files to our program execution by means of the function fopen.

1 FILE* fopen(char const path[static 1], char const mode[static 1])
;

2 FILE* freopen(char const path[static 1], char const mode[static
1], FILE *stream);

This can be used as simple as here:

1 int main(int argc , char* argv[argc +1]) {
2 FILE* logfile = fopen("mylog.txt", "a");
3 if (! logfile) {
4 perror("fopen␣failed");
5 return EXIT_FAILURE;
6 }
7 fputs("feeling␣fine␣today\n", logfile);
8 return EXIT_SUCCESS;
9 }
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TABLE 15. Modes and modifiers for fopen and freopen. One of the
first three must start the mode string, optionally followed by some of the
other three. See Table 16 for all valid combinations.

mode memo file status after fopen
’a’ append w file unmodified, position at end
’w’ write w content of file wiped out, if any
’r’ read r file unmodified, position at start
modifier memo additional property
’+’ update rw open file for reading and writing
’b’ binary view as binary file, otherwise text file
’x’ exclusive create file for writing iff it does not yet exist

This opens a fileC called "mylog.txt" in the file system and provides access to it
through the variable logfile. The mode argument "a" has the file opened for appending,
that is the contents of the file is preserved, if it exists, and writing begins at the current end
of that file.

There are multiple reasons why opening a file might not succeed, e.g the file system
might be full or the process might not have the permission to write at the indicated place.
In accordance with Rule 1.8.0.2 we check for such conditions and exit the program if such
a condition is present.

As we have seen above, the function perror is used to give a diagnostic of the error
that occurred. It is equivalent to something like the following.

1 fputs("fopen␣failed:␣some -diagnostic\n", stderr);

This “some-diagnostic” might (but does not have to) contain more information that helps
the user of the program to deal with the error.

Annex K

There are also bounds-checking replacements fopen_s and freopen_s that ensure
that the arguments that are passed are valid pointers. Here errno_t is a type that comes
with stdlib.h and that encodes error returns. The restrict keyword that also newly
appears only applies to pointer types and is out of our scope for the moment.

1 errno_t fopen_s(FILE* restrict streamptr[restrict],
2 char const filename[restrict], char const mode[

restrict ]);
3 errno_t freopen_s(FILE* restrict newstreamptr[restrict],
4 char const filename[restrict], char const mode[

restrict]
5 FILE* restrict stream);

There are different modes to open a file, "a" is only one of several possibilities. Ta-
ble 15 contains an overview of the different characters that may appear in that string. We
have three different base modes that regulate what happens to a pre-existing file, if any, and
where the stream is positioned. In addition, we have three modifiers that can be appended
to these. Table 16 has a complete list of the possible combinations.

From these tables you see that a stream can not only be opened for writing but also
for reading; we will see below how that can be done. To know which of the base modes
opens for reading or writing just use your common sense. For ’a’ and ’w’ a file that is
positioned at its end can’t be read since there is nothing there, thus these open for writing.
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TABLE 16. Mode strings for fopen and freopen. These are the valid
combinations of the characters in Table 15.

"a" create empty text file if necessary, open for writing at end-of-file
"w" create empty text file or wipe out content, open for writing
"r" open existing text file for reading
"a+" create empty text file if necessary, open for reading and writing

at end-of-file
"w+" create empty text file or wipe out content, open for reading and

writing
"r+" open existing text file for reading and writing at beginning of file
"ab" "rb" "wb"
"a+b" "ab+"
"r+b" "rb+"
"w+b" "wb+"

same as above but for binary file instead of text file

"wx" "w+x"
"wbx" "w+bx"
"wb+x"

same as above but error if file exists prior to call

For ’r’ a file contents that is preserved and that is positioned at the beginning should not
be overwritten accidentally, so this is for reading.

The modifiers are used less commonly in everyday’s coding. “Update” mode with ’+’
should be used carefully. Reading and writing at the same time is not so easy and needs
some special care. For ’b’ we will discuss the difference between text and binary streams
in some more detail in Section 14.4.

There are three other principal interfaces to handle streams, freopen, fclose and
fflush.

1 int fclose(FILE* fp);
2 int fflush(FILE* stream);

The primary uses for freopen and fclose are straightforward: freopen can associate
a given stream to a different file and eventually change the mode. This is particular useful
to associate the standard streams to a file. E.g our little program from above could be
rewritten as

1 int main(int argc , char* argv[argc +1]) {
2 if (! freopen("mylog.txt", "a", stdout)) {
3 perror("freopen␣failed");
4 return EXIT_FAILURE;
5 }
6 puts("feeling␣fine␣today");
7 return EXIT_SUCCESS;
8 }

8.2.3. Text IO. Output to text streams is usually bufferedC , that is to make more ef-
ficient use of its resources the IO system can delay the physical write of to a stream for
some time. If we close the stream with fclose all buffers are guaranteed to be flushedC
to where it is supposed to go. The function fflush is needed in places where we want to
see an output immediately on the terminal or where don’t want to close the file, yet, but
where we want to ensure that all contents that we have written has properly reached its
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LISTING 1.4. flushing buffered output

1 #include <stdio.h>
2
3 /* delay execution with some crude code ,
4 should use thrd_sleep , once we have that */
5 void delay(double secs) {
6 double const magic = 4E8; // works just on my machine
7 unsigned long long const nano = secs * magic;
8 for (unsigned long volatile count = 0;
9 count < nano;

10 ++count) {
11 /* nothing here */
12 }
13 }
14
15 int main(int argc , char* argv[argc +1]) {
16 fputs("waiting␣10␣seconds␣for␣you␣to␣stop␣me", stdout);
17 if (argc < 3) fflush(stdout);
18 for (unsigned i = 0; i < 10; ++i) {
19 fputc(’.’, stdout);
20 if (argc < 2) fflush(stdout);
21 delay (1.0);
22 }
23 fputs("\n", stdout);
24 fputs("You␣did␣ignore␣me,␣so␣bye␣bye\n", stdout);
25 }

destination. Listing 1.4 shows an example that writes 10 dots to stdout with a delay of
approximately one second between all writes.[Exs 42]

The most common form of IO buffering for text files in line bufferingC . In that mode,
output is only physically written if the end of a text line is encoutered. So usually text that
is written with puts would appear immediately on the terminal, fputs would wait until it
meets an ’\n’ in the output. Another interesting thing about text streams and files is that
there is no one-to-one correspondence between characters that are written in the program
and bytes that land on the console device or in the file.

Rule 1.8.2.4 Text input and output converts data.

This is because internal and external representation of text characters are not necessar-
ily the same. Unfortunately there are still many different character encodings around, the
C library is in charge of doing the conversions correctly, if it may. Most notoriously the
end-of-line encoding in files is platform depending:

Rule 1.8.2.5 There are three commonly used conversion to encode end-of-line.

C here gives us a very suitable abstraction in using ’\n’ for this, regardless of the
platform. Another modification that you should be aware of when doing text IO is that
white space that precedes the end of line may be suppressed. Therefore presence of such
trailing white spaceC such as blank or tabulator characters can not be relied upon and
should be avoided:

Rule 1.8.2.6 Text lines should not contain trailing white space.

[Exs 42]Observe the behavior of the program by running it with 0, 1 and 2 command line arguments.
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TABLE 17. Format specifications for printf and similar functions, with
the general syntax "%[FF][WW][.PP][LL]SS"

FF flags special form of conversion
WW field width minimum width
PP precision
LL modifier select width of type
SS specifier select conversion

TABLE 18. Format specifiers for printf and similar functions

’d’ or ’i’ decimal signed integer
’u’ decimal unsigned integer
’o’ octal unsigned integer
’x’ or ’X’ hexadecimal unsigned integer
’e’ or ’E’ [-]d.ddd e±dd, “scientific” floating point
’f’ or ’F’ [-]d.ddd floating point
’g’ or ’G’ generic e or f floating point
’a’ or ’A’ [-]0xh.hhhh p±d, hexadecimal floating point
’%’ ’%’ character no argument is converted
’c’ character integer
’s’ characters string
’p’ address void* pointer

The C library additionally also has very limited support to manipulate files within the
file system:

1 int remove(char const pathname[static 1]);
2 int rename(char const oldpath[static 1], char const newpath[

static 1]);

These basically do what their names indicate.
8.2.4. Formatted output. We have already seen how we can use printf for formatted

output. The function fprintf is very similar to that, only that it has an additional parameter
that allows to specify the stream to which the output is written:

1 int printf(char const format[static 1], ...);
2 int fprintf(FILE* stream , char const format[static 1], ...);

The syntax with the three dots ... indicates that these functions may receive an arbi-
trary number of items that are to be printed. An important constraint is that this number
must correspond exactly to the ’%’ specifiers, otherwise the behavior is undefined:

Rule 1.8.2.7 Parameters of printf must exactly correspond to the format specifiers.

With the syntax %[FF][WW][.PP][LL]SS, a complete format specification can be com-
posed of 5 different parts, flags, width, precision, modifiers and specifier. See Table 17 for
details.

The specifier is not optional and selects the type of output conversion that is performed.
See Table 18 for an overview.

The modifier part is important to specify the exact type of the corresponding argument.
Table 19 gives the codes for the types that we have encountered so far.

The flag can change the output variant, such as prefixing with signs ("%+d"), 0x for
hexadecimal conversion ("%#X"), 0 for octal ("%#o"), or padding with 0. See Table 20.
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TABLE 19. Format modifiers for printf and similar functions. float
arguments are first converted to double.

character type conversion
"hh" char types integer
"h" short types integer
"" signed, unsigned integer
"l" long integer types integer
"ll" long long integer types integer
"j" intmax_t, uintmax_t integer
"z" size_t integer
"t" ptrdiff_t integer
"L" long double floating point

TABLE 20. Format flags for printf and similar functions.

character meaning conversion
"#" alternate form, e.g. prefix 0x "aAeEfFgGoxX"
"0" zero padding numeric
"-" left adjustment any
"␣" ’ ’ for positive values ’-’ for negative signed
"+" ’+’ for positive values ’-’ for negative signed

If we know that the numbers that we write will be read back in from a file, later, the
forms "%+d" for signed types, "%#X" for unsigned types and "%a" for floating point are
the most appropriate. They guarantee that the string to number conversions will detect the
correct form and that the storage in file will be without loss of information.

Rule 1.8.2.8 Use "%+d", "%#X" and "%a" for conversions that have to be read, later.

Annex K

The optional interfaces printf_s and fprintf_s check that the stream, format and
any string arguments are valid pointers. They don’t check if the expressions in the list
correspond to correct format specifiers.

1 int printf_s(char const format[restrict], ...);
2 int fprintf_s(FILE *restrict stream ,
3 char const format[restrict], ...);

Here is a modified example for the re-opening of stdout.

1 int main(int argc , char* argv[argc +1]) {
2 int ret = EXIT_FAILURE;
3 fprintf_s(stderr , "freopen␣of␣%s:", argv [1]);
4 if (freopen(argv[1], "a", stdout)) {
5 ret = EXIT_SUCCESS;
6 puts("feeling␣fine␣today");
7 }
8 perror (0);
9 return ret;

10 }
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This improves the diagnostic output by adding the file name to the output string. fprintf_s
is used to check the validity of the stream, the format and the argument string. This func-
tion may mix the output to the two streams if they are both connected to the same terminal.

8.2.5. Unformatted input of text. Unformatted input is best done with fgetc for a
single character and fgets for a string. There is one standard stream that is always defined
that usually connects to terminal input: stdin.

1 int fgetc(FILE* stream);
2 char* fgets(char s[restrict], int n, FILE* restrict stream);
3 int getchar(void);

Annex K

In addition, there are also getchar and gets_s that read from stdin but they don’t
add much to the above interfaces that are more generic.

1 char* gets_s(char s[static 1], rsize_t n);

Historically, in the same spirit as puts specializes fputs, prior version of the C stan-
dard had a gets interface. This has been removed because it was inherently unsafe.

Rule 1.8.2.9 Don’t use gets.

The following listing shows a function that has an equivalent functionality as fgets.

LISTING 1.5. Implementing fgets in terms of fgetc
1 char* fgets_manually(char s[restrict], int n,
2 FILE*restrict stream) {
3 if (! stream) return 0;
4 if (!n) return s;
5 /* Read at most n-1 characters */
6 for (size_t pos = 0; pos < n-1; ++pos) {
7 int val = fgetc(stream);
8 switch (val) {
9 /* EOF signals end -of-file or error */

10 case EOF: if (feof(stream)) {
11 s[i] = 0;
12 /* has been a valid call */
13 return s;
14 } else {
15 /* we are on error */
16 return 0;
17 }
18 /* stop at end -of-line */
19 case ’\n’: s[i] = val; s[i+1] = 0; return s;
20 /* otherwise just assign and continue */
21 default: s[i] = val;
22 }
23 }
24 s[n-1] = 0;
25 return s;
26 }

Again, such an example code is not meant to replace the function, but to illustrate
properties of the functions in question, here the error handling strategy.
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Rule 1.8.2.10 fgetc returns int to be capable to encode a special error status, EOF, in
addition to all valid characters.

Also, the detection of a return of EOF alone is not sufficient to conclude that the end of
the stream has been reached. We have to call feof to test if a stream’s position has reached
its end-of-file marker.

Rule 1.8.2.11 End of file can only be detected after a failed read.

Listing 1.6 presents an example that uses both, input and output functions.

LISTING 1.6. A program to concatenate text files
1 #include <stdlib.h>
2 #include <stdio.h>
3 #include <errno.h>
4
5 enum { buf_max = 32, };
6
7 int main(int argc , char* argv[argc +1]) {
8 int ret = EXIT_FAILURE;
9 char buffer[buf_max] = { 0 };

10 for (int i = 1; i < argc; ++i) { // process args
11 FILE* instream = fopen(argv[i], "r"); // as file names
12 if (instream) {
13 while (fgets(buffer , buf_max , instream)) {
14 fputs(buffer , stdout);
15 }
16 fclose(instream);
17 ret = EXIT_SUCCESS;
18 } else {
19 /* Provide some error diagnostic. */
20 fprintf(stderr , "Could␣not␣open␣%s:␣", argv[i]);
21 perror (0);
22 errno = 0; // reset error code
23 }
24 }
25 return ret;
26 }

Here, this presents a small implementation of cat that reads a number of files that are
given on the command line, and dumps the contents to stdout.[Exs 43][Exs 44][Exs 45][Exs 46]

8.3. String processing and conversion. String processing in C has to deal with the
fact that the source and execution environments may have different encodings. It is there-
fore crucial to have interfaces that work independent of the encoding. The most important
tools are given by the language itself: integer character constants such as ’a’ or ’\n’ and
string literals such as "hello:\tx" should always do the right thing on your platform. As
you perhaps remember there are no constants for types that are narrower than int and as
an historic artifact integer character constants such as ’a’ have type int, and not char as
you would probably expect.

Handling such constants can become cumbersome if you have to deal with character
classes.

[Exs 43]Under what circumstances this program finishes with success or failure return codes?
[Exs 44]Surprisingly this program even works for files with lines that have more than 31 characters. Why?
[Exs 45]Have the program read from stdin if no command line argument is given.

[Exs 46]Have the program precedes all output lines with line numbers if the first command line argument is "-n".
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TABLE 21. Character classifiers. The third column indicates if C imple-
mentations may extend these classes with platform specific characters,
such as ’ä’ as a lower case character or ’e’ as punctuation.

name meaning C locale extended
islower lower case ’a’ · · · ’z’ yes
isupper upper case ’A’ · · · ’Z’ yes
isblank blank ’␣’, ’\t’ yes
isspace space ’␣’, ’\f’, ’\n’, ’\r’, ’\t’, ’\v’ yes
isdigit decimal ’0’ · · · ’9’ no
isxdigit hexadecimal ’0’ · · · ’9’, ’a’ · · · ’f’, ’A’ · · · ’F’ no
iscntrl control ’\a’, ’\b’, ’\f’, ’\n’, ’\r’, ’\t’, ’\v’ yes
isalnum alphanumeric isalpha(x)||isdigit(x) yes
isalpha alphabet islower(x)||isupper(x) yes
isgraph graphical (!iscntrl(x))&& (x != ’␣’) yes
isprint printable !iscntrl(x) yes
ispunct punctuation isprint(x)&&!(isalnum(x)||isspace(x)) yes

Therefore the C library provides functions or macros that deals with the most com-
monly used classes through the header ctype.h. It has classifiers isalnum, isalpha, <ctype.h>

isblank, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace, isupper,
isxdigit, and conversions toupper and tolower. Again, for historic reasons all of these
take their arguments as int and also return int. See Table 21 for an overview over the
classifiers. The functions toupper and tolower convert alphabetic characters to the cor-
responding case and leave all other characters as they are.

That table has some special characters such as ’\n’ for a new line character which
we have encountered previously. All the special encodings and their meaning are given
in Table 22. Integer character constants can also be encoded numerically, namely as octal

’\’’ quote
’\"’ doublequote
’\?’ question mark
’\\’ backslash
’\a’ alert
’\b’ backspace
’\f’ form feed
’\n’ new line
’\r’ carriage return
’\t’ horizontal tab
’\v’ vertical tab

TABLE 22. Special characters in character and string literals

value of the form ’\037’ or as hexadecimal value in the form ’\xFFFF’. In the first form,
up to three octal digits are used to represent the code. For the second, any sequence of
characters after the x that can be interpreted as a hex digit is included in the code. Using
these in strings needs special care to mark the end of such a character. "\xdeBruyn" is
not the same as "\xde""Bruyn"47 but corresponds to "\xdeB""ruyn", the character with
code 3563 followed by the four characters ’r’, ’u’, ’y’ and ’n’.

47But remember that consecutive string literals are concatenated, see Rule 1.5.2.1.
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Rule 1.8.3.1 The interpretation of numerically encoded characters depends on the exe-
cution character set.

So their use is not portable and should thus be avoided.

The following function hexatridecimal uses some of the functions from above to
provide a numerical value for all alphanumerical characters base 36. This is analogous to
hexadecimal constants, only that all other letters give a value in base 36, too. [Exs 48] [Exs 49]

[Exs 50]

. strtoul.c

6 #include <string.h>
7
8 /* Supposes that lower case characters are contiguous. */
9 _Static_assert(’z’-’a’ == 25,

10 "alphabetic␣characters␣not␣contiguous");
11 #include <ctype.h>
12 /* convert an alphanumeric digit to an unsigned */
13 /* ’0’ ... ’9’ => 0 .. 9u */
14 /* ’A’ ... ’Z’ => 10 .. 35u */
15 /* ’a’ ... ’z’ => 10 .. 35u */
16 /* other values => greater */
17 unsigned hexatridecimal(int a) {
18 if (isdigit(a)) {
19 /* This is guaranteed to work , decimal digits
20 are consecutive and isdigit is not
21 locale dependent */
22 return a - ’0’;
23 } else {
24 /* leaves a unchanged if it is not lower case */
25 a = toupper(a);
26 /* Returns value >= 36 if not latin upper case */
27 return (isupper(a)) ? 10 + (a - ’A’) : -1;
28 }
29 }

In addition to strtod, the C library has strtoul, strtol, strtoumax, strtoimax,
strtoull, strtoll, strtold, and strtof to convert a string to a numerical value. Here
the characters at the end of the names correspond to the type, u for unsigned, l (the letter
“el”) for long, d for double, f for float, and [i|u]max to intmax_t and uintmax_t.

The interfaces with an integral return type all have 3 parameters, such as e.g. strtoul

1 unsigned long int strtoul(char const nptr[restrict],
2 char** restrict endptr ,
3 int base);

which interprets a string nptr as a number given in base base. Interesting values for
base are 0, 8, 10 and 16. The later three correspond to octal, decimal and hexadecimal
encoding, respectively. The first, 0, is a combination of these three, where the base is
choosing according to the usually roles for the interpretation of text as numbers: "7" is
decimal, "007" is octal and "0x7" is hexadecimal.

More precisely, the string is interpreted as potentially consisting of four different parts:
white space, a sign, the number and some remaining data.

[Exs 48]The second return of hexatridecimal makes an assumption about the relation between a and ’A’.
Which?

[Exs 49]Describe an error scenario in case that this assumption is not fulfilled.
[Exs 50]Fix this bug.
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The second parameter can in fact be used to obtain the position of the remaining
data, but this is still too involved for us. For the moment, it suffices to pass a 0 for that
parameter to ensure that all works well. A convenient combination of parameters is often
strtoul(S, 0, 0), which will try to interpret S as representing a number, regardless of
the input format.

The three functions that provide floating point values work similar, only that the num-
ber of function parameters is limited to two.

In the following we will demonstrate how the such functions can be implemented from
more basic primitives. Let us first look into Strtoul_inner. It is the core of a strtoul
implementation that uses hexatridecimal in a loop to compute a large integer from a
string.

. strtoul.c

31 unsigned long Strtoul_inner(char const s[static 1],
32 size_t i,
33 unsigned base) {
34 unsigned long ret = 0;
35 while (s[i]) {
36 unsigned c = hexatridecimal(s[i]);
37 if (c >= base) break;
38 /* maximal representable value for 64 bit is
39 3w5e11264sgsf in base 36 */
40 if (ULONG_MAX/base < ret) {
41 ret = ULONG_MAX;
42 errno = ERANGE;
43 break;
44 }
45 ret *= base;
46 ret += c;
47 ++i;
48 }
49 return ret;
50 }

In case that the string represents a number that is too big for an unsigned long, this
function returns ULONG_MAX and sets errno to ERANGE.

Now Strtoul gives a functional implementation of strtoul, as far as this can be done
without pointers:

. strtoul.c

60 unsigned long Strtoul(char const s[static 1], unsigned base) {
61 if (base > 36u) { /* test if base */
62 errno = EINVAL; /* extends specification */
63 return ULONG_MAX;
64 }
65 size_t i = strspn(s, "␣\f\n\r\t\v"); /* skip spaces */
66 bool switchsign = false; /* look for a sign */
67 switch (s[i]) {
68 case ’-’ : switchsign = true;
69 case ’+’ : ++i;
70 }
71 if (!base || base == 16) { /* adjust the base */
72 size_t adj = find_prefix(s, i, "0x");
73 if (!base) base = (unsigned []){ 10, 8, 16, }[adj];
74 i += adj;
75 }
76 /* now , start the real conversion */
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77 unsigned long ret = Strtoul_inner(s, i, base);
78 return (switchsign) ? -ret : ret;
79 }

It wraps strtoul_inner and previously does the adjustments that are needed: it skips
white space, looks for an optional sign, adjusts the base in case the base parameter was, 0,
skips an eventual 0 or 0x prefix. Observe also that in case that a minus sign has been pro-
vided it does the correct negation of the result in terms of unsigned long arithmetic.[Exs 51]

To skip the spaces, Strtoul uses strspn, one of the string search functions that are
provided by string.h. This functions returns the length of the initial sequence in the first<string.h>

parameter that entirely consists of any character of the second parameter. The function
strcspn (“c” for “complement”) works similarly, only that it looks for an initial sequence
of characters not present in the second argument.

This header provides at lot more memory or string search functions: memchr, strchr,
strpbrk strrchr, strstr, and strtok. But to use them we would need pointers, so we
can’t handle them, yet.

8.4. Time. The first class of “times” can be classified as calendar times, times with a
granularity and range as it would typically appear in a human calendar, as for appointments,
birthdays and so on. Here are some of the functional interfaces that deal with times and
that are all provided by the time.h header:<time.h>

1 time_t time(time_t *t);
2 double difftime(time_t time1 , time_t time0);
3 time_t mktime(struct tm tm[1]);
4 size_t strftime(char s[static 1], size_t max ,
5 char const format[static 1],
6 struct tm const tm[static 1]);
7 int timespec_get(struct timespec ts[static 1], int base);

The first simply provides us with a timestamp of type time_t of the current time. The
simplest form to use the return value of time(0). As we have already seen, two such
times that we have taken at different moments in the program execution can then be use to
express a time difference by means of difftime.

Let’s start to explain what all this is doing from the human perspective. As we already
have seen, struct tm structures a calendar time mainly as you would expect. It has hier-
archical date fields such as tm_year for the year, tm_mon for the month and so on, down
to the granularity of a second. They have one pitfall, though, how the different fields are
counted. All but one start with 0, e.g. tm_mon set to 0 stands for January and tm_wday 0
stands for Sunday.

Unfortunately, there are exceptions:
• tm_mday starts counting days in the month at 1.
• tm_year must add 1900 to get the year in the Gregorian calendar. Years represent

in that way should lie between Gregorian years 0 and 9999.
• tm_sec is in the range from 0 to 60, including. The later is for the rare occasion

of leap seconds.
There are three supplemental date fields that are used to supply additional information

to a time value in a struct tm.
• tm_wday for the week day,
• tm_yday for the day in the year, and
• tm_isdst a flag that informs if a date is considered being in DST of the local

time zone or not.

[Exs 51]Implement a function find_prefix as needed by Strtoul.
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The consistency of all these fields can be enforced with the function mktime. It can be
seen to operate in three steps

(1) The hierarchical date fields are normalized to their respective ranges.
(2) tm_wday and tm_yday are set to the corresponding values.
(3) If tm_isday has a negative value, this value is modified to 1 if the date falls into

DST for the local platform, and to 0 otherwise.

mktime also serves an extra purpose. It returns the time as a time_t. time_t is thought
to represent the same calendar times as struct tm, but is defined to be an arithmetic type,
more suited to compute with them. It operates on a linear time scale. A time_t value of
0. the beginning of time_t is called epochC in the C jargon. Often this corresponds to the
beginning of Jan 1, 1970.

The granularity of time_t is usually to the second, but nothing guarantees that. Some-
times processor hardware has special registers for clocks that obey a different granularity.
difftime translates the difference between two time_t values into seconds that are repre-
sented as a double value.

Annex K

Others of the traditional functions that manipulate time in C are a bit dangerous, they
operate on global state, and we will not treat them here. So these interfaces have been
reviewed in Annex K to a _s form:

1 errno_t asctime_s(char s[static 1], rsize_t maxsize ,
2 struct tm const timeptr[static 1]);
3 errno_t ctime_s(char s[static 1], rsize_t maxsize ,
4 const time_t timer[static 1]);
5 struct tm *gmtime_s(time_t const timer[restrict static 1],
6 struct tm result[restrict static 1]);
7 struct tm *localtime_s(time_t const timer[restrict static 1],
8 struct tm result[restrict static 1]);

The following picture shows how all these functions interact:

struct tm

char[]

localtime_s

gmtime_s

mktime
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ct
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struct timespec

double
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time_t tv_sec
difftime

FIGURE 1. Time conversion functions

Two functions for the inverse operation from time_t into struct tm come into view:

• localtime_s stores the broken down local time
• gmtime_s stores the broken time, expressed as universal time, UTC.
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As indicated, they differ in the time zone that they assume for the conversion. Under
normal circumstances localtime_s and mktime should be inverse to each other, gmtime_s
has no direct counterpart for the inverse direction.

Textual representations of calendar times are also available. asctime_s stores the
date in a fixed format, independent of any locale, language (it uses English abbreviations)
or platform dependency. The format is a string of the form

"Www␣Mmm␣DD␣HH:MM:SS␣YYYY\n"

strftime is more flexible and allows to compose a textual representation with format
specifiers.

It works similar to the printf family, but has special %-codes for dates and times,
see Table 23. Here “locale” indicates that different environment settings, such as pre-
ferred language or time zone may influence the output. How to access and eventually set
these will be explained in Section 8.5. strftime receives three arrays: a char[max] ar-
ray that is to be filled with the result string, another string that holds the format, and a
struct tm const[1] that holds the time to be represented. The reason for passing in an
array for the time will only become apparent when we know more about pointers.

The opaque type time_t and with that time only has a granularity of seconds.
If we need more precision than that, struct timespec and function timespec_get

can be used. With that we have an additional field tv_nsec that provides nanosecond preci-
sion. The second argument base only has one value defined by the C standard, TIME_UTC.
You should expect a call to timespec_get with that value to be consistent with calls to
time. They both refer to Earth’s reference time. Specific platforms may provide addi-
tional values for base that would specify a “clock” that is different from that “walltime”
clock. An example for such a clock could be relative to the planetary or other physical
system that your computer system is involved with.52 Relativity or other time adjustments
could be avoided by using a so-called “monotonic clock” that would only be refering to the
startup time of the system. A “cpu clock”, could refer to the time the program execution
had been attributed processing resources.

For the later, there is an additional interface that is provided by the C standard library.

1 clock_t clock(void);

For historical reasons, this introduces yet another type, clock_t. It is an arithmetic time
that gives the processor time in CLOCKS_PER_SEC units per second.

Having three different interfaces, time, timespec_get and clock is a bit unfortunate.
It would have been beneficial to provide predefined constants such as TIME_PROCESS_TIME
or TIME_THREAD_TIME for other forms of clocks.

8.5. Runtime environment settings. A C program can have access to an environ-
ment listC : a list of name-value pairs of strings (often called environment variablesC)
that can transmit specific information from the runtime environment. There is a historic
function getenv to access this list:

1 char* getenv(char const name[static 1]);

With our current knowledge, with this function we are only able to test if a name is present
in the environment list:

1 bool havenv(char const name[static 1]) {
2 return getenv(name);
3 }

52Beware that objects that move fast relative to Earth such as satelites or space crafts may perceive relativistic
time shifts compared to UTC.
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TABLE 23. strftime format specifiers. Those marked as “locale” may
differ dynamically according to locale runtime settings, see Section 8.5.
Those marked with ISO 8601 are specified by that standard.

spec meaning locale ISO 8601
"%S" second ("00" to "60")
"%M" minute ("00" to "59")
"%H" hour ("00" to "23").
"%I" hour ("01" to "12").
"%e" day of the month ("␣1" to "31")
"%d" day of the month ("01" to "31")
"%m" month ("01" to "12")
"%B" full month name X
"%b" abbreviated month name X
"%h" equivalent to "%b" X
"%Y" year
"%y" year ("00" to "99")
"%C" century number (year/100)
"%G" week-based year, same as "%Y", except if the ISO week

number belongs another year
X

"%g" like "%G", ("00" to "99") X
"%u" weekday ("1" to "7"), Monday being "1"
"%w" weekday ("0" to "6", Sunday being "0"
"%A" full weekday name X
"%a" abbreviated weekday name X
"%j" day of year ("001" to "366")
"%U" week number in the year ("00" to "53"), starting at Sun-

day
"%W" week number in the year ("00" to "53"), starting at Mon-

day
"%V" week number in the year ("01" to "53"), starting with

first 4 days in the new year
X

"%Z" timezone name X
"%z" "+hhmm" or "-hhmm", the hour and minute offset from

UTC
"%n" newline
"%t" horizontal tabulator
"%%" literal "%"
"%x" date X
"%D" equivalent to "%m/%d/%y"
"%F" equivalent to "%Y-%m-%d" X
"%X" time X
"%p" either "AM" or "PM", noon is "PM", midnight is "AM" X
"%r" equivalent to "%I:%M:%S␣%p". X
"%R" equivalent to "%H:%M"
"%T" equivalent to "%H:%M:%S" X
"%c" preferred date and time representation X
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Instead, we use the secured function getenv_s:Annex K

1 errno_t getenv_s(size_t * restrict len ,
2 char value[restrict],
3 rsize_t maxsize ,
4 char const name[restrict ]);

If any, this function copies the value that corresponds to name from the environment
into value, a char[maxsize], provided that it fits. Printing such value can look as this:

1 void printenv(char const name[static 1]) {
2 if (getenv(name)) {
3 char value [256] = { 0, };
4 if (getenv_s(0, value , sizeof value , name)) {
5 fprintf(stderr ,
6 "%s:␣value␣is␣longer␣than␣%zu\n",
7 name , sizeof value);
8 } else {
9 printf("%s=%s\n", name , value);

10 }
11 } else {
12 fprintf(stderr , "%s␣not␣in␣environment\n", name);
13 }
14 }

As you can see, that after detecting if the environment variable exists, getenv_s can
safely be called with the first argument set to 0. Additionally, it is guaranteed that the value
target buffer will only be written, if the intended result fits in, there. The len parameter
could be used to detect the real length that is needed, and dynamic buffer allocation could
be used to print out even large values. We have to refer to higher levels for such usages.

The environment variables that will be available to programs depend heavily on the op-
erating system. Commonly provided environment variables include "HOME" for the user’s
home directory, "PATH" for the collection of standard paths to executables, "LANG" or
"LC_ALL" for the language setting.

The language or localeC setting is another important part of the execution environment
that a program execution inherits. At startup, C forces the locale setting to a normalized
value, called the "C" locale. It has basically American English choices for numbers or
times and dates.

The function setlocale from locale.h can be used to set or inspect the current<locale.h>

value.

1 char* setlocale(int category , char const locale[static 1]);

Besides "C", the C standard only prescribes the existence of one other valid value for
locale, the empty string "". This can be used to set the effective locale to the systems
default. The category argument can be used to address all or only parts of the language
environment. Table 24 gives an overview over the possible values and the part of the C
library they affect. Additional platform dependent categories may be available.

8.6. Program termination and assertions. We already have seen the simplest way
of program termination: a regular return from main:

Rule 1.8.6.1 Regular program termination should use return from main.
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TABLE 24. Categories for the setlocale function

LC_COLLATE string comparison through strcoll and strxfrm
LC_CTYPE character classification and handling functions, see Section 8.3.
LC_MONETARY monetary formatting information, localeconv
LC_NUMERIC decimal-point character for formatted I/O, localeconv
LC_TIME strftime, see Section 8.4
LC_ALL all of the above

Using the function exit from within main is kind of senseless, it can be as easily done
with a return.

Rule 1.8.6.2 Use exit from a function that may terminate the regular control flow.

The C library has three other functions that terminate the program execution, in order
of severity:

1 _Noreturn void quick_exit(int status);
2 _Noreturn void _Exit(int status);
3 _Noreturn void abort(void);

Now, return from main (or a call to exit) already provides the possibility to specify
if the program execution is considered to be a success or not. Use the return value to
specify that; as long as you have no other needs or you don’t fully understand what these
other functions do, don’t use them, really don’t.

Rule 1.8.6.3 Don’t use other functions for program termination than exit, unless you
have to inhibit the execution of library cleanups.

Cleanup at program termination is important. The runtime system can flush and close
files that are written or free other resources that the program occupied. This is a feature
and should rarely be circumvented.

There even is a mechanism to install your own handlersC that are to be executed at
program termination. Two functions can be used for that:

1 int atexit(void func(void));
2 int at_quick_exit(void func(void));

These have a syntax that we have not yet seen: function parametersC . E.g. the
first reads “function atexit that returns an int and that receives a function func as a
parameter”.53

We will not go into details here, an example just shows how this can be used:

1 void sayGoodBye(void) {
2 if (errno) perror("terminating␣with␣error␣condition");
3 fputs("Good␣Bye\n", stderr);
4 }
5
6 int main(int argc , char* argv[argc +1]) {
7 atexit(sayGoodBye);
8 ...
9 }

53In fact, in C such a notion of a function parameter func to a function atexit is equivalent to passing
a function pointerC . In descriptions of such functions you will usually see that pointer variant. For us this
distinction is not yet relevant and it is simpler to think of a function being passed by reference.
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This uses the function atexit to establish the exit-handler sayGoodBye. After normal
termination of the program code this function will be executed and give a status of the
execution. This might be a nice thing to impress your fellow co-worker if you are in need
of some respect. More seriously, this is the ideal place to put all kind of cleanup code,
such as freeing memory, or such as writing a termination time stamp to a logfile. Observe
that the syntax for calling is atexit(sayGoodBye), there are no () for sayGoodBye itself:
here sayGoodBye is not called at that point, but only a reference to the function is passed
to atexit.

Under rare circumstance you might want to circumvent these established atexit han-
dlers. There is a second pair of functions, quick_exit and at_quick_exit, that can be
used to establish an alternative list of termination handlers. Such alternative list may be
useful in case that the normal execution of the handlers is too time consuming. Use with
care.

The next function, _Exit, is even more sever than that: it inhibits both types of appli-
cation specific handlers to be executed. The only thing that is still executed are the platform
specific cleanups, such as file closure. Use this with even more care.

The last function, abort, is even more intrusive. Not only that it doesn’t call the
application handlers, it also inhibits the execution of some system cleanups. Use this with
extreme care.

At the beginning of this section, we have already seen _Static_assert and
static_assert that should be used to make compile time assertions. This can test for
any form of compile time Boolean expression. There are two other identifiers that come
from assert.h that can be used for runtime assertions: assert and NDEBUG. The first can<assert.h>

be used to test for an expression that must hold at a certain moment. It may contain any
Boolean expression and it may be dynamic. If the NDEBUG macro is not defined during
compilation, every time execution passes by the call to this macro the expression is eval-
uated. The functions gcd and gcd2 from Section 7.3 show typical use cases of assert: a
condition that is supposed to hold in every execution.

If the condition doesn’t hold, a diagnostic message is printed and abort is called. So
all of this is not something that should make it through into a production executable. From
the discussion above we know that the use of abort is harmful, in general, and also an
error message such as

Terminal

0 assertion failed in file euclid.h, function gcd2(), line 6

is not very helpful for your customers. It is helpful during the debugging phase where it
can lead you to spots where you make false assumptions about the value of some variables.

Rule 1.8.6.4 Use as many assert as you may to confirm runtime properties.

As mentioned NDEBUG inhibits the evaluation of the expression and the call to abort.
Please use it to reduce the overhead.

Rule 1.8.6.5 In production compilations, use NDEBUG to switch off all assert.



LEVEL 2

Cognition

9. Style

Programs serve both sides. First, as we have already seen, they serve to give instruc-
tions to the compiler and the final executable. But equally important, they document the
intended behavior of a system for us people (users, customers, maintainers, lawyers, ...)
that have to deal with it.

Therefore our prime directive is

Rule C All C code must be readable.

The difficulty with that directive is to know what constitutes “readable”. Not all ex-
perienced C programmers agree on all the points, so first of all we will try to establish a
minimal list of necessities. The first things that we have to have in mind when discussing
the human condition that it is constrained by two major factors: physical ability and cul-
tural baggage.

Rule 2.9.0.1 Short term memory and the field of vision are small.

Torvalds et al. [1996], the coding style for the Linux kernel, is a good example that
insists on that aspect, and certainly is worth a detour, if you haven’t read it, yet. Its main
assumptions are still valid: a programming text has to be represented in a relatively small
“window” (be it a console or a graphical editor) that can be roughly be counted in 30 lines
of 80 columns, a “surface” of 2400 characters. Everything that doesn’t fit there, has to be
memorized. E.g. our very first program in Listing 1 fits into that constraint.

By its humorous reference to Kernighan and Ritchie [1978], the Linux coding style
also refers to another fundamental fact, namely

Rule 2.9.0.2 Coding style is not a question of taste but of culture.

Ignoring this, easily leads to endless and fruitless debates about not much at all.

Rule 2.9.0.3 When you enter an established project you enter a new cultural space.

Try to adapt to the habits of the inhabitants. When you create your own project, you
have a bit of freedom to establish your own rules. But be careful if you want others to
adhere to it, still, you must not deviate too much from the common sense that reigns in the
corresponding community.

9.1. Formatting. The C language itself is relatively tolerant to formatting issues. Un-
der normal circumstances, a C compiler will dumbly parse an entire program that is written
on a single line, with minimal white space and where all identifiers are composed of the
letter l and the digit 1: the need for code formatting originates in human incapacity.

Rule 2.9.1.1 Choose a consistent strategy for white space and other text formatting.

93
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This concerns indentation, placement of all kinds of parenthesis {}, [] and (), spaces
before and after operators, trailing spaces or multiple new lines. The human eye and brain
are quite peculiar in their habits, and to ensure that they work properly and efficiently we
have to ensure to be in phase.

In the introduction for Level 1 you already have seen a lot of the coding style rules
that are applied for the code in this book. Take them just as an example for one style, most
probably you will encounter other styles as you go along. Let us recall some of the rules
and introduce some others that had not yet been presented.

• We use prefix notation for code blocks, that is an opening { is on the end of a
line.

• We bind type modifiers and qualifiers to the left.
• We bind function () to the left but () of conditions are separated from their

keyword such as if or for by a space.
• A ternary expression has spaces around the ? and the :.
• Punctuators :, ; and , have no space before them but either one space or a new

line after.

As you see, when written out these rules can appear quite cumbersome and arbitrary.
They have no value as such, they are visual aids that help you and your collaborators
capture a given code faster, with the blink of an eye. They are not meant to be meticulously
typed by you directly, but you should acquire and learn the tools that help you with this.

Rule 2.9.1.2 Have your text editor automatically format your code correctly.

I personally use Emacs1 for that task (yes, I am that old). For me, it is ideal since it
understands a lot of the structure of a C program by itself. Your mileage will probably
vary, but don’t use a tool in everyday’s life that gives you less. Text editors, integrated de-
velopment environments (IDE), code generators are there for us, not the other way around.

Then in bigger projects, you should enforce such a formatting policy for all the code
that circulates and is read by others. Otherwise it will become difficult to track differences
between versions of programming text. This can be automated by commandline tools that
do the formatting. Here, I have a long time preference for astyle (artistic style)2. Again,
your mileage may vary, chose anything that ensures the task.

9.2. Naming. The limit of such automatic formatting tools is reached when it comes
to naming.

Rule 2.9.2.1 Choose a consistent naming policy for all identifiers.

There are two different aspects to naming, technical restrictions on one hand and se-
mantic conventions on the other. Unfortunately, they are often mixed up and subject of
endless ideological debate.

For C, different technical restrictions apply, they are meant to help you, take them
seriously. First of all Rule 2.9.2.1 says all identifiers: types (struct or not), struct and
union fields, variables, enumerations, macros, functions, function-like macros. There are
so many tangled “name spaces” you’d have to be careful.

In particular the interaction between header files and macro definitions can have sur-
prising effects. A seemingly innocent example:

1 double memory_sum(size_t N, size_t I, double strip[N][I]);

• N is a capitalized identifier, thus your collaborator could be tempted to define a
macro N as a big number.

https://www.gnu.org/software/emacs/
http://sourceforge.net/projects/astyle/
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• I is used for the root of −1 as soon as someone includes complex.h. (And you<complex.h>

see that the automatic code annotation system of this book thinks that this refers
to the macro.)

• The identifier strip might be used by some C implementation for a library func-
tion or macro.

• The identifier memory_sum might be used by the C standard for a type name in
the future.

Rule 2.9.2.2 Any identifier that is visible in a header file must be conforming.

Here conforming is a wide field. In the C jargon an identifier is reservedC if its mean-
ing is fixed by the C standard and you may not redefined it otherwise.

• Names starting with an underscore and a second underscore or a capital letter are
reserved for language extensions and other internal use.

• Names starting with an underscore are reserved for file scope identifiers and for
enum, struct and union tags.

• Macros have all caps names.
• All identifiers that have a predefined meaning are reserved and cannot be used

in file scope. These are lot of identifiers, e.g. all functions in the C library, all
identifiers starting with str (as our strip, above), all identifiers starting with E,
all identifiers ending in _t and many more.

What makes all of these relatively difficult, is that you might not detect any violation
for years and then all of a sudden on a new client machine, after the introduction of the
next C standard and compiler or after a simple system upgrade your code explodes.

A simple strategy to keep the probability of naming conflicts low is to expose as few
names as possible:

Rule 2.9.2.3 Don’t pollute the global name space.

So expose only types and functions as interfaces that are part of the APIC , application
programmable interfaceC , that is those that are supposed to be used by users of your code.

A good strategy for a library that has vocation of use by others or in other projects is
to use naming prefixes that are unlikely to create conflicts. E.g. many functions and types
in the POSIX thread API are prefixed with “pthread_”, or for my tool box P99, I use the
prefixes “p99_”, “P99_”, for API interfaces and “p00_” and “P00_” for internals.

There are two sorts of names that may interact badly with macros that another pro-
grammer writes at which you might not think immediately:

• field names of struct and union
• parameter names in function interfaces.

The first point is the reason why the fields in standard structures usually have a prefix
to their names: struct timespec has tv_sec as a field name, because an uneducated user
might declare a macro sec that would interfere in unpredictable way with when including
time.h. For the second we already have seen the example from above. In P99 I would <time.h>

specify such a function similar to something like this:

1 double p99_memory_sum(size_t p00_n , size_t p00_i ,
2 double p00_strip[p00_n][p00_i]);

This problem gets worse when we are also exposing program internals to the public
view. This happens in two cases:

1https://www.gnu.org/software/emacs/
2http://sourceforge.net/projects/astyle/
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• So-called inline functions, that are functions that have their definition (and not
only declaration) visible in a header file.

• Functional macros.
We will only discuss these in detail much later.

Now that we have cleared the technical aspects of naming, we will look at the semantic
aspect.

Rule 2.9.2.4 Names must be recognizable and quickly distinguishable.

That has two aspects, distinguishable and quickly. Compare

recognizable distinguishable quickly
lllll1llOll llllll1l0ll no no no
myLineNumber myLimeNumber yes yes no
n m yes yes yes
ffs clz no yes yes
lowBit highBit yes yes yes
p00Orb p00Urb no yes no
p00_orb p00_urb yes yes yes

For your personal taste, the answers on the right of this table may look different. This
here reflects mine: an implicit context for such names is part of my personal expectation.
The difference between n and m on one side and for ffs and clz on the other, is implicit
semantic.

For me, having a heavily biased mathematical background, single letter variable names
from i to n such as n and m are integer variables. These usually occur inside a quite
restricted scope as loop variables or similar. Having a single letter identifier is fine (we
always have the declaration in view) and they are quickly distinguished.

Function names ffs and clz are different because they compete with all other three
letter acronyms that could potentially be used for function names. Accidentally here ffs
is shorthand for first bit set, but this is not immediate to me. What that would mean is even
less clear, are bits counted from higher or lower order?

There are several conventions that combine several words in one identifier, among the
most commonly used are the following:

• camel caseC , using internalCapitalsToBreakWords
• snake caseC , using internal_underscores_to_break_words
• Hungarian notationC3, that encodes type information in the prefix of the iden-

tifiers, e.g. szName, where sz would stand for “string” and “zero terminated”.
As you might imagine, none of these is ideal. The first two tend to work against

Rule 2.9.0.1, they easily clog up a whole, precious line of programming text with unread-
able expressions:

1 return theVerySeldomlyUsedConstant*theVerySeldomlyUsedConstant/
number_of_elements;

Hungarian notation, in turn, tends to use obscure abbreviations for types or concepts,
produces unpronounceable identifiers, and completely breaks down if you have an API
change.

So, to my opinion, none of these rules strategies have an absolute value, I encourage
you to have a pragmatic approach to the question and to be aware that

Rule 2.9.2.5 Naming is a creative act.

3Invented in Simonyi [1976], the phd thesis of Simonyi Károly



10. ORGANIZATION AND DOCUMENTATION 97

It is not easily subsumed by some simple technical rules.
Obviously, good naming is more important the more widely an identifier is used. So it

is particular important for identifiers for which the declaration is generally out of view of
the programmer, namely global names that constitute the API.

Rule 2.9.2.6 File scope identifiers must be comprehensive.

What constitutes “comprehensive” here should be derived from the type of the iden-
tifier. Typenames, constants, variables or functions generally serve different purpose, so
different strategies apply.

Rule 2.9.2.7 A type name identifies a concept.

Examples for such concepts are “time” for struct timespec, “size” for size_t, a
collection of corvidae for enum corvid, “person” for a data structure that collects data
about people, “list” for a chained list of items, “dictonary” for a query data structure, and
so on. If you have difficulties to come up with a concept for a data structure, an enumeration
or an arithmetic type, you should most probably revisit your design.

Rule 2.9.2.8 A global constant identifies an artifact.

That is a constant stands out for some reason from the other possible constants for the
same type, it has a special meaning. It may have this meaning for some external reason
beyond our control (M_PI for π), because the C standard says so (false, true), because
of a restriction of the execution platform (SIZE_MAX), be factual (corvid_num), culturally
motivated (fortytwo) or a design decision.

Generally we will see below that file scope variables (globals) are much frowned upon.
Nevertheless they are sometimes unavoidable, so we have to have an idea how to name
them.

Rule 2.9.2.9 A global variable identifies state.

Typical names for such variables would be toto_initialized to encode the fact that
library toto has already been initialized, onError for a file scope but internal variable that
is set in a library that must be torn down, or visited_entries for a hash table that collects
some shared data.

Rule 2.9.2.10 A function or functional macro identifies an action.

Not all but many of the functions in the C standard library follow that rule and use
verbs as a component of their names. Some examples:

• A standard function that compares two strings is strcmp.
• A standard macro that queries for a property is isless.
• A function that accesses a data field could be called toto_getFlag.
• The corresponding one that sets such a field would be toto_setFlag.
• A function that multiples two matrices matrixMult.

10. Organization and documentation

Being an important societal, cultural and economic activity, programming needs a cer-
tain form of organization to be successful. As for coding style, beginners tend to underes-
timate the effort that should be put into code and project organization and documentation:
unfortunately many of us have to go to the experience of reading his or her own code and
not have any clue what this is all about.

Documenting, or more generally explaining, program code is not an easy task. We
have to find the right balance between providing context and necessary information and
boringly stating the obvious. Let’s have a look at the two following lines:



98 2. COGNITION

1 u = fun4you(u, i, 33, 28); // ;)
2 ++i; // incrementing i

The first isn’t good, because it uses magic constants, a function name that doesn’t tell what
is going on and a variable name that bares not much meaning, at least to me. The smiley
comment indicates that the programmer had fun when writing this, but is not very helpful
to the casual reader or maintainer.

In the second line, the comment is just superfluous and states just what any even not
so experienced programmer knows about the ++ operator.

Compare this to

1 /* 33 and 28 are suitable because they are coprime. */
2 u = nextApprox(u, i, 33, 28);
3 /* Theorem 3 ensures that we may move to the next step. */
4 ++i;

Here we may deduce a lot more. With that, I’d expect u to be a floating point value,
probably double, that is subject to an approximation procedure. That procedure runs in
steps, indexed by i, and needs some additional arguments that are subject to a primality
condition.

Generally we have the what, what for, how and why rules, by order of their importance.

Rule 2.10.0.1 (what) Function interfaces describe what is done.

Rule 2.10.0.2 (what for) Interface comments document the purpose of a function.

Rule 2.10.0.3 (how) Function code tells how things are done.

Rule 2.10.0.4 (why) Code comments explain why things are done as they are.

In fact, if you think of a larger library project that is used by others, you’d expect that
all users will read the interface specification (e.g. in the synopsis part of a man page), most
of them will read the explanation about these interfaces (the rest of the man page). Much
less of them will look into the source code and read up how or why a particular interface
implementation does things the way it does them.

A first consequence of these rules is that code structure and documentation go hand
in hand. Especially the distinction between interface specification and implementation is
important.

Rule 2.10.0.5 Separate interface and implementation.

This rule is reflected in the use of two different kinds of C source files, header filesC ,
usually ending with ".h" and translation unitsC , TU, ending with ".c".

Syntactical comments have two distinct roles in those two kinds of source files that
should well be separated.

Rule 2.10.0.6 Document the interface – Explain the implementation.

10.1. Interface documentation. Other than more recent languages such as Java or
perl, C has no “builtin” documentation standard. But in recent years a cross platform
public domain tool has been widely adopted in many projects, doxygen4. It can be used
to automatically produce web pages, pdf manuals, dependency graphs and a lot more. But
even if you don’t use doxygen or another equivalent tool, you should use its syntax to
document interfaces.

4http://www.stack.nl/ dimitri/doxygen/

http://www.stack.nl/~dimitri/doxygen/
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Rule 2.10.1.1 Document interfaces thoroughly.

Doxygen has a lot of categories that help for that, a extended discussion goes far
beyond the scope of this book. Just consider the following example:

. heron_k.h

116 /**
117 ** @brief use the Heron process to approximate @a a to the
118 ** power of ˋ1/kˋ
119 **
120 ** Or in other words this computes the @f$k^{th}@f$ root of @a a

.
121 ** As a special feature , if @a k is ˋ-1ˋ it computes the
122 ** multiplicative inverse of @a a.
123 **
124 ** @param a must be greater than ˋ0.0ˋ
125 ** @param k should not be ˋ0ˋ and otherwise be between
126 ** ˋDBL_MIN_EXP*FLT_RDXRDXˋ and
127 ** ˋDBL_MAX_EXP*FLT_RDXRDXˋ.
128 **
129 ** @see FLT_RDXRDX
130 **/
131 double heron(double a, signed k);

Doxygen produces online documentation for that function that looks similar to Fig. 1
and also is able to produce formatted text that we can include in this book:

heron_k.h

heron: use the Heron process to approximate a to the power of 1/k

Or in other words this computes the kth root of a. As a special feature, if k is -1 it
computes the multiplicative inverse of a.

Parameters:
a must be greater than 0.0
k should not be 0 and otherwise be between

DBL_MIN_EXP*FLT_RDXRDX and DBL_MAX_EXP*FLT_RDXRDX.

See also: FLT_RDXRDX

double heron(double a, signed k);

heron_k.h

FLT_RDXRDX: the radix base 2 of FLT_RADIX

This is needed internally for some of the code below.

# define FLT_RDXRDX something

As you have probably guessed, words starting with “@” have a special meaning for
doxygen, they start its keywords. Here we have “@param”, “@a” and “@brief”. The first
documents a function parameter, the second refers to such a parameter in the rest of the
documentation and the last provides a brief synopsis for the function.

Additionally, we see that there is some “markup” capacity for in comment code, and
also that doxygen was able to identify the place in compilation unit "heron_k.c" that
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FIGURE 1. Documentation produced by doxygen

defines the function and the call graph of the different functions involved in the implemen-
tation.

To make up for a good “project” organization, it is important that users of your code
easily find connected pieces and don’t have to search all over the place.

Rule 2.10.1.2 Structure your code in units that have strong semantic connections.

Most often that is simply done by grouping all functions that treat a specific data type
in one header file. A typical header file "brian.h" for struct brian would be like

1 #ifndef BRIAN_H
2 #define BRIAN_H 1
3 #include <time.h>
4
5 /** @file
6 ** @brief Following Brian the Jay
7 **/
8
9 typedef struct brian brian;

10 enum chap { sct , en, };
11 typedef enum chap chap;
12
13 struct brian {
14 struct timespec ts; /**< point in time */
15 unsigned counter; /**< wealth */
16 chap masterof; /**< occupation */
17 };
18
19 /**
20 ** @brief get the data for the next point in time
21 **/
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22 brian brian_next(brian);
23
24 ...
25 #endif

That file comprises all the interfaces that are necessary to use that struct. It also includes
other header files that might be needed to compile these interfaces and protect against
multiple inclusion with include guardsC , here the macro BRIAN_H.

10.2. Implementation. If you read code that is written by good programmers (and
you should do that often!), you’ll notice that it is often scarcely commented. Nevertheless
it may end up to be quite readable, provided that the reader has basic knowledge of the C
language. Good programming only needs to explain the ideas and prerequisites that are
not obvious, the difficult part. Through the structure of the code, it shows what it does and
how.

Rule 2.10.2.1 Implement literally.

A C program text is a descriptive text about what is to be done. The rules for naming
entities that we introduced above play a crucial role to make that descriptive text readable
and clear. The other is an obvious flow of control through visually clearly distinctive
structuring in {}-blocks that are linked together with comprehensive control statements.

Rule 2.10.2.2 Control flow must be obvious.

There are many possibilities to obfuscate control flow. The most important are
burried jumps: These are break, continue, return or goto5 statements that are bur-

ried in a complicated nested structure of if or switch statements, eventually
combined with loop structures.

flyspeck expressions: These are controlling expressions that combine a lot of operators in
an unusual way (e.g. !!++*p-- or a --> 0) such that they must be flyspecked
with a looking glass to understand where the control flow goes from here.

10.3. Macros. We already happen to know one tools that can be very much abused
to obfuscate control flow, macros. As you hopefully remember from Section 5.4.3 and 8,
macros define textual replacements that can contain almost any C text. Because of the
problems that we illustrate in the following, many projects ban macros completely. This
is not the direction the evolution of the C standard goes, though. As we have seen, e.g.
type-generic macros are the modern interface to mathematical functions (see 8.1), macros
should be used for initialization constants ( 5.4.3) or are used to implement some compiler
magic (errno p. 8).

So instead of denying it, we should try to tame the beast and setup some simple rules,
that confine the possible damage.

Rule 2.10.3.1 Macros should not change control flow in a surprising way.

Notorious examples that pop up in discussion with beginners from time to time are
things like:

1 #define begin {
2 #define end }
3 #define forever for (;;)
4 #define ERRORCHECK(CODE) if (CODE) return -1
5

5These will be discussed in Sections 13.2.2 and 15.
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6 forever
7 begin
8 // do something
9 ERRORCHECK(x);

10 end

Don’t do that. The visual habits of C programmers and of our tools don’t easily work with
that, and if you use such things in complicated code, it will almost certainly go wrong.

Here the ERRORCHECK macro is particularly dangerous. Its name doesn’t suggest that a
non-local jump such as a return might be hidden in there. And its implementation is even
more dangerous. Consider the following two lines:

1 if (a) ERRORCHECK(x);
2 else puts("a␣is␣0!");

These lines are rewritten as

1 if (a) if (x) return -1;
2 else puts("a␣is␣0!");

The else-clause (so-called dangling elseC) is attached to the innermost if, which we
don’t see. So this is equivalent to

1 if (a) {
2 if (x) return -1;
3 else puts("a␣is␣0!");
4 }

probably quite surprising for the casual reader.
This doesn’t mean that control structures shouldn’t be used in macros at all. They

should just not be hidden and have no surprising effects.

1 #define ERROR_RETURN(CODE) \
2 do { \
3 if (CODE) return -1; \
4 } while (false)

This macro by itself is probably not as obvious, but its use has no surprises.

1 if (a) ERROR_RETURN(x);
2 else puts("a␣is␣0!");

The name of the macro makes it explicit that there might be a return. The dangling else
problem is handled because the replaced text

1 if (a) do {
2 if (CODE) return -1;
3 } while (false);
4 else puts("a␣is␣0!");

structures the code as expected: the else is associated to the first if.
The do-while(false)-trick is obviously ugly, and you shouldn’t abuse it. But is a

standard trick to surround one or several statements with a {}-block without changing the
block structure that is visible to the naked eye. Its intent is to fulfill

Rule 2.10.3.2 Function like macros should syntactically behave like function calls.

Possible pitfalls are:
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if without else: As we already have demonstrated above.
trailing semicolon: These can terminate an external control structure in a surprising way.
comma operator: The comma is an ambiguous fellow in C. In most contexts it is used as

a list separator, e.g. for function calls, enumerator declarations or initializers. In
the context of expressions it is a control operator. Avoid it.

continuable expressions: Expressions that will bind to operators in an unexpected way
when put into a non-trivial context.[Exs 6] In the replacement text, put parentheses
around parameters and expressions.

multiple evaluation: Macros are textual replacements. If a macro parameter is used twice
(or more) its effects are done twice.[Exs 7]

10.4. Pure functions. Functions in C such as size_min (Section 4.4) or gcd (Sec-
tion 7.3) that we declared ourselves have a limit in terms of what we are able to express:
they don’t operate on objects but on values. In a sense they are extensions of the value
operators in Table 2 and not of the object operators of Table 3.

Rule 2.10.4.1 Function parameters are passed by value.

That is, when we call a function all parameters are evaluated and the parameters,
variables that are local to the function, receive the resulting values as initialization. The
function then does whatever it has to do and then sends back the result of its computation
through the return value.

For the moment, the only possibility that we have for two functions to manipulate the
same object is to declare an object such that the declaration is visible to both functions.
Such global variablesC have a lot of disadvantages: they make code inflexible (the object
to operate on is fixed), are difficult to predict (the places of modification are scattered all
over) and difficult to maintain.

Rule 2.10.4.2 Global variables are frowned upon.

A function with the following two properties is called pureC :
• The function has no other effects than returning a value.
• The function return value only depends on its parameters.

The only “interesting” about the execution of a pure function is its result, and that result
only depends on the arguments that are passed. From the point of view of optimization,
pure functions can such be moved around or even executed in parallel to other tasks. Exe-
cution can start at any point when its parameters are available and must be finished before
the result is used.

Effects that would disqualify a function from being pure would be all those that change
the abstract state machine other than by providing the return value. E.g.

• The functions reads part of the program’s changeable state by other means than
through its arguments.

• The functions modifies a global object.
• The function keeps a persistent internal state between calls8

• The function does IO9

Pure functions are a very good model for functions that perform small tasks, but they
are pretty limited once we have to perform more complex ones. On the other hand, optimiz-
ers love pure functions, since their impact on the program state can simply be described by

[Exs 6]Consider a macro sum(a, b) that is implemented as a+b. What is the result of sum(5, 2)*7?
[Exs 7]Let max(a, b) be implemented as ((a) < (b) ? (b) : (a)). What happens for max(i++, 5)?

8Persistent state between calls to the same function can be established with local static variables, we will
see this concept only in Section 13.2.

9Such an IO would e.g. occur by using printf.



104 2. COGNITION

LISTING 2.1. A type for computation with rational numbers.

1 #ifndef RATIONALS_H
2 # define RATIONALS_H 1
3 # include <stdbool.h>
4 # include "euclid.h"
5
6 typedef struct rat rat;
7
8 struct rat {
9 bool sign;

10 size_t num;
11 size_t denom;
12 };
13
14 /* Functions that return a value of type rat. */
15 rat rat_get(long long num , unsigned long long denom);
16 rat rat_get_normal(rat x);
17 rat rat_get_extended(rat x, size_t f);
18 rat rat_get_prod(rat x, rat y);
19 rat rat_get_sum(rat x, rat y);
20
21
22 /* Functions that operate on pointers to rat. */
23 void rat_destroy(rat * rp);
24 rat * rat_init(rat * rp,
25 long long num ,
26 unsigned long long denom);
27 rat * rat_normalize(rat * rp);
28 rat * rat_extend(rat * rp, size_t f);
29 rat * rat_sumup(rat * rp, rat y);
30 rat * rat_rma(rat * rp, rat x, rat y);
31
32 #endif

their parameters and return value. The influence on the abstract state machine that a pure
function can have is very local and easy to describe.

Rule 2.10.4.3 Express small tasks as pure functions whenever possible.

With pure functions we can be surprisingly far, even for some object-oriented pro-
gramming style, if, for a first approach we are willing to accept a little bit of copying data
around. Consider the structure type rat in Listing 2.1 that is supposed to be used for
rational arithmetic.

Let us look into those functions that are named rat_get_xxxxx, to emphasize on the
fact the they return a value of type rat. The others, working with pointers to rat will used
later on in Section 11.3.

This is a direct implementation of such a type, nothing that you should use as a library
outside the scope of this learning experience. For simplicity it has numerator and denom-
inator of identical type (size_t) and keeps track of the sign of the number in field .sign.
We also include the file "euclid.h" to have access to the gcd function that we described
earlier.

With that we can define functions that do maintenance. The main idea is that such ra-
tional numbers should always be normalized. Not only is this easier to capture by humans,
also it might avoid overflows while doing arithmetic.
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. rationals.c

3 rat rat_get(long long num , unsigned long long denom) {
4 rat ret = {
5 .sign = (num < 0),
6 .num = (num < 0) ? -num : num ,
7 .denom = denom ,
8 };
9 return ret;

10 }

. rationals.c

12 rat rat_get_normal(rat x) {
13 size_t c = gcd(x.num , x.denom);
14 x.num /= c;
15 x.denom /= c;
16 return x;
17 }

. rationals.c

19 rat rat_get_extended(rat x, size_t f) {
20 x.num *= f;
21 x.denom *= f;
22 return x;
23 }

Using these, we may define functions that are supposed to be used by others, namely
rat_get_prod and rat_get_sum.

. rationals.c

25 rat rat_get_prod(rat x, rat y) {
26 rat ret = {
27 .sign = (x.sign != y.sign),
28 .num = x.num * y.num ,
29 .denom = x.denom * y.denom ,
30 };
31 return rat_get_normal(ret);
32 }

As you can see from all this, the fact that these are all pure functions ensures that they
can easily used, even in our own implementation, here. The only thing that we have to
watch is to always assign the return values of our functions to some variable, such as in
Line 38. Otherwise, since we don’t operate on the object x but only on its value, changes
during the function would be lost.[Exs 10] [Exs 11]

[Exs 10]The function rat_get_prod can produce intermediate values that may have it produce wrong results, even
if the mathematical result of the multiplication is representable in rat. How is that?

[Exs 11]Reimplement the rat_get_prod function such that it produces a correct result all times that the mathe-
matical result value is representable in a rat. This can be done with two calls to rat_get_normal instead of
one.
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. rationals.c

34 rat rat_get_sum(rat x, rat y) {
35 size_t c = gcd(x.denom , y.denom);
36 size_t ax = y.denom/c;
37 size_t bx = x.denom/c;
38 x = rat_get_extended(x, ax);
39 y = rat_get_extended(y, bx);
40 assert(x.denom == y.denom);
41
42 if (x.sign == y.sign) {
43 x.num += y.num;
44 } else if (x.num > y.num) {
45 x.num -= y.num;
46 } else {
47 x.num = y.num - x.num;
48 x.sign = !x.sign;
49 }
50 return rat_get_normal(x);
51 }

As mentioned earlier, because of the repeated copies this may result in compiled code
that is not as efficient as it could. But this is not dramatic at all: the overhead by the
copy operation can already be kept relatively low by good compilers. With optimization
switched on, they usually can operate directly on the structure in place, as it is returned
from such a function. Then such worries could be completely premature, because your
program is short and sweet anyhow, or because the real performance problems of it lay
elsewhere. Usually this should be completely sufficient for the level of programming skills
that we have reach so far. Later, we will learn how to use that strategy efficiently by using
so-called inline functions (Section 16.1) or link time optimization that many modern tool
chains provide.

11. Pointers

Pointers are the first real hurdle to a deeper understanding of C. They are used in con-
texts where we have to be able to access objects from different points in the code, or where
data is structured dynamically on the fly. The confusion of inexperienced programmers be-
tween pointers and arrays is notorious, so be warned that you might encounter difficulties
in getting the terms correct.

On the other hand, pointers are one of the most important features of C. They are a
big plus to help us in abstracting from the bits and odds of a particular platform and enable
us to write portable code. So please, equip yourself with patience when you work through
this section, it is crucial for the understanding of most of the rest of this book.

11.1. Address-of and object-of operators. If we have to perform tasks that can’t
be expressed with pure functions, things get more involved. We have to poke around in
objects that are not locally defined in a function and need a suitable abstraction for doing
so.

Let us take the task double_swap of swapping the contents of two double objects
d0 and d1. The unary address-ofC operator & allows us to refer to an object through its
addressC . A call to our function could look as

1 double_swap (&d0, &d1);

The type that the address-of operator returns is a pointer typeC , marked with a *. In
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1 void double_swap(double* p0, double* p1) {
2 double tmp = *p0;
3 *p0 = *p1;
4 *p1 = tmp;
5 }

the function definition pointers p0 and p1 hold the addresses of the objects on which the
function is supposed to operate. Inside we use the unary object-ofC operator * to access
the two objects: *p0 then is the object corresponding to the first argument, with the call
above that would be d0, and similarly *p1 is the object d1.

In fact for the specification of the function double_swap we wouldn’t even need the
pointer notation. In the notation that we used so far it can equally be written as:

1 void double_swap(double p0[static 1], double p1[static 1]) {
2 double tmp = p0[0];
3 p0[0] = p1[0];
4 p1[0] = tmp;
5 }

Both, the use of array notation for the interface and the use of [0] to access the first
element are simple rewrite operations that are built into the C language.

Remember from Section 6.2 that other than holding a valid address pointers may also
be null or indeterminate.

Rule 2.11.1.1 Using * with an indeterminate or null pointer has undefined behavior.

In practice, both cases will usually behave differently. The first might access some
random object in memory and modify it. Often this leads to bugs that are difficult to trace.
The second, null, will nicely crash your program. Consider this to be a feature.

11.2. Pointer arithmetic. We already have seen that a valid pointer holds the address
of an object of its base type, but actually C is always willing to assume more:

Rule 2.11.2.1 A valid pointer addresses the first element of an array of the base type.

Simple additive arithmetic allows to access the following elements of this array. The
following functions are equivalent:

1 double sum0(size_t len , double const* a) {
2 double ret = 0.0;
3 for (size_t i = 0; i < len; ++i) {
4 ret += *(a + i);
5 }
6 return ret;
7 }

1 double sum1(size_t len , double const* a) {
2 double ret = 0.0;
3 for (double const* p = a; p < a+len; ++p) {
4 ret += *p;
5 }
6 return ret;
7 }
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1 double sum2(size_t len , double const* a) {
2 double ret = 0.0;
3 for (double const*const aStop = a+len; a < aStop; ++a) {
4 ret += *a;
5 }
6 return ret;
7 }

These functions can then be called analogously to the following:

1 double A[7] = { 0, 1, 2, 3, 4, 5, 6, };
2 double s0_7 = sum0(7, &A[0]); // for the whole
3 double s1_6 = sum0(6, &A[1]); // for last 6
4 double s2_3 = sum0(3, &A[2]); // for 3 in the middle

Unfortunately there is no way to know the length of the array that is hidden behind a
pointer, therefore we have to pass it as a parameter into the function. The trick with sizeof
as we have seen in Section 6.1.3 doesn’t work.

Rule 2.11.2.2 The length an array object cannot be reconstructed from a pointer.

So here we see a first important difference to arrays.

Rule 2.11.2.3 Pointers are not arrays.

So if we pass arrays through pointers to a function, it is important to retain the real
length that the array has. This is why we prefer the array notation for pointer interfaces
throughout this book:

1 double sum0(size_t len , double const a[len]);
2 double sum1(size_t len , double const a[len]);
3 double sum2(size_t len , double const a[len]);

These specify exactly the same interfaces as above, but clarify to the casual reader of the
code that a is expected to have len elements.

Another difference is that pointers have value and that that value can change. Thus
they can be used by value operators as operands. This value is either the address of a valid
object to which they are pointing or null, as we have already seen in Section 6.2.

Setting pointers to 0 if it hasn’t some valid address is very important and should not
be forgotten. It helps to check and keep track if a pointer has been set.

Rule 2.11.2.4 Pointers have truth.

In application of Rule 1.3.1.3, you often will see code like

1 char const* name = 0;
2
3 // do something that eventually sets name
4
5 if (name) {
6 printf("today’s␣name␣is␣%s\n", name);
7 } else {
8 printf("today␣we␣are␣anonymous\n");
9 }
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A pointer must not only be set to an object (or null), such an object also must have the
correct type.

Rule 2.11.2.5 A pointed-to object must be of the indicated type.

As a direct consequence, a pointer that points beyond array bounds must not be deref-
erenced.

1 double A[2] = { 0.0, 1.0, };
2 double * p = &A[0];
3 printf("element␣%g\n", *p); // referencing object
4 ++p; // valid pointer
5 printf("element␣%g\n", *p); // referencing object
6 ++p; // valid pointer , no object
7 printf("element␣%g\n", *p); // referencing non -object
8 // undefined behavior

Here, in the last line p has a value that is beyond the bounds of the array. Even if
this might be the address of a valid object, we don’t know anything about the object it is
pointing to. So p is invalid at that point and accessing it as a type of double has no defined
behavior.

In the above example, the pointer arithmetic itself is correct, as long as we don’t access
the object in the last line. The valid values of pointers are all addresses of array elements
and the address beyond the array. Otherwise for-loops with pointer arithmetic as above
wouldn’t work reliably.

Rule 2.11.2.6 A pointer must point to a valid object, one position beyond a valid object
or be null.

So the example only worked up to the last line because the last ++p left the pointer
value just one element after the array. This version of the example still follows a similar
pattern as the one before:

1 double A[2] = { 0.0, 1.0, };
2 double * p = &A[0];
3 printf("element␣%g\n", *p); // referencing object
4 p += 2; // valid pointer , no object
5 printf("element␣%g\n", *p); // referencing non -object
6 // undefined behavior

Whereas this last example may already crash at the increment operation:

1 double A[2] = { 0.0, 1.0, };
2 double * p = &A[0];
3 printf("element␣%g\n", *p); // referencing object
4 p += 3; // invalid pointer arithmetic
5 // undefined behavior

Pointer arithmetic as we discussed so far concerned operations between a pointer and
an integer. There is also an inverse operation, pointer differenceC , that takes to pointers
and evaluates to some integer value. It is only allowed if the two pointers refer to elements
of the same array object:

Rule 2.11.2.7 Only subtract pointers to elements of an array object.

The value of such a difference then is simply the difference of the indices of the cor-
responding array elements:
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1 double A[4] = { 0.0, 1.0, 2.0, -3.0, };
2 double * p = &A[1];
3 double * q = &A[3];
4 assert(p-q == -2);

We already have stressed the fact that the correct type for sizes of objects is size_t,
an unsigned type that on many platforms is different from unsigned. This has its corre-
spondence in the type of a pointer difference: in general we cannot assume that a simple
int is wide enough to hold the possible values. Therefore the standard header stddef.h<stddef.h>

provides us with another type. On most architectures it will just be the signed integer type
that corresponds to size_t, but we shouldn’t care much.

Rule 2.11.2.8 All pointer differences have type ptrdiff_t.

Rule 2.11.2.9 Use ptrdiff_t to encode signed differences of positions or sizes.

11.3. Pointers and structs. Pointers to structure types are crucial for most coding
in C, so some specific rules and tools have been put in place to ease this typical usage. Let
us e.g. consider the task of normalizing a struct timespec as we have encountered it pre-
viously. The use of a pointer parameter in the following function allows us to manipulate
the object that we are interested directly:

. timespec.c

10 /**
11 ** @brief compute a time difference
12 **
13 ** This uses a @c double to compute the time. If we want to
14 ** be able to track times without further loss of precision
15 ** and have @c double with 52 bit mantissa , this
16 ** corresponds to a maximal time difference of about 4.5E6
17 ** seconds , or 52 days.
18 **
19 **/
20 double timespec_diff(struct timespec const* later ,
21 struct timespec const* sooner){
22 /* be careful , tv_sec could be an unsigned type */
23 if (later ->tv_sec < sooner ->tv_sec)
24 return -timespec_diff(sooner , later);
25 else
26 return
27 (later ->tv_sec - sooner ->tv_sec)
28 /* tv_nsec is known to be a signed type. */
29 + (later ->tv_nsec - sooner ->tv_nsec) * 1E-9;
30 }

Here we use a new operator, ->, that we had not previously introduced. It symbol is
meant to represent a pointer as left operand that “points” to a field of the underlying struct
as right operand. It is equivalent to a combination of “*” and “.”, namely a->tv_sec is
nothing but (*a).tv_sec.

As another example, reconsider the type rat for rational numbers that we introduced
in Section 10.4. The functions operating on pointers to that type of Listing 2.1 could be
realized as follows.
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. rationals.c

95 void rat_destroy(rat * rp) {
96 if (rp) *rp = (rat){ 0 };
97 }

. rationals.c

99 rat * rat_init(rat * rp,
100 long long num ,
101 unsigned long long denom) {
102 if (rp) *rp = rat_get(num , denom);
103 return rp;
104 }

. rationals.c

106 rat * rat_normalize(rat * rp) {
107 if (rp) *rp = rat_get_normal (*rp);
108 return rp;
109 }

. rationals.c

111 rat * rat_extend(rat * rp, size_t f) {
112 if (rp) *rp = rat_get_extended (*rp, f);
113 return rp;
114 }

These first four functions are simple wrappers for the analogous functions that used
copies instead of pointing to the object in question. The only pointer operations the use is
to test validity and then, if the pointer is valid, to refer to the object in question. So these
functions can be safely used, even if the pointer argument is null.

All four return their pointer argument. This is a convenient strategy to compose such
functions, as we can see in the definitions of the two following arithmetic functions.

. rationals.c

116 rat * rat_sumup(rat * rp, rat y) {
117 size_t c = gcd(rp->denom , y.denom);
118 size_t ax = y.denom/c;
119 size_t bx = rp->denom/c;
120 rat_extend(rp, ax);
121 y = rat_get_extended(y, bx);
122 assert(rp->denom == y.denom);
123
124 if (rp->sign == y.sign) {
125 rp->num += y.num;
126 } else if (rp->num > y.num) {
127 rp->num -= y.num;
128 } else {
129 rp->num = y.num - rp->num;
130 rp->sign = !rp->sign;
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131 }
132 return rat_normalize(rp);
133 }

. rationals.c

135 rat * rat_rma(rat * rp, rat x, rat y) {
136 return rat_sumup(rp, rat_get_prod(x, y));
137 }

In particular the last, “rational multiply add”, comprehensively shows its purpose, to
add the product of the two other function arguments to the object referred by rp.[Exs 12]

11.4. Opaque structures. Another special rule applies to pointers to structure types:
they can be used even if the structure type itself is unknown. Such opaque structuresC are
often used to strictly separate the interface of some library and its implementation. E.g. a
fictive type toto could just be presented in an include file as follows:

1 /* forward declaration of struct toto */
2 struct toto;
3 struct toto * toto_get(void);
4 void toto_destroy(struct toto *);
5 void toto_doit(struct toto *, unsigned);

Both, the programmer and the compiler, wouldn’t need more than that to use the type
struct toto. The function toto_get could be used to obtain a pointer to an object of
type struct toto, regardless how it might have been defined in the compilation unit that
defines the functions. And the compiler gets away with it because he knows that all point-
ers to structures have the same representation, regardless of the specific definition of the
underlying type.

Often such interfaces use the fact that null pointers are special. In the above example
toto_doit(0, 42) could be a valid use case. This is why many C programmers don’t like
it if pointers are hidden inside typedef.

1 /* forward declaration of struct toto_s and user type toto */
2 typedef struct toto_s * toto;
3 toto toto_get(void);
4 void toto_destroy(toto);
5 void toto_doit(toto , unsigned);

This is valid C, but hides the fact that 0 is a special value that toto_doit may receive.

Rule 2.11.4.1 Don’t hide pointers in a typedef.

This is not the same as just introducing a typedef name for the struct as we have
done before.

1 /* forward declaration of struct toto and typedef toto */
2 typedef struct toto toto;
3 toto * toto_get(void);
4 void toto_destroy(toto *);
5 void toto_doit(toto *, unsigned);

Here, the fact that the interface receive a pointer is still sufficiently visible.

[Exs 12]Write a function rat * rat_dotproduct(rat * rp, size_t n, rat A[n], rat B[n]); that com-
putes

∑n−1
i=0 A[i] ∗B[i] and returns that value in *rp.
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11.5. Array and pointer access are the same. Now we are able to attact the major
hurdle to understand the relationship between arrays and pointers.

Rule 2.11.5.1 The two expressions A[i] and *(A+i) are equivalent.

This holds regardless whether A is an array or a pointer.
If it is a pointer we already understand the second expression. Here, Rule 2.11.5.1

just says that we may write the same expression as A[i]. Applying this notion of array
access to pointers should just improve the readability of your code. The equivalence does
not mean, that all of the sudden an array object appears where there was none. If A is null,
A[i] should crash as nicely as should *(A+i).

If A is an array, *(A+i) shows our first application of one of the most important rules
in C, called array-to-pointer decayC :

Rule 2.11.5.2 Evaluation of an array A returns &A[0].

In fact, this is the reason behind Rules 1.6.1.3 to 1.6.1.5. Whenever an array occurs
that requires a value, it decays to a pointer and we loose all additional information.

11.6. Array and pointer parameters are the same. Because of Rule 2.11.5.2, ar-
rays cannot be function arguments. There would be no way to call such a function with an
array parameter; before any call to the function an array that we feed into it would decay
into a pointer, and thus the argument type wouldn’t match.

But we have seen declarations of functions with array parameters, so how did that
work? The trick C gets away with it is to rewrite array parameters to pointers.

Rule 2.11.6.1 In a function declaration any array parameters rewrites to a pointer.

Think of this and what it means for a while, understanding of that “chief feature” (or
character flaw) is central for coding in C at ease.

To come back to our examples from Section 6.1.5 the functions that were written with
array parameters could be declared

1 size_t strlen(char const* s);
2 char* strcpy(char* target , char const* source);
3 signed strcmp(char const* s0, char const* s1);

These are completely equivalent and any C compiler should be able to use both forms
interchangeably.

Which one to use is a question of habits, culture or other social context. The rule
that we follow in this book to use array notation if we suppose that this can’t be null, and
pointer notation if it corresponds to one single item of the base type that also can be null
to indicate a special condition.

If semantically a parameter is an array, we also note what size we expect the array to
be, if this is possible. And to make it possible, it is usually better to specify the length
before the arrays/pointers. An interface such as

1 double double_copy(size_t len ,
2 double target[len],
3 double const source[len]);

tells a whole story. This becomes even more interesting if we handle two-dimensional
arrays. A typical matrix multiplication could look as follows:
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1 void matrix_mult(size_t n, size_t k, size_t m,
2 double C[n][m],
3 double A[n][k],
4 double B[k][m]) {
5 for (size_t i = 0; i < n; ++i) {
6 for (size_t j = 0; j < m; ++j) {
7 C[i][j] = 0.0;
8 for (size_t l = 0; l < k; ++l) {
9 C[i][j] += A[i][l]*B[l][j];

10 }
11 }
12 }
13 }

The prototype is equivalent to the less readable

1 void matrix_mult(size_t n, size_t k, size_t m,
2 double (C[n])[m],
3 double (A[n])[k],
4 double (B[k])[m]);

and

1 void matrix_mult(size_t n, size_t k, size_t m,
2 double (*C)[m],
3 double (*A)[k],
4 double (*B)[m]);

Observe that once we have rewritten the innermost dimension as a pointer, the parameter
type is not an array anymore, but a “pointer to array”. So there is no need to rewrite the
subsequent dimensions.

Rule 2.11.6.2 Only the innermost dimension of an array parameter is rewritten.

So finally we have gained a lot by using the array notation. We have, without problems
passed pointers to VLA into the function. Inside the function we could use conventional
indexing to access the elements of the matrices. Not much acrobatics were required to keep
track of the array lengths:

Rule 2.11.6.3 Declare length parameters before array parameters.

They simply have to be known at the point where you use them first.

11.7. Null pointers. Some of you may have wondered that through all this discussion
about pointers the macro NULL has not yet been used. The reason is that unfortunately the
simple concept of a “generic pointer of value 0” didn’t succeed very well.

C has the concept of a null pointerC that corresponds to a 0 value of any pointer
type.13 Here

1 double const*const nix = 0;
2 double const*const nax = nix;

13Note the different capitalization of “null” versus NULL.
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“nix” and “nax” would be such a pointer object of value 0. But unfortunately a null
pointer constantC is then not what you’d expect.

First, here by constant the term refers to a compile time constant and not to a const-
qualified object. So for that reason already, both pointer objects above are not null pointer
constants. Second the permissible type for these constants is restricted, it may be any
constant expression of integer type or of type void*. Other pointer types are not permitted,
and we will only learn about pointers of that “type” below in Section 12.4.

The definition by the C standard of what could be the expansion of the macro NULL is
quite loose, it just has to be a null pointer constant. Therefore a C compiler could chose
any of the following for it:

expansion type
0U unsigned
0 signed
’\0’
enumeration constant of value 0
0UL unsigned long
0L signed long
0ULL unsigned long long
0LL signed long
(void*)0 void*

Commonly used values are 0, 0L and (void*)0.14

Here it is important that the type behind NULL is not prescribed by the C standard.
Often people use it to emphasize that they talk about a pointer constant, which it simply
isn’t on many platforms. Using NULL in context that we don’t master completely is even
dangerous. This will in particular appear in the context of functions with variable number
of arguments that will be discussed in Section 17.4.2. For the moment we go for the
simplest solution:

Rule 2.11.7.1 Don’t use NULL.

NULL hides more than it clarifies, either use 0, or if you really want to emphasize that
the value is a pointer use the magic token sequence (void*)0 directly.

11.8. Function pointers. There is yet another construct for which the address-of op-
erator & can be used: functions. We already have seen this concept pop up when discussion
the atexit function, see page 8.6, which is a function that receives a function argument.
The rule is similar as for array decay that we described above:

Rule 2.11.8.1 A function f without following opening ( decays to a pointer to its start.

Syntactically functions and function pointers are also similar to arrays in type decla-
rations and as function parameters:

typedef void atexit_function(void);
// two equivalent definitions of the same type , that hides a pointer
typedef atexit_type* atexit_function_pointer;
typedef void (* atexit_function_pointer)(void);
// five equivalent declarations for the same function
void atexit(void f(void));
void atexit(void (*f)(void));
void atexit(atexit_function f);
void atexit(atexit_function* f);
void atexit(atexit_function_pointer f);

14In theory, there are even more possible expansions for NULL, such as ((char)+0) or ((short)-0).
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Which of the semantically equivalent writings for the function declaration is more
readable, could certainly be subject of much debate. The second version with the (*f)
parenthesis quickly gets difficult to read and the fifth is frowned upon because it hides a
pointer in a type. Among the others, I personally slightly prefer the fourth over the first.

The C library has several functions that receive function parameters, we already have
seen atexit and at_quick_exit.Another pair of functions in stdlib.h provides generic<stdlib.h>

interfaces for searching (bsearch) and sorting (qsort).

typedef int compare_function(void const*, void const*);

void* bsearch(void const* key , void const* base ,
size_t n, size_t size ,
compare_function* compar);

void qsort(void* base ,
size_t n, size_t size ,
compare_function* compar);

Both receive an array base as argument on which they perform their task. The address
to the first element is passed as a void pointer, so all type information is lost. To be able
to handle the array properly, the functions have to know the size of the individual elements
(size) and the number of elements (n).

In addition they receive a comparison function as a parameter that provides the infor-
mation about the sort order between the elements. A simple version of such a function
would look like this:

int compare_unsigned(void const* a, void const* b){
unsigned const* A = a;
unsigned const* B = b;
if (*A < *B) return -1;
else if (*A > *B) return +1;
else return 0;

}

The convention is that the two arguments point to elements that are to be compared
and that the return value is strictly negative if a is considered less than b, 0 if they are equal
and strictly positive otherwise.

The return type of int seems to suggest that int comparison could be done simpler:

/* An invalid example for integer comparison */
int compare_int(void const* a, void const* b){

int const* A = a;
int const* B = b;
return *A - *B; // may overflow!

}

But this is not correct. E.g if *A is big, say INT_MAX, and *B is negative, the mathematical
value of the difference can be larger than INT_MAX.

Because of the void pointers, a usage of this mechanism should always take care that
the type conversions are encapsulated similar to the following:

/* A header that provides searching and sorting for unsigned. */

/* No use of inline here , we always use the function pointer. */
extern int compare_unsigned(void const*, void const*);

inline
unsigned const* bsearch_unsigned(unsigned const key[static 1],

size_t n, unsigned const base[nmeb]) {
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return bsearch(key , base , nmeb , sizeof base[0], compare_unsigned);
}

inline
void qsort_unsigned(size_t n, unsigned base[nmeb]) {

qsort(base , nmeb , sizeof base[0], compare_unsigned);
}

Here bsearch (binary search) searches for an element that compares equal to key[0] or
returns a null pointer if no such element is found. It supposes that array base is already
sorted consistent to the ordering that is given by the comparison function. This assumption
helps to speed up the search. Although this is not explicitly specified in the C standard, you
can expect that a call to bsearch will never make more than dlog2(n)e calls to compar.

If bsearch finds an array element that is equal to *key it returns the pointer to this
element. Note that this drills a hole in C’s type system, since this returns an unqualified
pointer to an element who’s effective type might be const qualified. Use with care. In our
example we simply convert the return value to unsigned const*, such that we will never
even see an unqualified pointer at the call side of bsearch_unsigned.

The name qsort is derived from the quick sort algorithm. The standard doesn’t impose
the choice the sorting algorithm, but the expected number of comparison calls should be
of the magnitude of n log2(n), just as quick sort would. There are no guarantees for upper
bounds, you may assume that its worst case complexity is at most quadratic, O(n2).

Whereas there is some sort of catch-all pointer type, void*, that can be used as a
generic pointer to object types, no such generic type or implicit conversion exists for func-
tion pointers.

Rule 2.11.8.2 Function pointers must be used with their exact type.

Such a strict rule is necessary because the calling conventions for functions with dif-
ferent prototypes may be quite different15 and the pointer itself does not keep track of any
of this.

The following function has a subtle problem because the types of the paramters are
different than what we expect from a comparison function.

/* Another invalid example for an int comparison function */
int compare_int(int const* a, int const* b){

if (*a < *b) return -1;
else if (*a > *b) return +1;
else return 0;

}

When you try to use this function with qsort your compiler should complain that
the function has the wrong type. The variant that we gave above by using intermediate
void const* parameters should be almost as efficient as this invalid example, but it also
can be guaranteed to be correct on all C platforms.

Calling functions and function pointers with the (...) operator also has similar rules
as for arrays and pointers and the [...] operator:

Rule 2.11.8.3 The function call operator (...) applies to function pointers.

double f(double a);

// equivalent calls to f
f(3); // decay to function pointer

15The platform ABI may e.g pass floating points in special hardware registers.
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(&f)(3); // address of function
(*f)(3); // decay to function pointer , then dereference , then decay
(*&f)(3); // address of function , then dereference , then decay
(&*f)(3); // decay , dereference , address of

So technically, in terms of the abstract state machine, the pointer decay is always
performed and the function is called via a function pointer. The first, “natural”, call has a
hidden evaluation of the f identifier that results in the function pointer.

With all that, we can use function pointers almost like functions.

// in a header
typedef int logger_function(char const*, ...);
extern logger_function* logger;
enum logs { log_pri , log_ign , log_ver , log_num };

This declares a global variable logger that will point to a function that prints out log-
ging information. Using a function pointer will allow the user of this module to choose a
particular function dynamically.

// in a TU
extern int logger_verbose(char const*, ...);
static
int logger_ignore(char const*, ...) {

return 0;
}
logger_function* logger = logger_ignore;

static
logger_function* loggers = {

[log_pri] = printf ,
[log_ign] = logger_ignore ,
[log_ver] = logger_verbose ,

};

Here, we are defining tools that implement this. In particular, function pointers can be
used as base type for array (here loggers). Observe that we use two external functions
(printf and logger_verbose) and one static function (logger_ignore) for the array
initialization: the storage class is not part of the function interface.

The logger variable can be assigned just as any other pointer type. Somewhere at
startup we can have

if (LOGGER < log_num) logger = loggers[LOGGER ];

And then this function pointer can be used anywhere to call the corresponding function:

logger("Do␣we␣ever␣see␣line␣\%lu␣of␣file␣\%s?", __LINE__ +0UL, __FILE__);

This call uses the special macros __LINE__ and __FILE__ for the line number and the
name of the source file. We will discuss these in more detail in Section 17.3.

When using pointers to functions you should always be aware that this introduces an
indirection to the function call. The compiler first has to fetch the contents of logger
and can only then call the function at the address that he found, there. This has a certain
overhead and should be avoided in time critical code.

12. The C memory model

The operators that we have introduced above provide us with an abstraction, the C
memory model. We may apply unary operator & to (almost) all objects16 to retrieve their

16Only objects that are declared with keyword register don’t have an address, see Section 13.2.2 on Level 2
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address. Seen from C, no distinction of the “real” location of an object is made. It could re-
side in your computers RAM, in a disk file or correspond to an IO port of some temperature
sensor on the moon, you shouldn’t care. C is supposed to do right thing, regardless.

The only thing that C must care about is the type of the object which a pointer ad-
dresses. Each pointer type is derived from another type, its base type, and each such
derived type is a distinct new type.

Rule 2.12.0.1 Pointer types with distinct base types are distinct.

12.1. A uniform memory model. Still, even though generally all objects are typed,
the memory model makes another simplification, namely that all objects are an assem-
blage of bytesC . The sizeof operator that we already introduced in the context of arrays
measures the size of an object in terms of the bytes that it uses. There are three dis-
tinct types that by definition use exactly one byte of memory: the character types char,
unsigned char and signed char.

Rule 2.12.1.1 sizeof(char) is 1 by definition.

Not only can all objects be “accounted” in size as character typed on a lower level
they can even be inspected and manipulated as if they were arrays of such character types.
Below, we will see how this can be achieved, but for the moment we just note

Rule 2.12.1.2 Every object A can be viewed as unsigned char[sizeof A].

Rule 2.12.1.3 Pointers to character types are special.

Unfortunately, the types that are used to “compose” all other object types is derived
from char, the type that we already have seen for the characters of strings. This is merely
an historical accident and you shouldn’t read too much into it. In particular, you should
clearly distinguish the two different use cases.

Rule 2.12.1.4 Use the type char for character and string data.

Rule 2.12.1.5 Use the type unsigned char as the atom of all object types.

The type signed char is of much less importance than the two others.
From Rule 2.12.1.1 we also see another property of the sizeof operator, it also applies

to object types if they are enclosed in (). This variant returns the value that an object of
corresponding type would have.

Rule 2.12.1.6 The sizeof operator can be applied to objects and object types.

12.2. Unions. Let us now look into a way to look at the individual bytes of objects.
Our preferred tool for this are union’s. These are similar in declaration to struct but
have different semantic.

. endianess.c

2 #include <inttypes.h>
3
4 typedef union unsignedInspect unsignedInspect;
5 union unsignedInspect {
6 unsigned val;
7 unsigned char bytes[sizeof(unsigned)];
8 };
9 unsignedInspect twofold = { .val = 0xAABBCCDD , };
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The difference here is that such a union doesn’t collect objects of different type into
one bigger object, but it overlays an object with different type interpretation. By that it is
the perfect tool to inspect the individual bytes of an object of another type.

Let us first try to figure out what values we would expect for the individual bytes.
In a slight abuse of language let us speak of the different parts of an unsigned number
that correspond to the bytes as representation digits. Since we view the bytes as being
of type unsigned char they can have values 0 . . .UCHAR_MAX, including, and thus we
interpret the number as written within a base of UCHAR_MAX+1. In the example, on my
machine, a value of type unsigned can be expressed with sizeof(unsigned)== 4 such
representation digits, and I chose the values 0xAA, 0xBB, 0xCC and 0xDD for the highest to
lowest order representation digit. The complete unsigned value can be computed by the
following expression, where CHAR_BIT is the number of bits in a character type.

1 ((0xAA << (CHAR_BIT *3))
2 |(0xBB << (CHAR_BIT *2))
3 |(0xCC << CHAR_BIT)
4 |0xDD)

With the union defined above, we have two different facets to look at the same object
twofold: twofold.val presents it as being an unsigned, twofold.bytes presents it as
array of unsigned char. Since we chose the length of twofold.bytes to be exactly the
size of twofold.val it represents exactly its bytes, and thus gives us a way to inspect the
in memory representationC of an unsigned value, namely all its representation digits.

. endianess.c

12 printf("value␣is␣0x%.08X\n", twofold.val);
13 for (size_t i = 0; i < sizeof twofold.bytes; ++i)
14 printf("byte[%zu]:␣0x%.02 hhX\n", i, twofold.bytes[i]);

On my own computer, I receive a result as indicated below:17

Terminal

0 ~/build/modernC% ./code/endianess

1 value is 0xAABBCCDD

2 byte[0]: 0xDD

3 byte[1]: 0xCC

4 byte[2]: 0xBB

5 byte[3]: 0xAA

For my machine, we see that the output above had the low-order representation digits
of the integer first, then the next-lower order digits and so on. At the end the highest order
digits are printed. So the in-memory representation of such an integer on my machine is to
have the low-order representation digits before the high-order ones.

All of this is not normalized by the standard, it is implementation defined behavior.

Rule 2.12.2.1 The in-memory order of the representation digits of a numerical type is
implementation defined.

That is, a platform provider might decide to provide a storage order that has the highest
order digits first, then print lower order digits one by one. The storage order as given above
is called little EndianC , the later one big EndianC . Both orders are commonly used by
modern processor types. Some processors are even able to switch between the two orders
on the fly.

17Test that code on your own machine.
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The output above also shows another implementation defined behavior: I used the fea-
ture of my platform that one representation digit can nicely be printed by using two hexa-
decimal digits. Stated otherwise I assumed that UCHAR_MAX+1 is 256 and that the number
of value bits in an unsigned char, CHAR_BIT, is 8. As said, again this is implementation
defined behavior: although the vast majority of platforms have these properties18, there are
still some around that have wider character types.

Rule 2.12.2.2 On most architectures CHAR_BIT is 8 and UCHAR_MAX is 255.

In the example we have investigated the in-memory representation of the simplest
arithmetic base types, unsigned integers. Other base types have in-memory representations
that are more complicated: signed integer types have to encode the sign, floating point
types have to encode sign, mantissa and exponent and pointer types themselves may follow
any internal convention that fits the underlying architecture.[Exs 19][Exs 20][Exs 21]

12.3. Memory and state. The value of all objects constitutes the state of the abstract
state machine, and thus the state of a particular execution. C’s memory model provides
something like a unique location for (almost) all objects through the & operator, and that
location can be accessed and modified from different parts of the program through pointers.

Doing so makes the determination of the abstract state of an execution much more
difficult, if not impossible in many cases.

1 double blub(double const* a, double* b);
2
3 int main(void) {
4 double c = 35;
5 double d = 3.5;
6 printf("blub␣is␣%g\n", blub(&c, &d));
7 printf("after␣blub␣the␣sum␣is␣%g\n", c + d);
8 }

Here we (as well as the compiler) only see a declaration of function blub, no defini-
tion. So we cannot conclude much of what that function does to the objects its arguments
point to. In particular we don’t know if the variable d is modified and so the sum c + d
could be anything. The program really has to inspect the object d in memory to find out
what the values after the call to blub are.

Now let us look into such a function that receives two pointer arguments:

1 double blub(double const* a, double* b) {
2 double myA = *a;
3 *b = 2*myA;
4 return *a; // may be myA or 2*myA
5 }

Such a function can operate under two different assumptions. First if called with two
distinct addresses as arguments, *a will be unchanged, and the return value will be the same
as myA. But if both argument are the same, e.g. the call is blub(&c, &c), the assignement
to *b would have changed *a, too.

The phenomenon of accessing the same object through different pointers is called
aliasingC . It is a common cause for missed optimization, the knowledge about the abstract
state of an execution can be much reduced. Therefore C forcibly restricts the possible
aliasing to pointers of the same type:

18In particular all POSIX systems.
[Exs 19]Design a similar union type to investigate the bytes of a pointer type, double* say.

[Exs 20]With such a union, investigate the addresses of to consecutive elements of an array.
[Exs 21]Compare addresses of the same variable between different executions.
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Rule 2.12.3.1 (Aliasing) With the exclusion of character types, only pointers of the same
base type may alias.

To see this rule in effect consider a slight modification of our example above:

1 size_t blob(size_t const* a, double* b) {
2 size_t myA = *a;
3 *b = 2*myA;
4 return *a; // must be myA
5 }

Because here the two parameters have different types, C assumes that they don’t ad-
dress the same object. In fact, it would be an error to call that function as blob(&e, &e),
since this would never match the prototype of blob. So at the return statement we can be
sure that the object *a hasn’t changed and that we already hold the needed value in variable
myA.

There are ways to fool the compiler and to call such a function with a pointer that
addresses the same object. We will see some of these cheats later. Don’t do this, this
is a road to much grief and despair. If you do so the behavior of the program becomes
undefined, so you’d have to guarantee (prove!) that no aliasing takes place.

In the contrary, we should try write our program such that to protect our variables from
ever being aliased, and there is an easy way to achieve that:

Rule 2.12.3.2 Avoid the & operator.

Depending on properties of a given variable, the compiler may then see that the address
of the variable is never taken, and thus that the variable can’t alias at all. In Section 13.2
we will see which properties of a variable or object may have influence on such decisions
and how the register keyword can protect us from taking addresses inadvertently.

Later then, in Section 16.2, we will see how the restrict keyword allows to specify
aliasing properties of pointer arguments, even if they have the same base type.

12.4. Pointers to unspecific objects. In some places we already have seen pointers
that point to a valid address, but for which we do not control the type of the underlying
object. C has invented some sort of non-type for such beasts, void. Its main purpose is to
be used a fallback pointer type:

Rule 2.12.4.1 Any object pointer converts to and from void*.

Observe that this only talks about pointers to objects, not pointers to functions. Not
only that the conversion to void* is well defined, it also is guaranteed to behave well with
respect to the pointer value.

Rule 2.12.4.2 Converting an object pointer to void* and then back to the same type is
the identity operation.

So the only thing that we loose when converting to void* is the type information, the
value remains intact.

Rule 2.12.4.3 (avoid2*) Avoid void*.

It completely removes any type information that was associated to an address. Avoid
it whenever you can. The other way around is much less critical, in particular if you have
a C library call that returns a void*.

void as a type by itself shouldn’t be used for variable declarations since it wouldn’t
lead to an object with which we could do anything.
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12.5. Implicit and explicit conversions. We already have seen many places where
a value of a certain type is implicitly converted to a value of a different type. E.g. in an
initialization

1 unsigned big = -1;

The int value -1 on the right is converted to an unsigned value, here UINT_MAX. In
most cases, C does the right thing, and we don’t have to worry.

In other cases it is not as obvious (neither for you nor the compiler) so the intent must
be made clearer. Notorious for such misunderstandings are narrow integer types. In the
following let us assume that int has a width of 32 bit:

1 unsigned char highC = 1;
2 unsigned high hignU = (highC << 31); // undefined behavior

Looks innocent, but isn’t. The first line is ok, the value 1 is well in the range of unsigned
char. In the second, the problem lays in the RHS. As we already had seen in Table 6,
narrow types are converted before doing arithmetic on them. Here in particular highC
is converted to int and the left shift operation is then performed on that type. By our
assumption shifting by 31 bit shifts the 1 into the highest order bit, the sign bit. Thus the
result of the expression on the right is undefined.

The details of all this are a bit arbitrary and more or less just historical artifacts. Don’t
dig to deep to understand them, just avoid them completely.

Rule 2.12.5.1 Chose your arithmetic types such that implicit conversions are harmless.

In view of that, narrow types only make sense in very special circumstances:
• You have to save memory. You need to use a really big array of small values.

Really big here means potentially millions or billions. In such a situation storing
these values may gain you something.

• You use char for characters and strings. But then you wouldn’t do arithmetic
with them.

• You use unsigned char to inspect the bytes of an object. But then, again, you
wouldn’t do arithmetic with them.

Rule 2.12.5.2 Don’t use narrow types in arithmetic.

Rule 2.12.5.3 Use unsigned types whenever you may.

Things become even more delicate if we move on to pointer types. There are only
two forms of implicit conversions that are permitted for pointers to data, conversions from
and to void* and conversions that add a qualifier to the target type. Let’s look at some
examples.

1 float f = 37.0; // conversion: to float
2 double a = f; // conversion: back to double
3 float* pf = &f; // exact type
4 float const* pdc = &f; // conversion: adding a qualifier
5 void* pv = &f; // conversion: pointer to void*
6 float* pfv = pv; // conversion: pointer from void*
7 float* pd = &a; // error: incompatible pointer type
8 double* pdv = pv; // undefined behavior if used

The first two conversions that use void* are already a bit tricky: we convert a pointer back
and forth, but we watch that the target type of pfv is the same as f so everything works out
fine.
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Then comes the erroneous part. In the initialization of pd the compiler can protect us
from a severe fault: assigning a pointer to a type that has a different size and interpretation
can and will lead to serious damage. Any conforming compiler must give a diagnosis for
this line. As you have by now well integrated Rule 0.1.2.3, you know that you should not
continue until you have repaired such an error.

The last line is worse: it has an error, but that error is syntactically correct. The reason
that this error might go undetected is that our first conversion for pv has striped the pointer
from all type information. So in general the compiler can’t know what is behind.

In addition to the implicit conversions that we have seen until now, C also allows to
convert explicitly, so-called castsC .22 With a cast you are telling the compiler that you
know better and that the type of the object behind the pointer is not what he might think
and to shut up. In most use cases that I have come across in real life, the compiler was
right and the programmer was wrong: even experienced programmers tend to abuse casts
to hide poor design decisions concerning types.

Rule 2.12.5.4 Don’t use casts.

They deprive you of precious information and if you chose your types carefully you will
only need them at very special occasions.

One such occasion is when you want to inspect the contents of an object on byte level.
Constructing a union around an object as we have seen in Section 12.2 might not always
be possible (or too complicated) so here we can go for a cast:

. endianess.c

15 unsigned val = 0xAABBCCDD;
16 unsigned char* valp = (unsigned char*)&val;
17 for (size_t i = 0; i < sizeof val; ++i)
18 printf("byte[%zu]:␣0x%.02 hhX\n", i, valp[i]);

In that direction (from “pointer to object” to a “pointer to character type”) a cast is
mostly harmless.

12.6. Effective Type. To cope with different views to the same object that pointers
may provide, C has introduced the concept of effective types. It heavily restricts how an
object can be accessed:

Rule 2.12.6.1 (Effective Type) Objects must be accessed through their effective type
or through a pointer to a character type.

Because the effective type of a union variable is the union type and none of the
member types, the rules for union members can be relaxed:

Rule 2.12.6.2 Any member of an object that has an effective union type can be accessed
at any time, provided the byte representation amounts to a valid value of
the access type.

For all objects that have seen so far, it is easy to determine its effective type:

Rule 2.12.6.3 The effective type of a variable or compound literal is the type of its dec-
laration.

Later, we will see another category of objects that are a bit more involved.
Note that this rule makes no exception and that we can’t change the type of such a

variable or compound literal.

22A cast of an expression X to type T has the form (T)X. Think of it as in “to cast a spell”.
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Rule 2.12.6.4 Variables and compound literals must be accessed through their declared
type or through a pointer to a character type.

Also observe the asymmetry in all of this for character types. Any object can be seen as
a composed of unsigned char, but not any array of unsigned char can be used through
another type.

unsigned char A[sizeof(unsigned)] = { 9 };
// valid but useless , as most casts are
unsigned* p = (unsigned *)A;
// error , access with type that is neither the effective type nor a
// character type
printf("value␣\%u\n", *p);

Here the access *p is an error and the program state is undefined afterwards. This is
in strong contrast to our dealings with union above, see Section 12.2, where we actually
could view a byte sequences as array of unsigned char or unsigned.

The reasons for such a strict rule are multiple. The very first motivation for introducing
effective types in the C standard was to deal with aliasing as we have seen in Section 12.3.
In fact, the Aliasing Rule 2.12.3.1 is derived from the Effective Type Rule 2.12.6.1. As
long as there is no union involved, the compiler knows that we cannot access a double
through a size_t*, and so he may assume that the objects are different.

12.7. Alignment. The inverse direction of pointer conversions (from “pointer to char-
acter type” to “pointer to object”) is not harmless at all, not only because of possible alias-
ing. This has to do with another property of C’s memory model, alignmentC : objects of
most non-character types can’t start at any arbitrary byte position, they usually start at a
word boundaryC . The alignment of a type then describes the possible byte positions at
which an object of that type can start.

If we force some data to a false alignment, really bad things can happen. To see that
have a look at the following code:

1 #include <stdio.h>
2 #include <inttypes.h>
3 #include <complex.h>
4 #include "crash.h"
5
6 void enable_alignment_check(void);
7 typedef complex double cdbl;
8
9 int main(void) {

10 enable_alignment_check ();
11 /* An overlay of complex values and bytes. */
12 union {
13 cdbl val [2];
14 unsigned char buf[sizeof(cdbl [2])];
15 } toocomplex = {
16 .val = { 0.5 + 0.5*I, 0.75 + 0.75*I, },
17 };
18 printf("size/alignment:␣%zu/%zu\n",
19 sizeof(cdbl), _Alignof(cdbl));
20 /* Run over all offsets , and crash on misalignment. */
21 for (size_t offset = sizeof(cdbl); offset; offset /=2) {
22 printf("offset\t%zu:\t", offset);
23 fflush(stdout);
24 cdbl* bp = (cdbl*)(& toocomplex.buf[offset ]); // align!
25 printf("%g\t+%gI\t", creal (*bp), cimag (*bp));
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26 fflush(stdout);
27 *bp *= *bp;
28 printf("%g\t+%gI", creal (*bp), cimag (*bp));
29 fputc(’\n’, stdout);
30 }
31 }

This starts with a declaration of a union similar to what we already have seen above.
Again, we have a data object (of type complex double[2] in this case) that we overlay
with an array of unsigned char. Besides that this part is a bit more complex, at a first
glance there is no principal problem with it. But, if I execute this program on my machine
I get:

Terminal

0 ~/.../modernC/code (master % u=) 14:45 <516>$ ./crash

1 size/alignment: 16/8

2 offset 16: 0.75 +0.75I 0 +1.125I

3 offset 8: 0.5 +0I 0.25 +0I

4 offset 4: Bus error

The program crashes with an error indicated as bus errorC , which is a shortcut for
something like “data bus alignment error”. The real problem line is

. crash.c

24 cdbl* bp = (cdbl*)(& toocomplex.buf[offset ]); // align!

Here we see a pointer cast in the RHS, an unsigned char* is converted to a complex
double*. With the for-loop around it this cast is performed for byte offsets offset from
the beginning of toocomplex. These are powers of 2: 16, 8, 4, 2, and 1. As you can see in
the output above, it seems that complex double still works well for alignments of half of
its size, but then with an alignment of one fourth, the program crashes.

Some architectures are more tolerant to misalignment than others and we might have
to force the system to error out on such a condition. We use the following function at the
beginning to force crashing:

crash.c

enable_alignment_check: enable alignment check for i386 processors

Intel’s i386 processor family is quite tolerant in accepting misalignment of data. This
can lead to irritating bugs when ported to other architectures that are not as tolerant.

This function enables a check for this problem also for this family or processors, such
that you can be sure to detect this problem early.

I found that code on Ygdrasil’s blog: http://orchistro.tistory.com/206

void enable_alignment_check(void);

If you are interested in portable code (and if you are still here, you probably are) early
errors in the development phase are really helpful.23 So consider crashing a feature. See
the mentioned blog entry for an interesting discussion on this topic.

In the above code example we also see a new operator, alignof (or _Alignof if you
don’t include stdalign.h), that provides us with the alignment of a specific type. You<stdalign.h>

will rarely find the occasion to use that in real live code.

23For the code that is used inside that function, please consult the source code of crash.h to inspect it.

http://orchistro.tistory.com/206
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Another keyword can be used to force allocation at a specified alignment: alignas
(respectively _Alignas). Its argument can either be a type or expression. It can be useful
where you know that your platform can perform certain operations more efficiently if the
data is aligned in a certain way.

E.g to force alignment of a complex variable to its size and not half the size as we
have seen above you could use

alignas(sizeof(complex double)) complex double z;

Or if you know that your platform has efficient vector instructions for float[4] arrays:

alignas(sizeof(float [4])) float fvec [4];

These operators don’t help against the Effective Type Rule 2.12.6.1. Even with

alignas(unsigned) unsigned char A[sizeof(unsigned)] = { 9 };

the example on page 12.6 is invalid.

13. Allocation, initialization and destruction

So far, most objects that we handled in our programs have been variables, that is
objects that are declared in a regular declaration with a specific type and an identifier that
refers to it. Sometimes they then were defined at a different place in the code than they
were declared, but even such a definition referred to them with type and identifier.

Another category of objects that we have seen less is only specified with a type but not
with an identifier: compound literals as introduced in Section 5.4.4.

All such objects, variables or compound literals, have a lifetimeC that depends on
the syntactical structure of the program. They have an object lifetime and identifier visi-
bility that either spans the whole program execution (global variables, global literals and
variables that are declared with static) or are bound to a block of statements inside a
function.24

13.1. malloc and friends. For programs that have to handle growing collections of
data these types of objects are too restrictive. To handle varying user input, web queries,
large interaction graphs or other irregular data, big matrices or audio streams it is conve-
nient to reclaim objects for storage on the fly and then release them, once they are not
needed anymore. Such a scheme is called dynamic memory allocationC .

The following set of functions, available with stdlib.h, has been designed to provide <stdlib.h>

such an interface to allocatable objects:

#include <stdlib.h>
void* malloc(size_t size);
void free(void* ptr);
void* calloc(size_t nmemb , size_t size);
void* realloc(void* ptr , size_t size);
void* aligned_alloc(size_t alignment , size_t size);

Here the first two, malloc (memory allocate) and free, are by far the most prominent. As
their names indicate, malloc creates an object for us on the fly, and free then annihilates it.
The three other functions are specialized versions of malloc; calloc (clear allocate) sets
all bits of the new object to 0, realloc may grow or shrink an object and aligned_alloc
ensures non-default alignment.

All these functions operate with void*, that is with pointers for which no type infor-
mation is known. Being able to specify such a “non-type” for this series of functions is

24In fact, this is a bit of a simplification, we will see the gory details below.



128 2. COGNITION

probably the raison d’être for the whole game with void* pointers. By that, they become
universally applicable to all types.

1 size_t length = livingPeople ();
2 double* largeVec = malloc(length * sizeof *largeVec);
3 for (size_t i = 0; i < length; ++i) {
4 largeVec[i] = 0.0;
5 }
6 ...
7
8 free(largeVec);

Here we allocate a large vector of double one for each living person.[Exs 25] Because
malloc knows nothing about the later use or type of the object, the size of the vector
is specified in bytes. In the idiom given above we have specified the type information only
once, as the pointer type for largeVec. By using sizeof *largeVec in the parameter for
the malloc call, we ensure that we will allocate the right amount of bytes. Even if we
change largeVec later to have type size_t*, the allocation will adapt.

Another idiom that we will often encouter strictly takes the size of the type of the
object that we want to create, namely an array of length elements of type double.

double* largeVec = malloc(sizeof(double[length ]));

We already have been haunted by the introduction of “casts”, explicit conversions. It
is important to note that the call to malloc stands as is, the conversion from void*, the
return type of malloc, to the target type is automatic and doesn’t need any intervention.

Rule 2.13.1.1 Don’t cast the return of malloc and friends.

Not only is such a cast superfluous, doing an explicit conversion can even be counter-
productive when we forget to include the header file stdlib.h. Older C compilers then<stdlib.h>

1 /* If we forget to include stdlib.h, many compilers
2 still assume: */
3 int malloc (); // wrong function interface!
4 ...
5 double* largeVec = (void*) malloc(sizeof(double[length ]));
6 |
7 int <--
8 |
9 void* <--

suppose a return of int and trigger the wrong conversion from int to a pointer type. I
have seen many crashes and subtle bugs triggered by that error, in particular in beginners
code who’s author have been subject to bad advice.

In the above code, as a next step we initialize the object that we just allocated. As
from that point we view the large object that we allocated through a pointer to double, all
actions that we can perform on this object are those that are allowed for this data type. But
what we must do first, is initialize the object. Here, we do that by setting all elements to
0.0.

Rule 2.13.1.2 Objects that are allocated through malloc are uninitialized.

[Exs 25]Don’t try this allocation but compute the size that would be needed on your platform. Is allocating such a
vector feasible on your platform?
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13.1.1. A complete example with varying array size. Let us now look at an example
where using a dynamic array that is allocated with malloc brings us more flexibility than
a simple array variable.

The following interface describes a circular buffer of double values called circular:

circular.h

circular: an opaque type for a circular buffer for double values

This data structure allows to add double values in rear and to take them out in front.
Each such structure has a maximal amount of elements that can be stored in it.

typedef struct circular circular;

circular.h

circular_append: Append a new element with value value to the buffer c.

Returns: c if the new element could be appended, 0 otherwise.

circular* circular_append(circular* c, double value);

circular.h

circular_pop: Remove the oldest element from c and return its value.

Returns: the removed element if it exists, 0.0 otherwise.

double circular_pop(circular* c);

The idea is that, starting with 0 elements, new elements can be appended to the buffer
or dropped from the front, as long as the number of elements that are stored doesn’t exceed
a certain limit. The individual elements that are stored in the buffer can be accessed with
the following function:

circular.h

circular_element: Return a pointer to position pos in buffer c.

Returns: a pointer to the pos’ element of the buffer, 0 otherwise.

double* circular_element(circular* c, size_t pos);

Since our type circular will need to allocate and deallocate space for the circular
buffer, we will need to provide consistent functions for initialization and destruction of
instances of that type. This functionality is provided by two pairs functions:

circular.h

circular_init: Initialize a circular buffer c with maximally max_len elements.

Only use this function on an uninitialized buffer.

Each buffer that is initialized with this function must be destroyed with a call to circu-
lar_destroy.

circular* circular_init(circular* c, size_t max_len);
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circular.h

circular_destroy: Destroy circular buffer c.

c must have been initialized with a call to circular_init

void circular_destroy(circular* c);

circular.h

circular_new: Allocate and initialize a circular buffer with maximally len elements.

Each buffer that is allocated with this function must be deleted with a call to circu-
lar_delete.

circular* circular_new(size_t len);

circular.h

circular_delete: Delete circular buffer c.

c must have been allocated with a call to circular_new

void circular_delete(circular* c);

The first pair is to be applied to existing objects. They receive a pointer to such an
object and ensure that space for the buffer is allocated or freed. The first of the second pair
creates an object and initializes it; the last destroys such an object and then deallocates the
memory space.

If we’d use regular array variables the maximum amount of elements that we can store
in a circular would be fixed once we created such an object. We want to be more flexible
such that this limit be raised or lowered by means of function circular_resize and the
number of elements can be queried with circular_getlength.

circular.h

circular_resize: Resize to capacity max_len.

circular* circular_resize(circular* c, size_t max_len);

circular.h

circular_getlength: Return the number of elements stored.

size_t circular_getlength(circular* c);

Then, with function circular_element it behaves like an array of double: calling it
with a position within the current length, we obtain the address of the element that is stored
in that position.

The hidden definition of the structure is as follows:

. circular.c

5 /** @brief the hidden implementation of the circular buffer type
*/

6 struct circular {
7 size_t start; /**< position of element 0 */
8 size_t len; /**< number of elements stored */
9 size_t max_len; /**< maximum capacity */

10 double* tab; /**< array holding the data */
11 };
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The idea is that the pointer field tab will always point to an array object of length
max_len. At a certain point in time the buffered elements will start at start and the
number of elements stored in the buffer is maintained in field len. The position inside the
table tab is computed modulo max_len.

The following table symbolizes one instance of this circular data structure, with
max_len=10, start=2 and len=4.

table index 0 1 2 3 4 5 6 7 8 9
buffer content /////garb /////garb 6.0 7.7 81.0 99.0 /////garb /////garb /////garb /////garb

buffer position 0 1 2 3

We see that the buffer content, the four numbers 6.0, 7.7, 81.0 and 99.0, are placed
consecutively in the array object pointed to by tab.

The following scheme represents a circular buffer with the same four numbers, but the
storage space for the elements wraps around.

table index 0 1 2 3 4 5 6 7 8 9
buffer content 81.0 99.0 /////garb /////garb /////garb /////garb /////garb /////garb 6.0 7.7

buffer position 2 3 0 1

Initialization of such data structure needs to call malloc to provide memory for the
tab field. Other than that it is straightforward:

. circular.c

13 circular* circular_init(circular* c, size_t max_len) {
14 if (c) {
15 if (max_len) {
16 *c = (circular){
17 .max_len = max_len ,
18 .tab = malloc(sizeof(double[max_len ])),
19 };
20 // allocation failed
21 if (!c->tab) c->max_len = 0;
22 } else {
23 *c = (circular){ 0 };
24 }
25 }
26 return c;
27 }

Observe that this functions always checks the pointer parameter c for validity. Also,
it guarantees to initialize all other fields to 0 by assigning compound literals in both distin-
guished cases.

The library function malloc can fail for different reasons. E.g. the memory system
might be exhausted from previous calls to it, or the reclaimed size for allocation might just
be too large. On general purpose systems that you are probably using for your learning
experience such a failure will be rare (unless voluntarily provoked) but still is a good habit
to check for it:

Rule 2.13.1.3 malloc indicates failure by returning a null pointer value.
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Destruction of such an object is even simpler: we just have to check for the pointer
and then we may free the tab field unconditionally.

. circular.c

29 void circular_destroy(circular* c) {
30 if (c) {
31 free(c->tab);
32 circular_init(c, 0);
33 }
34 }

The library function free has the friendly property that it accepts a null parameter and
just does nothing in that case.

The implementation of some of the other functions uses an internal function to com-
pute the “circular” aspect of the buffer. It is declared static such that it is only visible for
those functions and such that it doesn’t pollute the identifier name space, see Rule 2.9.2.3.

. circular.c

50 static size_t circular_getpos(circular* c, size_t pos) {
51 pos += c->start;
52 pos %= c->max_len;
53 return pos;
54 }

Obtaining a pointer to an element of the buffer is now quite simple.

. circular.c

68 double* circular_element(circular* c, size_t pos) {
69 double* ret = 0;
70 if (c) {
71 if (pos < c->max_len) {
72 pos = circular_getpos(c, pos);
73 ret = &c->tab[pos];
74 }
75 }
76 return ret;
77 }

With all of that information, you should now be able to implement all but one of the
function interfaces nicely.[Exs 26] The one that is more difficult is circular_resize. It
starts with some length calculations, and then distinguishes the cases if the request would
enlarge or shrink the table. Here we have the naming convention of using o (old) as the
first character of a variable name that refers to a feature before the change, and n (new) its
value afterwards. The end of the function then just uses a compound literal to compose the
new structure by using the values that have been found during the case analysis.

[Exs 26]Write implementations of the missing functions.
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. circular.c

92 circular* circular_resize(circular* c, size_t nlen) {
93 if (c) {
94 size_t len = c->len;
95 if (len > nlen) return 0;
96 size_t olen = c->max_len;
97 if (nlen != olen) {
98 size_t ostart = circular_getpos(c, 0);
99 size_t nstart = ostart;

100 double* otab = c->tab;
101 double* ntab;
102 if (nlen > olen) {

. circular.c

138 }
139 *c = (circular){
140 .max_len = nlen ,
141 .start = nstart ,
142 .len = len ,
143 .tab = ntab ,
144 };
145 }
146 }
147 return c;
148 }

Let us now try to fill the gap in the code above and look into the first case of enlarging
an object. The essential part of this is a call to realloc:

. circular.c

103 ntab = realloc(c->tab , sizeof(double[nlen]));
104 if (!ntab) return 0;

For this call realloc receives the pointer to the existing object and the new size that
the relocation should have. It either returns a pointer to the new object with the desired size
or null. In the line immediately after we check the later case and terminate the function if
it was not possible to relocate the object.

The function realloc has interesting properties:

• The returned pointer may or may not be the same as the argument. It is left to
the discretion of the runtime system to realize if the resizing can be performed in
place (if there is space available behind the object, e.g.) or if a new object must
be provided.

• If the argument pointer and the returned one are distinct (that is the object has
been copied) nothing has to be done (or even should) with the previous pointer,
the old object is taken care of.

• As far as this is possible, existing content of the object is preserved:
– If the object is enlarged, the initial part of the object that corresponds to the

previous size is left intact.
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– If the object shrank, the relocated object has a content that corresponds to
the initial part before the call.

• If 0 is returned, that is the relocation request could not be fulfilled by the runtime
system, the old object is unchanged. So nothing is lost, then.

Now that we know that the newly received object has the size that we want, we have
to ensure that tab still represents a circular buffer. If previously the situation has been as in
the first table, above, that is the part that corresponds to the buffer elements is contiguous,
we have nothing to do. All data is nicely preserved.

If our circular buffer wrapped around, we have to do some adjustments:

. circular.c

105 // two separate chunks
106 if (ostart+len > olen) {
107 size_t ulen = olen - ostart;
108 size_t llen = len - ulen;
109 if (llen <= (nlen - olen)) {
110 /* cpy the lower one up after the old end */
111 memcpy(ntab + olen , ntab ,
112 llen*sizeof(double));
113 } else {
114 /* mv the upper one up to the new end */
115 nstart = nlen - ulen;
116 memmove(ntab + nstart , ntab + ostart ,
117 ulen*sizeof(double));
118 }
119 }

The following table illustrates the difference in contents between before and after the
changes for the first subcase, namely that the lower part finds enough place inside the part
that had been added.

table index 0 1 2 3 4 5 6 7 8 9
old content 81.0 99.0 /////garb /////garb /////garb /////garb /////garb /////garb 6.0 7.7

old position 2 3 0 1
new position /2 /3 0 1 2 3
new content /////81.0 /////99.0 /////garb /////garb /////garb /////garb /////garb /////garb 6.0 7.7 81.0 99.0 /////garb
table index 0 1 2 3 4 5 6 7 8 9 10 11 12

The other case, where the lower part doesn’t fit into the newly allocated part is similar.
This time the upper half of the buffer is shifted towards the end of the new table.

table index 0 1 2 3 4 5 6 7 8 9
old content 81.0 99.0 /////garb /////garb /////garb /////garb /////garb /////garb 6.0 7.7

old position 2 3 0 1
new position 2 3 0 1
new content 81.0 99.0 /////garb /////garb /////garb /////garb /////garb /////garb ////6.0 6.0 7.7
table index 0 1 2 3 4 5 6 7 8 9 10

The handling of both cases shows a subtle difference, though. The first is handled with
memcpy, source and target elements of the copy operation can’t overlap, so using it here
is save. For the other case, as we see in the example, the source and target elements may
overlap and thus the use of the less restrictive memmove function is required.[Exs 27]

[Exs 27]Implement shrinking of the table: it is important to reorganize the table contents before calling realloc.
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LISTING 2.2. An example for shadowing by local variables

1 void squareIt(double* p) {
2 *p *= *p;
3 }
4 int main(void) {
5 double x = 35.0;
6 double* xp = &x;
7 {
8 squareIt (&x); /* refering to double x */
9 ...

10 int x = 0; /* shadow double x */
11 ...
12 squareIt(xp); /* valid use of double x */
13 ...
14 }
15 ...
16 squareIt (&x); /* refering to double x */
17 ...
18 }

13.1.2. Ensuring consistency of dynamic allocations. As in both our code examples,
malloc and free should always come in pairs. This mustn’t necessarily be inside the same
function, but in most case simple counting of the occurrence of both should give the same
number:

Rule 2.13.1.4 For every malloc there must be a free.

If not this could indicate a memory leakC , a loss of allocated objects. This could
lead to resource exhaustion of your platform, showing itself in low performance or random
crashes.

Rule 2.13.1.5 For every free there must be a malloc.

The memory allocation system is meant to be simple, thus free is only allowed for
pointers that have been allocated with malloc or that are null.

Rule 2.13.1.6 Only call free with pointers as they are returned by malloc.

They must not
• point to an object that has been allocated by other means, that is a variable or a

compound literal,
• yet have been freed,
• only point to a smaller part of the allocated object.

Otherwise your program will crash. Seriously, this will completely corrupt the memory of
your program execution, one of the worst types of crashes that you can have. Be careful.

13.2. Storage duration, lifetime and visibility. We have already seen in different
places that visibility of an identifier and accessibility of the object to which it refers are not
the same thing. As a simple example take the variable(s) x in Listing 2.2:

Here the visibility scope of the identifier x that is declared in Line 5 starts from that
line and goes to the end of the function main, but with a noticeable interruption: from
Line 10 to 14 this visibility is shadowedC by another variable, also named x.
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LISTING 2.3. An example for shadowing by an extern variable

1 #include <stdio.h>
2
3 unsigned i = 1;
4
5 int main(void) {
6 unsigned i = 2; /* a new object */
7 if (i) {
8 extern unsigned i; /* an existing object */
9 printf("%u\n", i);

10 } else {
11 printf("%u\n", i);
12 }
13 }

Rule 2.13.2.1 Identifiers only have visibility inside their scope, starting at their decla-
ration.

Rule 2.13.2.2 The visibility of an identifier can be shadowed by an identifier of the same
name in a subordinate scope.

We also see that visibility of an identifier and usability of the object that it represents,
are not the same thing. First, the double x object is used by all calls to squareIt, although
the identifier x is not visible at the point of definition of the function. Then, in Line 12 we
pass the address of the double x variable to the function squareIt although the identifier
is shadowed, there.

Another example concerns declarations that are tagged with the storage class extern.
These always designate an object of static storage duration that is expected to be defined
at file scope28, see Listing 2.3.

This program has three declarations for variables named i, but only two definitions:
the declaration and definition in Line 6 shadows the one in Line 3. In turn declaration
Line 8 shadows Line 6, but it refers to the same object as the object defined in Line 3.[Exs 29]

Rule 2.13.2.3 Every definition of a variable creates a new distinct object.

So in the following the char arrays A and B identify distinct objects, with distinct
addresses; the expression A == B must always be false.

1 char const A[] = { ’e’, ’n’, ’d’, ’\0’, };
2 char const B[] = { ’e’, ’n’, ’d’, ’\0’, };
3 char const* c = "end";
4 char const* d = "end";
5 char const* e = "friend";
6 char const* f = (char const []){ ’e’, ’n’, ’d’, ’\0’, };
7 char const* g = (char const []){ ’e’, ’n’, ’d’, ’\0’, };

But how many distinct array objects are there in total? It depends, the compiler has a
lot of choices:

Rule 2.13.2.4 Read-only object literals may overlap.

28In fact, such an object can be defined at file scope in another translation unit.
[Exs 29]Which value is printed by this program?
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In the above example we have three string literals and two compound literals. These
are all object literals and they are read-only: strings literals are read-only by definition,
the two compound literals are const-qualified. Four of them have exactly the same base
type and content (’e’, ’n’, ’d’, ’\0’), and so the four pointers c, d, f and g may all
be initialized to the same address of one char array. The compiler may even save more
memory: this address may just be &e[3], by using the fact that “end” appears at the end of
“friend”.

As we have seen from the examples above, the usability of an object is not only a
lexical property of an identifier or of the position of definition (for literals) but also depends
on the state of execution of the program. The lifetimeC of an object has a starting point
and an end point:

Rule 2.13.2.5 Objects have a lifetime outside of which they can’t be accessed.

Rule 2.13.2.6 Refering to an object outside of its lifetime has undefined behavior.

How this start and end point of an object are defined depends on the tools that we
use to create it. We distinguish four different storage durationsC for objects in C, staticC
when it is determined at compile time, automaticC when it is automatically determined at
run time, allocatedC when it is explicitly determined by function calls malloc and friends,
and threadC when it is bound to a certain thread of execution.

For the first three types we already have seen a lot of examples. Thread storage dura-
tion (_Thread_local or thread_local) is related to C’s thread API, which we only will
see later in Section 19.

Allocated storage duration, is straightforward: the lifetime of such an object starts
from the corresponding call to malloc, calloc, realloc or aligned_alloc that creates
it. It ends with a call to free or realloc that destroys it, or, if no such call is issued with
the end of the program execution.

The two other cases of storage duration need more explanation, and so we will discuss
them in more length below.

13.2.1. Static storage duration. Objects with static storage duration can be defined
by two different means:

• Objects that are defined in file scope. Variables or compound literals can have
that property.

• Variables that are declared inside a function block and that have the storage class
specifier static.

Such objects have a lifetime that is the whole program execution. Because they are
considered alive before any application code is executed, they can only be initialized with
expressions that are known at compile time or can be resolved by the system’s process
startup procedure.

1 double A = 37;
2 double* p
3 = &( double){ 1.0, };
4 int main(void) {
5 static B;
6 }

This defines four objects of static storage duration, those identified with A, p and B and
a compound literal defined in Line 3. Three of them have type double, one has type
double*.

All four objects are properly initialized from the start; three of them are initialized
explicitly, B is initialized implicitly with 0.
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Rule 2.13.2.7 Objects with static storage duration are always initialized.

The example of B shows that an object with a lifetime that is the whole program execu-
tion isn’t necessarily visible in the whole program. The extern example above also shows
that an object with static storage duration that is defined elsewhere can become visible
inside a narrow scope.

13.2.2. Automatic storage duration. This is the most complicated case in nature: rules
for automatic storage duration are implicit and therefore need the most explanation. There
are several cases of objects that can be defined explicitly or implicitly that fall under this
category:

• any block scope variables that are not declared static, that are declared as auto
(the default), or register

• block scope compound literals
• some temporary objects that are returned by function calls.

The simplest and most current case for the lifetime of automatic objects

Rule 2.13.2.8 Unless they are VLA or temporary objects, automatic objects have a life-
time corresponding to the execution of their block of definition.

So this rule covers automatic variables and compound literals that are declared inside
functions. Such objects of automatic storage duration have a big advantage for optimiza-
tion: the compiler usually sees the full usage of such a variable and may by that decide if
it may alias. This is where the difference between the auto and register variables comes
into play:

Rule 2.13.2.9 The & operator is not allowed for variables declared with register.

With that, we can’t inadvertently violate Rule 2.12.3.2 and take the address of a
register variable. As a simple consequence we get:

Rule 2.13.2.10 Variables declared with register can’t alias.

So with register variable declarations the compiler can be forced to tell us where
there would eventually be some optimization potential.

Rule 2.13.2.11 Declare local variables in performance critical code as register.

Let’s get back to rule 2.13.2.8. It is quite particular if you think of it: the lifetime of
such an object does already start when its scope of definition is entered and not, as one
would perhaps expect, later, when its definition is first met during execution.

To note the difference let us look at Listing 2.4, which is in fact a variant of an example
that can be found in the C standard document.

We will be particularly interested in the lines printed if this function is called as
fgoto(2). On my computer the output looks as

Terminal

0 1: p and q are unequal, *p is 0

1 2: p and q are equal, *p is 1

Admittedly, this code is a bit contrived. It uses a new construct that we haven’t yet
seen in action, goto. As the name indicates this is a jump statementC . In this case in
instructs to continue execution at the place of labelC AGAIN. Later we will see contexts
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LISTING 2.4. A contrived example for the use of a compound literal

3 void fgoto(unsigned n) {
4 unsigned j = 0;
5 unsigned* p = 0;
6 unsigned* q;
7 AGAIN:
8 if (p) printf("%u:␣p␣and␣q␣are␣%s,␣*p␣is␣%u\n",
9 j,

10 (q == p) ? "equal" : "unequal",
11 *p);
12 q = p;
13 p = &(( unsigned){ j, });
14 ++j;
15 if (j <= n) goto AGAIN;
16 }

j p q printf
0 0 indetermined skipped
1 addr of literal of j = 0 0 printed
2 addr of literal of j = 1 addr of literal of j = 0 printed

where using goto makes a bit more sense. The demonstrative purpose here is just to jump
over the definition of the compound literal.

So let us look what happens with the printf call during the execution. For n == 2
execution meets the corresponding line three times, but because p is 0, initially, at the first
passage the printf call itself is skipped. The values of our three variables in that line is:

Here we see that for j==2 pointers p and q hold addresses that are obtained at different
iterations. So why then in my printout above I have that both addresses are equal? Is this
just a coincidence? Or is there even undefined behavior because I am using the compound
literal lexically at a place before it is defined?

In fact the C standard prescribes that the output that is shown above must be produced.
In particular, for j==2 the values of p and q are equal and valid, and the value of the object
they are pointing to is 1. Or stated otherwise:

In the example above, the use of *p is well defined, although lexically the evaluation of
*p precedes the definition of the object. Also, there is exactly one such compound literal,
and therefore the addresses are equal for j==2.

Rule 2.13.2.12 For an object that is not a VLA, lifetime starts when the scope of the
definition is entered, and it ends when that scope is left.

Rule 2.13.2.13 Initializers of automatic variables and compound literals are evaluated
each time the definition is met.

In fact, in our example the compound literal is visited three times, and set to values 0,
1 and 2 in turn.

For VLA the lifetime is given by a different rule, namely

Rule 2.13.2.14 For a VLA, lifetime starts when the definition is encountered, ends when
the visibility scope is left.

So for a VLA, our strange trick from above using goto would not be valid: we are not
allowed to use the pointer to a VLA in code that precedes the definition, even if we still are
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inside the same block. The reason for this special treatment of VLA is that their size is a
runtime property and therefore the space for it simply can’t be allocated when the block of
the declaration is entered.

The other case that has a special treatment are chimeras: sort-of-objects that are the
return values of functions. As you know now, functions normally return values and not
objects. There is one exceptions if the return type contains an array type, such as here:

1 struct demo { unsigned ory [1]; };
2 struct demo mem(void);
3
4 printf("mem().ory[0]␣is␣%u\n", mem().ory [0]);

The only reason that objects with temporary lifetime exist in C is to be able to access
fields of such a function return value. Don’t use them for anything else:

Rule 2.13.2.15 Objects of temporary lifetime are read-only.

Rule 2.13.2.16 Temporary lifetime ends at the end of the enclosing full expression.

13.3. Initialization. In Section 5.3 we already have seen the importance of initial-
ization. It is crucial to guarantee that a program starts in a well defined state and stays so
during all execution. The storage duration of an object determines how it is initialized.

Rule 2.13.3.1 Objects of static or thread storage duration are initialized per default.

As you probably recall, such a default initialization is the same as to initialize all fields
of an object by 0. In particular, default initialization works well for base types that might
have a non-trivial representation for their “0” value, namely pointers and floating point
types.

For other objects, automatic or allocated, we must do something

Rule 2.13.3.2 Objects of automatic or allocated storage duration must be initialized
explicitly.

The simplest way to achieve initialization are initializers, they put variables and com-
pound literals in a well defined state as soon as they become visible.

For arrays that we allocate as VLA or through dynamic allocation this is not possible,
so we have to provide initialization through assignment. In principle we could do this
manually each time we allocate such an object, but such code becomes difficult to read and
to maintain, because such initialization parts may then visually separate definition and use.
The easiest way to avoid this is to encapsulate initialization into functions:

Rule 2.13.3.3 Systematically provide an initialization function for each of your data
types.

Here, the emphasis lays on “systematically”: you should have a consistent convention
how such initializing functions should work and how they should be named. To see that let
us got back to rat_init, the initialization function for our rat data type. It implements a
specific API for such functions:

• For a type toto the initialization function is named toto_init.
• The first argument to such a _init function is the pointer to the object that is to

be initialized.
• If that pointer to object is null, the function does nothing.
• Other arguments can be provided to pass initial values for certain fields.
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• The function returns the pointer to the object that it received or 0 if an error
occurred.

With such properties such a function can be used easily in an initializer for a pointer:

rat const* myRat = rat_init(malloc(sizeof(rat)), 13, 7);

Observe that this has several advantages:
• If the call to malloc fails by returning 0, the only effect is that myRat is initialized

to 0. Thus myRat is always in a well defined state.
• If we don’t want the object to be changed afterwards we can qualify the pointer

target as const from the start. All modification of the new object happens inside
the initialization expression on the right side.

Since such initialization can then appear in many places we can also encapsulate this
into another function:

1 rat* rat_new(long long numerator ,
2 unsigned long long denominator) {
3 return rat_init(malloc(sizeof(rat)),
4 numerator ,
5 denominator);
6 }

The initialization using that function becomes

rat const* myRat = rat_new (13, 7);

For macro addicts as myself we can even easily define a type generic macro that does
such an encapsulation once and for all

#define P99_NEW(T, ...) T ## _init(malloc(sizeof(T)), __VA_ARGS__)

With this we could have written the initialization above as

rat const* myRat = P99_NEW(rat , 13, 7);

Which has the advantage to be at least as readable as the rat_new variant, but avoids
the additional declaration of such a function for all types that we define.

Such macro definitions are frowned upon by many, so many projects would probably
not accept this as a general strategy, but you should at least be aware that such a possibility
exists. It uses two features of macros that we have not yet encountered:

• Concatenation of tokens is achieved with the ## operator. Here T ## _init
just melts the argument T and _init into one token: with rat this produces
rat_init, with toto this produces toto_init.

• The construct ... provides an argument list of variable length. The whole set of
arguments that is passed after the first is accessible inside the macro expansion
as __VA_ARGS__. By that we can pass any number of arguments as required by
the corresponding _init function to P99_NEW.

If we have to initialize arrays by means of a for-loop things get even uglier. Here also
it is easy to encapsulate with a function:
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1 rat* rat_vinit(size_t n, rat p[n]) {
2 if (p)
3 for (size_t i = 0; i < n; ++i)
4 rat_init(p+i, 0, 1);
5 return p;
6 }

With such a function, again, initialization becomes straightforward:

rat* myRatVec = rat_vinit (44, malloc(sizeof(rat [44])));

Here an encapsulation into a function is really better, since repeating the size may
easily introduce errors

1 rat* rat_vnew(size_t size) {
2 return rat_vinit(size , malloc(sizeof(rat[size])));
3 }

13.4. Digression: a machine model. Up to now, we mostly argued about C code
from within, using the internal logic of the language to describe what was going on. This
section here is an optional digression that deviates from that. If you really can’t bear it,
yet, you may skip over, otherwise remember Rule B and dive.

We will see how a typical compiler translates C to a language that is closer to a specific
machine, why certain choices for such a translation are made, and how these choices reflect
back into the definition of C. To do so we have to have an idea (a model) about how
computers actually work.

Traditionally, computer architectures were described with the von Neumann model30.
In this model a processing unit has a finite number of hardware registers that can hold
integer values, a main memory that holds the program as well as data and that is linearly
addressable, and a finite instruction set that describes the operations that can be done with
these components.

The intermediate programming language family that is usually used to describe ma-
chine instructions as they are understood by your CPU are called assemblerC , and it still
pretty much builds upon the von Neumann model. There is not one unique assembler lan-
guage (as e.g. C that is valid for all platforms) but a whole set of dialects that take different
particularities into account: of the CPU, the compiler or the operating system. The as-
sembler that we use in the following is the one used by the gcc compiler for the x86_64
processor architecture.[Exs 31] If you don’t know what that means, don’t worry, this is just
an example of one such architecture.

Listing 2.5 shows an assembler print out for the function fgoto from Listing 2.4. Such
assembler code operates with instructionsC on hardware registers and memory locations.
E.g. the line movl $0, -16(%rbp) stores (“moves”) the value 0 to the location in memory
that is 16 bytes below the one indicated by register %rbp. The assembler program also
contains labelsC that identify certain points in the program. E.g. fgoto is entry pointC of
the function and .L_AGAIN is the counterpart in assembler of the goto label AGAIN in C.

As you probably have guessed, the text on the right after the # character are comments
that try to link individual assembler instructions to their C counterparts.

30Invented around 1945 by J. Presper Eckert and John William Mauchly for the ENIAC project; first described
by John von Neumann (1903 – 1957, also Neumann János Lajos and Johann Neumann von Margitta) one of the
pioneers of modern science, in von Neumann [1945].

[Exs 31]Find out which compiler arguments produce assembler output for your platform.
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LISTING 2.5. An assembler version of the fgoto function

10 .type fgoto , @function
11 fgoto:
12 pushq %rbp # save base pointer
13 movq %rsp , %rbp # load stack pointer
14 subq $48, %rsp # adjust stack pointer
15 movl %edi , -36(%rbp) # fgoto #0 => n
16 movl $0, -4(%rbp) # init j
17 movq $0, -16(%rbp) # init p
18 .L_AGAIN:
19 cmpq $0, -16(%rbp) # if (p)
20 je .L_ELSE
21 movq -16(%rbp), %rax # p ==> rax
22 movl (%rax), %edx # *p ==> edx
23 movq -24(%rbp), %rax # ( == q)?
24 cmpq -16(%rbp), %rax # (p == )?
25 jne .L_YES
26 movl $.L_STR_EQ , %eax # yes
27 jmp .L_NO
28 .L_YES:
29 movl $.L_STR_NE , %eax # no
30 .L_NO:
31 movl -4(%rbp), %esi # j ==> printf #1
32 movl %edx , %ecx # *p ==> printf #3
33 movq %rax , %rdx # eq/ne ==> printf #2
34 movl $.L_STR_FRMT , %edi # frmt ==> printf #0
35 movl $0, %eax # clear eax
36 call printf
37 .L_ELSE:
38 movq -16(%rbp), %rax # p ==|
39 movq %rax , -24(%rbp) # ==> q
40 movl -4(%rbp), %eax # j ==|
41 movl %eax , -28(%rbp) # ==> cmp_lit
42 leaq -28(%rbp), %rax # &cmp_lit ==|
43 movq %rax , -16(%rbp) # ==> p
44 addl $1, -4(%rbp) # ++j
45 movl -4(%rbp), %eax # if (j
46 cmpl -36(%rbp), %eax # <= n)
47 jbe .L_AGAIN # goto AGAIN
48 leave # rearange stack
49 ret # return

This assembler function uses hardware registers %eax, %ecx, %edi, %edx, %esi, %rax,
%rbp, %rcx, %rdx, and %rsp. This is much more than the original von Neumann machine
had, but the main ideas are still present: we have some general purpose registers that are
used to represent values from our data, such as j or p, of our C program. Two others have
a very special role, %rbp (base pointer) and %rsp (stack pointer).

The function disposes of a reserved area in memory, often called The StackC , that
holds its local variables and compound literals. The “upper” end of that area is designated
by the %rbp register, and the objects are accessed with negative offsets relative to that
register. E.g. the variable n is found from position -36 before %rbp encoded as -36(%rbp).
The following table represents the layout of this memory chunk that is reserved for function
fgoto, and the values that are stored there at three different points of the execution of the
function.
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. . . printf fgoto caller . . .
position −48 −36 −28 −24 −16 −8 −4 rbp
meaning n cmp_lit q p j
after init /////garb /////garb 2 /////garb /////garb 0 /////garb 0
after iter 0 /////garb /////garb 2 0 0 rbp-28 /////garb 1
after iter 1 /////garb /////garb 2 1 rbp-28 rbp-28 /////garb 2

This example is of particular interest to learn about automatic variables, and how these
are set up, when execution enters the function. On this particular machine when entering
fgoto, three registers hold information for this call: %edi holds the function argument, n,
%rbp points to the base address of the calling function and %rsp points to the top address in
memory where this call to fgoto may store its data.

Now let us consider how the above assembler code sets up things. Right at the start
fgoto executes three instructions to set up its “world” correctly. It saves %rbp because
it needs this register for its own purpose, it moves the value from %rsp to %rbp and then
decrements %rsp by 48. Here, 48 is the number of bytes that the compiler has computed
for all automatic objects that that fgoto needs. Because of this simple type of setup, the
space that is reserved by that procedure is not initialized but filled with garbage. In the
three following instructions three of the automatic objects are then initialized (n, j and p),
but others remain uninitialized until later.

After having done such a setup, the function is ready to go. In particular it can easily
call another function itself: %rsp now points to the top of a new memory area that such a
called function can use. This can be seen in the middle part, after the label .L_NO. This part
implements the call to printf: it stores the four arguments that the function is supposed
to receive in registers %edi, %esi, %ecx, %rdx, in that order, clears %eax, and then calls the
function.

To summarize, the setup of a memory area for the automatic objects (without VLA) of
a function only needs very few instructions, regardless how many such automatic objects
are effectively used by the function. If the function had more, the magic number 48 from
above would just have to be modified to the new size of the area.

As a consequence of the way this is done,
• automatic objects are usually available from the start of a function or scope
• initialization of automatic variables is not enforced.

This maps well the rules for the lifetime and initialization of automatic objects in C.
Now the assembler output from above is only half of the story, at most. It was produced

without optimization, just to show the principle assumptions that can be made for such code
generation. When using optimization the as-if Rule 1.5.0.7 allows to reorganize the code
substantially. With full optimization my compiler produces something like Listing 2.6.

As you can see the compiler has completely restructured the code. This code just
reproduces the effects that the original code had, namely its output is the same as before.
But it doesn’t use objects in memory, doesn’t compare pointers for equality or even has any
trace of the compound literal. E.g. it doesn’t implement the iteration for j=0 at all. This
iteration has no effects, so it is simply omitted. Then, for the other iterations it distinguishes
a version with j=1, where the pointers p and q of the C program are known to be different.
Then, the general case just has to increment j and to set up the arguments for printf
accordingly.[Exs 32][Exs 33]

All we have seen here has been code that didn’t use VLA. These change the pic-
ture, because the trick that simply modified %rsp by a constant doesn’t work if the needed

[Exs 32]Using the fact that p is actually assigned the same value over and over, again, write a C program that gets
closer to how the optimized assembler version looks like.

[Exs 33]Even the optimized version leaves room for improvement, the inner part of the loop can still be shortend.
Write a C program that explores this potential when compiled with full optimization.
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LISTING 2.6. An optimized assembler version of the fgoto function

12 .type fgoto , @function
13 fgoto:
14 pushq %rbp # save base pointer
15 pushq %rbx # save rbx register
16 subq $8, %rsp # adjust stack pointer
17 movl %edi , %ebp # fgoto #0 => n
18 movl $1, %ebx # init j, start with 1
19 xorl %ecx , %ecx # 0 ==> printf #3
20 movl $.L_STR_NE , %edx # "ne" ==> printf #2
21 testl %edi , %edi # if (n > 0)
22 jne .L_N_GT_0
23 jmp .L_END
24 .L_AGAIN:
25 movl %eax , %ebx # j+1 ==> j
26 .L_N_GT_0:
27 movl %ebx , %esi # j ==> printf #1
28 movl $.L_STR_FRMT , %edi # frmt ==> printf #0
29 xorl %eax , %eax # clear eax
30 call printf
31 leal 1(%rbx), %eax # j+1 ==> eax
32 movl $.L_STR_EQ , %edx # "eq" ==> printf #2
33 movl %ebx , %ecx # j ==> printf #3
34 cmpl %ebp , %eax # if (j <= n)
35 jbe .L_AGAIN # goto AGAIN
36 .L_END:
37 addq $8, %rsp # rewind stack
38 popq %rbx # restore rbx
39 popq %rbp # restore rbp
40 ret # return

memory is not of constant size. For a VLA the program has to compute the size with the
knowledge a the very point of definition, to adjust %rsp accordingly, there, and then to undo
that modification of %rsp once execution leaves the scope of definition.

14. More involved use of the C library

14.1. Text processing. Now that we know about pointers and how they work, we will
revisit some of the C library functions for text processing. As a first example consider the
following program that reads a series of lines with numbers from stdin an writes these
same numbers in a normalized way to stdout, namely as comma separated hexadecimal
numbers.

This program splits the job in three different tasks:

• fgetline to read a line of text,
• numberline to split such a line in a series of numbers of type size_t, and
• fprintnumbers to print them.

At the heart is the function numberline. It splits the lbuf string that it receives in numbers,
allocates an array to store them and also returns the count of these numbers through the
pointer argument np if that is provided.
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. numberline.c

197 int fprintnumbers_opt(FILE*restrict stream ,
198 char const form[restrict static 1],
199 char const sep[restrict static 1],
200 size_t len , size_t nums[restrict len]) {
201 if (! stream) return -EFAULT;
202 if (len && !nums) return -EFAULT;
203 if (len > INT_MAX) return -EOVERFLOW;
204
205 int err = errno;
206 size_t const seplen = strlen(sep);
207
208 size_t tot = 0;
209 size_t mtot = len*( seplen +10);
210 char* buf = malloc(mtot);
211
212 if (!buf) return error_cleanup(ENOMEM , err);
213
214 for (size_t i = 0; i < len; ++i) {
215 tot += sprintf (&buf[tot], form , nums[i]);
216 ++i;
217 if (i >= len) break;
218 if (tot > mtot -20) {
219 mtot *= 2;
220 char* nbuf = realloc(buf , mtot);
221 if (buf) {
222 buf = nbuf;
223 } else {
224 tot = error_cleanup(ENOMEM , err);
225 goto CLEANUP;
226 }

numberline.c

numberline: interpret string lbuf as a sequence of numbers represented with base

Returns: a newly allocated array of numbers as found in lbuf

Parameters:
lbuf is supposed to be a string
np if non-null, the count of numbers is stored in *np
base value from 0 to 36, with the same interpretation as for

strtoul

Remarks: The caller of this function is responsible to free the array that is returned.

size_t* numberline(size_t size , char const lbuf[restrict size
],

size_t*restrict np, int base);

That function itself is split into two parts, that perform quite different tasks; one
that performs the task of interpretation of the line, numberline_inner. The other other,
numberline itself, is just a wrapper around the first that verifies or ensures the prerequisites
for the first.
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Function numberline_inner puts the C library function strtoull in a loop that col-
lects the numbers and returns a count of them.

. numberline.c

97 static
98 size_t numberline_inner(char const*restrict act ,
99 size_t numb[restrict], int base){

100 size_t n = 0;
101 for (char* next = 0; act [0]; act = next) {
102 numb[n] = strtoull(act , &next , base);
103 if (act == next) break;
104 ++n;
105 }
106 return n;
107 }

Now we see the use of the second parameter of strtoull. Here, it is the address of
the variable next, and next is used to keep track of the position in the string that ends the
number. Since next is a pointer to char, the argument to strtoull is a pointer to a pointer
to char.

Suppose strtoull is called as strtoull("0789a", &next, base). According to
the value of the parameter base that string is interpreted differently. If for example base
has value 10, the first non-digit is the character ’a’ at the end.

base digits number *next
8 2 7 ’8’

10 4 789 ’a’
16 5 30874 ’\0’

0 2 7 ’8’

There are two conditions that may end the parsing of the line that numberline_inner
receives.

• act points to a string termination, namely to a 0 character.
• Function strtoull doesn’t find a number, in which case next is set to the value

of act.
These two conditions are found as the controlling expression of the for-loop and as if-
break condition inside.

Observe that the C library function strtoull has a historic weakness: the first argu-
ment has type char const* whereas the second has type char**, without const-qualifi-
cation. This is why we had to type next as char* and couldn’t use char const*. As a
result of a call to strtoull we could inadvertently modify a read-only string and crash the
program.

Rule 2.14.1.1 The string strto... conversion functions are not const-safe.

Now, the function numberline itself provides the glue around numberline_inner:
• If np is null, it is set to point to an auxiliary.
• The input string is a checked for validity.
• An array with enough elements to store the values is allocated and tailored to the

appropriate size, once the correct length is known.
We use three functions from the C library: memchr, malloc and realloc. As in

previous examples a combination of malloc and realloc ensures that we have an array of
the necessary length.
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. numberline.c

109 size_t* numberline(size_t size , char const lbuf[restrict size],
110 size_t*restrict np, int base){
111 size_t* ret = 0;
112 size_t n = 0;
113 /* Check for validity of the string , first. */
114 if (memchr(lbuf , 0, size)) {
115 /* The maximum number of integers encoded. To see that this
116 may be as much look at the sequence 08 08 08 08 ... */
117 ret = malloc(sizeof(size_t [1+(2* size)/3]));
118
119 n = numberline_inner(lbuf , ret , base);
120
121 /* Supposes that shrinking realloc will always succeed. */
122 size_t len = n ? n : 1;
123 ret = realloc(ret , sizeof(size_t[len]));
124 }
125 if (np) *np = n;
126 return ret;
127 }

The call to memchr returns the address of the first byte that has value 0, if there is any,
or (void*)0 if there is none. Here, this is just used to check that within the first size bytes
there effectively is a 0-character. By that it guarantees that all the string functions that are
used underneath (in particular strtoull) operate on a 0-terminated string.

With memchr we encounter another problematic interface. It returns a void* that po-
tentially points into a read-only object.

Rule 2.14.1.2 The memchr and strchr search functions are not const-safe.

In contrast to that, functions that return an index position within the string would be safe.

Rule 2.14.1.3 The strspn and strcspn search functions are const-safe.

Unfortunately, they have the disadvantage that they can’t be used to check if a char-
array is in fact a string or not. So they can’t be used, here.

Now, let us look into the second function in our example:

numberline.c

fgetline: read one text line of at most size-1 bytes.

The ’\n’ character is replaced by 0.

Returns: s if an entire line was read successfully. Otherwise, 0 is returned and s
contains a maximal partial line that could be read. s is null terminated.

char* fgetline(size_t size , char s[restrict size],
FILE*restrict stream);

This is quite similar to the C library function fgets. The first difference is the inter-
face: the parameter order is different and the size parameter is a size_t instead of an
int. As fgets, it returns a null pointer if the read from the stream failed. Thereby the
end-of-file condition is easily detected on stream.

More important is that fgetline handles another critical case more gracefully. It
detects if the next input line is too long or if the last line of the stream ends without a ’\n’
character.
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. numberline.c

129 char* fgetline(size_t size , char s[restrict size],
130 FILE*restrict stream){
131 s[0] = 0;
132 char* ret = fgets(s, size , stream);
133 if (ret) {
134 /* s is writable so can be pos. */
135 char* pos = strchr(s, ’\n’);
136 if (pos) *pos = 0;
137 else ret = 0;
138 }
139 return ret;
140 }

The first two lines of the function guarantee that s is always null terminated: either by
the call to fgets, if successful, or by enforcing it to be an empty string. Then, if something
was read, the first ’\n’ character that can be found in s is replaced by 0. If none is found, a
partial line has been read. In that case the caller can detect this situation and call fgetline
again to attempt to read the rest of the line or to detect an end-of-file condition.[Exs 34]

Besides fgets this uses strchr from the C library. The lack of const-safeness of this
function is not an issue, here, since s is supposed to be modifiable, anyhow. Unfortunately,
with the interfaces as they exist now, we always have to do this assessment ourselves.
Later, in Section 23.3 we will see a proposal to improve on that situation.

Since it involves a lot of detailed error handling, We will only go into all details of the
function fprintnumbers in Section 15, below. For our purpose here we restrict ourselves
to the discussion of function sprintnumbers, that is a bit simpler because it only writes to
a string, instead of a stream, and because it just assumes that the buffer buf that it receives
provides enough space.

numberline.c

sprintnumbers: print a series of numbers nums in buf, using printf format form,
separated by sep characters and terminated with a newline character.

Returns: the number of characters printed to buf.

This supposes that tot and buf are big enough and that form is a format suitable to print
size_t.

int sprintnumbers(size_t tot , char buf[restrict tot],
char const form[restrict static 1],
char const sep[restrict static 1],
size_t len , size_t nums[restrict len]);

Function sprintnumbers uses a function of the C library that we haven’t met yet,
sprintf. Its formatting capacities are the same as those of printf or fprintf, only that
it doesn’t print to a stream, but to a char array, instead.

Function sprintf always ensures that a 0 character is placed at the end of the string. It
also returns the length of that string, that is the number of characters before the 0 character
that have been written. This is used above to update the pointer to the current position in
the buffer. sprintf still has an important vulnerability:

Rule 2.14.1.4 sprintf makes no provision against buffer overflow.

[Exs 34]Improve the main of the example such that it is able to cope with arbitrarily long input lines.
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. numberline.c

147 int sprintnumbers(size_t tot , char buf[restrict tot],
148 char const form[restrict static 1],
149 char const sep[restrict static 1],
150 size_t len , size_t nums[restrict len]) {
151 char* p = buf; /* next position in buf */
152 size_t const seplen = strlen(sep);
153 if (len) {
154 size_t i = 0;
155 for (;;) {
156 p += sprintf(p, form , nums[i]);
157 ++i;
158 if (i >= len) break;
159 memcpy(p, sep , seplen);
160 p += seplen;
161 }
162 }
163 memcpy(p, "\n", 2);
164 return (p-buf)+1;
165 }

That is, if we pass an insufficient buffer as a first argument, bad things will happen.
Here inside sprintnumbers, much the same as sprintf itself, we suppose that the buffer
is large enough to hold the result. If we aren’t sure that the buffer can hold the result, we
can use the C library function snprintf, instead.

1 int snprintf(char*restrict s, size_t n, char const*restrict form ,
...);

This function ensures in addition that never more than n bytes are written to s. If the
return value is larger or equal to n the string is been truncated to fit. In particular, if n is 0
nothing is written into s.

Rule 2.14.1.5 Use snprintf when formatting output of unknown length.

In summary snprintf has a lot of nice properties:

• The buffer s will not overflow.
• After a successful call s is a string.
• When called with n and s set to 0, snprintf just returns the length of the string

that would have been written.

By using that, a simple for-loop to compute the length of all the numbers printed on
one line looks as follows:

. numberline.c

180 /* Count the chars for the numbers. */
181 for (size_t i = 0; i < len; ++i)
182 tot += snprintf(0, 0, form , nums[i]);

We will later see how this is used in the context of fprintnumbers.
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TABLE 1. Format specifications for scanf and similar functions, with
the general syntax [XX][WW][LL]SS

XX * assignment suppression
WW field width maximum number of input characters
LL modifier select width of target type
SS specifier select conversion

TABLE 2. Format specifiers for scanf and similar functions. With an
’l’ modifier, specifiers for characters or sets of characters (’c’, ’s’,
’[’) transform multibyte character sequences on input to wide character
wchar_t arguments, see Section 14.3.

SS conversion pointer to skip space analogous to function
’d’ decimal signed type yes strtol, base 10
’i’ decimal, octal or hex signed type yes strtol, base 0
’u’ decimal unsigned type yes strtoul, base 10
’o’ octal unsigned type yes strtoul, base 8
’x’ hexadecimal unsigned type yes strtoul, base 16
’aefg’ floating point floating point yes strtod
’%’ ’%’ character no assignment no
’c’ characters char no memcpy
’s’ non-white-space char yes strcspn with

"␣\f\n\r\t\v"
’[’ scan set string no strspn or strcspn
’p’ address void yes
’n’ character count signed type no

14.2. Formatted input. Similar as the printf family of functions for formatted out-
put, the C library as a series of functions for formatted input: fscanf, for input from an
arbitrary stream, scanf for stdin, and sscanf from a string. For example the following
would read a line of three double values from stdin:

1 double a[3];
2 /* Read and process an entire line with three double values */
3 if (scanf("␣%lg␣%lg␣%lg␣", &a[0], &a[1], &a[2]) < 3) {
4 printf("not␣enough␣input␣values !\n");
5 }

Tables 1 to 3 give an overview of the format for specifiers. Unfortunately, these func-
tions are more difficult to use than printf and also they have conventions that diverge
from printf in subtle points:

• To be able to return values for all formats the arguments are pointers to the type
that is scanned.

• White space handling is subtle and sometimes unexpected. A space character,
’␣’, in the format matches any sequence of white-space, namely spaces, tabs
and newline characters. Such a sequence may in particular be empty or contain
several newline characters.

• String handling is different. As the arguments to the scanf functions are point-
ers anyhow, formats "%c" and "%s" both refer to an argument of type char*.
Where "%c" reads a character array of fixed size (of default 1), "%s" matches
any sequence of non-white-space characters and adds a terminating 0 character.
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TABLE 3. Format modifiers for scanf and similar functions. Note that
the significance for float* and double* arguments is different than for
printf formats.

character type
"hh" char types
"h" short types
"" signed, unsigned, float, char arrays and strings
"l" long integer types, double, wchar_t characters and strings
"ll" long long integer types
"j" intmax_t, uintmax_t
"z" size_t
"t" ptrdiff_t
"L" long double

• The specification of types in the format have subtle differences compared to
printf, in particular for floating point types. To be consistent between the two,
best is to use "%lg" or similar for double and "%Lg" for long double, both for
printf and scanf.

• There is a rudimentary utility to recognize character classes. For example, a for-
mat of "%[aeiouAEIOU]" can be use to scan for the vowels of the Latin alphabet.
In such a character class specification the caret ’^’ negates the class if it is found
at the beginning. Thus "%[^\n]%*[\n]" scans a whole line (but which must be
non-empty) and then discards the newline character at the end of the line.

These particularities make the scanf family of functions difficult to use. E.g. our
seemingly simple example above has the flaw (or feature) that it is not restricted to read
a single input line, but it would happily accept three double values that are spread over
several lines.[Exs 35] in most cases where you have a regular input pattern such as a series
of numbers they are best avoided.

14.3. Extended character sets. Up to now we have used only a limited set of charac-
ter to specify our programs or the contents of string literals that we printed on the console:
namely a set consisting of the Latin alphabet, Arabic numerals and some punctuation char-
acters. This limitation is a historic accident that originates in the early market domination
by the American computer industry, on one hand, and the initial need to encode characters
with a very limited number of bits on the other.36 As we already have seen by the use of the
type name char for the basic data cell, the concepts of a text character and of an indivisible
data component was not very well separated at the start.

Latin from which we inherited our character set, is a language that, as a spoken lan-
guage, is long dead. Its character set is not sufficient to encode the particularities of the
phonetics of other language. Among the European languages English has the particular-
ity that it encodes the missing sounds with combinations of letters such as “ai”, “ou” or
“gh” (fair enough), not with diacritic marks, special characters or ligatures (fär ínóff ), as
do most of its cousins. So for other languages that use the Latin alphabet the possibilities
were already quite restricted, but for languages and cultures that use completely different
scripts (Greek, Russian) or even completely different concepts (Japanese, Chinese) this
restricted American character set was clearly not sufficient.

[Exs 35]Modify the format string in the example such that it only accepts three numbers on a single line, separated
by blanks, and such that the terminating newline character (eventually preceded by blanks) is skipped.

36The character encoding that is dominantly used for the basic character set referred to as ASCII, American
standard code for information interchange.
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During the first years of market expansion out to the world different computer manu-
factors, countries and organizations provided native language support for their respective
communities more or less randomly, added specialized support for graphical characters,
mathematical typesetting, music scores ... without coordination, an utter chaos. As a re-
sult interchanging textual information between different systems, countries, cultures was
difficult if not impossible in many cases; writing portable code that could be used in the
context of different language and different computing platforms had much resemblance to
black arts.

Luckily, these yearlong difficulties are now mainly mastered and on modern systems
we will be able to write portable code that uses “extended” characters in a unified way. The
following code snippet shows how this is supposed to work:

. mbstrings-main.c

87 setlocale(LC_ALL , "");
88 /* Multibyte character printing only works after the locale
89 has been switched. */
90 draw_sep(TOPLEFT "␣©␣2014␣jεnz␣ " gυz,tεt␣", TOPRIGHT);

That is, near the beginning of our program we switch to the “native” locale, and then
we can use and output text containing extended characters, here phonetics (so-called IPA).
The output of this looks similar to

© 2014 jεnz "gυz,tεt

The means to achieve this are quite simple. We have some macros with magic string
literals for vertical and horizontal bars, topleft and topright corners:

. mbstrings-main.c

43 #define VBAR "\u2502" /**< a vertical bar character */
44 #define HBAR "\u2500" /**< a horizontal bar character */
45 #define TOPLEFT "\u250c" /**< topleft corner character */
46 #define TOPRIGHT "\u2510" /**< topright corner character */

And an adhoc function that nicely formats an output line:

mbstrings-main.c

draw_sep: Draw multibyte strings start and end separated by a horizontal line.

void draw_sep(char const start[static 1],
char const end[static 1]) {

fputs(start , stdout);
size_t slen = mbsrlen(start , 0);
size_t elen = 90 - mbsrlen(end , 0);
for (size_t i = slen; i < elen; ++i) fputs(HBAR , stdout);
fputs(end , stdout);
fputc(’\n’, stdout);

}

This uses a function to count the number of print characters in a “multibyte string”
(mbsrlen) and our old friends fputs and fputc for textual output.

The start of all of this by the call to setlocale is important. Chances are that other-
wise you’d see just garbage if you output characters from the extended set to your terminal.
But once you do that and your system is well installed, such characters placed inside multi-
byte strings "fär␣ínóff" should work out not to badly.
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Here, a multibyte character is a sequence of bytes that are interpreted as representing a
single character of the extended character set, and a multibyte string is a string that contains
such multibyte characters. Luckily, these beasts are compatible with ordinary strings as we
have handled them so far:

Rule 2.14.3.1 Multibyte characters don’t contain null bytes.

Rule 2.14.3.2 Multibyte strings are null terminated.

Thus, many of the standard string function such as strcpy work out of the box for
multibyte strings. They introduce one major difficulty, though, namely the fact that the
number of printed characters can no longer be directly deduced from the number of ele-
ments of a char array or by the function strlen. This is why in the code above we use the
(non-standard) function mbsrlen.

mbstrings.h

mbsrlen: Interpret a mb string in mbs and return its length when interpreted as a wide
character string.

Returns: the length of the mb string or -1 if an encoding error occured.

This function can be integrated into a sequence of searches through a string, as long
as a state argument is passed to this function that is consistent with the mb character
starting in mbs. The state itself is not modified by this function.

Remarks: state of 0 indicates that mbs can be scanned without considering any
context.

size_t mbsrlen(char const*restrict mbs ,
mbstate_t const*restrict state);

As you can already see from that description, parsing multibyte strings for the indi-
vidual multibyte characters can be a bit more complicated. In particular, we generally we
may need to keep a parsing state by means of the type mbstate_t that is provided by the C
standard in the header files wchar.h37. This header provides utilities for multibyte strings<wchar.h>

and characters, but also for a so-called wide character type wchar_t. We will see all of
that below.

But before we can do that we have to introduce another international standard, ISO 10646,
so-called Unicode. As the naming indicates Unicode38 attempts to provide a unified frame-
work for character codes. It provides a huge table39 of basically all character concepts that
have been conceived by mankind so far. “Concept” here is really important; we have to
distinguish that from the print form or glyph that a particular character may have in a cer-
tain typesetting, such as a “Latin capital letter A” can appear as A, A, A or A in the present
text. Other such conceptual characters like the character “Greek capital letter Alpha” may
even be printed with the same or similar glyph Α.

Unicode places each character concept, code point in its own jargon, into a linguistic
or technical context. In addition to the definition of the character itself it classifies it, e.g.
as being a capital letter, and relates it to other code points, e.g. by stating that “A” is the
capitalization of “a”.

If you need special characters for your particular language, there are good chances
that you have them on your keyboard and that you can enter them into multibyte string
for coding in C just “as-is”. That is that your system is configured to insert the whole

37The header uchar.h also provides this type.
38http://www.joelonsoftware.com/articles/Unicode.html
39Today Unicode has about 110000 code points.

http://www.joelonsoftware.com/articles/Unicode.html
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byte sequence for an “ä”, say, directly into the text and doing all the magic that is needed
for you. If you don’t have or want that, you can use the technique that we used for the
macros HBAR etc above. There we have used an escape sequence that is new in C1140:
a backslash and a “u” followed by four hexadecimal digits encodes a Unicode codepoint.
E.g. the codepoint for “latin small letter a with diaeresis” is 228 or 0xE4. Inside a multibyte
string this then reads as "\u00E4". Since four hexadecimal digits can only address 65536
codepoints, there is another possibility to specify 8 hexadecimal digits, introduced by a
backslash an a capital “U”, but you will only encounter these in very much specialized
contexts.

In the example above we encoded 4 graphical characters with such Unicode specifica-
tions, characters that most likely are not placed on any keyboard. There are several online
sites that allow you to find the code point for any character that you are searching.

If we want to do more than simple input/output with multibyte characters and strings,
things become a bit more complicated. Already simple counting of the characters is not
trivial, strlen does not give the right answer, and other string functions such as strchr,
strspn or strstr don’t work as expected. Fortunately, the C standard gives us a whole set
of replacement functions, usually prefixed with wcs instead of str, that will work on wide
character strings, instead. The mbsrlen function that we introduced above can be coded
as

. mbstrings.c

30 size_t mbsrlen(char const*s, mbstate_t const*restrict state) {
31 if (!state) state = MBSTATE;
32 mbstate_t st = *state;
33 size_t mblen = mbsrtowcs (0, &s, 0, &st);
34 if (mblen == -1) errno = 0;
35 return mblen;
36 }

The core of this function is the use of the library function mbsrtowcs, “multibyte string
(mbs), restartable, to wide character string (wcs)”, which constitutes one of the primitives
that the C standard provides to handle multibyte strings:

1 size_t mbsrtowcs(wchar_t*restrict dst , char const** restrict src ,
2 size_t len , mbstate_t*restrict ps);

So once we decrypted the abbreviation of the name we know that this function is supposed
to convert an mbs, src, to a wcs, dst. Here, wide characters (wc) of type wchar_t are use
to encode exactly one character of the extended character set and these wide characters are
used to form wcs pretty much in the same way as char compose ordinary strings: they are
null terminated arrays of such wide characters.

The C standard doesn’t restrict the encoding that is used for wchar_t much, but any
sane environment should nowadays use Unicode for its internal representations. You can
check this with two macros as follows:

Modern platforms typically implement wchar_t by either 16 bit or 32 bit integer types.
Which of these should usually not be of much concern to you, if you only use the code
points that are representable with 4 hexadecimal digits in the \uXXXX notation. Those
platforms that use 16 bit effectively can’t use the other code points in \UXXXXXXXX notation,
but this shouldn’t bother you much.

Wide characters and wide character string literals follow analogous rules as we have
seen them for char and strings. For both a prefix of L indicates a wide character or string,

40http://dotslashzero.net/2014/05/21/the-interesting-state-of-unicode-in-c/

http://dotslashzero.net/2014/05/21/the-interesting-state-of-unicode-in-c/
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. mbstrings.h

23 #ifndef __STDC_ISO_10646__
24 # error "wchar_t␣wide␣characters␣have␣to␣be␣Unicode␣code␣points"
25 #endif
26 #ifdef __STDC_MB_MIGHT_NEQ_WC__
27 # error "basic␣character␣codes␣must␣agree␣on␣char␣and␣wchar_t"
28 #endif

e.g. L’ä’ and L’\u00E4’ are the same character, both of type wchar_t, and L"b\u00E4"
is an array of 3 elements of type wchar_t that contains the wide characters L’b’, L’ä’
and 0.

Classification of wide characters is also done in a similar way as for simple char. The
header wctype.h provides the necessary functions and macros.<wctype.h>

To come back to mbsrtowcs, this function parses the multibyte string src into snippets
that correspond to multibyte character, and assigns the corresponding code point to the
wide characters in dst. The parameter len describes the maximal length that the resulting
wcs may have. The parameter state points to a variable that stores an eventual parsing
state of the mbs, we will discuss this concept briefly a bit later.

As you can see now, the function mbsrtowcs has two particularities. First when called
with a null pointer for dst it simply doesn’t store the wcs but only returns the size that
such a wcs would have. Second, it can produce a coding error if the mbs is not encoded
correctly. In that case the function returns (size_t)-1 and sets errno to the value EILSEQ,
see errno.h. Part of the code of mbsrlen is actually a “repair” of that error strategy by<errno.h>

setting errno to 0, again.
Let’s now see into a second function that will help us to handle mbs:

mbstrings.h

mbsrdup: Interpret a sequence of bytes in s as mb string and convert it to a wide
character string.

Returns: a newly malloc’ed wide character string of the appropriate length, 0 if an
encoding error occurred.

Remarks: This function can be integrated into a sequence of such searches through
a string, as long as a state argument is passed to this function that is consistent with
the mb character starting in c. The state itself is not modified by this function.

state of 0 indicates that s can be scanned without considering any context.

wchar_t* mbsrdup(char const*s, mbstate_t const*restrict state)
;

So this function returns a freshly allocated wcs with the same contents as the mbs s
that it receives on input. Besides the fuzz with the state parameter, its implementation is
straightforward:

After determining the length of the target string, we use malloc to allocate space and
mbsrtowcs to copy over the data.

To have a more fine grained control over the parsing of an mbs, the standard provides
the function mbrtowc:

1 size_t mbrtowc(wchar_t*restrict pwc ,
2 const char*restrict s, size_t len ,
3 mbstate_t* restrict ps);
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. mbstrings.c

38 wchar_t* mbsrdup(char const*s, mbstate_t const*restrict state) {
39 size_t mblen = mbsrlen(s, state);
40 if (mblen == -1) return 0;
41 mbstate_t st = state ? *state : *MBSTATE;
42 wchar_t* S = malloc(sizeof(wchar_t[mblen +1]));
43 /* We know that s converts well , so no error check */
44 if (S) mbsrtowcs(S, &s, mblen+1, &st);
45 return S;
46 }

In this interface, parameter len denotes the maximal position in s that is scanned for a
single multibyte character. Since in general we don’t know how such a multibyte encoding
works on the target machine, we have to do some guess work that helps us determine len.
To encapsulate such a heuristic, we cook up the following interface. It has the similar
semantic as mbrtowc but avoids the specification of len:

mbstrings.h

mbrtow: Interpret a sequence of bytes in c as mb character and return that as wide
character through C.

Returns: the length of the mb character or -1 if an encoding error occured.

This function can be integrated into a sequence of such searches through a string, as
long as the same state argument passed to all calls to this or similar functions.

Remarks: state of 0 indicates that c can be scanned without considering any context.

size_t mbrtow(wchar_t*restrict C, char const c[restrict static
1],

mbstate_t*restrict state);

So this function returns the number of bytes that were identified for the first multibyte
character in the string, or -1 when on error. mbrtowc has another possible return value,
-2, for the case that len wasn’t big enough. The implementation uses that return value, to
detect such a situation and to adjust len until it fits:

. mbstrings.c

14 size_t mbrtow(wchar_t*restrict C, char const c[restrict static
1],

15 mbstate_t*restrict state) {
16 if (!state) state = MBSTATE;
17 size_t len = -2;
18 for (size_t maxlen = MB_LEN_MAX; len == -2; maxlen *= 2)
19 len = mbrtowc(C, c, maxlen , state);
20 if (len == -1) errno = 0;
21 return len;
22 }

Here, MB_LEN_MAX is a standard value that will be a good upper bound for len in most
situations.

Let us now go to a function that uses the capacity of mbrtow to identify mbc and to
use that to search inside a mbs.
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mbstrings.h

mbsrwc: Interpret a sequence of bytes in s as mb string and search for wide character
C.

Returns: the occurrence’th position in s that starts a mb sequence corresponding to
C or 0 if an encoding error occurred.

If the number of occurrences is less than occurrence the last such position is returned.
So in particular using SIZE_MAX (or -1) will always return the last occurrence.

Remarks: This function can be integrated into a sequence of such searches through a
string, as long as the same state argument passed to all calls to this or similar functions
and as long as the continuation of the search starts at the position that is returned by
this function.

state of 0 indicates that s can be scanned without considering any context.

char const* mbsrwc(char const s[restrict static 1],
mbstate_t*restrict state ,
wchar_t C, size_t occurrence);

. mbstrings.c

68 char const* mbsrwc(char const s[restrict static 1], mbstate_t*
restrict state ,

69 wchar_t C, size_t occurrence) {
70 if (!C || C == WEOF) return 0;
71 if (!state) state = MBSTATE;
72 char const* ret = 0;
73
74 mbstate_t st = *state;
75 for (size_t len = 0; s[0]; s += len) {
76 mbstate_t backup = st;
77 wchar_t S = 0;
78 len = mbrtow (&S, s, &st);
79 if (!S) break;
80 if (C == S) {
81 *state = backup;
82 ret = s;
83 if (! occurrence) break;
84 --occurrence;
85 }
86 }
87 return ret;
88 }

As said, all of this encoding with multibyte strings and simple IO works perfectly fine
if we have an environment that is consistent. That is if it uses the same multibyte encoding
within your source code as for other text files and on your terminal. Unfortunately here
not all environments use the same encoding, yet, so you may encounter difficulties when
transferring text files (including sources) or executables from one environment to the other.
Besides the definition of the big character table, Unicode also defines 3 encodings that are
now widely used and that hopefully will replace all others, eventually. These are called
UTF-8, UTF-16 and UTF-32 for Unicode Transformation Format with 8 bit, 16 bit and
32 bit words, respectively. With C11, the C language now includes rudimentary direct
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support for these encodings without having to rely on the locale. String literals with these
encodings can be coded as u8"text", u"text" and U"text" which have types char[],
char16_t[] and char32_t[], respectively.

Good chances are that the multibyte encoding on a modern platform is UTF-8, any-
how, and then you wouldn’t need these special literals and types. They would be mostly
useful in a context where you’d have to ensure one of these encodings, e.g. in a network
communication. Life on legacy platforms might be more difficult, see here for an overview
for the Windows41 platform.

14.4. Binary files. In Section 8.2 we have already seen that input and output to
streams can also be performed in binary mode in contrast to the usual text mode as we
have used it up to now. To see the difference, remember that text mode IO doesn’t write
the bytes that we pass to printf or fputs one-to-one to the target file or device.

• Depending on the target platform, a ’\n’ character can be encoded as one or
several characters.

• Spaces that precede a new line can be suppressed.
• Multibyte characters can be transcribed from the execution character set (the pro-

gram’s internal representation) to the character set of the file system underlying
the file.

And similar observations hold for reading data from text files.
If the data that we manipulate is effectively human readable text, all of this is fine,

we can consider ourselves happy that the IO functions together with setlocale make this
mechanism as transparent as possible. But if we are interested in reading or writing binary
data just as it is present in some C objects, this can be quite a burden and lead to serious
difficulties. In particular, binary data could implicitly map to the end-of-line convention of
the file, and thus a write of such data could change the file’s internal structure.

So to read and right binary data easier, we need some more interfaces.

1 size_t fread(void* restrict ptr , size_t size , size_t nmemb ,
2 FILE* restrict stream);
3 size_t fwrite(void const*restrict ptr , size_t size , size_t nmemb ,
4 FILE* restrict stream);
5 int fseek(FILE* stream , long int offset , int whence);
6 long int ftell(FILE* stream);

The use of fread and fwrite is relatively straightforward. Each stream has a cur-
rent file position for reading an writing. If successful, these two functions read or write
size*nmemb bytes from that position onward and then update the file position to the new
value. The return value of both functions is the number of bytes that have been read or
written, so usually size*nmemb, and thus an error occurred if the return value is less than
that.

The functions ftell and fseek can be used to operate on that file position: ftell
returns the position in terms of bytes from the start of the file, fseek positions the file
according to the arguments offset and whence. Here whence can have one of the values,
SEEK_SET refers to the start of the file and SEEK_CUR to current file position before the
call.42

By means of these four functions, we may effectively move forward and backward in
a stream that represents a file and read or write any byte of it as it pleases. This can e.g. be
used to write out a large object in its internal representation to a file and read it in later by
a different program, without performing any modifications.

This interface has some restrictions, though:

41http://www.nubaria.com/en/blog/?p=289
42There is also SEEK_END for the end-of-file position, but this may have platform defined glitches.

http://www.nubaria.com/en/blog/?p=289
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• Since this works with internal representations of objects this is only portable
between platforms and program executions that use that same representation, e.g.
the same endianess. Different platforms, operating systems and even program
executions can have different representations.

• The use of the type long for file positions limits the size of files that can easily be
handled with ftell and fseek to LONG_MAX bytes. On most modern platforms
this corresponds to 2GiB.[Exs 43]

15. Error checking and cleanup

C programs can encounter a lot of error conditions. Errors can be programming errors,
bugs in the compiler or OS software, hardware errors or in some resource exhaustion (e.g.
out of memory), or — any malicious combination of these. For our program to be reliable,
we have to detect such error conditions and to deal with them gracefully.

As a first example take the following description of a function fprintnumbers, that
continues the series of functions that we discussed in Section 14.1.

numberline.c

fprintnumbers: print a series of numbers nums on stream, using printf format form,
separated by sep characters and terminated with a newline character.

Returns: the number of characters printed to stream, or a negative error value on
error.

If len is 0, an empty line is printed and 1 is returned.

Possible error returns are:

• EOF (which is negative) if stream was not ready to be written to
• -EOVERFLOW if more than INT_MAX characters would have to be written, in-

cluding the case that len is greater than INT_MAX.
• -EFAULT if stream or numb are 0
• -ENOMEM if a memory error occurred

This function leaves errno to the same value as occurred on entry.

int fprintnumbers(FILE*restrict stream ,
char const form[restrict static 1],
char const sep[restrict static 1],
size_t len , size_t numb[restrict len]);

As you can see, this function distinguishes four different error conditions, that are in-
dicated by the return of negative constant values. The macros for these values are generally
provided by the platform in errno.h and all start with the capital letter E. Unfortunately<errno.h>

the C standard itself imposes only EOF (which is negative), and EDOM, EILSEQ and ERANGE
which are positive. Other values may or may not be provided. Therefore, in the initial
part of our code we have a sequence of preprocessor statements that give default values for
those that are missing.

[Exs 43]Write a function fseekmax that uses intmax_t instead of long and that achieves large seek values by
combining calls to fseek.
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. numberline.c

36 #include <limits.h>
37 #include <errno.h>
38 #ifndef EFAULT
39 # define EFAULT EDOM
40 #endif
41 #ifndef EOVERFLOW
42 # define EOVERFLOW (EFAULT -EOF)
43 # if EOVERFLOW > INT_MAX
44 # error EOVERFLOW constant is too large
45 # endif
46 #endif
47 #ifndef ENOMEM
48 # define ENOMEM (EOVERFLOW+EFAULT -EOF)
49 # if ENOMEM > INT_MAX
50 # error ENOMEM constant is too large
51 # endif
52 #endif

The idea of all of this is that we want to be sure to have distinct values for all of these
macros. Now the implementation of the function itself looks as follows:

. numberline.c

167 int fprintnumbers(FILE*restrict stream ,
168 char const form[restrict static 1],
169 char const sep[restrict static 1],
170 size_t len , size_t nums[restrict len]) {
171 if (! stream) return -EFAULT;
172 if (len && !nums) return -EFAULT;
173 if (len > INT_MAX) return -EOVERFLOW;
174
175 size_t tot = (len ? len : 1)*strlen(sep);
176 int err = errno;
177 char* buf = 0;
178
179 if (len) {
180 /* Count the chars for the numbers. */
181 for (size_t i = 0; i < len; ++i)
182 tot += snprintf(0, 0, form , nums[i]);
183 /* We return int so we have to constrain the max size. */
184 if (tot > INT_MAX) return error_cleanup(EOVERFLOW , err);
185 }
186
187 buf = malloc(tot+1);
188 if (!buf) return error_cleanup(ENOMEM , err);
189
190 sprintnumbers(tot , buf , form , sep , len , nums);
191 /* print whole line in one go */
192 if (fputs(buf , stream) == EOF) tot = EOF;
193 free(buf);
194 return tot;
195 }
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In fact, error handling dominates pretty much the coding effort for the whole function.
The first three lines handle errors that occur on entry to the functions and reflect missed
pre-conditions, or to speak in the language of Annex K, see Section 8, runtime constraint
violationsC .

Dynamic runtime errors are a bit more difficult to handlė. In particular, some functions
of the C library may use the pseudo variable errno to communicate an error condition. If
we want to capture and repair all errors, we have to avoid any change to the global state of
the execution, including to errno. This is done by saving the current value on entry to the
function and restoring it in case of an error by a call to the small function error_cleanup.

. numberline.c

142 static inline int error_cleanup(int err , int prev) {
143 errno = prev;
144 return -err;
145 }

Now the core of the function itself computes the total number of bytes that should be
printed in a for-loop over the input array. In the body of the loop, snprintf with two 0
arguments is used to compute the size for each number. Then our function sprintnumbers
from Section 14.1 is used to produce a big string that then is printed through fputs.

Observe that there is no error exit after a successful call to malloc. If an error is
detected on return from the call to fputs the information is stored in the variable tot, but
the call to free is not skipped. So even if such an output error occurs, no allocated memory
is left leaking. Here, taking care of a possible IO error was relatively simple because the
call to fputs occurred close to the call to free.

The function fprintnumbers_opt needs more care. It tries to optimize the procedure
even further by printing the numbers immediately instead of counting the required bytes
first. This may encounter more error conditions as we go, and we have to take care of them
by still guaranteeing to issue a call to free at the end. The first such condition is that the
buffer that we allocated initially is too small. If the call to realloc to enlarge it fails, we
have to retreat carefully. The same holds if we encounter the unlikely condition that the
total length of your string exceeds INT_MAX.

For both cases the function uses goto, to jump to the cleanup code that then calls free.
With C, this is a well established technique that ensures that the cleanup effectively takes
place and that, on the other hand, avoids hard to read nested if-else conditions. The rules
for goto are relatively simple

Rule 2.15.0.1 Labels for goto are visible in the whole function that contains them.

Rule 2.15.0.2 goto can only jump to a label inside the same function.

Rule 2.15.0.3 goto should not jump over variable initializations.

The use of goto and similar jumps in programming languages has been subject to
intensive debate, starting from an article by Dijkstra [1968]. Still today you will find
people that seriously object code as it is given here, but let us try to be pragmatic about
that: code with or without goto can be ugly and hard to follow. The main idea here is
to have the “normal” control flow of the function mainly undisturbed and to clearly mark
exceptional changes to the control flow with a goto or return. Later in Section 18.4 we
will see another tool in C that allows even more drastic changes to the control flow, namely
setjmp/longjmp, that will enable us to jump to other positions on the stack of calling
functions.
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. numberline.c

197 int fprintnumbers_opt(FILE*restrict stream ,
198 char const form[restrict static 1],
199 char const sep[restrict static 1],
200 size_t len , size_t nums[restrict len]) {
201 if (! stream) return -EFAULT;
202 if (len && !nums) return -EFAULT;
203 if (len > INT_MAX) return -EOVERFLOW;
204
205 int err = errno;
206 size_t const seplen = strlen(sep);
207
208 size_t tot = 0;
209 size_t mtot = len*( seplen +10);
210 char* buf = malloc(mtot);
211
212 if (!buf) return error_cleanup(ENOMEM , err);
213
214 for (size_t i = 0; i < len; ++i) {
215 tot += sprintf (&buf[tot], form , nums[i]);
216 ++i;
217 if (i >= len) break;
218 if (tot > mtot -20) {
219 mtot *= 2;
220 char* nbuf = realloc(buf , mtot);
221 if (buf) {
222 buf = nbuf;
223 } else {
224 tot = error_cleanup(ENOMEM , err);
225 goto CLEANUP;
226 }
227 }
228 memcpy (&buf[tot], sep , seplen);
229 tot += seplen;
230 if (tot > INT_MAX) {
231 tot = error_cleanup(EOVERFLOW , err);
232 goto CLEANUP;
233 }
234 }
235 buf[tot] = 0;
236
237 /* print whole line in one go */
238 if (fputs(buf , stream) == EOF) tot = EOF;
239 CLEANUP:
240 free(buf);
241 return tot;
242 }





LEVEL 3

Experience

Once you feel more comfortable when coding in C, you will perhaps be tempted to do
complicated things to “optimize” your code. Whatever you think you are optimizing, there
is a good chance that you get it wrong: premature optimization can do much harm in terms
of readability, soundness, maintainability, ...
Knuth [1974] coined the following phrase that should be your motto for this level:

Rule D Premature optimization is the root of all evil.

16. Performance

Safety first. Its good performance is often cited as one of the main reasons why C is
used as widely. While there is some truth to the idea that many C programs outperform
code of similar complexity written in other programming languages, this aspect of C may
come with a substantial cost, especially concerning safety. This is because C, in many
places, doesn’t enforce rules, but places the burden of verifying them on the programmer.
Important examples for such cases are

• out-of-bounds access of arrays,
• accessing uninitialized objects,
• accessing objects after their lifetime has ended, or
• integer overflow.

This can result in program crashes, loss of data, incorrect results, exposure of sensitive
information, loss of money or lives.

C compilers have become much better in recent years, basically they complain about
all problems that are detectable at compile time. But still severe problems in code can
remain undetected in code that tries to be clever. Many of these problems are avoidable or
at least detectable by very simple means:

• All block scope variables should be initialized, thereby eliminating half the prob-
lems with uninitialized objects.

• Dynamical allocation should be done with calloc instead of malloc where ever
that is suitable. This avoids another quater of the problems with uninitialized
objects.

• A specific initialization function should be implemented for more complicated
data structures that are allocated dynamically. The eliminates the rest of the
problems with uninitialized objects.

• Functions that receive pointers should use array syntax and distinguish different
cases:

– A pointer to a single object of the type. These functions should use the
static 1 notation, and by that indicate that they expect a pointer that is
non-null:

void func(double a[static 1]);

165
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– A pointer to a collection of objects of known number. These functions
should use the static N notation, and by that indicate that they expect a
pointer that points to at least that number of elements:

void func(double a[static 7]);

– A pointer to a collection of objects of unknown number. These functions
should use the VLA notation:

void func(size_t n, double a[n]);

– A pointer to a single object of the type or a null pointer. Such a function
must guarantee that even when it receives a null pointer, the execution re-
mains in a defined state:

void func(double* a);

Even though compilers only start to implement checks for these cases, already
writing these down as such will help you to avoid out-of-bounds errors.

• Taking addresses of block scope (local) variables should be avoided, if possi-
ble. Therefore it is good practice to mark all variables in complex code with
register.

• Use unsigned integer types for loop indices and treat wrap around explicitly.

Optimizers are good enough. Other than some urban myth suggests, applying these
rules will usually not negatively impact performance of your code.

Rule 3.16.0.1 Optimizers are clever enough to eliminate unused initializations.

Rule 3.16.0.2 The different notations of pointer arguments to functions result in the
same binary code.

Rule 3.16.0.3 Not taking addresses of local variables helps the optimizer because it
inhibits aliasing.

Once we have applied these rules and have ensured that our implementation is safe, we
may have a look at the performance of the program. What constitutes good performance
and how we would measure it is a difficult subject by itself. A first question concerning
performance should always be the question of relevance: e.g improving the runtime of an
interactive program from 1 ms to 0.9 ms usually makes no sense at all, and any effort
spend for such an improvement is probably better invested elsewhere.

Now if we have a program that has real, observable issues with performance we still
should be careful what means we apply to improve performance and in which places.

Help the compiler. Nevertheless, there are situations in which we can help our com-
piler (and future versions of it) to optimize code better, because we can specify specific
properties of our code that it can’t deduce automatically. C introduces keywords for this
purpose that are quite special in the sense that they do not constrain the compiler but the
programmer. They all have the property that removing them from valid code where they
are present should not change the semantics. Because of that property, they are sometimes
presented as “useless” or even obsolete features. Be careful when you encounter such
statements, people that make such claims tend not to have a deep understanding of C, its
memory model or its optimization possibilities. And, in particular they don’t seem to have
a deep understanding of cause and effect, either.
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The keywords that introduce these optimization opportunities are register (C90),
inline, restrict (both from C99) and alignas (respectively _Alignas, C11). As in-
dicated all four have the property that they could be omitted from any program without
changing its semantic.

In Section 13.2 we have already spoken to some extend about register, so we will
not go into more detail than that. Just remember that it can help to avoid aliasing between
objects that are defined locally in a function. As already stated there, I think that this is
a feature that is much underestimated in the C community. Later in Section 21, I will
even propose ideas how this feature could be at the heart of a future improvement of C
that would be bringing global constants of any object type and even more optimization
opportunities for small pure functions.

From the three others, restrict also helps controlling aliasing. C11’s new alignas
and the related alignof help to position objects on cache boundaries and thus improve
memory access. C99’s inline helps to ensure that code of short functions can be directly
replaced at the caller side of the function.

16.1. Inline functions. For C programs, the standard tool to write modular code are
functions. As we have seen above, they have several advantages:

• They clearly separate interface and implementation. Thereby they allow to im-
prove code incrementally, from revision to revision, or to rewrite a functionality
from scratch if deemed necessary.

• If we avoid to communicate to the rest of the code via global variables, they
ensure that the state that a function needs is local. Thereby the state is present
in the parameters of the call and local variables only. Optimization opportunities
may thus be detected much easier.

Unfortunately, they also have some downsides from a performance point-of-view:
• Even on modern platforms, a function call has a certain overhead. Usually, when

calling a function some stack space is put aside, local variables are initialized or
copied. Control flow jumps to a different point in the executable, that might or
might not be in the execution cache.

• Depending on the calling convention of the platform, if the return value of a
function is a struct the whole return value may have to be copied where the
caller of the function expects the result.

If, by coincidence, the code of the caller (say fcaller) and the callee (say fsmall)
are present inside the same translation unit, a good compiler may avoid these downsides
by so-called inlining. Here, the compiler does something equivalent to replace the call to
fsmall by the code of fsmall itself. Then, there is no call, so no call overhead.

Even better, since the code of fsmall is now inlined, all instructions of fsmall are
seen in that new context. The compiler can detect e.g:

• dead branches that are never executed,
• repeated computation of an expression where the result is already known,
• that the function (as called) may only return a certain type of value.

Rule 3.16.1.1 Inlining can open a lot of optimization opportunities.

A traditional C compiler can only inline functions for which it also knows the defini-
tion, only knowing the declaration is not enough. Therefore, programmers and compiler
builders have studied the possibilities to increase inlining by making function definitions
visible. Without additional support from the language there are two strategies to do so:

• Concatenate all code of a project into a single large file and then to compile all
that code in one giant translation unit. Doing such a thing systematically is not
as easy as its sounds: we have to ensure that concatenation order of source files
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doesn’t produce definition cycles and that we don’t have naming conflicts (e.g
two TU with a static function init, each).

• Functions that should be inlined are placed in header files and then included by
all TU that need them. To avoid the multiple definition of the function symbol in
each of the TU, such functions must be declared static.

Where the first approach is unfeasible for large projects, the second approach is rela-
tively easy to put in place. Nevertheless it has drawbacks:

• If the function is too big to be inlined by the compiler, it is instantiated separately
in every TU. That is a function that falls in that category (is big!) will potentially
have a lot of copies and increase the size of the final executable.

• Taking a pointer of such function will give the address of the particular instance
in the current TU. Comparison of two such pointers that have been obtained in
different TU will not compare equal.

• If such a static function that is declared in a header file is not used in a TU, the
compiler will usually warn about that non-use. So if we have a lot of such small
functions in header files, we will see a lot of warnings producing a lot of false
alarms.

To avoid these drawbacks, C99 has introduced the inline keyword. Other than the
naming might suggest this does not force a function to be inlined, but only provides the
means such that it may.

• A function definition that is declared with inline can be used in several TU
without causing a multiple symbol definition error.

• All pointers to the same inline function will compare equal, even if it is ob-
tained in different TU.

• An inline function that is not used in a specific TU will be completely absent
from the binary of that TU and in particular not contribute to its size.

The latter point is generally an advantage, but has one simple problem: no symbol
for the function would ever be emitted, even for programs that might need such a symbol.
Therefore, C99 has introduced a special rule for inline functions:

Rule 3.16.1.2 Adding a compatible declaration without inline keyword ensures the
emission of the function symbol in the current TU.

As an example, suppose we have an inline function like this in a header file, say
toto.h:

1 // Inline definition in a header file.
2 // Function argument names and local variables are visible
3 // to the preprocessor and must be handled with care.
4 inline
5 toto* toto_init(toto* toto_x){
6 if (toto_x) {
7 *toto_x = (toto){ 0 };
8 }
9 return toto_x;

10 }

Such a function is a perfect candidate for inlining. It is really small and the initialization
of any variable of type toto is probably best made in place. The call overhead is of the
same order as the inner part of the function, and in many cases the caller of the function
may even omit the test for the if.

Rule 3.16.1.3 An inline function definition is visible in all TU.
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This function may be inlined by the compiler in all TU that see this code, but none of
them would effectively emit the symbol toto_init. But we can (and should) enforce the
emission in one TU, toto.c, say, by adding a line as in the following:

1 #include "toto.h"
2
3 // Instantiate in exactly one TU.
4 // The parameter name is omitted to avoid macro replacement.
5 toto* toto_init(toto*);

Rule 3.16.1.4 An inline definition goes in a header file.

Rule 3.16.1.5 An additional declaration without inline goes in exactly one TU.

As said, that mechanism of inline functions is there to help the compiler take the
decision to effectively inline a function or not. In most cases, the heuristics that compiler
builders have implemented to take that decision are completely appropriate and you can’t
do better. They know the particular platform for which the compilation is done much better
then you: maybe this platform didn’t even exist when you wrote your code. So they are in
a much better position to compare the tradeoff between the different possibilities.

An important family of functions that may benefit from inline definitions are pure
functions as we have met them in Section 10.4. If we look at the example of the rat
structure (Listing 2.1) we see that all the functions implicitly copy the function arguments
and the return value. If we rewrite all these functions as inline in the header file, all these
copies can be avoided by an optimizing compiler.[Exs 1] [Exs 2]

So inline functions can be a precious tool to build portable code that shows good
performance, we just help the compiler(s) to take the appropriate decision. Unfortunately
using inline functions also has drawbacks that should also be taken into account for our
design.

First, 3.16.1.3 implies that any change that you make to an inline function will trigger
a complete rebuild of your project and of all the users of it.

Rule 3.16.1.6 Only expose functions as inline if you consider them to be stable.

Second, the global visibility of the function definition also has the effect that local
identifiers of the function (parameters or local variables) may be subject to macro expan-
sion for macros that we don’t even know of. In the example we used the toto_ prefix to
protect the function parameter from expansion by macros from other include files.

Rule 3.16.1.7 All identifiers that are local to an inline function should be protected by
a convenient naming convention.

Third, other than conventional function definitions, inline functions have no partic-
ular TU to which they are associated. Whereas a conventional function can access to state
and functions that are local to the TU (static variables and functions), for an inline
function it would not be clear which copy of which TU these refer to.

Rule 3.16.1.8 inline functions can’t access identifiers of static functions.

Rule 3.16.1.9 inline functions can’t define or access identifiers of static objects.

Here, emphasis is on the fact that the access is restricted to the identifiers and not the
objects or functions themselves. There is no problem to pass a pointer to a static object
or function to an inline function.

[Exs 1]Rewrite the examples of Section 10.4 with inline.
[Exs 2]Revisit the function examples of Section 7 and argue for each of them if they should be defined inline.
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16.2. Avoid aliasing: restrict qualifiers. We have seen many examples of C library
functions that use the keyword restrict to qualify pointers, and we also have used this
qualification for our own functions. The basic idea of restrict is relatively simple: it
tells the compiler that the pointer in question is the only access to the object it points
to. Thus the compiler can make the assumption that changes to the object can only occur
through that same pointer, and the object cannot change inadvertently. In other words, with
restrict we are telling the compiler that the object does not alias with any other object
that the compiler handles in this part of code.

Rule 3.16.2.1 A restrict-qualified pointer has to provide exclusive access.

As often in C, such a declaration places the burden of verifying this property to the
caller.

Rule 3.16.2.2 A restrict-qualification constrains the caller of a function.

Consider e.g. the differences between memcpy and memmove:

1 void* memcpy(void*restrict s1, void const*restrict s2, size_t n);
2 void* memmove(void* s1, const void* s2, size_t n);

For memcpy both pointers are restrict-qualified. So for the execution of this func-
tion, the access through both pointers has to be exclusive. Not only that s1 and s2 must
have different values, none of them must provide access to parts of the object of the other.
In other words, the two objects that memcpy “sees” through the two pointers must not over-
lap. Assuming this can help to optimize the function.

In contrast to that, memmove does not make such an assumption. So s1 and s2 may be
equal or the objects may overlap. The function must be able to cope with that situation.
Therefore it might be less efficient, but it is more general.

We already have seen in Section 12.3 that it might be important for the compiler to
decide if two pointers may in fact point to the same object, so-called aliasing. Pointers to
different base types are not supposed to alias, unless one of them is a character type. So
both parameters of fputs are declared with restrict.

1 int fputs(const char *restrict s, FILE *restrict stream);

Although it might seem very unlikely that any one might call fputs with the same pointer
value for both parameters.

This specification is more important for functions as printf and friends.

1 int printf(const char *restrict format , ...);
2 int fprintf(FILE *restrict stream , const char *restrict format ,

...);

The format parameter shouldn’t alias with any of the arguments that might be passed to
the ... part, e.g. the following code has undefined behavior:

1 char const* format = "format␣printing␣itself:␣%s\n";
2 printf(format , format); // restrict violation

Most probably this example will still do what you think it does. If you abuse the stream
parameter of your program might explode.

1 char const* format = "First␣two␣bytes␣in␣stdin␣object:␣%.2s\n";
2 char const* bytes = (char*)stdin; // legal cast to char
3 fprintf(stdin , format , bytes); // restrict violation
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Sure, code a this one is not very likely to occur in real life. But have in mind that
character types have special rules concerning aliasing, and therefore all string processing
function may be subject to missed optimization. You could add restrict-qualifications in
many places where string parameters are involved, and for which you know that they are
accessed exclusively through the pointer in question.

16.3. Measurement and inspection. We have several times spoken about perfor-
mance of programs without talking, yet, about methods to asses it. And indeed, we hu-
mans are notoriously bad in predicting the performance of code. So our prime directive for
questions concerning performance should be:

Rule E Don’t speculate about performance of code, verify it rigorously.

The first step when we dive into a code project that may be performance critical will
always be to chose the best algorithms that solve a the problem(s) at hand. This should be
done even before coding starts, so we have to do a first complexity assessment by arguing
(but not speculating!) about the behavior of such an algorithm.

Rule 3.16.3.1 Complexity assessment of algorithms needs proofs.

Unfortunately, the discussion about complexity proofs is far beyond the scope of this
book, so we will not be able to go into that. But then, fortunately, many other books have
already been written about it. The interested reader may refer to the text book of Cormen
et al. [2001] or to Knuth’s treasure trove.

Rule 3.16.3.2 Performance assessment of code needs measurement.

Measurement in experimental sciences is a difficult subject, obviously we can’t tackle
it here in full detail. But we should first be aware that the act of measuring modifies the ob-
served. This holds in physics, where measuring the mass of an object necessarily displaces
it, in biology, where collecting samples of species actually kills animals or plants, or in
sociology, where asking for gender or immigration background upfront of a test changes
the behavior of the test subjects. Not surprisingly it also holds in computer science and in
particular for time measurement, since all such time measurements need time themselves
to be accomplished.

Rule 3.16.3.3 All measurements introduce bias.

At the worst, the impact of time measurements can go beyond a simple additional
slack of time that is spent by doing the measurement itself. In the first place, a call to
timespec_get, e.g, is a call to a function that wouldn’t be there. The compiler has to
do some precautions before any such call, in particular save hardware registers, and has to
drop some assumptions about the state of the execution. So time measurement can suppress
optimization opportunities. Also, such a function call usually translates into a system call,
that is a call into the operating system, and this can have effects on many properties of the
program execution, e.g on the process or task scheduling, or can invalidate data caches.

Rule 3.16.3.4 Instrumentation changes compile time and runtime properties.

The art of experimental sciences is to address these issues and to ensure that the bias
that is introduce by the measurement itself is small and such that the result of an experi-
ment can be assessed qualitatively. Concretely, before we can do any time measurements
on code that interests us, we have to asses the bias that time measurements themselves
introduce. A general strategy to reduce the bias of measurement is to repeat an experiment
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LISTING 3.1. Measuring four code snippets repeatedly.

68 timespec_get (&t[3], TIME_UTC);
69 /* A function call can usually not be optimized out. */
70 for (uint64_t i = 0; i < iterations; ++i) {
71 timespec_get (&tdummy , TIME_UTC);
72 accu1 += tdummy.tv_nsec;
73 }
74 timespec_get (&t[4], TIME_UTC);
75 /* A function call can usually not be optimized out , but
76 an inline function can. */
77 for (uint64_t i = 0; i < iterations; ++i) {
78 timespec_get (&tdummy , TIME_UTC);
79 stats_collect1 (& sdummy [1], tdummy.tv_nsec);
80 }
81 timespec_get (&t[5], TIME_UTC);
82 for (uint64_t i = 0; i < iterations; ++i) {
83 timespec_get (&tdummy , TIME_UTC);
84 stats_collect2 (& sdummy [2], tdummy.tv_nsec);
85 }
86 timespec_get (&t[6], TIME_UTC);
87 for (uint64_t i = 0; i < iterations; ++i) {
88 timespec_get (&tdummy , TIME_UTC);
89 stats_collect3 (& sdummy [3], tdummy.tv_nsec);
90 }
91 timespec_get (&t[7], TIME_UTC);

several times and to collect statistics about their outcome. Most commonly used statistics
are simple, they concern the number of experiments, their mean value, their variance or
standard deviation, and sometimes their skew.

For computer science the repetition of an experiment can easily automated by putting
the code that is to be sampled inside a for loop and to place the measurements before
and after this loop. Thereby, we can execute the sample code thousands or millions of
times and compute the average time spend for a loop iteration. The hope then is that the
time measurement itself can be neglected because the overall time spend in the experiment
is, maybe, several seconds, whereas the time measurement itself may take just several
milliseconds.

It the example code to this section, we will try to asses the performance of calls to
timespec_get and a some small utility that collects statistics of measurements. Partial
Listing 3.1 contains four for loops around code that we want to investigate. All use a
tv_nsec value obtained from timespec_get to collect them in a statistic. In this approach
the experimental bias that we introduce is obvious, we use a call to timespec_get to
measure its own performance. But this bias is easily mastered augmenting the number of
iterations reduces the bias. The experiments that we report below were performed with a
value of iterations of 224 − 1.

For such a simple setting we can easily come up with a hypothesis how these tv_nsec
values should be distributed. Namely, we may expect that all possible values are equally
likely and thus that the expected value of our measurements is 499999999.5. The values of
our measurements should not be concentrated around the average but equally distributed in
the whole range, so the variance should be quite large. On the other hand, their distribution
should be symmetric and the skew should be close to 0. And indeed, as a first outcome our
program confirms that hypothesis:
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Terminal

0 average value of nsec 4.953e+08 ± 58.3641% (-0.00606862 skew)

But this mostly trivial observation is not the goal of this, it only serves as an example
of some code that we want to measure. The for loops in Listing 3.1 contain code that does
this statistics collection with more and more sophistication.

. timespec.c

struct timespec tdummy;
stats sdummy [4] = { 0 };

The loop starting in Line 70 just accumulates the values, such that we may determine
their average. The next loop (Line 77) uses a function stats_collect1 that maintains
a “running mean”, that is it implements a formula that computes a new average µn by
modifying the previous one by some δ(xn, µn−1), where xn is the new measurement and
µn−1 is the previous average. The other two loops (Lines 82 and 87) then use functions
stats_collect2 and stats_collect3, respectively, that also use similar formulas for
the second and third moment, respectively, namely to compute variance and skew. We will
discuss these functions below.

But first, let us have a look at the tools that we use for the instrumentation of the code.

LISTING 3.2. Collecting time statistics with timespec_diff and stats_collect2.

102 for (unsigned i = 0; i < loops; i++) {
103 double diff = timespec_diff (&t[i+1], &t[i]);
104 stats_collect2 (& statistic[i], diff);
105 }

We use timespec_diff from Section 11.3 to compute the time difference between two
measurements and stats_collect2 to sum up the statistics. The whole is then wrapped
in another loop (not shown) that repeats that experiment 10 times. After finishing that loop
we use functions for the stats type to print out the result:

LISTING 3.3. Print time statistics with stats_mean and stats_rsdev_unbiased.

109 for (unsigned i = 0; i < loops; i++) {
110 double mean = stats_mean (& statistic[i]);
111 double rsdev = stats_rsdev_unbiased (& statistic[i]);
112 printf("loop␣%u:␣E(t)␣(sec):\t%5.2e␣±␣%4.02f%%,\tloop␣body␣

%5.2e\n",
113 i, mean , 100.0* rsdev , mean/iterations);
114 }

Here, obviously, stats_mean gives access to the mean value of the measurements.
The function stats_rsdev_unbiased returns the unbiased relative standard deviation,
that is a standard deviation that is unbiased3 and that is normalized with the mean value.

A typical output of that on my laptop looks like follows:

3Such that it is a true estimation of the standard deviation of the expected time, not only of our arbitrary
sample.
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Terminal

0 loop 0: E(t) (sec): 3.31e-02 ± 7.30%, loop body 1.97e-09

1 loop 1: E(t) (sec): 6.15e-03 ± 12.42%, loop body 3.66e-10

2 loop 2: E(t) (sec): 5.78e-03 ± 10.71%, loop body 3.45e-10

3 loop 3: E(t) (sec): 2.98e-01 ± 0.85%, loop body 1.77e-08

4 loop 4: E(t) (sec): 4.40e-01 ± 0.15%, loop body 2.62e-08

5 loop 5: E(t) (sec): 4.86e-01 ± 0.17%, loop body 2.90e-08

6 loop 6: E(t) (sec): 5.32e-01 ± 0.13%, loop body 3.17e-08

Here Lines 0, 1 and 2 correspond to loops that we have not shown, yet. Lines 3 to 6
correspond to the loops that we have seen above. Their relative standard deviations are
less than 1%, so we can assert that we have a good statistic and that the times on the
right are good estimates of the cost per iteration. E.g on my 2.1GHz laptop this means
that the execution of one loop iteration of loops 3, 4, 5 or 6 takes about 36, 55, 61 and
67 clock cycles, respectively. So the extra cost of when replacing the simple sum by
stats_collect1 is 19 cycles, from there to stats_collect2 is 6, and yet another 6 cycles
are needed if we use stats_collect3, instead.

To see that this is plausible let us look at the stats type

1 typedef struct stats stats;
2 struct stats {
3 double moment [4];
4 };

where we reserve one double for all statistical “moments”. Function stats_collect in
Listing 3.4 then shows how these are updated when we collect a new value that we insert

LISTING 3.4. Collect statistics up to the 3rd moment.

120 /**
121 ** @brief Add value @a val to the statistic @a c.
122 **/
123 inline
124 void stats_collect(stats* c, double val , unsigned moments) {
125 double n = stats_samples(c);
126 double n0 = n-1;
127 double n1 = n+1;
128 double delta0 = 1;
129 double delta = val - stats_mean(c);
130 double delta1 = delta/n1;
131 double delta2 = delta1*delta*n;
132 switch (moments) {
133 default:
134 c->moment [3] += (delta2*n0 - 3*c->moment [2])*delta1;
135 case 2:
136 c->moment [2] += delta2;
137 case 1:
138 c->moment [1] += delta1;
139 case 0:
140 c->moment [0] += delta0;
141 }
142 }
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As previously mentioned, we see that this is a relatively simple algorithm to update
the moments incrementally. Important features compared to a naive approach are that we
avoid numerical imprecision by using the difference from the current estimation of the
mean value, and that this can be done without storing all the samples. This approach
has been first described for mean and variance (1st and 2nd moment) by Welford [1962]
and was then generalized to higher moments, see Pébay [2008]. In fact, our functions
stats_collect1 etc are just instantiations of that for the chosen number of moments.

. stats.h

154 inline
155 void stats_collect2(stats* c, double val) {
156 stats_collect(c, val , 2);
157 }

The assembler listing of stats_collect2 shows that our finding of using 25 cycles
for this functions seems plausible: it corresponds to a handful of arithmetic instructions,
loads and stores.4

LISTING 3.5. gcc’s assembler for stats_collect2(c).
vmovsd 8(%rdi), %xmm1
vmovsd (%rdi), %xmm2
vaddsd .LC2(%rip), %xmm2 , %xmm3
vsubsd %xmm1 , %xmm0 , %xmm0
vmovsd %xmm3 , (%rdi)
vdivsd %xmm3 , %xmm0 , %xmm4
vmulsd %xmm4 , %xmm0 , %xmm0
vaddsd %xmm4 , %xmm1 , %xmm1
vfmadd213sd 16(%rdi), %xmm2 , %xmm0
vmovsd %xmm1 , 8(%rdi)
vmovsd %xmm0 , 16(%rdi)

Now by using the measurements above, we have still made one systematic error. We
have taken the points of measure outside the for loops. By doing so, our measurements
also comprise the instructions that correspond to the loops themselves. Listing 3.6 shows
the three loops that we skipped above. These are basically “empty” in an attempt to mea-
sure the contribution of such a loop itself.

LISTING 3.6. Instrumenting three for loops with struct timespec.
53 timespec_get (&t[0], TIME_UTC);
54 /* volatile for i ensures that the loop is really done */
55 for (uint64_t volatile i = 0; i < iterations; ++i) {
56 /* do nothing */
57 }
58 timespec_get (&t[1], TIME_UTC);
59 /* volatile for s ensures that the loop is really done */
60 for (uint64_t i = 0; i < iterations; ++i) {
61 s = i;
62 }
63 timespec_get (&t[2], TIME_UTC);
64 /* opaque computation ensures that the loop is really done */
65 for (uint64_t i = 1; accu0 < upper; i += 2) {
66 accu0 += i;
67 }

4This assembler shows x86_64 assembler features that we have not yet seen: floating point hardware registers
and instructions, SSE registers and instructions. Here, memory locations (%rdi), 8(%rdi) and 16(%rdi)
correspond to c->moment[i], for i = 0, 1, 2, the name of the instruction minus the v-prefix and sd-postfix
shows the operation that is performed, with vfmadd213sd a floating point multiply add instruction.
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68 timespec_get (&t[3], TIME_UTC);

In fact, when trying to measure for loops with no inner statement, we face a severe
problem: an empty loop with no effect can and will be eliminated at compile time by the
optimizer. Under normal production conditions this is a good thing, but here when we want
to measure this is annoying. Therefore we show three variants of loops, that should not be
optimized out. The first declares the loop variable as volatile such that all operations
on the variable must be emitted by the compiler. Listings 3.7 and 3.8 show gcc’s and
clang’s version of this loop. We see that to comply to the volatile qualification of the
loop variable, both have to issue several load and store instructions.

LISTING 3.7. gcc’s version of the first loop of Listing 3.6.
.L510:

movq 24(%rsp), %rax
addq $1, %rax
movq %rax , 24(%rsp)
movq 24(%rsp), %rax
cmpq %rax , %r12
ja .L510

LISTING 3.8. clang’s version of the first loop of Listing 3.6.
.LBB9_17:

incq 24(%rsp)
movq 24(%rsp), %rax
cmpq %r14 , %rax
jb .LBB9_17

For the next loop we try to be a bit more economic by only forcing one volatile
store to an auxiliary variable s. As we can see in Listings 3.9 the result is assembler code
that looks quite efficient. Namely it consists of 4 instructions, an addition, a comparison, a
jump and a store.

LISTING 3.9. gcc’s version of the second loop of Listing 3.6.
.L509:

movq %rax , s(%rip)
addq $1, %rax
cmpq %rax , %r12
jne .L509

To come even closer to the loop of the “real” measurements, in the next loop we use
a trick. We perform index computations and comparisons for which the result is meant to
be opaque to the compiler. Listings 3.10 shows that this results in similar assembler as the
previous, only that now we have a second addition instead of the store operation.

LISTING 3.10. gcc’s version of the third loop of Listing 3.6.
.L500:

addq %rax , %rbx
addq $2, %rax
cmpq %rbx , %r13
ja .L500

Table 1 summarizes the results that we had collected above and relates the difference
between the different measurements. As we might expect, we see that loop 1 with the
volatile store is 80% faster than the one with a volatile loop counter. So in fact using
a volatile loop counter is not a good idea it can deteriorate the measurement.

On the other hand, moving from loop 1 to loop 2 has not a very pronounced impact.
The 6% gain that we see is smaller than the standard deviation of the test, so we can’t even
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loop sec per iteration difference gain/loss conclusive
0 volatile loop 1.97·10−09

1 volatile store 3.66·10−10 -1.60·10−09 -81% yes
2 opaque addition 3.45·10−10 -2.10·10−11 -6% no
3 plus timespec_get 1.77·10−08 1.74·10−08 +5043% yes
4 plus mean 2.62·10−08 8.5·10−09 +48% yes
5 plus variance 2.90·10−08 2.8·10−09 +11% yes
6 plus skew 3.17·10−08 2.7·10−09 +9% yes

TABLE 1. Comparison of measurements

be sure that there is a gain at all. If we would really like to know if there is a difference,
we would have to do more tests and hope that the standard deviation would be narrowed
down.

But for our goal to assess the time implications that our observation itself can have, the
measurements are quite conclusive. The versions 1 and 2 of the for loop have an impact
that is about one to two orders of magnitude below the impact of calls to timespec_get
or stats_collect. So we can assume that the values that we see for loops 3 to 6 are good
estimators for the expected time of the measured functions.

There is a strong platform dependent component in these measurements, namely time
measurement with timespec_get. In fact, we learned from this experience that on my
machine5 time measurement and statistics collection have a cost that is of the same order
of magnitude. For me, personally, this was a surprising discovery when I wrote up this
section, I thought that time measurement would be much more expensive.

We also learned that simple statistics such as the standard deviation are easy to obtain
and can help to assert claims about performance differences.

Rule 3.16.3.5 Collecting higher order moments of measurements to compute variance
and skew is simple and cheap.

So, whenever you make performance claims in the future or see such claims made by
others, make sure that the variability of the results has at least been addressed.

Rule 3.16.3.6 Run time measurements must be hardened with statistics.

17. Functionlike macros

We already have encountered functionlike macros in several places. In particular,
some interfaces in the C standard library are typically implemented by using these, e.g
the type generic interfaces in tgmath.h. We also have already seen in Section 10.3 that <tgmath.h>

functionlike macros can easily obfuscate our code and need a certain, restrictive, set of
rules. The easiest strategy to avoid many of the problems that come with function-like
macros is to only use them where they are irreplaceable, and to use appropriate means
where they are replaceable:

Rule 3.17.0.1 Whenever possible, prefer an inline function to a functional macro.

That is in situations, where we have a fixed number of arguments with a known type we
should provide a proper type-safe interface in form of a function prototype. To achieve the
same performance as with a functionlike macro it is then completely sufficient to provide
an inline definition in a header file.

But there are many situations, where functionlike macros can do more than that. They
can

5A commodity Linux laptop with a recent system and modern compilers as of 2016
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• force certain type mapping and argument checking,
• trace execution,
• provide interfaces with a variable number of arguments,
• provide type generic interfaces,
• provide default arguments to functions.

In the following, I will try to explain how such features can be implemented. We will
also discuss two other features of C that are clearly to be distinguished. One, _Generic,
because it is much useful in macros and would be very tedious to use without them, and
the other, variadic functions, because it is now mostly obsolete and should not be used in
new code.

There also is some warning about this section in order. Macro programming quickly
becomes ugly and barely readable, so you will need some patience and good will to under-
stand some of the code, here. But the usage of these macros shouldn’t be difficult. In fact,
you can see this even as the main requirement of functional macros:

Rule 3.17.0.2 A functional macro shall provide a simple interface to a complex task.

17.1. how does it work. To provide the features that we listed, C has chosen a path
that is quite different from other popular programming languages, namely textual replace-
ment. As we have already seen, macros are replaced in a very early stage of compilation,
called preprocessing. This replacement follows a strict set of rules that are specified in the
C standard, and all compilers (on the same platform) should preprocess any source code to
exactly the same intermediate code.

Let us look at the following example:

#define MINSIZE(X, Y) (sizeof(X)<sizeof(Y)?sizeof(X):sizeof(Y))
#define BYTECOPY(T, S) memcpy (&(T), &(S), MINSIZE(T, S))

These macros fulfill our requirements about functionlike macros, they only evaluate each
arguments once[Exs 6], parenthesise all arguments with (), and have no hidden effects such
as an unexpected control flow.

We see two macro definitions for macros MINSIZE and BYTECOPY. The first has
an parameter list (X, Y) that defines two parameters X and Y, and a replacement text
(sizeof(X)<sizeof(Y)?sizeof(X):sizeof(X)) that refers to X and Y. Similarly, BYTECOPY
also has two parameters T and S and a replacement text starting with memcpy.

The parameters of a macro must be identifiers. A special scope rule restricts the valid-
ity of these identifiers to the use inside the replacement text.

When the compiler encounters the name of a functional macro, followed by a closing
pair of (), such as in BYTECOPY(A, B), it considers this as a macro call and replaces it
textually according to the following rules:

(1) The definition of the macro is temporarily disabled to avoid infinite recursion.
(2) The text inside the (), the argument list, is scanned for parenthesis and commas.

Each opening parenthesis ( must match a ). A comma that is not inside such
additional () is used to separate the argument list into the arguments. For the
case that we handle here, the number of arguments must match the number of
parameters of the definition of the macro.

(3) Each argument is recursively expanded for macros that might appear in them. In
our example, A could be yet-another macro and expand to some variable name
such as redA.

(4) The resulting text fragments from the expansion of the arguments are assigned
to the parameters.

[Exs 6]Why is this so?
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(5) A copy of the replacement text is made and all occurrences of the parameters is
replaced by their respective definitions.

(6) The resulting replacement text is subject to macro replacement, again.
(7) This final replacement text is inserted in the source instead of the macro call.
(8) The definition of the macro is re-enabled.

This procedure looks a bit complicated at a first glance but is effectively quite easily
to implement and provides a reliable sequence of replacements. It is guaranteed to avoid
infinite recursion and complicated local “variable” assignments. In our case the result of
the expansion of BYTECOPY(A, B) would be

memcpy (&( redA), &(B), (sizeof ((redA))<sizeof ((B))?sizeof ((redA)):sizeof ((
B))))

We already know that identifiers of macros (function-like or not) live in a name space
of their own. This has a very simple reason:

Rule 3.17.1.1 Macro replacement is done in an early translation phase, before any other
interpretation is given to the tokens that compose the program.

So the preprocessing phase knows nothing about keywords, types, variables or other
constructs of later translation phases.

Since recursion is explicitly disabled for macro expansion, there can even be functions
that use the same identifier as a function-like macro. E.g the following is valid C:

1 inline
2 char const* string_literal(char const str[static 1]){
3 return str;
4 }
5 #define string_literal(S) string_literal("" S "")

It defines a function string_literal that receives a character array as argument, and
a macro of the same name that calls the function with some weird arrangement of the
argument, the reason for which we will see below. There is a more specialized rule that
helps to deal with situations where there is a macro and a function of the same name. It is
analogous to Rule 2.11.8.1 for function-to-pointer conversion.

Rule 3.17.1.2 If the name of functional macro is not followed by () it is not expanded.

In the above example the definition of the function and of the macro is depending on
the order of appearance. If the macro definition would be given first, this would immedi-
ately expand to something like

1 inline
2 char const* string_literal("" char const str[static 1] ""){ //

error
3 return str;
4 }

which is erroneous. But if we surround the name string_literal by parenthesis, it is not
expanded and remains a valid definition. A complete example could look like:

1 // header file
2 #define string_literal(S) string_literal("" S "")
3 inline char const* (string_literal)(char const str[static 1]){
4 return str;
5 }
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6 extern char const* (*func)(char const str[static 1]);
7 // one translation unit
8 char const* (string_literal)(char const str[static 1]);
9 // another translation unit

10 char const* (*func)(char const str[static 1]) = string_literal;

That is, both the inline definition and the instantiating declaration of the function are pro-
tected by surrounding (), and don’t expand the functional macro. The last line shows
another common usage of this feature. Here string_literal is not followed by () and
so both rules are applied. First Rule 3.17.1.2 inhibits the expansion of the macro and then
Rule 2.11.8.1 evaluates the use of the function to a pointer to that function.

17.2. Argument checking.
As said above, in cases where we have a fixed number of arguments with types that are

well modeled by C’s type system, we should use functions and not function-like macros.
Unfortunately, C’s type system doesn’t cover all special cases that we might want to dis-
tinguish.

An important such case are string literals. As we have seen in Section 5.4.1, string
literals are read-only but are not even const qualified. Also an interface with [static 1]
as for the function string_literal above is not enforced by the language, because proto-
types without [static 1] are equivalent. In C there is no way to prescribe for a parameter
str of a function interface, that it should fulfill the following constraints:

• is a character pointer,
• must be non-null,
• must be unmutable7,
• must be 0-terminated.

All these properties could be particular useful to check at compile time, but we have
simply no way to specify them in a function interface.

The macro string_literal fills that gap in the language specification. The weird
empty string literals in its expansion "" X "" ensure that string_literal can only be
called with a string literal.

1 string_literal("hello"); // "" "hello" ""
2 char word [25] = "hello";
3 ...
4 string_literal(word); // "" word "" // error

The macro and function string_literal are just a simple example for this strategy.
A more useful example would be

. macro_trace.h

12 /**
13 ** @brief A simple version of the macro that just does
14 ** a @c fprintf or nothing.
15 **/
16 #if NDEBUG
17 # define TRACE_PRINT0(F, X) do { /* nothing */ } while (false)
18 #else
19 # define TRACE_PRINT0(F, X) fprintf(stderr , F, X)
20 #endif

a macro that could be used in the context of a debug build of a program to insert debugging
output.

7const only constrains the called function, not the caller
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. macro_trace.c

17 TRACE_PRINT0("my␣favorite␣variable:␣%g\n", sum);

This looks harmless and efficient, but has a pitfall: the argument F can be any pointer to
char, in particular it could be a format string that sits in a modifiable memory region. This
may have the effect that an erroneous or malicious modification of that string leads to an
invalid format, and thus to a crash of the program or could divulge secrets. In Section 17.4
we will see more in detail why this is particularly dangerous for functions like fprintf.

In simple code as in the example, where we pass simple string literals to fprintf,
these problems should not occur. Modern compiler implementations are able to trace argu-
ments to fprintf (and similar) to check if format specifiers and other arguments match.

This check doesn’t work, if the format that is passed to fprintf is not a string literal
but just any pointer to char. To inhibit that we can enforce the use of a string literal here:

. macro_trace.h

22 /**
23 ** @brief A simple version of the macro that ensures that the @c
24 ** fprintf format is a string literal.
25 **
26 ** As an extra , it also adds a newline to the print out , so
27 ** the user doesn’t has to specify it each time.
28 **/
29 #if NDEBUG
30 # define TRACE_PRINT1(F, X) do { /* nothing */ } while (false)
31 #else
32 # define TRACE_PRINT1(F, X) fprintf(stderr , "" F "\n", X)
33 #endif

Now, F must receive a string literal and the compiler then can do the work and warn us
about a mismatch.

The macro TRACE_PRINT1 still has a weak point. If it is used with DEBUG unset, the
arguments are ignored and thus not checked for consistency. This can have the long term
effect that a mismatch remains undetected for a long time and all of a sudden appears when
debugging.

So the next version of our macro is defined in two steps. The first uses a similar
#if/#else idea to define a new macro TRACE_ON.

. macro_trace.h

35 /**
36 ** @brief A macro that resolves to @c 0 or @c 1 according to @c
37 ** NDEBUG being set.
38 **/
39 #ifdef NDEBUG
40 # define TRACE_ON 0
41 #else
42 # define TRACE_ON 1
43 #endif

In contrast to the NDEBUG macro, which could be set to any value by the programmer, this
new macro is then guaranteed to hold either 1 or 0. Secondly, TRACE_PRINT2 is defined
with a regular if conditional.

. macro_trace.h

45 /**
46 ** @brief A simple version of the macro that ensures that the @c
47 ** fprintf call is always evaluated.
48 **/
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49 #define TRACE_PRINT2(F, X) \
50 do { if (TRACE_ON) fprintf(stderr , "" F "\n", X); } while (false)

Whenever its argument is 0, any modern compiler should be able to optimize the call to
fprintf out. What it shouldn’t omit is the argument check for parameters F and X. So
regardless whether or not we are debugging, the arguments to the macro must always be
matching as fprintf expects it.

Similar to the use of the empty string literal "" above, there are other tricks to force
a macro argument to be of a particular type. One of these tricks consists in adding an
appropriate 0: +0 would force the argument to be any arithmetic type (integer, float or
pointer), something like +0.0F promotes to a floating type. E.g if we want to have a
simpler variant to just print a value for debugging, without keeping track of the type of the
value, this could be sufficient to our needs:

. macro_trace.h

52 /**
53 ** @brief Trace a value without having to specify a format.
54 **/
55 #define TRACE_VALUE0(HEAD , X) TRACE_PRINT2(HEAD "␣%Lg", (X)+0.0L)

It works for any value X that is either an integer or a floating point. The format "%Lg" for
a long double ensures that any value is presented in a suitable way. Evidently, the HEAD
argument now must not contain any fprintf format, but the compiler will tell us if the
there is a mismatch, anyhow.

Then, compound literals can be a convenient way to check if the value of a parameter X
is assignment compatible to a type T. Consider the following first attempt to print a pointer
value

. macro_trace.h

57 /**
58 ** @brief Trace a pointer without having to specify a format.
59 **
60 ** @warning Uses a cast of @a X to @c void*.
61 **/
62 #define TRACE_PTR0(HEAD , X) TRACE_PRINT2(HEAD "␣%p", (void*)(X))

It tries to print a pointer value with a "%p" format, which expects a generic pointer of type
void*. Therefore the macro uses a cast to convert the value and type of X to void*. As
most casts, a cast here can go wrong if X isn’t a pointer: because the cast tells the compiler
that we know what we are doing all type checks are actually switched off.

This can be avoided by assigning X first to an object of type void*. Assignment only
allows a restricted set of implicit conversions, namely here the conversion of any pointer
to an object type to void*.

. macro_trace.h

64 /**
65 ** @brief Trace a pointer without specifying a format.
66 **/
67 #define TRACE_PTR1(HEAD , X) \
68 TRACE_PRINT2(HEAD "␣%p", ((void*){ 0 } = (X)))

The trick here is to use something like ((T){ 0 } = (X)) to check if X is assignment
compatible to type T. Here, the compound literal ((T){ 0 } first creates a temporary object
of type T to which we then assign X. Again, a modern optimizing compiler should optimize
the use of the temporary object away and only do the type checking for us.
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17.3. Accessing the calling context.
Since macros are just textual replacements, they can interact much more closely with the

context of their caller. In general, for usual functionality this isn’t desirable and we are
better off with the clear separation between the context of the caller (evaluation of function
arguments) and the one of the callee (use of function parameters).

In the context of debugging, though, we usually want to break that strict separation
to observe part of the state at a specific point in our code. In principle we could access
any variable inside a macro, but generally we want some more specific information of the
calling environment, namely a trace of the position a particular debugging output originates
from.

C offers several constructs for that purpose. It has a special macro __LINE__ that
always expands to a decimal integer constant for the number of the actual line in the source.

. macro_trace.h

70 /**
71 ** @brief Add the current line number to the trace.
72 **/
73 #define TRACE_PRINT3(F, X) \
74 do { \
75 if (TRACE_ON) \
76 fprintf(stderr , "%lu:␣" F "\n", __LINE__ +0UL, X); \
77 } while (false)

Likewise, macros __DATE__, __TIME__ and __FILE__ contain string literals with the
date and time of compilation and with the name of the current translation unit. Another
construct, __func__, is a local static variable that holds the name of the current function.

. macro_trace.h

79 /**
80 ** @brief Add the name of the current function to the trace.
81 **/
82 #define TRACE_PRINT4(F, X) \
83 do { \
84 if (TRACE_ON) \
85 fprintf(stderr , "%s:%lu:␣" F "\n", \
86 __func__ , __LINE__ +0UL, X); \
87 } while (false)

If the following invocation

. macro_trace.c

24 TRACE_PRINT4("my␣favorite␣variable:␣%g", sum);

is at line number 24 of the source file and main is its surrounding function, the correspond-
ing output looks similar to

Terminal

0 main:24: my favorite variable: 889

Another pitfall that we should have in mind if we are using fprintf automatically as
above is that all arguments in its list must have the correct type as given in the specifier.
For __func__ this is no problem, by its definition we know that this is a char array, so
the "%s" specifier is fine. __LINE__ is different. We know that it is a decimal constant
representing the line number. So if we revisit the rules for the types of decimal constants
in Section 5.2 we see that the type depends on the value. On embedded platforms INT_MAX
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might be as small as 32767 and very large sources (perhaps automatically produced) may
have more lines than that. A good compiler should warn us when such a situation arises:

Rule 3.17.3.1 The line number in __LINE__ may not fit into an int.

Rule 3.17.3.2 Using __LINE__ is inherently dangerous.

In our macros we avoid the problem by either fixing the type to unsigned long8 or by
transforming the number to a string during compilation.

There is another type of information from the calling context that is often quite helpful
for traces, namely the actual expressions that we passed to the macro as arguments. As this
is often used for debugging purposes, C has a special operator for this: #. If such a #
appears before a macro parameter in the expansion, the actual argument to this parameter
is stringified that is all its textual content is placed into a string literal. The following
variant of our trace macro has a #X

. macro_trace.h

91 /**
92 ** @brief Add a textual version of the expression that is

evaluated.
93 **/
94 #define TRACE_PRINT5(F, X) \
95 do { \
96 if (TRACE_ON) \
97 fprintf(stderr , "%s:" STRGY(__LINE__) ":(" #X "):␣" F "\n", \
98 __func__ , X); \
99 } while (false)

that is replaced by the text of the second argument at each call of the macro. For the
following invocations

. macro_trace.c

25 TRACE_PRINT5("my␣favorite␣variable:␣%g", sum);
26 TRACE_PRINT5("a␣good␣expression:␣%g", sum*argc);

the corresponding output looks similar to

Terminal

0 main:25:(sum): my favorite variable: 889

1 main:26:(sum*argc): a good expression: 1778

As the preprocessing phase knows nothing about the interpretation of these arguments,
this replacement is purely textual and should appear as in the source, with some possible
adjustments for white space.

Rule 3.17.3.3 Stringification with operator # does not expand macros in its argument.

In view of the potential problems with __LINE__ mentioned above, we also would like
to convert the line number directly into a string. This has a double advantage: it avoids the
type problem and stringification is done entirely at compile time. As said, the # operator
only applies to macro arguments, so a simple use as # __LINE__ does not have the desired
effect. Now consider the following macro definition:

8Hoping that no source will have more than 4 billion lines.
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. macro_trace.h

89 #define STRINGIFY(X) #X

Stringification kicks in before argument replacement, and the result of STRINGIFY(
__LINE__) is "__LINE__", the macro __LINE__ is not expanded. So this macro still is not
sufficient for our need.

. macro_trace.h

90 #define STRGY(X) STRINGIFY(X)

Now, STRGY(__LINE__) first expands to STRINGIFY(25) (if we are on line 25), this
then expands to "25", the stringified line number.

For completeness, we also mention another operator that is only valid in the prepro-
cessing phase, the ## operator. It is of even more specialized use, namely it is a token
concatenation operator. It can be useful when writing entire macro libraries where we
have to generate names for types or functions automatically.

17.4. Variable length argument lists. We have already seen functions that accept
argument lists of variable length, namely printf, scanf and friends. Their declarations
have the token ... at the end of the parameter list to indicate that feature, namely that after
an initial number of known arguments (such as the format for printf) a list of arbitrary
length of additional arguments can be provided. Below, we will briefly mention how such
functions can be defined, but this feature is dangerous and merely obsolete, so we will not
much insist on it. Alternatively, we present a similar feature for macros, that can mostly be
used to replace the feature for functions.

17.4.1. Variadic macros. Variable length argument macros, variadic macros for short,
use the same token “...” to indicate that feature. As for functions, this token must appear
at the end of the parameter list.

. macro_trace.h

101 /**
102 ** @brief Allow multiple arguments to be printed in the
103 ** same trace.
104 **/
105 #define TRACE_PRINT6(F, ...) \
106 do { \
107 if (TRACE_ON) \
108 fprintf(stderr , "%s:" STRGY(__LINE__) ":␣" F "\n", \
109 __func__ , __VA_ARGS__); \
110 } while (false)

Here, in TRACE_PRINT6, this indicates that after the format argument F any non-empty list
of additional arguments may be provided in a call. This list of expanded arguments is
accessible in the expansion through the identifier __VA_ARGS__. Thus a call such as

. macro_trace.c

27 TRACE_PRINT6("a␣collection:␣%g,␣%i", sum , argc);

just passes the arguments “through” to fprintf and results in the output

Terminal

0 main:27: a collection: 889, 2

Unfortunately, as it is written, the list in __VA_ARGS__ cannot be empty or absent. So
for what we have seen so far, we’d have to write a separate macro for the case that the list
is absent.
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. macro_trace.h

113 ** @brief Only trace with a text message , no values printed.
114 **/
115 #define TRACE_PRINT7 (...) \
116 do { \
117 if (TRACE_ON) \
118 fprintf(stderr , "%s:" STRGY(__LINE__) ":␣" __VA_ARGS__ "\n",\
119 __func__); \
120 } while (false)

But with some more effort, these two functionalities can be united into a single macro

. macro_trace.h

138 ** @brief Trace with or without values.
139 **
140 ** This implementation has the particularity of adding a format
141 ** @c "%.0d" to skip the last element of the list which was
142 ** artificially added.
143 **/
144 #define TRACE_PRINT8 (...) \
145 TRACE_PRINT6(TRACE_FIRST(__VA_ARGS__) "%.0d", \
146 TRACE_LAST(__VA_ARGS__))

Here, TRACE_FIRST and TRACE_LAST are macros that give access to the first and re-
maining arguments in the list, respectively. Both are relatively simple. They use auxiliary
macros that enable us to distinguish a first parameter _0 from the remainder __VA_ARGS__.
Since we want to be able to call both with one or more arguments, they add a new argument
“0” to the list. For TRACE_FIRST this goes well, this additional 0 is just ignored as are the
rest of the arguments.

. macro_trace.h

122 /**
123 ** @brief Extract the first argument from a list of arguments.
124 **/
125 #define TRACE_FIRST (...) TRACE_FIRST0(__VA_ARGS__ , 0)
126 #define TRACE_FIRST0(_0, ...) _0

For TRACE_LAST this is a bit more problematic, since this extends the list in which we
are interested in by an additional value.

. macro_trace.h

128 /**
129 ** @brief Remove the first argument from a list of arguments.
130 **
131 ** @remark This is only suitable in our context ,
132 ** since this adds an artificial last argument.
133 **/
134 #define TRACE_LAST (...) TRACE_LAST0(__VA_ARGS__ , 0)
135 #define TRACE_LAST0(_0, ...) __VA_ARGS__

Therefore TRACE_PRINT6 compensates this by an additional format specifier, "%.0d", that
prints an int of width 0, that is, nothing. Testing it for the two different use cases

. macro_trace.c

29 TRACE_PRINT8("a␣collection:␣%g,␣%i", sum , argc);
30 TRACE_PRINT8("another␣string");
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gives us exactly what we want:

Terminal

0 main:29: a collection: 889, 2

1 main:30: another string

The __VA_ARGS__ part of the argument list also can be stringified just as any other
macro parameter.

. macro_trace.h

148 /**
149 ** @brief Trace by first giving a textual representation of the
150 ** arguments.
151 **/
152 #define TRACE_PRINT9(F, ...) \
153 TRACE_PRINT6("(" #__VA_ARGS__ ")␣" F, __VA_ARGS__)

The textual representation of the arguments

. macro_trace.c

31 TRACE_PRINT9("a␣collection:␣%g,␣%i", sum*acos (0), argc);

is inserted including the commas that separate them.

Terminal

0 main:31: (sum*acos(0), argc) a collection: 1396.44, 2

So far, our variants of the trace macro that have a variable number of arguments must
also receive the correct format specifiers in the format argument F. This can be a tedious
exercise, since it forces us to always keep track of the type of each argument in the list that
is to be printed. A combination of an inline function and a macro can help us, here. First
let us look at the function.

. macro_trace.h

166 /**
167 ** @brief A function to print a list of values.
168 **
169 ** @remark Only call this through the macro :: TRACE_VALUES
170 ** that will provide the necessary contextual information.
171 **/
172 inline
173 void trace_values(FILE* s,
174 char const func[static 1],
175 char const line[static 1],
176 char const expr[static 1],
177 char const head[static 1],
178 size_t len , long double const arr[len]) {
179 fprintf(s, "%s:%s:(%s)␣%s␣%Lg", func , line ,
180 trace_skip(expr), head , arr [0]);
181 for (size_t i = 1; i < len -1; ++i)
182 fprintf(s, ",␣%Lg", arr[i]);
183 fputc(’\n’, s);
184 }

It prints a list of long double values after preceding them with the same header informa-
tion as we have done this before. Only this time the function receives the list of values
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through an array of long double of known length len. For reasons that we will see be-
low, the function actually always skips the last element of the array. Using a function
trace_skip, it also skips an initial part of the parameter expr.

The macro that passes the contextual information to the function comes in two levels.
The first is just massaging the argument list in different ways:

. macro_trace.h

204 /**
205 ** @brief Trace a list of arguments without having to specify
206 ** the type of each argument.
207 **
208 ** @remark This constructs a temporary array with the arguments
209 ** all converted to @c long double. Thereby implicit conversion
210 ** to that type is always guaranteed.
211 **/
212 #define TRACE_VALUES (...) \
213 TRACE_VALUES0(ALEN(__VA_ARGS__), \
214 #__VA_ARGS__ , \
215 __VA_ARGS__ , \
216 0 \
217 )

First with the help of ALEN, which we will see below, it evaluates the number of el-
ements in the list. Then it stringifies the list and finally appends the list itself plus an
additional 0. All this is fed into TRACE_VALUES0:

. macro_trace.h

219 #define TRACE_VALUES0(NARGS , EXPR , HEAD , ...) \
220 do { \
221 if (TRACE_ON) { \
222 if (NARGS > 1) \
223 trace_values(stderr , __func__ , STRGY(__LINE__), \
224 "" EXPR "", "" HEAD "", NARGS , \
225 (long double const[NARGS]){ __VA_ARGS__ }); \
226 else \
227 fprintf(stderr , "%s:" STRGY(__LINE__) ":␣%s\n", \
228 __func__ , HEAD); \
229 } \

Here, the list without HEAD is used as an initializer of a compound literal of type long
double const[NARG]. The 0 that we added above ensures that the initializer is never
empty. With the information on the length of the argument list, we are also able to make a
case distinction, here, if the only argument is just the format string.

Remains to show ALEN.

. macro_trace.h

186 /**
187 ** @brief Return the number of arguments in the ... list.
188 **
189 ** This version works for lists with up to 31 elements.
190 **
191 ** @remark An empty argument list is taken as one (empty)

argument.
192 **/
193 #define ALEN (...) ALEN0(__VA_ARGS__ , \
194 0x1E , 0x1F , 0x1D , 0x1C , 0x1B , 0x1A , 0x19 , 0x18 , \
195 0x17 , 0x16 , 0x15 , 0x14 , 0x13 , 0x12 , 0x11 , 0x10 , \
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196 0x0E , 0x0F , 0x0D , 0x0C , 0x0B , 0x0A , 0x09 , 0x08 , \
197 0x07 , 0x06 , 0x05 , 0x04 , 0x03 , 0x02 , 0x01 , 0x00)
198
199 #define ALEN0(_00 , _01 , _02 , _03 , _04 , _05 , _06 , _07 , \
200 _08 , _09 , _0A , _0B , _0C , _0D , _0F , _0E , \
201 _10 , _11 , _12 , _13 , _14 , _15 , _16 , _17 , \
202 _18 , _19 , _1A , _1B , _1C , _1D , _1F , _1E , ...) _1E

The idea of it is to take the __VA_ARGS__ list and append a list of decreasing numbers
31, 30, . . . , 0. Then, by using ALEN0 we return the 31st element of that new list. Depending
on the length of the original list, this element will be one of the numbers. In fact it is
easy to see that the returned number is exactly then length of the original list, provided it
contains at least one element. In our use case, there is always at least the format string, so
the border case of an empty list cannot occur.

17.4.2. A detour: variadic functions. Let us now have a brief look into variadic func-
tions, i.e functions with variable length argument lists. As already mentioned these are
specified by using the ... operator in the function declaration, such as in

int printf(char const format[static 1], ...);

Such functions have a fundamental problem in their interface definition. Other than
for “normal” functions, at the call side it is not clear to which parameter type an argument
should be converted. E.g if we call printf("%d", 0) it is not directly clear for the com-
piler what “kind” of 0 the called function is expecting. For such cases C has a set of rules
to determine the type to which an argument is converted. These are almost identical to the
rules for arithmetic:

Rule 3.17.4.1 When passed to a variadic parameter, all arithmetic types are converted
as for arithmetic operations, with the exception of float arguments which
are converted to double.

So in particular, when they are passed to a variadic parameter, types such as char and
short are converted to a wider type, usually int.

So far, so good, now we know how such functions get called. But unfortunately, these
rules tell us nothing about the type that the called function should expect to receive.

Rule 3.17.4.2 A variadic function has to receive valid information about the type of
each argument in the variadic list.

The printf functions get away with this difficulty by imposing a specification of the
types inside the format argument. Let us look at the following short code snippet:

1 unsigned char zChar = 0;
2 printf("%hhu", zChar);

This has the effect that zChar is evaluated, promoted to int, passed as argument to
printf, which then reads this int and re-interprets this value as unsigned char. This
mechanism is
complicated: because the implementation of the function must provide specialized code

for all the basic types,
errorprone: because each call depends on the fact that the argument types are correctly

transmitted to the function, and
exigent: because the programmer has to check the type of each argument.

In particular the latter can cause serious portability bugs, because constants can have
different types from platform to platform. E.g the innocent call
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printf("%d:␣%s\n", 65536, "a␣small␣number"); // not portable

will work well on most platforms, namely those that have an int type with more than
16 bit. But on some platforms it may fail at runtime because 65536 is long. The worst
example for such a potential failure is the macro NULL.

printf("%p:␣%s\n", NULL , "print␣of␣NULL"); // not portable

As we have seen in Section 11.7, NULL is only guaranteed to be a null pointer con-
stant. Compiler implementors are free to choose which variant they provide, some chose
(void*)0, thus with a type of void*, most chose 0, thus with a type of int. On platforms
that have different width for pointers and int, e.g all modern 64 bit platforms, the result is
a crash of the program.9

Rule 3.17.4.3 Using variadic functions is not portable, unless each argument is forced
to a specific type.

This is quite different from the use of variadic macros as we have seen in the example
of TRACE_VALUES. There we used the variadic list as an initializer to an array, and so all
elements were automatically converted to the correct target type.

Rule 3.17.4.4 Avoid variadic functions for new interfaces.

They are just not worth the pain. But, if you have to implement a variadic function, you
need the C library header stdarg.h. It defines one type, va_list, and four function-like<stdarg.h>

macros that can be used the different arguments behind a va_list. Their pseudo interfaces
look as:

1 void va_start(va_list ap, parmN);
2 void va_end(va_list ap);
3 type va_arg(va_list ap, type);
4 void va_copy(va_list dest , va_list src);

The first example, shows how to actually avoid programming the core part of a variadic
function. For all that concerns formatted printing there are already functions, that we
should use.

. va_arg.c

20 FILE* iodebug = 0;
21
22 /**
23 ** @brief Print to the debug stream @c iodebug
24 **/
25 #ifdef __GNUC__
26 __attribute__ (( format(printf , 1, 2)))
27 #endif
28 int printf_debug(const char *format , ...) {
29 int ret = 0;
30 if (iodebug) {
31 va_list va;
32 va_start(va, format);
33 ret = vfprintf(iodebug , format , va);
34 va_end(va);
35 }
36 return ret;
37 }

9Remember Rule 2.11.7.1.
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The only thing that we do with the va_start and va_end is to create a va_list argument
list and pass this information on to the C library function vfprintf. This completely
spares us to do the case analysis and the tracking of the arguments. Here the conditional
__attribute__ is compiler specific (here for gcc and friends). Such an add-on may be
very helpful in situations where a known parameter convention is applied and where the
compiler can do some good diagnostic to ensure the validity of the arguments.

Now we look into a variadic function that receives n double values and that sums
them up:[Exs 10]

. va_arg.c

6 /**
7 ** @brief A small , useless function to show how variadic

functions
8 ** work.
9 **/

10 double sumIt(size_t n, ...) {
11 double ret = 0.0;
12 va_list va;
13 va_start(va, n);
14 for (size_t i = 0; i < n; ++i)
15 ret += va_arg(va, double);
16 va_end(va);
17 return ret;
18 }

The va_list is initialized by using the last argument before the list. Observe that by
some magic va_start receives va as such and not with an address operator &. Then, inside
the loop every value in the list is received through a use of the va_arg macro, which needs
an explicit specification (here double) of its type argument. Also we have to maintain the
length of the list ourselves, here by passing the length as an argument to the function. The
encoding of the argument type (here implicit) and the detection of the end of the list is left
up to the programmer of the function.

Rule 3.17.4.5 The va_arg mechnanism doesn’t give access to the length of the va_list.

Rule 3.17.4.6 A variadic function needs a specific convention for the length of the list.

17.5. Type generic programming. One of the genuine additions of C11 to the C
language has been direct language support for type generic programming. C99 already
had tgmath.h, see Section 8.1, for type generic mathematical functions, but didn’t offer <tgmath.h>

much to program such interfaces yourself. The specific add on is the keyword _Generic
which introduces a primary expression of the following form

1 _Generic(controlling expression,
2 type1: expression1,
3 ... ,
4 typeN: expressionN)

This is much similar to a switch statement, only that the controlling expression is only
taken for its type (but see below), and the result is one of the expressions expression1
. . . expressionN chosen by the corresponding type specific type1 . . . typeN, of which one
may be simply the keyword default.

One of the simplest use cases, and primarily what the C committee had in mind, is to
use _Generic for a type generic macro interface by providing a choice between function

[Exs 10]Variadic functions that only receive arguments of all the same type, can be replaced by a variadic macro and
an inline function that takes an array. Do it.
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pointers. A basic example for this can be the the tgmath.h interfaces, e.g fabs. _Generic
is not a macro feature itself, but can only conveniently be used in a macro expansion. By
neglecting complex floating point types, such a macro for fabs could look like:

1 #define fabs(X) \
2 _Generic ((X), \
3 float: fabsf , \
4 long double: fabsl , \
5 default: fabs)(X)

So this macro distinguishes two specific types, float and long double, which chose the
corresponding functions fabsf or fabsl, respectively. If the argument X is of any other
type, it is mapped to the default case of fabs. That is, other arithmetic types such as
double and integer types are mapped to fabs.[Exs 11][Exs 12]

Now, once the resulting function pointer is determined, it is applied to the argument
list (X) that follows the _Generic primary expression.

Here comes a more complete example.

. generic.h

6 inline
7 double min(double a, double b) {
8 return a < b ? a : b;
9 }

10
11 inline
12 long double minl(long double a, long double b) {
13 return a < b ? a : b;
14 }
15
16 inline
17 float minf(float a, float b) {
18 return a < b ? a : b;
19 }
20
21 /**
22 ** @brief Type generic minimum for floating point values
23 **/
24 #define min(A, B) \
25 _Generic ((A)+(B), \
26 float: minf , \
27 long double: minl , \
28 default: min)((A), (B))

It implements a type generic interface for the minimum of two real values. Three
different inline functions for the three floating point types are defined, and then used in a
similar way as for fabs. The difference to there is that these functions need two arguments
and not only one, and so the _Generic expression must decide on a combination of the
two types. This in done, by using the sum of the two arguments as controlling expression.
As an effect, argument promotions and conversion are effected to the arguments of that
sum, and so the _Generic expression chooses the function for the wider of the two types,
or double if both arguments are integers.

The difference to just having one function for long double, say, is

[Exs 11]Find the two reasons why this occurence of fabs in the macro expansion is not itself expanded.
[Exs 12]Extend the fabs macro to cover complex floating point types.
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Rule 3.17.5.1 The result type of a _Generic expression depends on the type of chosen
expression.

This is in contrast of what is happening e.g for the ternary operator a?b:c. Here, the
return type is computed by combining the two types of b and c. For the ternary operator,
this must be done like that because a may be different from run to run, and so either of b
or c may be selected. Since _Generic makes its choice upon the type, this choice is fixed
at compile time, and so the compiler can know the resulting type of the choice in advance.

In our example, we can be sure that all generated code that uses our interface will
never uses wider types than the programmer has foreseen. In particular, our min macro
here should always result in the compiler inlining the appropriate code for the types in
question.[Exs 13][Exs 14]

Rule 3.17.5.2 Using _Generic with inline functions adds optimization oportunities.

The interpretation of what it means to talk about the type of the controlling expression
is a bit ambiguous, and so up to a recent clarification by the C standard’s committee there
had been diverging interpretations. In fact, what the above examples imply, is that this
type is the type of the expression as-if it would be passed to a function. This means in
particular:

• If there are any, type qualifiers are dropped from the type of the controlling ex-
pression.

• An array type is converted to a pointer type to the base type.
• A function type is converted to a pointer to function.

As a consequence,

Rule 3.17.5.3 The type expressions in a _Generic expression should only be unqualified
types, no array types and no function types.

That doesn’t mean that the type expressions can’t be pointers to one of the above, that
is a pointer to a qualified type, a pointer to an array or a pointer to a function. But generally,
this rules makes the task of writing a type generic macro easier, since we do not have to
take all combinations of qualifiers into account. There are 3 qualifiers (or 4 for pointer
types), so otherwise all different combinations would lead to 8 (or even 16) different type
expressions per base type. The following example MAXVAl is already relatively long, it has
as special case for all 17 orderable types. If we would have also to track qualifications, we
would have to specialize 136 cases.

. generic.h

30 /**
31 ** @brief The maximum value for the type of @a X
32 **/
33 #define MAXVAL(X) \
34 _Generic ((X), \
35 _Bool: (_Bool)+1, \
36 char: (char)+CHAR_MAX , \
37 signed char: (signed char)+SCHAR_MAX , \
38 unsigned char: (unsigned char)+UCHAR_MAX , \
39 signed short: (signed short)+SHRT_MAX , \
40 unsigned short: (unsigned short)+USHRT_MAX , \
41 signed: INT_MAX , \
42 unsigned: UINT_MAX , \

[Exs 13]Extend the min macro to cover all wide integer types.
[Exs 14]Extend min to cover pointer types, as well.
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43 signed long: LONG_MAX , \
44 unsigned long: ULONG_MAX , \
45 signed long long: LLONG_MAX , \
46 unsigned long long: ULLONG_MAX , \
47 float: FLT_MAX , \
48 double: DBL_MAX , \
49 long double: LDBL_MAX)

This is an example where a _Generic expression is used differently than above, where
we “just” chose a function pointer and then called the function. Here the resulting value
is an integer constant expressions. This never could be realized by function calls, and it
would be very tedious to implement just with macros.[Exs 15] Again, with a conversion trick
we can get rid of some cases in which we might not be interested in:

. generic.h

51 /**
52 ** @brief The maximum promoted value for @a XT, where XT
53 ** can be an expression or a type name
54 **
55 ** So this is the maximum value of when fed to an arithmetic
56 ** operation such as @c +.
57 **
58 ** @remark Narrow types are promoted , usually to @c signed ,
59 ** or maybe to @c unsigned on rare architectures.
60 **/
61 #define maxof(XT) \
62 _Generic (0+(XT)+0, \
63 signed: INT_MAX , \
64 unsigned: UINT_MAX , \
65 signed long: LONG_MAX , \
66 unsigned long: ULONG_MAX , \
67 signed long long: LLONG_MAX , \
68 unsigned long long: ULLONG_MAX , \
69 float: FLT_MAX , \
70 double: DBL_MAX , \
71 long double: LDBL_MAX)

Here, the special form of the controlling expression adds an additional feature. The ex-
pression 0+(identifier)+0 is valid if identifier is a variable or if it is a type. If it is
a variable, the type of the variable is used and it is evaluated just as any other expression.
Then integer promotion is performed to it and the resulting type is deduced.

If it is a type, (identifier)+0 is read as cast of +0 to type identifier. Adding 0+
from the left then still ensures that integer promotion is performed if necessary, and so the
result is the same if X is a type T or an expression of the same type T.

Another requirement for the type expressions in a _Generic expression is that the
choice must be unambiguous at compile time.

Rule 3.17.5.4 The type expressions in a _Generic expression must refer to mutually
incompatible types.

Rule 3.17.5.5 The type expressions in a _Generic expression cannot be a pointer to
VLA.

A different model than the function-pointer-call variant can be convenient, but it also
has some pitfalls. Let us try to use _Generic to implement the two macros TRACE_FORMAT
and TRACE_CONVERT that are used in the following:

[Exs 15]Write an analogous macro for the minimum value.
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. macro_trace.h

278 /**
279 ** @brief Trace a value without having to specify a format.
280 **
281 ** This variant works correctly with pointers.
282 **
283 ** The formats are tuneable by changing the specifiers in
284 ** :: TRACE_FORMAT.
285 **/
286 #define TRACE_VALUE1(F, X)

\
287 do {

\
288 if (TRACE_ON)

\
289 fprintf(stderr , TRACE_FORMAT("%s:" STRGY(__LINE__) ":␣" F,

X),\
290 __func__ , TRACE_CONVERT(X));

\
291 } while (false)

TRACE_FORMAT is straightforward. We distinguish 6 different cases:

. macro_trace.h

232 /**
233 ** @brief Return a format that is suitable for @c fprintf.
234 **
235 ** @return The argument @a F must be a string literal ,
236 ** so will be return value.
237 **
238 **/
239 #define TRACE_FORMAT(F, X) \
240 _Generic ((X)+0LL, \
241 unsigned long long: "" F "␣%llu\n", \
242 long long: "" F "␣%lld\n", \
243 float: "" F "␣%.8f\n", \
244 double: "" F "␣%.12f\n", \
245 long double: "" F "␣%.20Lf\n", \
246 default: "" F "␣%p\n")

The default case, when no arithmetic type is matched, supposes that the argument has
a pointer type. In that case, to a be correct parameter for fprintf, the pointer must be con-
verted to void*. Our goal is to implement such a conversion through the TRACE_CONVERT.

A first try could look like the following:

1 #define TRACE_CONVERT_WRONG(X) \
2 _Generic ((X)+0LL, \
3 unsigned long long: (X)+0LL, \
4 ... \
5 default: ((void*){ 0 } = (X)))

This uses the same trick as for TRACE_PTR1 to convert the pointer to void*. Unfortunately
this implementation is wrong:

Rule 3.17.5.6 All choices expression1 ... expressionN in a _Generic must be valid.

Here, if e.g X is an unsigned long long, say 1LL, the default case would read
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((void*){ 0 } = (1LL))

which would be assigning a non-zero integer to a pointer, which is erroneous.16

We tackle this by two steps. First we have a macro that returns either its argument, the
default, or a literal zero.

. macro_trace.h

248 /**
249 ** @brief Return a value that forcibly can be interpreted as
250 ** pointer value.
251 **
252 ** That is any pointer will be returned as such , but other
253 ** arithmetic values will result in a @c 0.
254 **/
255 #define TRACE_POINTER(X) \
256 _Generic ((X)+0LL, \
257 unsigned long long: 0, \
258 long long: 0, \
259 float: 0, \
260 double: 0, \
261 long double: 0, \
262 default: (X))

This has the advantage, that a call to TRACE_POINTER(X) can always be assigned to a
void*. Either X itself is a pointer, so assignable to void*, or it is of another arithmetic
type and the result of the macro invocation is 0. Put all together TRACE_CONVERT looks as
follows:

. macro_trace.h

264 /**
265 ** @brief Return a value that is either a promoted to a wide
266 ** integer , a floating point or a @c void* if @a X is a
267 ** pointer.
268 **/
269 #define TRACE_CONVERT(X) \
270 _Generic ((X)+0LL, \
271 unsigned long long: (X)+0LL, \
272 long long: (X)+0LL, \
273 float: (X)+0LL, \
274 double: (X)+0LL, \
275 long double: (X)+0LL, \
276 default: ((void*){ 0 } = TRACE_POINTER(X)))

17.5.1. Default arguments. Some functions of the C library have parameters that re-
ceive the same boring arguments most of the time. This is e.g the case for strtoul and
relatives. Remember that these receive three arguments:

1 unsigned long int strtoul(char const nptr[restrict],
2 char** restrict endptr ,
3 int base);

The first is the string that we want to convert into an unsigned long. endptr will point
to the end of the number in the string, and base is the integer base for which the string is
interpreted. Two special conventions apply: if endptr may be a null pointer and if base

16Remember that conversion from non-zero integers to pointers must be made explicit through a cast.
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is 0, the string is interpreted as hexadecimal (leading "0x"), octal (leading "0") or decimal
otherwise.

Most of the time, strtoul is used without the endptr feature and with the symbolic
base set to 0, e.g in something like

1 int main(int argc , char* argv[argc +1]) {
2 if (argc < 2) return EXIT_FAILURE;
3 size_t len = strtoul(argv[1], 0, 0);
4 ...
5 }

to convert the first command line argument of a program to a length value. To avoid
this repetition and to have the reader of the code concentrate on the important things, we
can introduce an intermediate level of macros that provide these 0 arguments if they are
omitted:

. generic.h

114 /**
115 ** @brief Call a three -parameter function with default arguments
116 ** set to 0
117 **/
118 #define ZERO_DEFAULT3 (...) ZERO_DEFAULT3_0(__VA_ARGS__ , 0, 0, )
119 #define ZERO_DEFAULT3_0(FUNC , _0, _1, _2, ...) FUNC(_0, _1 , _2)
120
121 #define strtoul (...) ZERO_DEFAULT3(strtoul , __VA_ARGS__)
122 #define strtoull (...) ZERO_DEFAULT3(strtoull , __VA_ARGS__)
123 #define strtol (...) ZERO_DEFAULT3(strtol , __VA_ARGS__)
124 #define strtoll (...) ZERO_DEFAULT3(strtoll , __VA_ARGS__)

Here, the macro ZERO_DEFAULT3 works by subsequent addition and removal of argu-
ments. It is supposed to receive a function name and at least one first argument that is to
be passed to that function. First, a set of 0 is appended to the argument list and then, if this
results in more than three combined arguments, the excess is omitted. So for a call with
just one argument the sequence of replacements looks as follows:

strtoul(argv [1])
// ...
ZERO_DEFAULT3(strtoul , argv [1])
// ...
ZERO_DEFAULT3_0(strtoul , argv[1], 0, 0, )
// FUNC , _0 ,_1 ,_2 ,...
strtoul(argv[1], 0, 0)

Because of the special rule that inhibits recursion in macro expansion, the final function
call to strtoul will not be expanded further and passed on to the next compilation phases.

If instead we call strtoul with three arguments

strtoul(argv[1], ptr , 10)
// ...
ZERO_DEFAULT3(strtoul , argv[1], ptr , 10)
// ...
ZERO_DEFAULT3_0(strtoul , argv[1], ptr , 10, 0, 0, )
// FUNC , _0 , _1 , _2, ...
strtoul(argv[1], ptr , 10)

the sequence of replacements effectively results in exactly the same tokens with which we
started.
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18. Variations in Control Flow

The control flow, see Figure 1, of a program execution describes how the individual
statements of the program code are sequenced, that is, which statement is executed after
another. Up to now we have mostly looked at code that let us deduce this control flow
from syntax and some controlling expression. By that, each function can be described
by a hierarchical composition of basic blocks. A basic block is a maximum sequence
of statements such that once execution starts at the first of these statements it continues
unconditionally until the last, and, such that all execution of any statement in the sequence
starts with the first.

If we are supposing that all conditionals and loop statements use {} blocks, in a sim-
plified view such a basic block

• starts either at the beginning of a {}-block or a case or jump label, and
• ends either at the end of the corresponding {} block or at the next

– statement that is target of a case or jump label,
– body of a conditional or loop statement,
– return statement,
– goto statement, or
– call to a function with special control flow.

Observe, in that definition no exception is made for general function calls: these are
seen to temporarily suspend execution of a basic block but not to end it. Among the
functions with special control flow that end a basic block are some that we know already,
namely those that are marked with the keyword _Noreturn such as exit or abort. An-
other such function is setjmp which may return more than once, see below.

Code that is just composed of basic blocks that are stitched together by if/else17 or
loop statements has the double advantage of being easily readable for us, humans, and to
lead to better optimization opportunities for the compiler. Both can directly deduce the
lifetime and access pattern of variables and compound literals in basic blocks, and then
capture how these are mended by the hierarchical composition of the basic blocks into
their function.

A theoretical foundation of this structured approach has been given quite early for Pas-
cal programs by Nishizeki et al. [1977] and extended to C and other imperative languages
by Thorup [1995]. They prove that structured programs, that is programs without goto or
other arbitrary jump constructs, have a control flow that matches nicely onto a “tree-like”
decomposition that can be deduced from the syntactical nesting of the program. Unless
you don’t have to, you should stick to that programming model.

Nevertheless, some exceptional situations require exceptional measures. Generally,
changes of the control flow of a program can originate from
conditional statements: if/else, switch/case,
loop statements: do{}while(), while(), for(),
functions: function calls, return statement or _Noreturn specification
short jumps: goto and labels,
long jumps: setjmp/longjmp, getcontext/setcontext18

interrupts: signals and signal handlers,
threads: thrd_create, thrd_exit

These changes in flow control can mix up the knowledge that the compiler has of the
abstract state of the execution. Roughly, the complexity of the knowledge that a human or
mechanical reader has to track increases from top to bottom in that list. Up to now we only
have seen the first four constructs. These correspond to language features, features that are
determined by syntax, such as keywords, or by operators, such as the () of a function call.

17switch/case statements complicate the view a bit.
18Defined in POSIX systems.
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The latter three are introduced by C library interfaces. They provide changes in the control
flow of a program that can jump across function boundaries (longjmp), can be triggered
by events that are external to the program (interrupts), or can even establish a concurrent
control flow, another thread of execution.

Various difficulties may arise whe objects are under the effect of unexpected control
flow:

• Objects could be used outside their lifetime.
• Objects could be used uninitialized.
• Values of objects could be misinterpreted by optimizing. (volatile)
• Objects could be partially modified. (sig_atomic_t, atomic_flag, _Atomic

with lock free property and relaxed consistency)
• Updates to objects could be sequenced unexpectedly. (all _Atomic)
• Execution must be guaranteed to be exclusive inside a critical section. (mtx_t)

Because access to the objects that constitute the state of a program becomes compli-
cated, C provides features that help to cope with the difficulties. Above, they are noted in
parenthesis, and we will discuss them in detail in the following sections.

18.1. Sequencing. Before we can look into the details how the control flow of a pro-
gram can change in unexpected ways, we must better understand what the “normal” way
of a sequence of C statements guarantees, and what it does not. We have already seen
in Section 4.5 that the evaluation of C expressions does not necessarily follow the lexico-
graphical order as they are written. E.g the evaluation of function arguments can occur in
any order. The different expressions that constitute the arguments can even be interleaved
to the discretion of the compiler, or depending on the availability of resources at execution
time. We say that function argument expressions are unsequenced.

There are several reasons for establishing only relaxed rules for evaluation. One is
to allow for the easy implementation of optimizing compilers. Efficiency of the compiled
code has always been a strong point of C compared to other programming languages.

But another one is probably also that C does not add arbitrary restrictions when they
don’t have a convincing mathematical or technical foundation. Mathematically, the two
operands a and b in a+b are freely exchangeable. Imposing an evaluation order would
break this rule, and arguing about a C program would become more complicated. E.g the
set of values for an unsigned integer type then would not have the property of forming a
finite ring.

In the absence of threads, most of C’s formalization of this is done with so-called
sequence points. These are points in the syntactical specification of the program that im-
pose a serialization of the execution. But we will also later see additional rules that force
sequencing between the evaluation of certain expressions that don’t imply sequence points.

On a high level, a C program can be seen as a series of sequence points that are
reached one after the other, and the code between such sequence points may be executed
in any order, be interleaved or obey certain other sequencing constraints. In the simplest
case, e.g two statements that are separated by a ;, a statement before a sequence point is
sequenced before the statement after the sequence point.

But even the existence of sequence points may not impose a particular order between
two expressions, it only imposes that there is some order. To see that, consider the follow-
ing code that is “well defined”:

. sequence_point.c

3 unsigned add(unsigned* x, unsigned const* y) {
4 return *x += *y;
5 }
6 int main(void) {
7 unsigned a = 3;
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8 unsigned b = 5;
9 printf("a␣=␣%u,␣b␣=␣%u\n", add(&a, &b), add(&b, &a));

10 }

From Section 4.5 we remember that the two arguments to printf can be evaluated
in any order, and the rules for sequence points that we will see below will tell us that the
function calls to add impose sequence points. As a result, we have two possible outcomes
of this code. Either, the first add is executed first, entirely, and then the second, or the other
way around. For the first possibility we have:

• a is changed to 8 and that value is returned.
• b is changed to 13 and that value is returned.

The output of such an execution is

Terminal

0 a = 8, b = 13

For the second we get:
• b is changed to 8 and that value is returned.
• a is changed to 11 and that value is returned.

with the output

Terminal

0 a = 11, b = 8

That is, although the behavior of this program is defined, its outcome is not completely
determined by the C standard. The specific terminology that the C standard applies to such
a situation is that the two calls are indeterminately sequenced. This is not just a theoretical
discussion, the two commonly used open source C compilers gcc and clang differ on this
simple code. Let me stress on this again: all of this is defined behavior. Don’t expect a
compiler to warn you on such problems.

Rule 3.18.1.1 Side effects in functions can lead to indeterminate results.

Here is a list of all sequence points that are defined in terms of C’s grammar:
• The end of a statement, either by semicolon (;) or closing brace (}).
• The end of an expression before the comma operator (,).19

• The end of a declaration, either by semicolon (;) or comma (,).20

• The end of the controlling expressions of if, switch, for, while, conditional
evaluation (?:) or short circuit evaluation (|| and &&).

• After the evaluations of the function designator (usually a function name) and
the function arguments of a function call21 but before the actual call.

• The end of a return statement.
There are other sequencing restrictions besides those implied by sequence points. The

first two are more or less obvious but should be stated nevertheless:

Rule 3.18.1.2 The specific operation of any operator is sequenced after the evaluation
of all its operands.

19Be careful, commas that separate function arguments are not in this category.
20This also holds for a comma that ends the declaration of an enumeration constant.
21This sees the function designator on the same level as the function arguments.
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Rule 3.18.1.3 The effect of updating an object by any of the assignment, increment or
decrement operators is sequenced after the evaluation of its operands.

For function calls there also is an additional rule, that says that execution of a function
is always completed before any other expression:

Rule 3.18.1.4 A function call is sequenced with respect to all evaluations of the caller.

As we have seen above, this might be indeterminately sequenced, but sequenced nev-
ertheless.

Another source of indeterminately sequenced expressions originate from initializers:

Rule 3.18.1.5 Initialization list expressions for array or structure types are indetermi-
nately sequenced.

Last but not least, some sequence points are also defined for the C library:
• After the actions of format specifiers of the IO functions.
• Before any C library function returns.22

• Before and after calls to the comparison functions used for searching and sorting.
The later two impose similar rules to C library functions as to ordinary functions. This is
needed because the C library itself might not necessarily be implemented in C.

18.2. Short jumps. We already have seen a feature that interrupts the common con-
trol flow of a C program: goto. As you hopefully remember from Section 15, this is
implemented with two constructs: labels mark positions in the code and goto statements
jump to these marked positions inside the same function.

We also have seen that such jumps already have complicated implications on the life-
time and visibility of local objects. In particular, there is a difference in the lifetime of
objects that are defined inside loops and inside a set of statements that is repeated by
goto23. Consider the following two snippets:

1 size_t* ip = 0
2 while(something)
3 ip = &( size_t){ fun() }; /* life ends with while */
4 /* good: resource is freed */
5 printf("i␣is␣%d", *ip) /* bad: object is dead */

versus

1 size_t* ip = 0
2 RETRY:
3 ip = &( size_t){ fun() }; /* life continues */
4 if (condition) goto RETRY;
5 /* bad: resource is blocked */
6 printf("i␣is␣%d", *ip) /* good: object is alive */

Both define a local object in a loop by using a compound literal. The address of that
compound literal is assigned to a pointer and so the object remains accessible outside the
loop, and can e.g be used in a printf statement.

It looks as if they both are semantically equivalent, but they are not. For the first,
the object that corresponds to the compound literal only lives in the scope of the while
statement.

22Beware that library functions that are implemented as macros, may not define a sequence point.
23see ISO 9899:2011 6.5.2.5 p16
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Rule 3.18.2.1 Each iteration defines a new instance of a local object.

Therefore the access to the object in the *ip expression is invalid. When omitting
the printf in the example, the while loop has the advantage that the resources that are
occupied by the compound literal can be reused.

For the second there is no such restriction: the scope of the definition of the com-
pound literal is the whole surrounding block. So by Rule 2.13.2.12 the object is alive until
that block is left. This is not necessarily good: the object occupies resources that could
otherwise be reassigned.

In cases where there is no need for the printf statement (or similar access), the first
snippet is clearer and has better optimization opportunities. Therefore under most circum-
stances it is preferable.

Rule 3.18.2.2 goto should only be used for exceptional changes in control flow.

Here exceptional usually means that we encounter an transitional error condition that
requires local cleanup, such as we have shown in Section 15. But it could also mean
specific algorithmic conditions as we can see in Listing 3.11.

The function descend implements a simple recursive descent parser that recognizes
{} constructs in a text given on stdin and indents this text on output, according to the
nesting of the {}. More formally this function detects text as of the following recursive
definition.

program := some-text? [’{’program’}’some-text?]?
and prints such a program conveniently by changing the line structure and indentation.

Here two labels, NEW_LINE and ASCEND, and two macros, LEFT and RIGHT, reflect the
actual state of the parsing. NEW_LINE is jump target when a new line is to be printed,
ASCEND is used if a } is encountered or if the stream ended. LEFT and RIGHT are used as
case labels if left or right curly braces are detected.

The reason to have goto and labels, here, is that both states are detected in two dif-
ferent places of the function, and different levels of nesting. In addition, the names of the
labels reflect their purpose and thereby provide additional information about the structure.

18.3. Functions. Function descend has more complications than the twisted local
jump structure, it also is recursive. As we already have seen, C handles recursive functions
quite simply.

Rule 3.18.3.1 Each function call defines a new instance of a local object.

So usually different recursive calls to the same function that are active simultaneous
don’t interact, everybody has their own copy of the program state.

call

function return

FIGURE 1. Control flow of function calls, return jumps to the next
instruction after the call.

But here, because of the pointers, this principle is weaked. The data to which buffer
and dp point is modified. For buffer this is probably unavoidable, it will contain the
data that we are reading. But dp could (and should) be replaced by a simple unsigned
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LISTING 3.11. A simple recursive descent parser for code indentation.

60 static
61 char const* descend(char const* act ,
62 unsigned dp[restrict static 1], // bad TBR
63 size_t len , char buffer[len],
64 jmp_buf jmpTarget) {
65 if (dp[0]+3 > sizeof head) longjmp(jmpTarget , tooDeep);
66 ++dp[0];
67 NEW_LINE: // loop on output
68 while (!act || !act [0]) { // loop for input
69 if (interrupt) longjmp(jmpTarget , interrupted);
70 act = skipspace(fgets(buffer , len , stdin));
71 if (!act) { // end of stream
72 if (dp[0] != 1) longjmp(jmpTarget , plusL);
73 else goto ASCEND;
74 }
75 }
76 fputs (&head[sizeof head - (dp[0] + 2)], stdout); // header
77
78 for (; act && act [0]; ++act) { // remainder of the line
79 switch (act [0]) {
80 case LEFT: // descend on left brace
81 act = end_line(act+1, jmpTarget);
82 act = descend(act , dp, len , buffer , jmpTarget);
83 act = end_line(act+1, jmpTarget);
84 goto NEW_LINE;
85 case RIGHT: // return on right brace
86 if (dp[0] == 1) longjmp(jmpTarget , plusR);
87 else goto ASCEND;
88 default: // print char and go on
89 putchar(act [0]);
90 }
91 }
92 goto NEW_LINE;
93 ASCEND:
94 --dp[0];
95 return act;
96 }

argument.[Exs 24] Our implementation only has dp as pointer because we want to be able to
track the depth of the nesting in case an error occurs. So if we abstract from the calls to
longjmp that we did not yet explain, using such a pointer is bad. The state of the program
is more difficult to follow, and we miss optimization opportunities.[Exs 25]

In our particular example, because dp is restrict qualified and not passed to the calls
to longjump (see below) and it is only incremented at the beginning and decremented at
the end, dp[0] is restored to its original value just before the return from the function. So,
seen from the outside, it appears that descend doesn’t change that value at all.

If the function code of descend is visible at the call side, a good optimizing compiler
can deduce that dp[0] did not change through the call. If longjmp weren’t special, this
would be a nice optimization opportunity. Below we will see, how the presence longjmp
invalidates this optimization and in fact leads to buggy code.

[Exs 24]Change descend such that it receives an unsigned depth instead of a pointer.
[Exs 25]Compare the assembler output of the initial version against your version without dp pointer.
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?
longjmp

setjmp

FIGURE 2. Control flow with setjmp and longjmp, longjmp jumps to
the position marked by setjmp.

18.4. Long jumps. Our function descend may also encounter exceptional conditions
that can not be repaired. We use an enumeration type to name them. Here, eofOut is
reached if stdout can’t be written, and interrupted refers to an asynchronous signal that
our running program received. We will discuss this concept later.

. basic_blocks.c

32 /**
33 ** @brief exceptional states of the parse algorithm
34 **/
35 enum state {
36 execution = 0, //*< normal execution
37 plusL , //*< too many left parenthesis
38 plusR , //*< too many right parenthesis
39 tooDeep , //*< nesting too deep to handle
40 eofOut , //*< end of output
41 interrupted , //*< interrupted by signal
42 };

We use the function longjmp to deal with these situations, and we place the corre-
sponding calls directly at the place in the code where we recognize that such condition is
reached.

• tooDeep is easily recognized at the beginning of the function;
• plusL can be detected when we encounter the end of the input stream while we

are not at the first recursion level;
• plusR occurs when we encounter a closing } while we are at the first recursion

level;
• eofOut is reached if a write to stdout returned an “end of file”, EOF, condition;
• and interrupted is checked before each new line that is read from stdin.

Since stdout is line buffered, we only check for eofOut when we write the ’\n’
character. This happens inside the short function end_line:

. basic_blocks.c

48 char const* end_line(char const* s, jmp_buf jmpTarget) {
49 if (putchar(’\n’) == EOF) longjmp(jmpTarget , eofOut);
50 return skipspace(s);
51 }

The function longjmp comes with a companion macro setjmp that is used to establish
a jump target to which a call of longjmp may refer. The header setjmp.h provides the<setjmp.h>

following prototypes:

_Noreturn void longjmp(jmp_buf target , int condition);
int setjmp(jmp_buf target); // really a macro , not a function
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The function longjmp also has the _Noreturn property and so we are assured that
once we detect one of the exceptional conditions, execution of the current call to descend
will never continue.

Rule 3.18.4.1 longjmp never returns to the caller.

This is a valuable information to the optimizer. In descend, longjmp is called in 5
different places and the compiler can substantially simplify the analysis of the different
branches. E.g after the tests !act it can be assumed that act is non-null on entry to the
for loop.

Normal syntactical labels are only valid goto targets within the same function as they
are declared. In contrast to that, a jmp_buf is an opaque object that can be declared any-
where and that can be used as long as it is alive and its contents is valid. In descend we
use just one jump target of type jmp_buf, that we declare as a local variable. This jump
target is setup in the base function basic_blocks that serves as interface to descend, see
Listing 3.12. This function mainly consist of one big switch statement that handles all the
different conditions.

The 0 branch of that switch is taken when we come here through the normal control
flow. This is one of the basic principles for setjmp:

Rule 3.18.4.2 When reached through normal control flow, a call to setjmp marks the
call location as a jump target and returns 0.

As said, jmpTarget must be alive and valid when we call longjmp. So for an auto
variable, the scope of declaration of the variable must not have been left, otherwise it would
be dead. For the validity, all of the context of the setjmp must still be active when we call
longjmp. Here, we avoid complications by having jmpTarget declared in the same scope
as the call to setjmp.

Rule 3.18.4.3 Leaving the scope of a call to setjmp invalidates the jump target.

Once we enter case 0 and call descend we may end up in one of the exceptional
conditions and call longjmp to terminate the parse algorithm. This passes back con-
trol to the call location that had been marked in jmpTarget just as if we just returned
from the call to setjmp. The only visible difference is that now the return value is the
condition that we passed as a second argument to longjmp. If for example we en-
countered the tooDeep condition at the beginning of a recursive call to descend and
called longjmp(jmpTarget, tooDeep), we jump back to the controlling expression of
the switch and receive the return value of tooDeep. Execution then continues at the cor-
responding case label.

Rule 3.18.4.4 A call to longjmp transfers control directly to the position that was set by
setjmp as if that had returned the condition argument.

Beware though, that precautions have been taken to make it impossible to cheat and to
retake the “normal” path a second time.

Rule 3.18.4.5 A 0 as condition parameter to longjmp is replaced by 1.

The setjmp/longjmp mechanism is very powerful and can avoid a whole cascade of
returns from functions calls. In our example, if we allow the maximal depth of nesting
of the input program of 30, say, the detection of the tooDeep condition will happen when
there are 30 active recursive calls to descend. A regular error return strategy would return
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LISTING 3.12. The user interface for the recursive descent parser.

100 void basic_blocks(void) {
101 char buffer[maxline ];
102 unsigned depth = 0;
103 char const* format =
104 "All␣%0.0d%c␣%c␣blocks␣have␣been␣closed␣correctly\n";
105 jmp_buf jmpTarget;
106 switch (setjmp(jmpTarget)) {
107 case 0:
108 descend(0, &depth , maxline , buffer , jmpTarget);
109 break;
110 case plusL:
111 format =
112 "Warning:␣%d␣%c␣%c␣blocks␣have␣not␣been␣closed␣properly\n";
113 break;
114 case plusR:
115 format =
116 "Error:␣closing␣too␣many␣(%d)␣%c␣%c␣blocks\n";
117 break;
118 case tooDeep:
119 format =
120 "Error:␣nesting␣(%d)␣of␣%c␣%c␣blocks␣is␣too␣deep\n";
121 break;
122 case eofOut:
123 format =
124 "Error:␣EOF␣for␣stdout␣at␣nesting␣(%d)␣of␣%c␣%c␣blocks\n";
125 break;
126 case interrupted:
127 format =
128 "Interrupted␣at␣level␣%d␣of␣%c␣%c␣block␣nesting\n";
129 break;
130 default :;
131 format =
132 "Error:␣unknown␣error␣within␣(%d)␣%c␣%c␣blocks\n";
133 }
134 fflush(stdout);
135 fprintf(stderr , format , depth , LEFT , RIGHT);
136 if (interrupt) {
137 SH_PRINT(stderr , interrupt ,
138 "is␣somebody␣trying␣to␣kill␣us?");
139 raise(interrupt);
140 }
141 }

to each of these and do some work on each level. A call to longjmp allows us to shorten
all these returns and proceed the execution directly in the switch of basic_blocks.

Because setjmp/longjmp is allowed to make some simplified assumptions, this mech-
anism is surprisingly efficient. Depending on the processor architecture it usually needs
no more than 10 to 20 assembler instructions. The strategy followed by the library imple-
mentation is usually quite simple: setjmp saves the essential hardware registers, including
stack and instruction pointers, in the jmp_buf object, longjmp restores them from there
and passes control back to the stored instruction pointer.26

26For the vocabulary of this you might want to read or re-read Section 13.4.



18. VARIATIONS IN CONTROL FLOW 207

One of the simplifications setjmp makes is about its return. Its specification says it
returns an int value, but this value cannot be used inside arbitrary expressions.

Rule 3.18.4.6 setjmp may only be used in simple comparisons inside controlling ex-
pression of conditionals.

So it can be used directly in a switch statement as in our example, it can be tested for
==, < etc, but the return value of setjmp may not be used in an assignment. This guarantees
that the setjmp value is only compared to a known set of values, and the change in the
environment when returning from longjmp may just be a special hardware register that
controls the effect of conditionals.

As said, this saving and restoring of the execution environment by the setjmp call is
minimal. Only a minimal necessary set of hardware registers are saved and restored. No
precautions are taken get local optimizations in line or even to take the fact into account
that the call location may be visited a second time.

Rule 3.18.4.7 Optimization interacts badly with calls to setjmp.

If you execute and test the code in the example, you will see that there actually is
a problem in our simple usage of setjmp. If we trigger the plusL condition, namely if
we feed a partial program with missing closing } we would expect the diagnostic to read
something like

Terminal

0 Warning: 3 { } blocks have not been closed properly

Depending on the optimization level of your compilation, instead of the 3 you will
most probably see a 0, independently of the input program. This is because the optimizer
does an analysis based on the assumption that the switch cases are mutually exclusive. It
only suspects the value of depth to change if execution goes through case 0 and thus the
call of descend. From inspection of descend, see Section 18.3, we know that the value
of depth is always restored to its original value before return, and so the compiler may
assume that the value doesn’t change through this code path. Then, none of the other case
s changes depth, so the compiler can assume that depth is always 0 for the fprintf call.

As a consequence, optimization can’t make correct assumptions about objects that are
changed in the normal code path of setjmp and referred to in one of the exceptional paths.
There is only one recipe against that:

Rule 3.18.4.8 Objects that are modified across longjmp must be volatile.

Syntactically, the qualifier volatile applies similar to the other qualifiers const and
restrict that we already encountered. If we declare depth with that qualifier

unsigned volatile depth = 0;

and amend the prototype of descend accordingly, all accesses to this object will use the
value that is stored in memory. Optimizations that try to make assumptions about its value
are blocked out.

Rule 3.18.4.9 volatile objects are reloaded from memory each time they are accessed.

Rule 3.18.4.10 volatile objects are stored to memory each time they are modified.
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So volatile objects are protected from optimization, or, if we look at it negatively,
they inhibit optimization. Therefore you should only make objects volatile if you really
need them to be.[Exs 27]

Finally, note some subtleties of the jmp_buf type. Remember that it is an opaque type,
you should never make assumptions about its structure or its individual fields.

Rule 3.18.4.11 The typedef for jmp_buf hides an array type.

And because it is an opaque type, we don’t know anything about the base type,
jmp_buf_base, say, of the array. By that:

• An object of type jmp_buf cannot be assigned to.
• A jmp_buf function parameter is rewritten to a pointer to jmp_buf_base.
• Such a function always refers to the original object and not to a copy.

In a way, this emulates a pass by reference mechanism, for which other programming lan-
guages such as C++ have explicit syntax. Generally, using this trick is not a good idea,
the semantics of a jmp_buf depends on being a locally declared variable (basic_blocks,
unassignable) or a function parameter (descend, modifiable because pointer), and we can-
not use the more specific declarations from Modern C for the function parameter that would
be adequate, namely something like

jmp_buf_base jmpTarget[restrict const static 1]

to insist that the pointer shouldn’t be changed inside the function, that it must not be 0 and
that the access to it can be considered unique for the function. As of today, we would not
design this type like this and you should not try to copy that trick for the definition of your
own types.

signal handler

interrupt

return

�

FIGURE 3. Control flow after an interrupt, return jumps to the position
where the interrupt occured.

18.5. Signal handlers. As we have seen, setjmp/longjmp can be used to handle
exceptional conditions that we detect ourselves during the execution of our code. A signal
handler is a tool that handles exceptional conditions that arise differently, namely that are
triggered by some event that is external to the program. Technically, there are two types of
such external events: hardware interrupts, also referred to as traps or synchronous signals,
and software interrupts or asynchronous signals.

The first occurs when the processing device encounters a severe fault that it cannot
deal with, e.g a division by zero, addressing an non-existing memory bank or using a
misaligned address in an instruction that operates on a wider integer type. Such an event
is synchronous with the program execution. It is directly caused by a faulting instruction,
and so it can always be known at which particular instruction the interrupt was raised.

[Exs 27]Your version of descend that passes depth as value, might not propagate the depth correctly if it encounters
the plusL condition. Ensure that it copies that value to an object that can be used in by the fprintf call in
basic_blocks.
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The second arises when the operating or runtime system decides that our program
should terminate, either because some deadline is exceeded, a user has issued a termination
request or the world as we know it is going to end. Such an event is asynchronous, because
it can fall just in the middle of a multi-stage instruction, leaving the execution environment
in an intermediate state.

Most modern processors have a builtin features to handle hardware interrupts, an in-
terrupt vector table. This table is indexed by the different hardware faults that the platform
knows about. Its entries are pointers to procedures, interrupt handlers, that are executed
when the specific fault occurs. So if the processor detects such a fault, execution is au-
tomatically switched away from the user code, and such an interrupt handler is executed.
Such a mechanism is not portable, because the names and locations of the faults are dif-
ferent from platform to platform. It is tedious to handle, because to program a simple
application, we’d have to provide all handlers for all interrupts.

C’s signal handlers provide us with an abstraction to deal with both types of interrupts,
hardware and software, in a portable way. They work similar to what we describe for
hardware interrupts, only that

• the names of (some of) the faults are standardized;
• all faults have a default handler (which is mostly implementation defined);
• and (most) handlers can be specialized.

In each item of that list there are parenthesized “reservations”, because upon a closer look
it appears that C’s interface for signal handlers is quite rudimentary and all platforms have
their extensions and special rules.

Rule 3.18.5.1 C’s signal handling interface is minimal and should only be used for ele-
mentary situations.

The interface is defined in the header signal.h. The C standard distinguishes six <signal.h>

different values, called signal numbers. Three of these are typically caused by hardware
interrupts28:
SIGFPE an erroneous arithmetic operation, such as zero divide

or an operation resulting in overflow

SIGILL detection of an invalid function image, such as an

invalid instruction

SIGSEGV an invalid access to storage

The other three are usually triggered by software or users:
SIGABRT abnormal termination, such as is initiated by the abort

function

SIGINT receipt of an interactive attention signal

SIGTERM a termination request sent to the program

A specific platform will have other signal numbers, the standard reserves all identifiers
starting with SIG for that purpose. Their use is undefined as of the C standard, but as such
there is nothing bad about it. Undefined here really means what it says, if you use it, it
has to be defined by some other authority than the C standard, e.g your platform provider.
Your code becomes less portable in consequence.

There are two standard dispositions for handling signals, both also represented by
symbolic constants. SIG_DFL refers to a default how a particular signal is normally handled
on a given platform, and SIG_IGN indicates that a particular signal is to be ignored. Then
the programmer may write their own signal handlers. The handler for our parser looks
quite simple:

28Called computational exceptions by the standard.
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. basic_blocks.c

143 /**
144 ** @brief a minimal signal handler
145 **
146 ** After updating the signal count , for most signals this
147 ** simply stores the signal value in "interrupt" and returns.
148 **/
149 static void signal_handler(int sig) {
150 sh_count(sig);
151 switch (sig) {
152 case SIGTERM: quick_exit(EXIT_FAILURE);
153 case SIGABRT: _Exit(EXIT_FAILURE);
154 #ifdef SIGCONT
155 // continue normal operation
156 case SIGCONT: return;
157 #endif
158 default:
159 /* reset the handling to its default */
160 signal(sig , SIG_DFL);
161 interrupt = sig;
162 return;
163 }
164 }

As you can see, such a signal handler receives the signal number sig as an argument
and switch es according to that number. Here we have provisions for signal numbers
SIGTERM and SIGABRT. All other signals are just “handled” by resetting the handler for
that number to its default, storing the number in our global variable interrupt, and then
to return to the point where the interrupt occurred.

The type of a signal handler has to be compatible with29

. sighandler.h

71 /**
72 ** @brief prototype of signal handlers
73 **/
74 typedef void sh_handler(int);

That is, it receives a signal number as argument and doesn’t return anything. As such,
this interface is quite limited and does not allow to pass enough information, in particular
none about the location and circumstances for which the signal occurred.

Signal handlers are established by a call to signal, as we can already see in our
function signal_handler. Here, it is just used to reset the signal disposition to the default.
signal is one of the two function interfaces that are provided by signal.h:<signal.h>

sh_handler* signal(int , sh_handler *);
int raise(int);

The return value of signal is the handler that had previously been active for the signal,
or the special value SIG_ERR if an error occurred. Inside a signal handler, signal should
only be used to change the disposition of the same signal number that was received by
the call. The following function has the same interface as signal but provides a bit more
information about the success of the call:

. sighandler.c

92 /**
93 ** @ brief Enable a signal handler and catch the errors.

29There is no such type defined by the standard, though.
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94 **/
95 sh_handler* sh_enable(int sig , sh_handler* hnd) {
96 sh_handler* ret = signal(sig , hnd);
97 if (ret == SIG_ERR) {
98 SH_PRINT(stderr , sig , "failed");
99 errno = 0;

100 } else if (ret == SIG_IGN) {
101 SH_PRINT(stderr , sig , "previously␣ignored");
102 } else if (ret && ret != SIG_DFL) {
103 SH_PRINT(stderr , sig , "previously␣set␣otherwise");
104 } else {
105 SH_PRINT(stderr , sig , "ok");
106 }
107 return ret;
108 }

The main function for our parser uses this in a loop to establish signal handlers for all
signal numbers that it may:

. basic_blocks.c

187 // establish signal handlers
188 for (unsigned i = 1; i < sh_known; ++i)
189 sh_enable(i, signal_handler);

As an example a on my machine this provides the following information at the startup
of the program:

Terminal

0 sighandler.c:105: #1 (0 times), unknown signal number, ok

1 sighandler.c:105: SIGINT (0 times), interactive attention signal, ok

2 sighandler.c:105: SIGQUIT (0 times), keyboard quit, ok

3 sighandler.c:105: SIGILL (0 times), invalid instruction, ok

4 sighandler.c:105: #5 (0 times), unknown signal number, ok

5 sighandler.c:105: SIGABRT (0 times), abnormal termination, ok

6 sighandler.c:105: SIGBUS (0 times), bad address, ok

7 sighandler.c:105: SIGFPE (0 times), erroneous arithmetic operation, ok

8 sighandler.c:98: SIGKILL (0 times), kill signal, failed: Invalid argument

9 sighandler.c:105: #10 (0 times), unknown signal number, ok

10 sighandler.c:105: SIGSEGV (0 times), invalid access to storage, ok

11 sighandler.c:105: #12 (0 times), unknown signal number, ok

12 sighandler.c:105: #13 (0 times), unknown signal number, ok

13 sighandler.c:105: #14 (0 times), unknown signal number, ok

14 sighandler.c:105: SIGTERM (0 times), termination request, ok

15 sighandler.c:105: #16 (0 times), unknown signal number, ok

16 sighandler.c:105: #17 (0 times), unknown signal number, ok

17 sighandler.c:105: SIGCONT (0 times), continue if stopped, ok

18 sighandler.c:98: SIGSTOP (0 times), stop process, faile: Invalid argument

The second function raise can be used to deliver the specified signal to the current
execution. We already used it at the end of basic_blocks to deliver the signal that we had
caught to the pre-installed handler.

The mechanism of signals is similar to setjmp/longjmp: the current state of execution
is memorized, control flow is passed to the signal handler and a return from there restores
the original execution environment and continues execution. The difference is that there is
no special point of execution that is “marked” by a call to setjmp.
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Rule 3.18.5.2 Signal handlers can kick in at any point of execution.

Interesting signal numbers in our case are the software interrupts SIGABRT, SIGTERM
and SIGINT, that usually can be sent to the application with some magic keystroke such
as Ctrl-C. The first two will call _Exit and quick_exit, respectively. So if the program
receives these signals, execution will be terminated. For the first, without calling any
cleanup handlers, for the second by going through the list of cleanup handlers that were
registered with at_quick_exit.

SIGINT will chose the default case of the signal handler and so it will eventually
return to the point where the interrupt occurred.

Rule 3.18.5.3 After return from a signal handler, execution resumes exactly where it was
interrupted.

If that interrupt had occurred in function descend, it would first continue execution as
if nothing had happened. Only when the current input line is processed and and new one
is needed, the variable interrupt will be checked and the execution will be wound down
by calling longjmp. And effectively, the only difference between the situation before the
interrupt and after, is that the variable interrupt has changed its value.

We also have a special treatment of a signal number that is not described by the C
standard, SIGCONT, but come from my operating system, POSIX. To remain portable, the
use of this signal number is protected by guards. This signal is meant to continue execution
of a program that had previously been “stopped” that is for which execution had been
suspended. In that case, the only thing to do is to return. By definition we don’t want any
modification of the program state whatsoever.

So another difference to the setjmp/longjmp mechanism is that for them the return
value of setjmp changed the execution path. A signal handler on the other hand is not sup-
posed to change the state of execution. We have to invent a suitable convention to transfer
information from the signal handler to the normal program. As for longjmp, objects that
are potentially changed by a signal handler must be volatile qualified: the compiler can-
not know where interrupt handlers may kick in, and thus all its assumptions about variables
that change through signal handling can be false.

But signal handlers face another difficulty.

Rule 3.18.5.4 A C statement may correspond to several processor instructions.

E.g a double x could be stored in two usual machine words, and a write (assignment)
of x to memory could need two separate assembler statements to write both halves.

When considering “normal” program execution as we have discussed so far, splitting
a C statement into several machine statements has no problem. Such subtleties are not
directly observable.30 With signals, the picture changes. If a such an assignment is split in
the middle by the occurrence of a signal, only half of x is written, and the signal handler
would see an inconsistent version version of it. One half corresponds to the previous value,
the other to the new one. Such a zombie representation (half here, half there) must not even
be a valid value for double.

Rule 3.18.5.5 Signal handlers need types with uninterruptible operations.

Here, the term uninterruptible operation refers to an operation that always appears to
be indivisible in the context of signal handlers: either it appears not to have started or to
be completed. This doesn’t generally mean that they are undivided, just that we will not
be able to observe such a division. The runtime system might have to force that property
when a signal handler kicks in.

C has three different classes of types that provide uninterruptible operations:

30They are only observable from outside the program because such a program may take more time than
expected.
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(1) The type sig_atomic_t, an integer type with a minimal width of 8 bit.
(2) The type atomic_flag.
(3) All _Atomic qualified types that have the lock-free property.

The first is present on all historic C platforms. Its use to store a signal number as in our
example for variable interrupt is fine, but otherwise its guaranties are quite restricted.
Only memory load (evaluation) and store (assignment) operations are known to be unin-
terruptible, other operations aren’t, and the width may be quite limited. In particular,

Rule 3.18.5.6 Objects of type sig_atomic_t should not be used as counters.

because a simple ++ operation might already be divided into three (load, increment and
store), and because it might easily overflow. The latter could trigger a hardware interrupt,
which is really bad if we already are inside a signal handler.

The latter two classes were only introduced by C11 in the prospect of threads, see Sec-
tion 19, and are only present if the feature test macro __STDC_NO_ATOMICS__ has not been
defined by the platform and if the header stdatomic.h has been included. The function <stdatomic.h>

sh_count uses these features and we will see an example for this below.
Because signal handlers for asynchronous signals should not access or even change the

program state in an uncontrolled way, they cannot call other functions that would do so.
Functions that can be used in such a context are called asynchronous signal safe. Generally,
it is difficult to know from an interface specification if a function has this property, and the
C standard only guarantees it for only a handful of functions, namely

• the _Noreturn functions abort, _Exit, quick_exit, that terminate the pro-
gram;

• signal for the same signal number as the signal handler was called;
• some functions that act on atomic objects.

Rule 3.18.5.7 Unless specified otherwise, C library functions are not asynchrounous
signal safe.

So by the C standard itself a signal handler cannot call exit or do any form of IO, but it
can use quick_exit and the at_quick_exit handlers to execute some cleanup code.

As already noted, C’s specifications for signal handlers are minimal, often a specific
platform will allow for more. Therefore, portable programming with signals is tedious and
exceptional conditions should generally be dealt with in a cascade as we have seen it in our
examples:

(1) Exceptional conditions that can be detected and handled locally can be dealt with
by using goto to a limited number of labels.

(2) Exceptional conditions that need not or cannot be handled locally should be re-
turned as a special value from functions whenever this is possible, such as re-
turning a null pointer instead of a pointer to object.

(3) Exceptional conditions that change the global program state can be handled with
setjmp/longjmp if exceptional return would be expensive or complex.

(4) Exceptional conditions that result in a signal to be raised, can be caught by a
signal handler, but should be handled after the return of the handler in normal
flow of execution.

Since even the list of signals that the C standard specifies is minimal, dealing with
the different possible conditions becomes complicated. The following shows how we can
handle a collection of signal numbers that goes beyond those that are specified in the C
standard:

. sighandler.c

7 #define SH_PAIR(X, D) [X] = { .name = #X, .desc = "" D "", }
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8
9 /**

10 ** @brief Array that holds names and descriptions of the
11 ** standard C signals.
12 **
13 ** Conditionally , we also add some commonly used signals.
14 **/
15 sh_pair const sh_pairs [] = {
16 /* Execution errors */
17 SH_PAIR(SIGFPE , "erroneous␣arithmetic␣operation"),
18 SH_PAIR(SIGILL , "invalid␣instruction"),
19 SH_PAIR(SIGSEGV , "invalid␣access␣to␣storage"),
20 #ifdef SIGBUS
21 SH_PAIR(SIGBUS , "bad␣address"),
22 #endif
23 /* Job control */
24 SH_PAIR(SIGABRT , "abnormal␣termination"),
25 SH_PAIR(SIGINT , "interactive␣attention␣signal"),
26 SH_PAIR(SIGTERM , "termination␣request"),
27 #ifdef SIGKILL
28 SH_PAIR(SIGKILL , "kill␣signal"),
29 #endif
30 #ifdef SIGQUIT
31 SH_PAIR(SIGQUIT , "keyboard␣quit"),
32 #endif
33 #ifdef SIGSTOP
34 SH_PAIR(SIGSTOP , "stop␣process"),
35 #endif
36 #ifdef SIGCONT
37 SH_PAIR(SIGCONT , "continue␣if␣stopped"),
38 #endif
39 #ifdef SIGINFO
40 SH_PAIR(SIGINFO , "status␣information␣request"),
41 #endif
42 };

where the macro just initializes a an object of type sh_pair:

. sighandler.h

10 /**
11 ** @brief A pair of strings to hold signal information
12 **/
13 typedef struct sh_pair sh_pair;
14 struct sh_pair {
15 char const* name;
16 char const* desc;
17 };

The use of #ifdef conditionals ensures that signal names that are not standard can be
used and the designated initializer within SH_PAIR allows us to specify them in any order.
Then the size of the array can be used to compute the number of known signal numbers for
sh_known:

. sighandler.c

44 size_t const sh_known = (sizeof sh_pairs/sizeof sh_pairs [0]);
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If the platform has sufficient support for atomics, this information can also be used to
define an array of atomic counters such that we can keep track of the number of times a
particular signal was raised:

. sighandler.h

31 #if ATOMIC_LONG_LOCK_FREE > 1
32 /**
33 ** @brief Keep track of the number of calls into a
34 ** signal handler for each possible signal.
35 **
36 ** Don’t use this array directly.
37 **
38 ** @see sh_count to update this information.
39 ** @see SH_PRINT to use that information.
40 **/
41 extern unsigned long _Atomic sh_counts [];
42
43 /**
44 ** @brief Use this in your signal handler to keep track of the
45 ** number of calls to the signal @a sig.
46 **
47 ** @see sh_counted to use that information.
48 **/
49 inline
50 void sh_count(int sig) {
51 if (sig < sh_known) ++ sh_counts[sig];
52 }
53
54 inline
55 unsigned long sh_counted(int sig){
56 return (sig < sh_known) ? sh_counts[sig] : 0;
57 }

An object that is qualified with _Atomic can be used with the same operators as other
objects with the same base type, here the ++ operator. In general, such objects are then
guaranteed to avoid race conditions with other threads, see below, and they are uninter-
ruptible if the type has the so-called lock-free property. The latter here is tested with the
feature test macro ATOMIC_LONG_LOCK_FREE.

The user interfaces here are sh_count and sh_counted. These use the array of coun-
ters if available and are otherwise replaced by trivial functions:

. sighandler.h

59 #else
60 inline
61 void sh_count(int sig) {
62 // empty
63 }
64
65 inline
66 unsigned long sh_counted(int sig){
67 return 0;
68 }
69 #endif
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FIGURE 4. A screenshot of B9 showing several cells and the cursor position.

19. Threads

Threads are another variation of control flow that allows to pursue several tasks con-
currently. Here, a task is a part of the job that is to be executed by a program such that
different tasks can be done with no or little interaction between each other.

Our main example for this will be a primitive game that we call B9 that is a variant
of Conway’s game of life, see Gardner [1970]. It models an matrix of primitive “cells”
that are born, live and die according to very simple rules. We divide the game into four
different tasks, that each proceeds iteratively. The cells go through life cycles, that compute
birth or death events for all cells. The graphical presentation in the terminal goes through
drawing cycles, that are updated as fast as the terminal allows. Spread between these are
key strokes of the user that occur irregularly and that allow the user to add cells at chosen
position. Figure 5 shows a schematic view of these tasks for B9.

account_thread

input_thread

draw_thread

update_thread

main
thrd_create thrd_join

return

return

return

return

FIGURE 5. Control flow of the five threads of B9.

The four tasks are:
draw: This tasks draws a pictures of cell matrix to the terminal, see Fig. 4.
input: This tasks captures the key strokes, updates a cursor position and creates cells.
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update: This updates the state of the game from one life cycle to the next.
account: This task is tightly coupled with the update task and counts the number of living

neighboring cells of each cell.
Each such task is executed by a thread that follows its own control flow, much as a

simple program of its own. If the platform has several processors or cores, these threads
may be executed simultaneously. But even if the platform does not have this capacity, the
system will interleave the execution of the threads. The execution as a whole will appear to
the user as if the events that are handled by the tasks are concurrent. This is crucial for our
example, since we want that the game appears to continue constantly whether the player
presses keys on the keyboard or not.

Threads in C are dealt through two principal function interfaces that can be used to
start a new thread and then to wait for the termination of such a thread.

#include <threads.h>
typedef int (* thrd_start_t)(void*);
int thrd_create(thrd_t*, thrd_start_t , void*);
int thrd_join(thrd_t , int *);

Here the second argument of thrd_create is a function pointer of type thrd_start_t.
This function is executed at the start of the new thread. As we can see from the typedef
the function receives a void* pointer and returns an int. The type thrd_t is an opaque
type, that will identify the newly created thread.

In our example, four calls in main to thrd_create create the four threads that corre-
spond to the different tasks. These execute concurrently to the original thread of main. At
the end, main waits for the four threads to terminate, it joins them. The four threads reach
their termination simply when they return from the initial function with which they were
started. Accordingly our four functions are declared as

static int update_thread(void*);
static int draw_thread(void*);
static int input_thread(void*);
static int account_thread(void*);

These four functions are launched in threads of their own by our main and all four receive
a pointer to an object of type life that holds the state of the game:

. B9.c

201 /* Create an object that holds the game’s data. */
202 life L = LIFE_INITIALIZER;
203 life_init (&L, n0, n1, M);
204 /* Create four threads that operate all on that same object and
205 collect their ids in "thrd". */
206 thrd_t thrd [4];
207 thrd_create (&thrd[0], update_thread , &L);
208 thrd_create (&thrd[1], draw_thread , &L);
209 thrd_create (&thrd[2], input_thread , &L);
210 thrd_create (&thrd[3], account_thread , &L);
211 /* Wait for the update thread to terminate. */
212 thrd_join(thrd[0], 0);
213 /* Tell everybody that the game is over. */
214 L.finished = true;
215 ungetc(’q’, stdin);
216 /* Wait for the other threads. */
217 thrd_join(thrd[1], 0);
218 thrd_join(thrd[2], 0);
219 thrd_join(thrd[3], 0);
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The simplest of the four thread functions is account_thread. As its interface only
receives a void*, its first action is to reinterpret it as a life pointer, and then to enter a
while loop until its work is finished:

. B9.c

99 static
100 int account_thread(void* Lv) {
101 life*restrict L = Lv;
102 while (!L->finished) {

. B9.c

117 }
118 return 0;
119 }

The core of that loop calls a specific function for the task, life_account, and then
checks if from its point of view the game should be finished.

. B9.c

108 // VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
109 life_account(L);
110 if ((L->last + repetition) < L->accounted) {
111 L->finished = true;
112 }
113 // ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Here the condition for termination is if the game had previously entered the same
sequence of repetition game configurations.

The implementations of the other three functions are similar. All reinterpret their
argument to be a pointer to life, and enter a processing loop until they detect that the
game has finished. Then, insided the loop they have a relatively simple logic to fulfill their
specific task for this specific iteration. E.g draw_thread’s inner part looks as:

. B9.c

79 // VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
80 if (L->n0 <= 30) life_draw(L);
81 else life_draw4(L);
82 L->drawn ++;
83 // ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

19.1. Simple inter-thread control. We already have seen two different tools for a
control between different threads. First, thrd_join allows a thread to wait until another
one is finished. We have seen that when our main joined the four other threads. This
ensures that this main-thread effectively only terminates when all other threads have done
so, and so your program execution stays alive and consistent until the last thread is gone.

The other tool was the member finished of life. This member holds a bool that
has a value that is true whenever one of the threads detects a condition that terminates the
game.

Similar as for signal handlers, the action of threads on such shared variables is subject
to race conditions. That is, unless we take specific precautions even an update of such
a bool can be divisible. If two threads access it in an interleaved way, an update may
give mix things up and lead to an undefined program state. The compiler cannot know,
if a specific object can be subject to race conditions, and therefore we have to tell them
explicitly. The simplest way to do so is by using a tool that we also have already seen with
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signal handlers, atomics. Here, our life structure has several members that are declared
_Atomic.

. life.h

35 // Parameters that will dynamically be changed by
36 // different threads
37 size_t _Atomic constellations; //< constellations visited
38 size_t _Atomic x0; //< cursor position , row
39 size_t _Atomic x1; //< cursor position , column
40 size_t _Atomic frames; //< FPS for display
41 bool _Atomic finished; //< this game is finished

Access to these members is guaranteed to be atomic. Here this the member finished
that we already know, and some other members that we use to communicate between input
and draw, in particular the current position of the cursor.

19.2. Thread local data. The easiest way to avoid race conditions is to strictly sep-
arate the data that our threads access. All other solutions, such as the atomics that we
have seen above or mutexes and condition variables that we will see below, are much more
complex and much more expensive. The best way to access data local to threads is to use
local variables:

Rule 3.19.2.1 Pass thread specific data through function arguments.

Rule 3.19.2.2 Keep thread specific state in local variables.

In case that this is not possible (or maybe too complicated) C11 has added a storage
class and a data type that allow us to handle thread local data. _Thread_local is a storage
class specifier that forces a thread specific copy of the variable that is declared as such. The
header threads.h also provides a macro thread_local, that expands to the keyword. <threads.h>

Rule 3.19.2.3 Use thread_local if initialization can be determined at compile time.

If a storage class specifier is not sufficient because you have to do dynamic initializa-
tion and destruction, we can use thread specific storage, tss_t. It abstracts the identifica-
tion of thread specific data into an opaque id, referred to as key, and accessor function to
set or get the data:

void* tss_get(tss_t key); // returns pointer to object
int tss_set(tss_t key , void *val); // returns error indication

The function that is called at the end of a thread to destroy the thread specific data is
specified as a function pointer of type tss_dtor_t when the key is created.

typedef void (* tss_dtor_t)(void*); // pointer to destructor
int tss_create(tss_t* key , tss_dtor_t dtor); // returns error indication
void tss_delete(tss_t key);

19.3. Critical data and critical sections. Other parts of the life structure cannot be
protected as easily. They correspond to larger data, e.g. the board positions of the game.
Perhaps you remember that arrays may not be qualified with _Atomic and even if we would
be able to do so by some tricks, the result would not be very efficient. Therefore, we not
only declare the members Mv (for the game matrix) and visited (to hash already visited
constellations) but also a special member mtx:
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. life.h

10 mtx_t mtx; //< mutex that protects Mv
11 cnd_t draw; //< cnd that controls drawing
12 cnd_t acco; //< cnd that controls accounting
13 cnd_t upda; //< cnd that controls updating
14
15 void*restrict Mv; //< bool M[n0][n1];
16 bool (* visited)[life_maxit ]; //< hashing constellations

This member mtx has the special type mtx_t type for mutual exclusion that also comes
with threads.h. It is meant to protect the critical data, namely Mv, while it is accessed in<threads.h>

a well identified part of the code, a so-called critical section.
The most simple use case for this mutex is in the center of the drawing thread, where

two calls, mtx_lock and mtx_unlock, protect the access to the life data structure L.

. B9.c

121 static
122 int input_thread(void* Lv) {
123 termin_unbuffered ();
124 life*restrict L = Lv;
125 enum { len = 32, };
126 char command[len];
127 do {
128 int c = getchar ();
129 command [0] = c;
130 switch(c) {
131 case GO_LEFT : life_advance(L, 0, -1); break;
132 case GO_RIGHT: life_advance(L, 0, +1); break;
133 case GO_UP : life_advance(L, -1, 0); break;
134 case GO_DOWN : life_advance(L, +1, 0); break;
135 case GO_HOME : L->x0 = 1; L->x1 = 1; break;
136 case ESCAPE :
137 ungetc(termin_translate(termin_read_esc(len , command)),

stdin);
138 continue;
139 case ’+’: if (L->frames < 128) L->frames ++; continue;
140 case ’-’: if (L->frames > 1) L->frames --; continue;
141 case ’␣’:
142 case ’b’:
143 case ’B’:
144 mtx_lock (&L->mtx);
145 // VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
146 life_birth9(L);
147 // ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
148 mtx_unlock (&L->mtx);
149 break;
150 case ’q’:
151 case ’Q’:
152 case EOF: goto FINISH;
153 }
154 cnd_signal (&L->draw);
155 } while (!(L->finished || feof(stdin)));
156 FINISH:
157 L->finished = true;
158 return 0;
159 }
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This routine is mainly composed of the input loop which in turn contains a big switch
to dispatch on different characters that the user typed into the keyboard. Only two of the
case s need this kind of protection, namely ’b’ and ’B’ that trigger the forced “birth” of a
3× 3 cluster of cells around the current cursor position. In all other cases we only interact
with atomic objects and so we can safely modify these.

The effect of locking and unlocking the mutex is simple. The call to mtx_lock blocks
execution of the calling thread, until it can be guaranteed that no other thread is inside a
critical section that is protected by the same mutex. We say that mtx_lock acquires the
lock on the mutex, by that holds it and that then mtx_unlock releases it. C’s mutex lock
interfaces are defined as follows:

int mtx_lock(mtx_t *);
int mtx_unlock(mtx_t *);
int mtx_trylock(mtx_t *);
int mtx_timedlock(mtx_t*restrict , const struct timespec*restrict);

The two other calls enable us to test (mtx_trylock) if another thread already holds a
lock (and thus we may avoid waiting) or to wait (mtx_timedlock) for a maximal period
(and thus we may avoid blocking forever). The latter is only allowed if the mutex had been
initialized as of being of the mtx_timed “type”, see below.

There are two other calls for dynamic initialization and destruction:

int mtx_init(mtx_t*, int);
void mtx_destroy(mtx_t *);

Other than for more sophisticated thread interfaces, the use of mtx_init is mandatory.
There is no static initialization defined for mtx_t.

Rule 3.19.3.1 Every mutex must be initialized with mtx_init.

The second parameter of mtx_init specifies the “type” of the mutex. It must be one of
four different values, mtx_plain, mtx_timed, mtx_plain|mtx_recursive, or mtx_timed|mtx_recursive.

As you probably have guessed, using mtx_plain versus mtx_timed, controls the pos-
sibility to use mtx_timedlock. The additional property mtx_recursive enables us to call
mtx_lock and similar functions successively several times for the same thread, without
unlocking it before.

Rule 3.19.3.2 A thread that holds a non-recursive mutex must not call any of the mutex
lock function for it.

The name mtx_recursive indicates that it is mostly used for recursive functions that
call mtx_lock on entry of a critical section and mtx_unlock on exit.

Rule 3.19.3.3 A recursive mutex is only released after the holding thread issues as many
calls to mtx_unlock as it has acquired locks.

Rule 3.19.3.4 A locked mutex must be released before the termination of the thread.

Rule 3.19.3.5 A thread must only call mtx_unlock on a mutex that it holds.

From all of this we can deduce a simple rule of thumb:

Rule 3.19.3.6 Each successful mutex lock corresponds to exactly one call to mtx_unlock.

Depending on the platform, a mutex may bind a system resource that is attributed each
time mtx_init is called. Such a resource can be additional memory (e.g a call to malloc)
or some special hardware. Therefore it is important to release such resources, once a mutex
reaches the end of its lifetime:
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Rule 3.19.3.7 A mutex must be destroyed at the end of its lifetime.

So in particular, mtx_destroy must be called
• before the scope of a mutex with automatic storage duration ends,
• and before the memory of a dynamically allocated mutex is freed.

19.4. Communicating through condition variables. While we have seen that the
input didn’t need much protection against races, the opposite holds for the account task.
Its whole job is to scan through the entire position matrix and to account for the number of
life neighbors every position has.

. B9.c

99 static
100 int account_thread(void* Lv) {
101 life*restrict L = Lv;
102 while (!L->finished) {
103 // block until there is work
104 mtx_lock (&L->mtx);
105 while (!L->finished && (L->accounted == L->iteration))
106 life_wait (&L->acco , &L->mtx);
107
108 // VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
109 life_account(L);
110 if ((L->last + repetition) < L->accounted) {
111 L->finished = true;
112 }
113 // ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
114
115 cnd_signal (&L->upda);
116 mtx_unlock (&L->mtx);
117 }
118 return 0;
119 }

Here we see that the critical section covers the whole loop body. In addition to the
proper accounting part that we already have seen above, there is first a phase in the crit-
ical section where the thread is actually paused until new accounting is necessary. More
precisely there is a conditional loop that can only be left once either

• the game is finished, or
• another thread has advanced an iteration count.

The body of that loop is a call to life_wait, a function that suspends the calling thread
for one second or until a specific event occurs:

. life.c

19 int life_wait(cnd_t* cnd , mtx_t* mtx) {
20 struct timespec now;
21 timespec_get (&now , TIME_UTC);
22 now.tv_sec += 1;
23 return cnd_timedwait(cnd , mtx , &now);
24 }

Its main ingredient is a call to cnd_timedwait that takes a so-called condition variable
of type cnd_t, a mutex and an absolute time bound.

Such condition variables are used to identify a condition for which a thread might
want to wait. Above, in our example, you have seen declarations for three such condition
variable members of life, namely draw, acco and upda. Each of these corresponds to test
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conditions that the drawing, the accounting and the update need such that they will proceed
to perform their proper tasks. As we have seen, accounting has

. B9.c

105 while (!L->finished && (L->accounted == L->iteration))
106 life_wait (&L->acco , &L->mtx);

Similarly, update and draw have

. B9.c

43 while (!L->finished && (L->accounted < L->iteration))
44 life_wait (&L->upda , &L->mtx);

and

. B9.c

73 while (!L->finished
74 && (L->iteration <= L->drawn)
75 && (x0 == L->x0)
76 && (x1 == L->x1))
77 life_wait (&L->draw , &L->mtx);

The conditions in each of these loops reflects the cases when there is work to do for
either of these tasks. Most importantly, we have to be sure not to confound the condition
variable, which serves as some sort of identification of the condition, and the condition
expression. A call to a wait function for cnd_t may return although nothing concerning
the condition expression has changed:

Rule 3.19.4.1 On return from a cnd_t wait, the expression must be checked, again.

This may be obvious in our example, since we are using cnd_timedwait under the
hood, and the return might just be because the call timed out. But even if we use the
untimed interface for condition wait, the call might return early. In our example code,
the call might eventually return when the game is over, therefore our condition expression
always contains a test for L->finished.

cnd_t comes with four principal control interfaces:

int cnd_wait(cnd_t*, mtx_t *);
int cnd_timedwait(cnd_t*restrict , mtx_t*restrict , const struct timespec *

restrict);
int cnd_signal(cnd_t *);
int cnd_broadcast(cnd_t *);

The first works analogously to the second, only that there is no time out and a thread might
never come back from the call, if the cnd_t parameter is never signaled.

cnd_signal and cnd_broadcast are on the other end of the control. We have al-
ready seen the first applied in input_thread and account_thread. They ensure that some
thread (cnd_signal) or all threads (cnd_broadcast) that are waiting for the corresponding
condition variable are woken up and return from the call to cnd_wait or cnd_timedwait.
E.g, the input task signals the drawing task that something in the game constellation has
changed, and that the board should be redrawn:

. B9.c

154 cnd_signal (&L->draw);

The mtx_t parameter to the condition wait functions has an important role. The mutex
must be held by the calling thread to the wait function. It is temporarily released during
the wait, such that other threads can do their job to assert the condition expression. The
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lock is re-acquired just before returning from the wait call such that then the critical data
can safely be accessed without races. Figure 6 shows a typical interaction between two
threads, a mutex and a condition variable.
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FIGURE 6. Control flow managed by mtx_t and cnd_t, critical sections
underpinned in grey. The condition is associated to the mutex until the
last waiter has re-acquired the mutex.

It shows that six function calls are involved in the interaction, four for the respective
critical sections and the mutex, two for the condition variable.

The coupling between a condition variable and the mutex in the wait call should be
handled with care.

Rule 3.19.4.2 A condition variable can only be used simultaneously with one mutex.

But it is probably best practice to never change the mutex that is used with a condition
variable at all.

Our example also shows that there can be many condition variables for the same mu-
tex: we use our mutex with three different condition variables at the same time. This will
be imperative in many applications, since the condition expressions under which threads
will be accessing the same resource depends on their respective role.

In situations where several threads are waiting for the same condition variable and are
woken up with a call to cnd_broadcast, they will not wake up all at once, but one after
another as they re-acquire the mutex.

Similar to mutex’, C11’s condition variables may bind precious system resources. So
they must be initialized dynamically, and they should be destroyed at the end of their
lifetime.

Rule 3.19.4.3 A cnd_t must be initialized dynamically.

Rule 3.19.4.4 A cnd_t must be destroyed at the end of its lifetime.

The interfaces for these are straight forward:

int cnd_init(cnd_t *cond);
void cnd_destroy(cnd_t *cond);
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19.5. More sophisticated thread management. Having just seen the thread creation
and joining in our main above we may have the impression that threads are somehow
hierarchically organized. But actually they are not, just knowing the id of a thread, its
thrd_t, is sufficient to deal with it. There is only one thread with exactly one special
property:

Rule 3.19.5.1 Returning from main or calling exit terminates all threads.

If we want to terminate main after we have created some other threads, we have to
take some precautions such that we do not terminate the other threads preliminarily. An
example for such a strategy is given in the following modified version of B9’s main:

. B9-detach.c

210 life L = LIFE_INITIALIZER;
211
212 void B9_atexit(void) {
213 /* Put the board in a nice final picture. */
214 L.iteration = L.last;
215 life_draw (&L);
216 life_destroy (&L);
217 }
218
219 int main(int argc , char* argv[argc +1]) {
220 /* Use commandline arguments for the size of the board. */
221 size_t n0 = 30;
222 size_t n1 = 80;
223 if (argc > 1) n0 = strtoull(argv[1], 0, 0);
224 if (argc > 2) n1 = strtoull(argv[2], 0, 0);
225 /* Create an object that holds the game’s data. */
226 life_init (&L, n0, n1, M);
227 atexit(B9_atexit);
228 /* Create four threads that operate all on that same object and
229 discard their ids. */
230 thrd_create (&( thrd_t){0}, update_thread , &L);
231 thrd_create (&( thrd_t){0}, draw_thread , &L);
232 thrd_create (&( thrd_t){0}, input_thread , &L);
233 /* End this thread nicely and let the threads go on nicely. */
234 thrd_exit (0);
235 }

First, we have to use the function thrd_exit to terminate main. Other than a return,
this ensures that the corresponding thread just terminates without impacting the other
threads. Then, we have to make L a global variable, because we don’t want its life to end,
when main terminates. To arrange for the necessary cleanup we also install an atexit
handler. The modified control flow is shown in Figure 7.

As a consequence of this different management, the four threads that are created are
actually never joined. Each thread that is dead but is never joined eats up some resources
that are kept until the end of the execution. Therefore it is good coding style to tell the
system that a thread will never be joined, we say that we detach the corresponding thread.
We do that by inserting a call to thrd_detach at the beginning of the thread functions. We
also start the account thread from there, and not from main as we did previously.

. B9-detach.c

38 int update_thread(void* Lv) {
39 /* Nobody should ever wait for this thread. */
40 thrd_detach(thrd_current ());
41 /* Delegate part of our job to an auxiliary thread. */
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input_thread

draw_thread

update_thread

main
thrd_create

return

return

account_thread return

thrd_exit

atexit

B9_atexitreturn

FIGURE 7. Control flow of the five threads of B9-detach. The thread
that returns last executes the atexit handlers.

42 thrd_create (&( thrd_t){0}, account_thread , Lv);

There are 6 more functions that can be used to manage threads, of which we already
met thrd_current, thrd_exit and thrd_detach:

thrd_t thrd_current(void);
int thrd_equal(thrd_t , thrd_t);
_Noreturn void thrd_exit(int);

int thrd_detach(thrd_t);
int thrd_sleep(const struct timespec*, struct timespec *);
void thrd_yield(void);

A running C program may have much more threads than it has processing elements
to its disposal. Nevertheless, a run time system should be able to schedule the threads
smoothly by attributing time slices on some processor. If a thread actually has no work to
do, it should not be demand a time slice and leave the processing resources to other threads
that might need it. This one of the main features of the control data structures mtx_t and
cnd_t:

Rule 3.19.5.2 While blocking on mtx_t or cnd_t a thread frees processing resources.

If this is not enough, there are two other functions that can suspend execution:
• thrd_sleep allows a thread to suspend its execution for a certain time, such that

hardware resources of the platform can be used by other threads in the mean
time.

• thrd_yield just terminates the current time slice and waits for the next process-
ing opportunity.

20. Atomic access and memory consistency

We will complete this level with a description of concepts that you will much likely
not use even once in your programming life, at least not explicitly. Nevertheless, this
is an important part of the C architecture model and therefore a must for experienced
programmers. So try to apprehend this last section to increase your understanding of how
things work, not to improve your operational skills. And, BTW, even though we will not
even go into all the glorious details31, things can get a bit bumpy, please remain seated and
buckle up.

31We will put aside memory_order_consume consistency and thus the dependency-ordered before relation.
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If you review the pictures of control flow that we have seen throughout the last sec-
tions, you see that the interaction of different parts of a program execution already can get
quite complicated. We have different levels of concurrent access to data:

• Plain old straightforward C code is only apparently sequential. Visibility of
changes is only guaranteed between very specific points of the execution, se-
quence points, for direct data dependencies, and for the completion of function
calls. Modern platforms take more and more advantage of the provided slack and
perform unsequenced operations intermixed or in parallel in multiple execution
pipelines.

• Long jumps and signal handlers are executed sequentially, but effects of stores
may get lost on the way.

• Those accesses to atomic objects that we have seen so far warrant visibility of
their changes everywhere and consistently.

• Threads run concurrently side by side and jeopardize data consistency if they
don’t regulate their shared access to data. Besides access to atomic objects,
they can also be synchronized through calls to functions, such as thrd_join
or mtx_lock.

But access to memory is not the only thing a program does. In fact, the abstract state of
a program execution consists of the points of execution (one per thread), intermediate val-
ues (of computed expressions or evaluated objects), stored values or hidden state. Changes
to this state are usually described as jumps (points of execution), value computation (inter-
mediate values) and side effects (stores or IO), or they can affect hidden state such as the
lock state of a mtx_t, the initialization state of a once_flag or set or clear operations on
an atomic_flag. We summarize all these possible changes of the abstract state with the
term of effect.

Rule 3.20.0.1 Every evaluation has an effect.

This is because any evaluation has the concept of a next such evaluation that will be
performed after it. Even an expression like

(void)0;

that drops the intermediate value sets the point of execution to the next statement, and thus
the abstract state has changed.

In a complicated context it will be difficult to argue about the actual abstract state in
a given moment in time. Generally, the whole abstract state of a program execution is not
even observable and, in many cases, the concept of an overall abstract state is not even
well defined. This is because we actually don’t know what “time” means in this context.
In an multi-threaded execution that is performed on several physical compute cores, there
is no real notion of a reference time between them. So generally, C does not even make the
assumption that an overall fine-grained notion of time exists between different threads.

20.1. The “happend before” relation. All we can hope for is to have enough partial
knowledge of the state of all threads of a program to argue about it (its correctness, its
performance etc). We will investigate a relation that was introduced by Lamport [1978].
In notations of the C standard, it is the happened before relation between two evaluations
E and F , denoted by F → E. This is a property between events that we observe a
posteriory. Fully spelled out it would perhaps better be called knowingly happend before
relation, instead.

One part of it are evaluations in the same thread that are related by the already intro-
duced sequenced before relation:

Rule 3.20.1.1 If F is sequenced before E, then F → E.
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Between threads, the ordering of events is provided by synchronization. There are
two types of synchronizations, the first is implied by operations on atomics, the second by
certain C library calls. Let us first look into the case of atomics.

Operations on atomics are guaranteed to be locally consistent, that is:

Rule 3.20.1.2 The set of modifications of an atomic object A are performed in an order
that is consistent with the sequenced before relation of any threads that
deals with A.

This sequence is called the modification order of A. E.g for an atomic counter c that we
would only increment, the modification order is characterized by the increasing values that
are returned by the sequence of c++ operations.

Each synchronization between threads has a “writer” and a “reader” side. We at-
tach two abstract properties to certain operations on atomics and to certain C library calls
that are called release semantics (on the writer side), acquire semantics (for a reader) or
acquire-release semantics (for a reader-writer). C library calls with such synchronization
properties will be discussed a bit later.

All operations on atomics that we have seen so far and that modify the object are
required to have release semantics and all that read have acquire semantics. Only below
we will see other atomic operations that have relaxed properties.

Rule 3.20.1.3 An acquire operation E in a thread TE synchronizes with a release oper-
ation F in another thread TF if E reads the value that F has written.

The idea of the special construction with acquire and release semantic is to force the
visibility of effects across such operations. We say that an effect X is visible at evaluation
E if we can consistently replace E by any appropriate read operation or function call that
uses the state affected by X .

Rule 3.20.1.4 If F synchronizes with E, all effects X that have happened before F must
be visible at all evaluations G that happen after E.

Note that several atomic operations can read and write atomically in one step. These
are called read-modify-write operations:

• calls to atomic_exchange and atomic_compare_exchange_weak for any _Atomic
objects

• compound assignments or their functional equivalents, increment and decrement
operators for any _Atomic objects of arithmetic type

• calls to atomic_flag_test_and_set for atomic_flag.
Such an operation can synchronize on the read side with one thread and on the write side
with others. All such read-modify-write operations that we have seen so far have both,
acquire and release semantics.

The happend before relation closes the combination of the relations “sequenced be-
fore” and “synchronizes with” transitively. We say that F knowingly happened before E,
if there are n and E0 = F,E1, ..., En−1, En = E such that Ei is sequenced before Ei+1

or synchronizes with it, for all i < n. Stated otherwise,

Rule 3.20.1.5 We only can conclude that one evaluation happened before another if we
have a sequenced chain of synchronizations that links them.

Observe that this happened before relation is a combination of very different concepts.
The sequence before relation can in many places be deduced from syntax, in particular if
two statements are members of the same basic block. Synchronization is different: besides
the two exceptions of thread startup and end, it is deduced through a data dependency on a
specific object, such as an atomic or a mutex.

The desired result of all of this on the visibility of effects is:
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Rule 3.20.1.6 If an evaluation F happened before E, all effects that are known to have
happened before F are also known to have happened before E.

20.2. Synchronizing C library calls. C library functions with synchronizing proper-
ties come in pairs, a releasing side and an acquiring side. They are summarized in Table 2.
Note that for the first two, we know which events synchronize with which. The call (or

TABLE 2. C library functions that form synchronization pairs

release acquire
thrd_create(.., f, x) entry to f(x)
end of thread id thrd_join(id) any return from f or thrd_exit
call_once(&obj, g) call_once(&obj, h) first call with all subsequent calls
mutex release mutex acquisition

equivalent) to f(x) synchronizes with exactly the the call to thrd_create that created its
thread. The call to thrd_join synchronizes with exactly the thread with the corresponding
id.

The other cases are a bit more complicated. For the initialization utility call_once,
the return from the very first call call_once(&obj, g), the one that succeeds to call its
function g, is a release operation for all subsequent calls with the same object obj. This
ensures that all write operations that are performed during the call to g() are known to
happen before any other call with obj. Thereby all other such calls also know that the
write operations (the initializations) have been performed.

For a mutex, a release operation can be a call to a mutex function, mtx_unlock, or
the entry into the wait functions for condition variables, cnd_wait or cnd_timedwait. An
acquire operation on a mutex is the successful acquisition of the mutex via any of the three
mutex calls mtx_lock, mtx_trylock or mtx_timedlock, or the return from the the wait
functions, cnd_wait or cnd_timedwait.

Rule 3.20.2.1 Critical sections that are protected by the same mutex occur sequentially.

Rule 3.20.2.2 In a critical section that is protected by mutex mut all effects of previous
critical sections protected by mut are visible.

One of these known effects is always the advancement of the point of execution. In
particular, on return from mtx_unlock the execution point is outside the critical section,
and this effect is known to the next thread that newly acquires the lock.

The wait functions for condition variables differ from acquire-release sematics:

Rule 3.20.2.3 cnd_wait or cnd_timedwait have release-acquire semantics.

That is before suspending the calling thread they perform a release operation and then,
when returning, an acquire operation. The other particularity is that we need a call to
mtx_unlock to ensure synchronization. The signaling thread will not necessarily synchro-
nize with the waiting thread if it does not place a call to cnd_signal or cnd_broadcast
into a critical section that is protected by the same mutex as the waiter. In particular, non-
atomic modifications of objects that constitute the condition expression may not become
visible to a thread that is woken up by a signal if the modification is not protected by the
mutex. There is a simple rule of thumb to ensure synchronization.

Rule 3.20.2.4 Calls to cnd_signal or cnd_broadcast should always occur inside a
critical section that is protected by the same mutex as the waiters.
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20.3. Sequential consistency. The data consistency for atomic objects that we de-
scribed above, the one guaranteed by the happened before relation, is called acquire-
release consistency. Whereas the C library calls that we have seen above always syn-
chronize with that kind of consistency, not more and not less, accesses to atomics can be
specified with different consistency models.

As you remember, all atomic objects have a modification order that is consistent with
all sequenced before relations that see these modifications on the same object. Sequential
consistency has even more requirements than that:

Rule 3.20.3.1 All atomic operations with sequential consistency occur in one global
modification order, regardless of the atomic object they are applied to.

So, sequential consistency is a very strong requirement. Not only that it enforces
acquire-release semantics, that is a causal partial ordering between events, but it rolls out
this partial ordering to a total ordering. If you are interested in parallelizing the execution of
your program, sequential consistency may not the right choice, because it forces sequential
execution of the atomic accesses.

The standard provides the following functional interfaces for atomic types, that should
conform to the description given by their name and that also perform synchronization.

void atomic_store(A volatile* obj , C des);
C atomic_load(A volatile* obj);
C atomic_exchange(A volatile* obj , C des);
bool atomic_compare_exchange_strong(A volatile* obj , C *expe , C des);
bool atomic_compare_exchange_weak(A volatile* obj , C *expe , C des);
C atomic_fetch_add(A volatile* obj , M operand);
C atomic_fetch_sub(A volatile* obj , M operand);
C atomic_fetch_and(A volatile* obj , M operand);
C atomic_fetch_or(A volatile* obj , M operand);
C atomic_fetch_xor(A volatile* obj , M operand);
bool atomic_flag_test_and_set(atomic_flag volatile* obj);
void atomic_flag_clear(atomic_flag volatile* obj);

Here C is any appropriate data type, A is the corresponding atomic type and M is a type that
is compatible with the arithmetic of C. As the name suggest, for the fetch and operator
interfaces the call returns the value that *obj had before the modification of the object. So
these interfaces are not equivalent to the corresponding compound assignment operator,
since that would return the result after the modification.

All these functional interfaces provide sequential consistency:

Rule 3.20.3.2 All operators and functional interfaces on atomics that don’t specify oth-
erwise have sequential consistency.

Observe also that the functional interfaces differ from the operator forms, because they
force their arguments to be volatile qualified.

There is another function call for atomic objects but which does not imply synchro-
nization.

void atomic_init(A volatile* obj , C des);

Its effect is the same as a call to atomic_store or an assignment operation, only that
concurrent calls from different threads can produce a race. View atomic_init as some
cheap form of assignment.

20.4. Other consistency models. A different consistency model can be requested
with a complementary set of functional interfaces. E.g an equivalent to the postfix ++
operator with just acquire-release consistency could be specified with
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unsigned _Atomic at = 67;
...
if (atomic_fetch_add_explicit (&at, 1, memory_order_acq_rel)) {

...
}

Rule 3.20.4.1 Synchronizing functional interface for atomic objects have a form with
_explicit appended which allows to specify its consistency model.

These interfaces accept additional arguments in the form of symbolic constants of type
memory_order that specify the memory semantics of the operation.

memory_order_consume

memory_order_relaxed

memory_order_acq_rel

memory_order_seq_cst

memory_order_releasememory_order_acquire

FIGURE 8. Stringency of consistency models

• memory_order_seq_cst requests sequential consistency. Using this is equiva-
lent to the forms without _explicit.

• memory_order_acq_rel is for an operation that has acquire-release consistency.
Typically for general atomic types you’d use that for a read-modify-write oper-
ation such as atomic_fetch_add or atomic_compare_exchange_weak, or for
atomic_flag with atomic_flag_test_and_set.

• memory_order_release is for an operation that has only release semantic. Typ-
ically this would be atomic_store or atomic_flag_clear.

• memory_order_acquire is for an operation that has only acquire semantic. Typ-
ically this would be atomic_load.

• memory_order_consume is for an operation that has a weaker form of casual de-
pendency than acquire consistency. Typically this would also be atomic_load.

• memory_order_relaxed is for an operation that adds no synchronization re-
quirements to the operation. The only guarantee for such an operation is that it
is indivisible. A typical use case for such an operation is a performance counter
that is used by different threads, but for which we only are interested in a final
accumulated count.

The consistency models can be compared with respect to the restrictions they impose
to the platform. Fig. 8 show the implcation order of the memory_order models.

Whereas memory_order_seq_cst and memory_order_relaxed are admissible for all
operations, there are some restrictions for other memory_order. Operations that can only
occur on one side of a synchronization can only specify an order for that side. Thereby the
two operations that only store (atomic_store or atomic_flag_clear) may not specify
acquire semantics. Three operations only perform a load and may not specify release or
consume semantics: besides atomic_load these are atomic_compare_exchange_weak
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and atomic_compare_exchange_strong in case of failure. Thus, the latter two need two
memory_order arguments for their _explicit form, such that they can distinguish the
requirements for the success and failure cases:

bool
atomic_compare_exchange_strong_explicit(A volatile* obj , C *expe , C des ,

memory_order success ,
memory_order failure);

bool
atomic_compare_exchange_weak_explicit(A volatile* obj , C *expe , C des ,

memory_order success ,
memory_order failure);

Here, the success consistency must be at least as strong as the failure consistency, see
Fig. 8.

Up to now, we have implicitly assumed that acquire and release sides of a synchro-
nization are symmetric, but they aren’t: whereas there always is just one writer of a mod-
ification there can be several readers. As moving new data to several processors or cores
is expensive, some platforms allow to avoid the propagation of all visible effects that hap-
pened before an atomic operation to all threads that read the new value. C’s consume
consistency is designed to map this behavior. We will not go into the details of this model,
and you should only use it when you are certain that some effects prior to an atomic read
will not affect the reading thread.



LEVEL 4

Ambition

Remark: The presentation of this level is probably not yet in its final
form. Please bare with me and don’t hesitate to make suggestions.

I have already noted here and there that C as a standardized language has evolved
since its beginnings. Backwards compatibility is a major issue for the C community, so
this evolution is slow compared to other programming languages. But nevertheless this
evolution is happening, and it recently has brought in important features such as threads,
atomics and _Generic.

On this level I will try to give my vision of future developments of C. The idea is
that they should be driven by a need, should be easy to implement and should only make
minimal changes. Certainly these three criteria are subjective, but my hope is that this will
somehow lead to some consensus of what is to be included and what would be extensions.
The properties of C that I’d like to maintain are:

• C is a statically typed language.1

• C is portable to all modern computer architectures.
• A well written program that conforms to one version of the standard, and that

doesn’t use deprecated features, should remain so for at least one subsequent
version of the standard.2

• Additions to the standard should be based on well tested extensions.
• Changes that may modify the semantics of conforming programs must be well

identified and must have an easy to implement compile time diagnostic. The
number of programs that would have modified behavior must be marginal within
the existing body of conforming programs.

There are several problem zones that I would like to be tackled. Resolving issues here
would make programming in C even easier, without giving up any of the portability or
optimization potential.

• Lack of constants for arbitrary types.
• Lack of type generic macro capacities.
• Lack of type generic interfaces for the C library.
• Lack of modularity, reusability and encapsulation.
• Lack of compile time and run time check of function calls.
• An inconsistent and confusing object and memory model.
• An inconsistent const-contract.

Sections of the C standard to be amended
Blocks like this one are used to specify the changes that would have to be made to the
C standard. If you are not interested in the very details of that but just in the proposed
features you probably can skip these.

1VLA are the only permitted extension from that rule.
2I.e., it will have a minimal lifetime of about 20 years.

233
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21. The register overhaul

The register storage class is perhaps the least understood, less esteemed and most
underestimated tools of the C language. It merits better, since it can be used to force a very
economic use of the & operator in code that is sensible to optimization. It helps to tackle one
of the most important optimization problems that steams from C’s “flat” memory model:
aliasing. A reformulation of Rule 2.13.2.10 in the language of the C standard would be:

Rule 4.21.0.1 Objects that are declared with register storage duration can’t alias.

The goals of this proposal are multiple:

Goal 1 Use const qualified register objects as typed compile time constants.

Goal 2 Extend the optimization opportunities of register to file scope objects.

Goal 3 Create new optimization opportunities for functions that are local to a TU.

Goal 4 Improve the interplay between objects and functions that are local to a TU.

Goal 5 Impose bounds checking for constant array subscripts.

To see that the register concept can be extended to overcome the lack of general
constants in C, let us look at the two following definitions:

1 enum { fortytwo = 42, };
2 register int const fortytwo = 42;

From the point of view of the C standard, they specify very different things, an enumeration
constant and an object. But as long as they are placed inside a function, the two entities are
not much distinguishable by code that uses them.

• Both are of type int.
• Both have value 42.
• Both may not appear on the left hand side of an assignment.
• Both may not be subject of the address-of operator &.
• They have exactly the same spelling.

In C11, there are the following differences to these definitions:
• Definitions with register storage are not allowed in file scope.
• A register object with const qualification is not an integer constant expres-

sion, ICE, even if the initializer is an ICE.
Other drawbacks for register declarations in C11 include:

• Because of implicit address-of operations when accessing them, register is not
useful for array declarations.

• Because of implicit address-of operations when calling functions, register,
even if allowed in file scope, would not be useful for function declarations.

In view of that, I will try bring the concepts closer together, for which the separation
is quite unproductive and artificial: literals and const-qualified register objects. Both
are just constants in the sense of usual CS terminology.

A constant is an immutable and non-addressable entity in the program
state that is determined during compilation.

Because it is determined at compile time and immutable, no aspect of such a constant
can change during a specific execution of the program. Because it is non-addressable no
property of a constant can change between different executions of the same object file.
Thus constants will never influence the branching of the program.

Therefore, constants can be present in a object file in very different forms.
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• They may be optimized completely and only be implicitly present in the structure
of the control flow graph.

• They can be present explicitly as one or several hardware registers, assembler
immediates, or special instructions.

• They may be realized in addressable read-only memory.
Which form they take, depends on many factors and a compiler is completely free to

chose. Examples:
• A 0 may be realized by an instruction that zeros out a register, e.g exclusive-or

of the register with itself.
• Depending of its usage, a small integer constant can often be realized as instruc-

tion immediate, or fixed address offset.
• A double constant may be loaded directly from memory into a special floating

point hardware register.

Overview. We develop our proposal in several steps, that become more and more
intrusive as we go along. First in Section 21.1 we introduce the main feature, file scope
register, which shows to be simple and straightforward. Section 21.2 then proposes
to subsume the main advantage into a new concept, named constants, and Section 21.3
integrates these into C’s integer constant expressions. Sections 21.4 and 21.5 then deal with
two important features that are more difficult to integrate into C11, register functions and
register arrays.

21.1. Introduce register storage class in file scope. Unfortunately, with the cur-
rent definition the use of register is limited to block scope and function prototype scope.
There is no technical reason that it couldn’t be used in file scope: file scope register
declarations are already allowed from a viewpoint of syntax, they are explicitly forbidden
by a constraint.

21.1.1. Changes for object types. Any compiler should be able to implement file
scope objects with register storage class easily. At the minimum they can just be re-
alized similar to file-scope-static with two additional features:

• Produce a diagnostic if the address of such an object is taken.
• If such a file scope register object is const qualified but not volatile, allow

its use inside any inline or register function.
Textual changes for this feature that concern objects are minimal. The only problem

spots are const qualified register objects. Since these are detectable at compile time, we
can impose their explicit initialization. Thereby we avoid a clash with the concept of
tentative definitions, which should just be forbidden for such const qualified objects.

Existing practice: In connection with its __asm__ hardware register extension, the
GNU compiler already allows register in file scope.
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Sections of the C standard to be amended

• 6.7.1 p6
– Add a mention of aliasing to the optimization potential.
– Add: If such an object is of const qualified type, it shall be initialized

explicitly.
• 6.7.1 p6 footnote. Transform this footnote into a note.

– Add after “auto declaration”: “(function scope) or static declaration
(file scope)”

– Add: A const qualified identifier with register storage class can not
appear in a tentative definition.

• 6.9 p2 remove the mention of register
• 6.9.1 p4 add register to the list
• 6.9.2 p2 add register to the cases

21.2. Typed constants with register storage class and const qualification. Be-
sides helping with aliasing, allowing register in file scope has another important conse-
quence, C gains real named constants for all data types. Data types that we declare in C
often have some common values that should be shared by all users of that type, but unfor-
tunately the C language only provides the possibility to define objects that are initialized
with the value in question for most of the cases.

Most prominent in C is the all zero initialized value that we always can enforce trough
a default initializer of a static object, others need detailed initializers:

1 typedef struct listElem listElem;
2 struct listElem { unsigned val; listElem* next; };
3 static listElem const singleton = { 0 };
4 static listElem const singleOne = { .val = 1 };

There are two ways to deal with such const qualified objects in file scope. If they are
implemented as above with static storage class, the may result in one object per com-
pilation unit and the compiler might throw spooky warnings on us if we define them in a
header file but don’t use them at all.

Rule 4.21.2.1 File scope static const objects may be replicated in all compilation
units that use them.

Rule 4.21.2.2 File scope static const objects cannot be used inside inline functions
with external linkage.

Another way is to declare them extern in a header file

1 extern listElem const singleton;

and to define them in one of the compilation units:

1 listElem const singleton = { 0 };

This second method has the big disadvantage that the value of the object is not available in
the other units that include the declaration. Therefore we may miss some opportunities for
the compiler to optimize our code. For example an initialization function for our structure
type may be written as
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1 inline
2 listElem* listElem_init(listElem* el) {
3 if (el) *el = singleton;
4 return el;
5 }

If the value of singleton is known, the assignment could be realized without loading it
but only with immediats. And listElem_init itself could then much easier be inlined
where it is called.

Rule 4.21.2.3 File scope extern const objects may miss optimization opportunities for
constant folding and instruction immediates.

The other disadvantage of both cases (static or extern) is that the address of the
object can be taken inadvertently. So aliasing of such “constants” may in some cases not
be excluded by the compiler:

Rule 4.21.2.4 File scope extern or static const objects may miss optimization op-
portunities because of mispredicted aliasing.

So being const qualified, doesn’t suffice to make an object suitable as constants in
the same way literals for integer types are. Ideally, we would like to have a way to declare
rvalues of any given type. C currently even has no direct support for all of the standard
arithmetic types: all integer literals are at least as large as int.

For scalar types a cast can be used to produce a value expression:

1 #define myVeritableFalse (( _Bool)+0)
2 #define myVeritableTrue ((_Bool)+1)
3 #define HELLO ((char const*const)"hello")

Or some predefined macro for the special case of complex types:

1 #define ORIGIN CMPLXF(0, 0)

The only named constants that can serve as genuine integral constant expressions (ICE) as
C understands them are of type int and are declared through a declaration of an enumera-
tion:

1 enum { uchar_upper = (( unsigned)UCHAR_MAX) + 1, };

All this, to just define a constant; we thereby define a new type (the unnamed enumeration
type) and define a constant that isn’t even of that type, but an int.

For composite types, in particular structure types, things are more complicated, be-
cause casts are only allowed for arithmetic types. To fabric a value expression that is not
an assignable lvalue and such that the address can’t be taken we have to find another way
that produces an rvalue for a struct type.

Therefore we first define an object for the desired type and then feed it into an ex-
pression such that the result is an rvalue. There are only two operators that can return a
composite type as a whole, assignment and the ternary operator. We use the ternary oper-
ator since it allows to have a type agnostic macro for all types but for arrays and narrow
integer types:

1 #define RVALUE(X) (1 ? (X) : (X))
2 #define SINGLETON RVALUE (( listElem const){ .val = 0, })
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Such expression are quite ugly and can be hard to read for a human and a debugger.
The biggest disadvantage is that such an expression is not suitable for initializers of ob-
jects with static storage duration. We’d have to define two different macros, one for the
initializer and one for the constant expression:

1 #define SINGLETON_INIT { .val = 0, }
2 #define SINGLETON_CONST_LVALUE (listElem const)SINGLETON_INIT
3 #define SINGLETON RVALUE(SINGLETON_CONST_LVALUE)

In function scope, however, there is a construct that can be used to declare unmutable
values of which no address can be taken: const-qualified objects with register storage
class. All the above could be given in block scope with functionally equivalent definitions:

1 register listElem const singleton = { 0 };
2 register listElem const singleOne = { .val = 1 };
3 register _Bool const myVeritableFalse = 0;
4 register _Bool const myVeritableTrue = 1;
5 register char const*const HELLO = "hello";
6 register float _Complex const ORIGIN = CMPLXF(0, 0);
7 register int const uchar_upper = (unsigned)UCHAR_MAX +

1;
8 register listElem const SINGLETON = singleton;

The idea of this proposal is that named constants for all types become available in
file scope, because they can then be declared in header files as const qualified register
objects.

No additional changes to the ones in the previous section are required. It might be
convenient, though, to add some text to stress the fact that also a hidden modification of
such objects is not standard conforming. This may be helpful to avoid that implementations
claim the right to map and modify such objects, hiding behind the fact that the standard
leaves behavior undefined when a const qualified object is modified.

Sections of the C standard to be amended

• 6.6 “constant expressions”, p7 general constant expressions, add an item to
the end of the list

— an lvalue of const but not volatile qualified type that has been
declared with register storage class.
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• Baptize the thing. Therefore add a new paragraph:
A register constant is an object that is of const but not volatile qual-

ified type, that is declared with the register storage class, for which the
unique declaration is the definition, that is explicitly initialized and for which
the initializer only contains constant expressions.(FOOTNOTE1) Such a
register constant provides the same value as specified by the initialization
throughout all its lifetime.(FOOTNOTE2)

FOOTNOTE1: Register constants can not appear in tentative defini-
tions.

FOOTNOTE2: But for their spelling, for their type qualification, [for
their qualification as an ICE,] and for their usability in preprocessor expres-
sions, register constants are indistinguishable from literals of the same type
and value. Therefore, register constants can be be used as named constants
of their type.

• p8, arithmetic constant expressions: Add register constants of arithmetic
type to the list.

• 6.7.1 “storage class specifiers” p6: new footnote:
An implementation should only map a register declared object to a

hardware register or similar device which is subject to changes not effected
by the program if the type of the object is volatile qualified and therefore
is not a register constant.

• 6.7.4 “function specifiers”, p3. Allow the use of register constants in all
inline functions. Therefore at the end add:

... shall not contain a reference to an identifier with internal linkage
unless it is the name of a register constant.

21.3. Extend ICE to register constants. Now that we have global constants for all
types, we need to integrate this into the rest of the language. We want register constants to
behave the same as literals of the underlying type. This is particularly important for con-
stants of integer type, since they are needed to declare array dimensions, alignments, width
of bit-fields or values of enumeration constants, and we want all of this to go smoothly.

To make this possible, we have to amend the computation of compile time integer con-
stant, or as the C standard calls them integer constant expressions, ICE. In most contexts,
attaching the ICE property to a C11 expression will not change the semantics if this new
register feature is applied.

There are only two such contexts in which register objects were previously allowed,
and where the meaning changes if the ICE property is added:

• An array declaration declares a VLA if the expression that is used for the size is
not an ICE. Thus some VLA that are declared in C11 code would turn into FLA.
Such a change would not change the semantics of the program in question.

• Integer expressions of value 0 are only null pointer constants if they are also ICE.
There is no problem by using pointer expressions directly.

register int const zero = 0;
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double* p = zero; // constraint violation in C11

In C11, the initialization of p is a constraint violation because implicit conversions
from integer to pointer expressions are only allowed if the integer expression is an ICE of
value 0. So this property for pointers alone would just have code valid that had been invalid
C11 code, before.

Only a combination of some rarely used features may effectively result in a change of
semantics of a valid C11 program. In particular an expression such as

1 (void*)((x)-(x))

is a null pointer constant, only if x is an ICE, and then

1 (1 ? (int*)0 : (void*)((x)-(x)))

is of type int* or void* according to that property of x. With _Generic such types are
observable

1 #define IS_ICE(X) \
2 _Generic ((1 ? (int*)0 : (void*)((X)-(X))), \
3 int*: 1, \
4 void*: 0)

and code paths can be taken differently according to the status of an identifier:

1 if (IS_ICE(x)) {
2 // something
3 } else {
4 // different
5 }

Rule 4.21.3.1 Changing an identifier that represents an integer constant to be an ICE,
can change effective types of objects and execution paths.

So introducing register constants to be ICE, may change the semantic of some pro-
grams. Nevertheless, that risk is low, it is detectable and will in most cases have a positive
effect on the compiled program:

• A change could only happen for code that currently uses const qualified vari-
ables of register storage class. The usage of register is currently extremely
low and almost non-existent, const qualification of them is even rarer.

• Compilers that would implement this new feature, or plan to implement this
in future versions, can easily add a warning feature that detects the case that
the only non-ICE sub-expressions inside an integer-type expression X originate
from objects that are register constants.

• If a size expression of an array becomes an ICE that wasn’t one before, the
declared array then is a FLA instead of a VLA. This allows a compiler to produce
better optimized code (e.g. the change in the stack pointer is a compile time
constant) and avoids to trace the size of the array at runtime (e.g. for sizeof
expressions). Most modern compilers do such optimization, anyhow.

• If an expression is determined by _Generic or other code similar to the above to
be an ICE (or not) this should usually be used to produce code that uses the fact
that the value of the expression can be determined at run time, and that optimizes
the program with this information.
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Sections of the C standard to be amended
The change itself is quite easy to perform, because we already have identifiers in C11,
namely enumeration constants, that are ICE.

• In all places that it occurs in C11, change the syntax term enumeration-
constant to named-constant. These are 6.4.4, p1, 6.4.4.3, 6.7.2.2 p1, A.1.5.

• 6.4.4.3, previously “enumeration constants”: Change the whole section to
read

1 6.4.4.3 Named constants
2
3 Syntax
4 named -constant: identifier
5
6 Semantics
7
8 Named constants are identifiers that are declared as

register
9 constant or as enumeration constant. An identifier

declared
10 as an enumeration constant has type int.
11
12 Forward references: constant expressions (6.6),

enumeration
13 specifiers (6.7.2.2).

• 6.6 “constant expressions”, p6 “ICE” and footnote: change enumeration
constant to named constant of integer type.

• p8 “arithmetic constant expression”: change enumeration constant to named
constants of arithmetic type.

21.4. Functions. The possibility to declare functions with register storage class is
an interesting fallout of our approach.

• A function declaration of storage class register is equivalent to a declaration
as static inline with the additional property that its address can’t be taken.

This doesn’t mean that implementors of that feature have to implement a completely
new function model. Just as currently for register variables, a register function may
well reside in memory and internally the compiler can use its address to make a call.
But such a mechanism would be to the discretion of the implementation and completely
transparent for the programmer.

21.4.1. Optimization opportunities. The advantages of register functions are:

• Such a function cannot be called from another TU than the one it is defined
in and can effectively be inlined without negative effects to other TU. Thus no
“instantiation” of the symbol of a register function is necessary.

• Since the caller of such a function is known to reside in the same TU, the function
setup can avoid the reload of certain registers and is not bound to the platform’s
function call ABI.
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Similar as for register objects, these optimizations are currently possible for static inline
functions for which the compiler can prove that the address never escapes the current TU.
A register declaration instead of static inline guarantees that these optimization op-
portunities are not lost accidentally.

Existing practice: The GNU compiler already has

__attribute__ (( __visibility__("internal")))

that allows for similar optimizations, but which is intrinsicly unsafe since gcc does not
check if a pointer to such a function can escape the current TU.

21.4.2. Relaxed constraints for TU local objects. As already mentioned, inline de-
clared functions have difficulties with other symbols that have no or internal linkage. Such
functions that are not static at the same time

• cannot access static file scope variables, or
• cannot declare their own block scope static variables,

even if these are const qualified and known at compile time.
Our proposal simplifies things with that respect.
• All functions that are static inline have access to register objects that are

visible at their point of definition.
• All functions declared inline have access to register constants that are visible

at their point of definition.
21.4.3. Changes for function types. As the function concept is currently formulated,

such register function could never be called: the standard function call feature takes
the address of a function that is called. We propose to change the standard to allow for
that by letting the function call operator () directly operate on a function. This changes
the semantics just in the context of a call. Function to function-pointer would still be
mandated in all other contexts and thus would be illegal for functions that are declared
with register.

Sections of the C standard to be amended

• 6.3.2.1 p4 “conversions of function designators”: Add “, or as the postfix
expression of a function call” to the list of allowed operations.

• 6.5.2.2 “function calls”:
– p 1: Replace

... pointer to function returning void or returning a
complete object type other than an array type.

by
... function returning void or returning a complete
object type other than an array type, or shall have
type pointer to such a function.

– p5: Replace
... type pointer to function returning an object type,
...

by
... type function returning an object type or pointer to
such a function, ...

21.5. Unify designators. If we want to extend the use of register constants, we want
to ensure that the types that can be used for it are not artificially constrained.

With
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enum sig_stat { unknown = 0, sync = 1, async = 2, };

consider the two following alternative declarations of sig_status in a header file:

extern enum sig_stat const sig_status []; // values are hidden

and

static enum sig_stat const sig_status [] = { // not usable in inline
[SIGABRT] = async ,
[SIGFPE] = sync ,
[SIGILL] = sync ,
[SIGINT] = async ,
[SIGSEGV] = sync ,
[SIGTERM] = async ,

};

The first hides the contents from the user code, and the fact if sig_status[SIGIMPL]
is unknown or not3 can only be checked at runtime, through a memory reference. The
second declaration exposes all values to all users, but cannot be used from an inline
function.

Using the second variant with register instead of static would solve the problem:
all values are visible for all users and all inline functions could use it. But unfortunately,
with the current version of the standard, arrays that are declared with a register storage
class can’t serve much purpose: we can’t even access individual fields without constraint
violation. This is because the [] designator is defined by taking addresses: refering to an
array element through A[23] is equivalent an address-of operation, pointer arithmetic and
dereferencing, namely *(&A[0]+23). Thus if A is declared as register, this is a constraint
violation.

This part of the register overhaul tries to make register arrays useful whenever
the expression in the [] is an ICE. It does that by attempting a careful review of the three
different syntactical contexts, in which [] brackets are used.

Syntactically, C uses [] brackets in three different places, but in all that places they
serve to specify a length (or the lack of) an array dimension or position:

• array declaration,
• array initialization,
• array subscripting.

The expression that is enclosed inside [] can be
• a strictly positive integer constant expression (ICE), or empty [] to provide a

constant value that is determined at compile time
• any other form of integer expression, or empty [*] to provide a value that is

determined at run time.
All actual C compilers are able to distinguish these two cases. For designated initial-

izers, only the first form is allowed and using the second is a constraint violation. For an
array declaration, in the first case the array is FLA, in the second a VLA4.

For subscripting, the C standard currently doesn’t make the distinction. This is a bit
unfortunate because conceptually subscripting an array at fixed location is technically the
same as accessing an element of a structure. In this section we aim to amend the C standard
such that an subscript expression that is a positive ICE can be applied to a register array.

As a fallout, this reorganization ensures bounds checking for FLA and constant sub-
scripts. If an index into an FLA is constant it can be checked against 0 and the array length

3for some implementation defined signal SIGIMPL
4Which may or many not be supported by the compiler.
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at translation time. So if it is negative or too large this constitutes a constraint violation
under this proposal.

Let us take a look a the following conditional type declaration:

. array_or_struct.c

3 #ifdef USE_STRUCT
4 typedef struct two two;
5 struct two { double e1; double e2; };
6 # define FRST(X) ((X).e1)
7 # define SEC(X) ((X).e2)
8 #else
9 typedef double two [2];

10 # define FRST(X) ((X)[0])
11 # define SEC(X) ((X)[1])
12 #endif

The two types will behave differently in many context, e.g. if we pass them as argu-
ments to functions. But in both cases they are composed of two double elements that can
be accessed through the macros FRST and SEC, respectively. With either of the choices I
would expect a good optimizing compiler to produce exactly the same binary for code like:

. array_or_struct.c

14 void func0(void) {
15 for (two sp = { 1, 1, };
16 FRST(sp) + SEC(sp) < 10;
17 FRST(sp) += SEC(sp)) {
18 printf("two␣values␣%g␣%g\n", FRST(sp), SEC(sp));
19 SEC(sp) += (FRST(sp) + SEC(sp))/2;
20 }
21 }

And the compilers that I have on my machine achieve that, even without special op-
timization flags turned on. This is possible, because the code only contains offset calcu-
lations for fields that are compile time constants: in one case they are given by the field
designators .e1 and .e2, in the other by the array designators [0] and [1]. Since this code
doesn’t use the relative position of the fields in memory, the compiler can easily treat the
two fields as if they were declared as separate variables.

Existing practice: The clang compiler silently implement this already, although this
is not compliant to C11.
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Sections of the C standard to be amended

6.5.2 Postfix operators

Syntax

postfix-expression:

primary-expression

postfix-expression array-designator

postfix-expression [ expression ]

postfix-expression ( argument-expression-listopt )

postfix-expression struct-union-designator

postfix-expression -> identifier

postfix-expression ++

postfix-expression --

( type-name ) { initializer-list }

( type-name ) { initializer-list , }

array-designator: [ expression ]

struct-union-designator: . identifier

Constraints

The expression of an array-designator shall be an integer

constant expression.

6.5.2.1 Array subscripting

Constraints

Array subscripting can occur in two different forms. For the first, the

first expressions has type array object of type T and constant length L,

for some type T non-negative integer constant L and is

not a variable length array. The integer constant expression of the

array-designator shall have a non-negative value that is strictly

less than L. The result has type T.

Otherwise, after promotion [the first | one] expression shall have type

pointer to complete object type T, the other expression

shall have integer type, and the result has type T.

Semantics

A postfix expression followed by an array-designator designates

the corresponding element of an array object.FOOTNOTE Successive

array-designators designate an element of a multidimensional array

object.

FOOTNOTE: Because the subscript expression is a integer constant such a

designation is similar to the designation of structure or union members.

Otherwise, --- insert the existing text about array subscript semantics ---

EXAMPLE Consider the array object defined by the declaration

int x[3][5];

Here x is a 3 × 5 array of ints; more precisely, x is an

array of three element objects, each of which is an array of

five ints. So the expression x[1] denotes an array object of

five int, namely the second such array element. When used in

the expression x[1][2], the designator [2] applies to that

array and thus refers to its third element, an int.

--- insert existing array subscript example here ---

Forward references: Structure and union members (6.5.2.3),

additive operators (6.5.6), address and indirection operators (6.5.3.2),

array declarators (6.7.6.2), designator (6.7.9).
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In Section 6.7.9 and in Annex A, change the syntax definition for designator to the
following:

designator: array-designator struct-union-designator

Also change p6 and p7 of that section to directly refer to array-designator and struct-
union-designator, respectively.

22. Improve type generic expression programming

A classical example for an implementation of a type generic feature by means of a
macro is the computation of a maximum value:

1 #define MAX(A, B) ((A) > (B) ? (A) : (B)) // bad , don’t do that

Such a simple macro has two effects that any macro programming should avoid. First, if
an argument expressions has a side effect, this side effect could be evaluated twice, see
Section 10.3. Second, the expanded expression behaves differently to its surroundings
with respect to sequencing than a function call would. A function call would be “inde-
terminately sequenced” to other evaluations inside the same expression. The expanded
expression of the macro is unsequenced. Later, in Section 23.2, we will see how this lack
of sequencing can even be dangerous for features of the C library.

If it wouldn’t be for the type genericity of the macro, the same functionality could be
implemented with an inline function:

1 inline
2 uintmax_t MAX(uintmax_t a, uintmax_t b) {
3 return a > b ? a : b;
4 }

If we want to be type generic and use that method we would have to implement one func-
tion per type, e.g. all 16 variants for real types and void*, and then encapsulate all of these
into a big _Generic expression. For an equivalent functionality for application types we
would have modify the generic code each time we add a new type to our system.

Gcc and friends have two extensions that largely ease the programming of type generic
macros: statement expressions and the __typeof__ operator. The first are expressions
that contain a compound statement and who’s return value is the last value that has been
evaluated. The second allows to declare temporary local variable of a deduced type.

1 #define MAX(A, B) \
2 ({ \
3 __typeof__(A) a = (A); \
4 __typeof__(B) b = (B); \
5 (a > b ? a : b); \
6 })

So this introduces a new keyword, __typeof__ that works similar to sizeof, only
that its “return” is a type and not a size. With this, we avoid the problem that we would
encounter with the ternary expression. In that expression one of the operands is evalu-
ated twice. So if one of the macro arguments has a side effect, that side effect could be
duplicated.

1 x = MAX(f(r), g(s));
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There are problems with both approaches. The __typeof__ constitutes an intrusion
into C’s syntax. It is not immediate to see that this doesn’t create ambiguities. Second,
C++ has introduced a similar feature “auto” variables that fulfill a similar purpose, but for
which the syntax is different.

Statement expressions introduce the new concept of what should be the result type
and value of a compound statement. E.g. in the example above the last expression to be
evaluated is the ternary expression. This is against the rule of C that an expression that is
evaluated as statement discards its value and is only evaluated for its side effects.

Also, a similar expression such as

1 #define MAX(A, B) \
2 ({ \
3 __typeof__(A) a = (A); \
4 __typeof__(B) b = (B); \
5 /* evaluates to a void */ \
6 if (a > b) a; \
7 else b; \
8 })

does not give the same result: the result type is void, here.
In all the evaluation rules are surprising and form a substantial extension to C seman-

tics.
With the proposal that we develop below a generic MAX macro could be implemented

as in Listing 4.1.

LISTING 4.1. A macro expanding to a anonymous function

1 #define MAX(A, B) \
2 (static (register a, register b)){ \
3 if (a > b) return a; \
4 else return b; \
5 }((A), (B))

Here the construct static (register a, register b) refers to a function proto-
type with incomplete types for return and the two arguments. The core of the macro itself
is of a form (T){ something } that we already know for compound literals:

Goal 6 Amend the C standard to be able to use anonymous functions and inferred types
for type generic expressions inside macros.

22.1. Storage class for compound literals. This proposal uses storage class speci-
fiers to force the interpretation of certain expressions as declarations. Then we want to infer
the type of such a declaration from the context, namely from an initialization, a function
argument or from return statements.

In the current version of the C standard, compound literals may already have two of
different storage durations: static or automatic. The one that is chosen follows some rules
but there is also some slackness given to the compiler implementation.

• Compound literals in file scope always have static storage duration.
• Compound literals that are in block scope and that are not const qualified have

automatic storage duration.

For others, that is in block scope and const qualified, it is up to the compiler to chose,
and also the compiler is free to realize two such definitions that have the same value as the
same object. So in the following
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1 static double* x = &( double const){ 1.0, };
2
3 void f(void) {
4 double* y = &( double const){ 1.0, };
5 if (x == y)
6 printf("the␣same:␣%p\n", (void*)x);
7 else
8 printf("different:␣%p␣and␣%p\n", (void*)x, (void*)y);
9 }

both branches of the if could be taken.
In some cases pointers are also used as a tool to distinguish objects, even if they are

constant, if they can originate from different calls to the same function. Also we might
want to initialize a block scope static variable with the address of a compound literal.

This could easily be achieved by allowing to add storage class specifiers to compound
literals:

1 void f(void) {
2 static double* x = &( static double const){ 1.0, };
3 auto double* y = &(auto double const){ 1.0, };
4 if (x == y)
5 printf("error:␣%p\n", (void*)x);
6 else
7 printf("different:␣%p␣and␣%p\n", (void*)x, (void*)y);
8 }

22.2. Inferred types for variables and functions. The second ingredient would be
to allow objects and functions to have a type that is inferred from the context. This looks
a bit like the new auto feature from C++, but is simpler than that. Previous versions of C
already had a similar feature but which was later deprecated: the implicit int rule. Before
C99 the following was valid:

1 max(a, b){
2 if (a > b) return a;
3 else return b;
4 }

All of this was interpreted as if we had written

1 int max(int a, int b){
2 if (a > b) return a;
3 else return b;
4 }

In fact, declarations as the following

1 register ret = a + b;

are still valid syntax, only a constraint forbids them.
There are other places where the type of an object is derived from its initializer: arrays.

1 double A[] = { [42] = 7., };

Here the type of A is incomplete until the end of the initializer is reached. Only then the
size is determined and the type is fixed to double[43].

For C’s grammar to deduce that we are declaring an identifier, we either need a type
or we need a storage class specifier. With the new feature the following should be valid:



22. IMPROVE TYPE GENERIC EXPRESSION PROGRAMMING 249

1 register a = 0; // int
2 static f = 0.0f; // float
3 static g = (double const){ 0 }; // double
4 _Atomic unsigned K;
5 auto k = K; // unsigned
6 auto kp = &K; // _Atomic(unsigned)*
7 auto A[] = { [42] = 7., }; // double [43]
8 auto B[] = { [4] = 6u, [2] = 7L, }; // unsigned [5] or long [5]
9 auto c = { (char const)0 }; // char

10 auto C[] = { (char const)0 }; // int[1]
11 auto p = (char const []){ 0 }; // char const*
12 inline f(int a) { // unsigned(int)
13 if (a > 0) return a;
14 else return 0u;
15 }

To make this possible, in contrast to the corresponding C++ feature, no change in
the syntax is required. In particular, the keyword auto just remains with almost the same
syntax and semantic as before. No code that is conforming to previous C standards is in-
validated, only some syntactical constructs that were a constraint violation before become
valid.

To do so, we have to establish some rules to determine the type of an initializer or a
function definition, such that we then can reflect that type back to the declaration.

Self reference. If the type of an object x is determined by its initializer, this initializer
can’t yet refer to the object x, not even by using the &, sizeof, _Alignof or offsetof
operators.

1 void* x = &x; // valid
2 struct T {
3 struct T* next;
4 } y = { .next = &y, }; // valid
5 auto z = &z; // invalid

Simple objects. This is when the declarator has no array designation and the initializer
is a single expression, possibly inside braces.

• The type of the expression is not an array type. Then the type of the initializer is
that of the expression, all qualifiers dropped.

• The expression is an array type of base type B. The type of the initializer is
pointer to B.

Arrays. If the declarator has one or several array designation, either incomplete as []
or complete [N] for some expression N, the initializer is interpreted as an array initializer.
This array initializer is completed with default initializers {0} where necessary to provide
initializers for every array element.

The flattened version of this initializer then has braces and an initializer-list, I0, I1, . . . ,
In−1. Each of the elements Ii consists of an optional array designation and an initializer
Ei that must be compatible with the to-be-determined base type of the array.

That base type of the array then is determined by applying the rules for the conditional
operator ?: transitively to all expressions Ei that have a type. So supposing that all Ei are
assignment expressions, the base type would have the type of the expression

(1?(1? · · · (1?E0:E2) · · · :En−2):En−1)

Then one of following properties must hold:

• The initializers Ii are all assignment-expression Ei, possibly enclosed in braces.
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– The Ei are all of arithmetic type. The base type of the array then is the
result of computing the usual arithmetic conversions of all its expressions
Ei. As part of these conversions, integer promotion takes place, thus the
difference in type between variables c and C in the example above. Also all
qualifications that some of the expression Ei may have are lost.

– At least one of theEi has type pointer toB (possibly qualified) and all other
Ei are pointers to B (possibly qualified differently), are void* or are null-
pointer constants. The base type of the array is then pointer toB, eventually
adapted to the strongest necessary qualification. If one of the pointers is a
pointer to an atomic type, all that are not void* or null pointer constants
must be so.

• At least one of the initializers is of structure or union type T . Then all initial-
izers are valid initializers for a type compatible to T . The base type is then the
unqualified type T .

Functions. For a function definition with undetermined return type, the type is inferred
from the return statements of that function.

• If there is at least one execution branch of the function that doesn’t hit a return
statement, the function is of type void.

• If at least one of the return statements has no expression, the function type also
is void.

• Otherwise all execution paths end in return Ei for a list of expressions Ei. The
type of the function then is determined as for arrays and is the computed type
that is either an arithmetic type, a pointer type or a struct or union type.

Regular function definitions cannot have undetermined argument types, but see anonymous
functions, below.

For a function declaration that is not a definition, that has some undetermined types
(return or arguments), but for which a definition is already visible, the inferred types are
those that where specified or inferred at that definition. This is to ensure that the following
construct is valid:

1 // Header (.h file):
2 inline f(int a) {
3 if (a > 0) return a;
4 else return 0u;
5 }
6
7 // TU (.c file) that instantiates f
8 extern f(register);

Errors. In all other cases the type cannot be determined and these are considered
constraint violations. Such an error must be diagnosed and the compilation stops.

22.2.1. Extended use of auto. In addition to extend the use of auto and other storage
class specifiers to compound literals, the use of auto should also be permitted for function
parameters. In the current standard there is a constraint that forbids this and only allows for
register. This is probably because function parameters have automatic storage, anyhow,
and there was previously no need to specify more than that.

22.3. Anonymous functions. Anonymous functions are the most important change
to the standard that we propose here. The idea is simple:

Goal 7 Extend the notion of compound literals to function types.

Syntactically this is quite simple: for a compound literal where the type expression
is a function specification, the brace {} enclosed initializer is expected to be a compound
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statement, just as for an ordinary function. The successful presence of gcc’s block expres-
sions as an extension shows that such an addition can be added to C’s syntax tree without
much difficulties.

The semantic is a bit more complicated. There are three cases that we have to con-
sider according to the storage class that is chosen for the anonymous function, static,
register or auto. If such a storage class is not explicitly specified in the definition, we
propose the following:
static: Anonymous functions that are defined in file scope are as if defined static.
register: Anonymous functions in block scope that refer to symbols defined in their func-

tion but don’t have their address taken are as if defined register.
auto: Anonymous functions in block scope that refer to symbols defined in their function

and have their address taken are as if defined auto.
unspecified: For other combinations the choice is unspecified and the implementation

may chose any storage duration that is consistent with the specification.
The three different storage classes for functions imply some specific rules that we will

develop now.
22.3.1. static anonymous functions. As long as the anonymous function is pure,

that is doesn’t access symbols that are defined outside of its own block scope, things are
simple. Our first example from Listing 4.1 falls into that category.

More generally, this class of anonymous functions can be specified with some restric-
tions to their access to outside symbols. Of the symbols that are visible at its point of
definition, an anonymous function that is of static storage duration may only access

• its parameters,
• symbols that are declared in file scope,
• block scope symbols that are static,
• block scope compile time constants and types.

In particular, the latter forbids access to variably modified types.
Such a function can then simply implemented as an ordinary static function with an

implementation specific name, much as many implementations do for compound literals
in file scope. If needed, the address of such a function can be obtain, just as for any other
static function.

22.3.2. register anonymous functions. A register anonymous function has no
name and no recoverable address, therefore it can only be used once, at the point of its
definition. In particular, if it would be defined in file scope, it could never been called, and
could thus be omitted from the final executable that is produced.

A function that is just called once can seamlessly be integrated into the calling func-
tion, which here is the same function inside which it is defined. Thereby it can use the
block scope objects of its caller directly, and no supplementary mechanism to access all
visible objects is necessary.

22.3.3. auto anonymous functions. This category of functions is the most difficult
to implement. Such a function f is similar to a register anonymous function in that it
must have access to the local variables (types etc) of its definition scope in function F. In
addition, if f cannot be realized as register its address is taken and used in a context
that is not directly visible to the compiler. As a consequence several calls of the enclosing
function F may be active simultaneously and f may have several instances that see different
instances of the local variables of F.

Such instantiation of an anonymous function that closes all “open” references to sym-
bols (the local variables) have a long history in Computer Science and are known as clo-
sures, the concept and the term was coined by Landin [1964]. For Goal 6, closures are
not imperative. Since the implementation of closures is non-trivial, we could leave their
realization as implementation defined choice that could be tested with a feature macro, e.g.
__STD_AUTO_FUNCTIONS__.
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22.3.4. A partial implementation. There are several methods to implement closures
effectively, the most promising in our context seems to be the one proposed by Breuel
[1988]. It implements a closure of an anonymous function f(a, b), say, as a two step
function call sequence.

At runtime, at every encounter of the definition of f(, ) in F a small stub function
fc(a, b) is generated and is stored in some automatic storage. In that function (which
is specific to the calling context) we store a pointer c to the context of the definition.
When called fc(a, b) retrieves c. Then it performs a call f ′(a, b, c) to a statically compiled
function f ′ that receives c as additional parameter.

This method of Breuel [1988] is used in gcc to implement local functions. These can
be used as a base to what we propose here, by simply packing such a definition of a local
function and an evaluation of its symbol into gcc’s statement expression ({ ... }). The
use pattern of such a macro ANONYMOUS for a simple case where all types are known looks
as follows:

. anonymous_function.c

39 # define ANON_PART3 (...) __VA_ARGS__)
40 #else
41 # define ANONYMOUS(RET) ({ RET __anon_func ANON_PART2
42 # define ANON_PART2 (...) (__VA_ARGS__) ANON_PART3
43 # define ANON_PART3 (...) __VA_ARGS__ __anon_func; })
44 #endif

So the syntax is not exactly the same as it would just by extending compound literals
to functions, but it comes sufficiently close. When we want to use undetermined types, we
have to use gcc’s __typeof__ feature.

. anonymous_function.c

47 ANONYMOUS(uintmax_t) (uintmax_t a, uintmax_t b) \
48 ({ \
49 if (a < b) return b; \
50 else return a; \
51 }) \
52 ((A), (B))
53
54 #define MAX(A, B) \
55 /* function header */ \
56 /* return type */ \
57 ANONYMOUS(__typeof__ (1 ? (A) : (B))) \
58 /*and then argument list */ \
59 (__typeof__(A) a, __typeof__(B) b) \

The implementation works with three macros that are chained to compose the whole
statement expression.

. anonymous_function.c

35 **/
36 #ifdef __clang__
37 # define ANONYMOUS(RET) (^ RET ANON_PART2

The first one opens a statement expression with ({, the third one closes it with }). Such
a macro is fragile, so this is not something that I want to recommend in every day’s code.
All of this here just serves as a proof of concept.

22.3.5. Other comparable existing C extensions.
Clang. The clang compiler has implemented a similar concept to what we propose

here called Blocks. The syntax is a bit different, but the semantics are similar with two
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notable exception. The first is the access to local variables that are visible in the context
of the declaration of a clang-block. These local variables have copy semantics, that is
their value at the point of definition of the clang-block is copied into a new local variable
that is bound to the new clang-block. Clang needs to do this, because it also provides
means to copy clang-blocks and to keep such clang-blocks alive, when the definition of
the originating clang-block goes out of scope. I don’t think that C should consider such
complicated scoping and life-time rules and therefore should not follow this approach.

On the other hand, clang-blocks already provide type inference for the return type,
but seemingly only in a quite reduced form. Here, types in all return statements must be
equal, there is no inference of a common super-type that could fulfill the requirements of
all return.

Emulation by macros. A sophisticated macro package has been written by Leushenko5.
It implements anonymous functions and lambdas to a wide extent.

23. Improve the C library

23.1. Make the presence of all C library headers mandatory.
Overview. The transition from one C standard to the next is a difficult exercise for

everybody, for compiler and library providers that have to implement new features and for
the programmers that want to upgrade their code to these new features. Usually this diffi-
culty is not in the implementation of individual features themselves, but in the coordination
of the effort between the different parties.

In particular upgrading a compiler frontend to a new C language standard is often done
independently from upgrading different parts of the C library. This is because most modern
platforms are not monolithic but very heterogeneous:

• Several compiler frontends are provided by several sources. E.g on most POSIX
platforms there are versions of the open source compilers gcc and clang, but
also commercial compilers provided by hardware or OS vendors.

• These compiler frontends are used with different C libraries (e.g on Linux or
Windows systems) or versions thereof.

This proposal tries to improve on that situation and to simplify the life for both ends,
C implementors and C programmers.

Goal 8 Allow optional C library headers to be incomplete.

Goal 9 Provide feature test macros for completeness of headers.

Goal 10 Provide a version macro for all C library headers.

Goal 11 Distinguish test macros for compiler and library features.

Goal 12 Make all C library headers mandatory.

Current situation. C11’s approach to query the __STDC_VERSION__, and the feature
test macros

• __STDC_HOSTED__
• __STDC_NO_ATOMICS__
• __STDC_NO_COMPLEX__
• __STDC_NO_THREADS__

is not a satisfactory solution to deal with library versions: they have to be queried before
any header file has been included and thus cannot easily deal with different versions of
the C library. This is in particular not appropriate during a transition phase between C
versions, where newly implemented features should get as much coverage as possible.

5https://github.com/Leushenko/C99-Lambda

https://github.com/Leushenko/C99-Lambda
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The solution to these difficulties is usually to impose complicated preprocessor tests
that ensure that a certain header can be included and that provide fallbacks if certain fea-
tures are not yet implemented. These preprocessor tests usually use specific compiler and
library knowledge, in particular version numbers, and are in most cases a maintenance
nightmare, for C implementors as well as for C programmers.

Depending on the platform definitions, most of the standard library headers can be
optional. As of C11, the minimal requirement is only to have <float.h>, <iso646.h>,
<limits.h>, <stdalign.h>, <stdarg.h>, <stdbool.h>, <stddef.h>, <stdint.h>, <stdnoreturn.h>
in a free standing environment. The presence of all other C library headers can be checked
by feature test macros, see Table 7.

header C11 feature test macro new
<assert.h> __STDC_HOSTED__ __STDC_ASSERT__
<complex.h> __STDC_NO_COMPLEX__ __STDC_COMPLEX__
<errno.h> __STDC_HOSTED__ __STDC_ERRNO__
<fenv.h> __STDC_HOSTED__ __STDC_FENV__
<inttypes.h> __STDC_HOSTED__ __STDC_INTTYPES__
<locale.h> __STDC_HOSTED__ __STDC_LOCALE__
<math.h> __STDC_HOSTED__ __STDC_MATH__
<setjmp.h> __STDC_HOSTED__ __STDC_SETJMP__
<signal.h> __STDC_HOSTED__ __STDC_SIGNAL__
<stdatomic.h> __STDC_NO_ATOMICS__ __STDC_STDATOMIC__
<stdio.h> __STDC_HOSTED__ __STDC_STDIO__
<stdlib.h> __STDC_HOSTED__ __STDC_STDLIB__
<string.h> __STDC_HOSTED__ __STDC_STRING__
<tgmath.h> __STDC_HOSTED__ __STDC_TGMATH__
<threads.h> __STDC_NO_THREADS__ __STDC_THREADS__
<time.h> __STDC_HOSTED__ __STDC_TIME__
<uchar.h> __STDC_HOSTED__ __STDC_UCHAR__
<wchar.h> __STDC_HOSTED__ __STDC_WCHAR__
<wctype.h> __STDC_HOSTED__ __STDC_WCTYPE__

TABLE 7. Feature test macros for C library headers with optional features

Our proposal. This proposal is intended to invert the situation, namely that the feature
test macros can be made dependent of the header file. The “only” requirements for this to
be possible, is to mandate the presence of all these (currently 29) headers and to allow
them to be mostly empty, eventually.

So in particular, this does not mean that free-standing environments would have to
provide all features of the C library, they would just have to provide mostly empty files or
have some simple fallback for the include <> construct.

As a consequence of our approach, some of the macros that are mandated in the corre-
sponding header files can also be used as feature test macros. E.g user code could provide
an alternative for assert macros on freestanding environments:

1 #include <assert.h>
2 #ifndef static_assert
3 # define static_assert(X, DOC) \
4 typedef char _Dummy["" DOC "" && sizeof(char[(X)])]
5 #endif

That is the header can be included unconditionally, the presence of the feature can
then be tested and an alternative can be provided.
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With our approach updating an existing header file to a new C version should be easy.
Before implementing additional features that might be requested in most cases simply
adding the feature test macro should suffice. E.g for the atomics extension:

#ifndef __STDC_LIB_VERSION__
# define __STDC_LIB_VERSION__ __STDC_VERSION__
#endif
#define __STDC_STDATOMIC__ 201112L
#if __STDC_LIB_VERSION__ > __STDC_STDATOMIC__
# define __STDC_LIB_VERSION__ __STDC_STDATOMIC__
#endif

This clearly indicates to C programmers that certain feature are not yet available, but that
they can rely on features of a previous version of the standard. A free standing environment
that does not implement <setjmp.h>, say, would just have to add a header

#ifndef __STDC_SETJMP__
# define __STDC_SETJMP__ 0L
# undef __STDC_HOSTED__
# define __HOSTED__ 0
#endif

or trigger such definitions for any unknown header file that is included with <>.

Sections of the C standard to be amended
6.10.8:
Remove p1 about stating that the macros remain constant throughout compiling the
same TU. This has to be elaborated specifically for the different sections.

Modify the first phrase of p2 from:

None of these macro names, nor the identifier defined, shall be the subject

of a #define or a #undef preprocessing directive.

by
None of these macro names shall be the subject of a #define or a #undef

preprocessing directive other than effected by the inclusion of a standard

header.

The identifier defined shall not be the subject of a #define or a

#undef preprocessing directive.

Note: we’d have to think of a better place this constraint for defined.
Add a new paragraph.
Macros that reflect versions of ISO/IEC 9989 shall expand to the value

of __STDC_VERSION__ of the corresponding version, to 199000L

if the version is ISO/IEC 9899:1990, or to 0L if no version is supported.



256 4. AMBITION

6.10.8.1, add:
The values of the predefined macros __DATE__, __TIME__,

__STDC__ and __STDC_VERSION__ remain constant throughout

the translation unit.

Add the following item and footnote to the list in Section 6.10.8.1:
__STDC_LIB_VERSION__ The minimal version of ISO/IEC 9899 for

which all included library headers are feature complete.FOOTNOTE

FOOTNOTE: The intent is that this macro should only differ

from __STDC_VERSION__ during the transition of an

implementation to a new version of ISO/IEC 9899.

Move the item for __STDC_HOSTED__ from Section 6.10.8.1 to 6.10.8.3. and add the
following text at its end.
This macro shall be defined whenever one of the standard headers

that are optional for a hosted environment is included. Its

value shall be 1 as long as the included standard headers

provide all mandated features. Its value shall be 0 if any of

the included standard headers misses any of the mandated

features.

6.10.8.2, describes language and not library features, therefore they should not change
during complilation. Add as new first paragraph
The values of the predefined macros listed in the following

subclause are either defined or not before inclusion of all

standard headers and remain unchanged throughout the translation unit.

6.10.8.3, add a new first paragraph with example:
Each standard header with name of the form <xxxxx.h> that is not

listed in clause 4, p6, defines a macro __STDC_XXXXX__ that expands

to the maximum version number of ISO/IEC 9989 to which this header complies.

This version is greater or equal to __STDC_LIB_VERSION__.

EXAMPLE: In a hosted environment, the header <locale.h> defines the

macro __STDC_LOCALE__ with a value that is at least 199000L.

In a freestanding environment, this macro can also evaluate to the

value 0L to indicate that no conforming implementation of the locale

feature is available. In that case, the macro __STDC_HOSTED__

also is 0 after inclusion of <locale.h>.
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Then replace the three items
__STDC_NO_ATOMICS__ The integer constant 1, intended to

indicate that the implementation does not support atomic

types (including the _Atomic type qualifier) and the

<stdatomic.h> header.

__STDC_NO_COMPLEX__ The integer constant 1, intended to

indicate that the implementation does not support complex

types or the <complex.h> header.

__STDC_NO_THREADS__ The integer constant 1, intended to

indicate that the implementation does not support the

<threads.h> header.

as follows:
__STDC_NO_ATOMICS__, after inclusion of the <stdatomic.h>

header, the integer constant 1, intended to indicate that

the implementation does not support atomic features including

the _Atomic type qualifier.

__STDC_NO_COMPLEX__, after inclusion of the <complex.h>

header, the integer constant 1, intended to indicate that

the implementation does not support complex types.

__STDC_NO_THREADS__, after inclusion of the <threads.h>

header the integer constant 1, intended to indicate that

the implementation does not support the threads

interface.

7.1.2, p2, remove the footnote (currently number 183). Then add at the end the fol-
lowing paragraph and example after the list of the headers.
All these headers shall be present for a conforming implementation. If

a header describes an optional feature that can be tested by a

predefined macro (see Section 6.10.8) the header defines some or all

of the corresponding features and provides the necessary feature test

macros after inclusion.

Example: In a freestanding environment the header <locale.h>

shall be available, but must not necessarily implement all

features. After the inclusion the macros __STDC_LOCALE__ and

__STDC_HOSTED__ are defined. If not all locale features

of a specific version of ISO/IEC 9989 are implemented by the

header they evaluate to 0L and 0, respectively.

Partial implementations. Additionally, other of the macros that are specified by li-
brary headers can be used as tests for partial features, see Table 10.

This interpretation of the presence of these macros could be enforced with some redac-
tional effort, but we think that it is sufficient to recommend a reasonable usage. We propose
the following
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Sections of the C standard to be amended
Add to the end of 7.1.2 p2:
RECOMMENDED PRACTICE. If an implementation does not support all

features of a specific header or of a new version of it, it should

use the macros that are to be provided by the header as test macros

for partial features. Therefore an initialization or manipulation

macro for a specific type should only be provided if the data types

and its operations are also provided. E.g the presence of

ATOMIC_FLAG_INIT should indicate that the _Atomic

qualifier and operators for atomic objects are provided, and

likewise the presence of the macro ONCE_FLAG_INIT should

indicate the availability of the type once_flag and the

function call_once.

header macro feature
<complex.h> I, complex _Complex
<math.h> FP_FAST_FMA fma

FP_ILOGB0 ilogb
MATH_ERRNO math_errhandling

<signal.h> SIG_DFL signal
<stdatomic.h> ATOMIC_FLAG_INIT _Atomic and atomic_flag

ATOMIC_XXXX_LOCK_FREE type atomic_xxxx
<stdio.h> BUFSIZ setbuf

_IONBF setvbuf
FOPEN_MAX fopen
TMP_MAX tmpnam
SEEK_SET fseek

<stdlib.h> EXIT_SUCCESS exit
RAND_MAX rand

<threads.h> thread_local _Thread_local
ONCE_FLAG_INIT once_flag
TSS_DTOR_ITERATIONS tss_t

<time.h> TIME_UTC timespec_get
CLOCKS_PER_SEC clock

TABLE 10. Macros to test partial features

23.2. Add requirements for sequence points. As it stands currently, all functions
of the standard C library can also be implemented as macros. The standard takes care to
enforce that such a replacement by a macro is functionally equivalent to a function call.
E.g. it imposes that such macros must be written that they don’t evaluate there arguments
more than once (to avoid multiplication of side effects) and that the resulting expression
must integrate well into any target expression. The latter is usually achieved by adding
parenthesis around the expression, such that no operators can bind to the expression in a
non-obvious way.

The standard misses one point, though, for which macro evaluation can be different
from function evaluation: sequence points. Let us look at a function from the C standard:
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char* fgets(char*, size_t , FILE*restrict);

Here is a code example that is a bit contrived:

char line [256];
if (fgets(line , 256, stdin) == fgets(line , 256, stdin)) {

if (!feof(stdin) && !ferror(stdin)) {
// do something if we read 2 lines sucessfully
// the second line is stored in line

}
}

If this are function calls, we know that they are indeterminately sequenced, so one is cleanly
performed before the other. We would just not be interested which of the two calls is
executed first. We know that

• If both calls are successful, they both return &line[0].
• If both of them fail, both return 0, but then feof or ferror would detect that.
• Otherwise, one of the calls returns &line[0], the other 0.

We also know that if both were successful, line contains the last of the two lines that were
read.

This changes if fgets is realized as a macro, where the expansions are just ordinary
expressions, handling e.g. directly the buffers that are hidden behind a FILE. Now this
access to the buffers can not be assumed to be sequenced. The compiler may mix buffer
accesses of both “calls” to fgets. The result returned in line could be some mixed state
of the two calls and even the calls could fail or not for the wrong reasons.

Things become even more important when we are talking about atomics, where the
fact if two operations are sequenced with respect to one another can validate or invalidate
the whole state of an execution. An expression such as

atomic_fetch_add_explicit(a, 1, memory_order_acq_rel) +
atomic_fetch_add_explicit(b, 1, memory_order_acq_rel)

can have an outcome that is quite different according to the the two calls being sequenced
or not.
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Sections of the C standard to be amended
In Section 7.1.4, “Use of library functions”, change the phrase

1 Any invocation of a library function that is implemented
2 as a macro shall expand to code that evaluates each of
3 its arguments exactly once , fully protected by
4 parentheses where necessary , so it is generally safe to
5 use arbitrary expressions as arguments.

to the following

1 Any invocation of a library function that is implemented
2 as a macro shall expand to code that is functionally
3 equivalent to the function code and shall in terms of
4 observability of state be indistinguishable from such a
5 call.FOOTNOTE[This means in particular that (1) such a
6 macro expansion evaluates each of its arguments exactly
7 once , fully protected by parentheses where necessary , so
8 it is generally safe to use arbitrary expressions as
9 arguments; (2) the replacement expression is protected

10 with parenthesis if necessary to avoid unexpected
11 operator bindings to surrounding code; (3) the
12 sequencing rules of the replacement expression to the
13 evaluation of the macro arguments and to other
14 evaluations must be observed as if a function call was
15 made.]

23.3. Provide type generic interfaces for string functions. The following string
search functions in string.h are potentially dangerous, since they break the const con-<string.h>

tract of application code. They return a pointer that is not const-qualified which is pointing
to a const qualified object that is received as a pointer parameter:

void *memchr(void const *s, int c, size_t n);
char *strchr(char const *s, int c);
char *strpbrk(char const *s1, const char *s2);
char *strrchr(char const *s, int c);
char *strstr(char const *s1, const char *s2);

If the application code stores the returned pointer in a variable and uses this later this
can lead to two types of problems:

• Writing to read only memory. The result would be a runtime crash of the pro-
gram.

• A subtle unnoticed modification of an object that is received through a const-
qualified pointer, and thus a break of an interface contract.

In any case writing to such an object has undefined behavior.
Tracking provenance of pointers to objects to remember if an object is writable or not

is a tedious enterprise. const-qualification had been introduced to C to avoid the need of
such provenance tracking and C library functions that break this contract are jeopardizing
the whole idea.

Goal 13 Ensure that all C library interfaces honor the const contract.

As a simple fall out of using type generic functions for str* and mem* functions is
that we also can use these to unify functions for char* and wchar_t, much as tgmath.h<tgmath.h>
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provides type generic interfaces for the functions in math.h. <math.h>

Goal 14 Provide type generic interfaces for narrow and wide string functions.

The string-to-number conversion functions from stdlib.h and inttypes.h such as <stdlib.h>

<inttypes.h>
double strtod(const char * restrict nptr , char ** restrict endptr);

exhibit an even worse problem, because endptr is a pointer to pointer that is forcibly the
wrong type if the origin of nptr had been const qualified: if endptr is non-null and
the string is successfully scanned, the function stores nptr+x (of type const char*) into
the pointer *endptr (of type char*). If the const properties of endptr are not correctly
tracked by the application code, the application can be tempted to write into a const qual-
ified object and thereby encounter undefined behavior.

Previous versions of the C standard followed that strategy for the interface specifi-
cation because they wanted to ensure that these functions can be called for both types of
strings, those that are const qualified and those that are or not. This was necessary be-
cause many of these functions existed before const was even integrated into C, backwards
compatibility was a prime objective, and adding qualifiers to pointer targets was the only
way to allow for qualified and unqualified arguments.

This situation has changed with C11. Because it added type generic selection with the
keyword _Generic, type generic interfaces can now easily be added to the standard and
help applications to keep their const contracts more easily.

In C++, from which C inherited const qualification, such functions would be over-
loaded with different interfaces that distinguish according to the const-qualification of
their argument.

1 #ifdef __cplusplus
2 void *memchr(void *s, int c, size_t n);
3 void const*memchr(void const *s, int c, size_t n);
4
5 char *strchr(char *s, int c);
6 char const*strchr(char const *s, int c);
7
8 char *strpbrk(char *s1, const char *s2);
9 char const*strpbrk(char const *s1, const char *s2);

10
11 char *strrchr(char *s, int c);
12 char const*strrchr(char const *s, int c);
13
14 char *strstr(char *s1, const char *s2);
15 char const*strstr(char const *s1, const char *s2);
16
17 double strtod(char *nptr , char ** endptr);
18 double strtod(const char *nptr , char const** endptr);
19 #endif

With _Generic we now have the possibility to have a similar interface for C. We
can provide macros of the same name as the standard library functions and provide the
semantics of function overloading.

At the same time that we overcome the const qualification problem, we may also
simplify the use of string functions even more. Most string functions and byte functions
are copied by interfaces for wide character strings, that have analogous interfaces with
wchar_t instead of char. For them, equivalent interfaces can be provided that also map
the functionalities to the corresponding str names.
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By means of type generic selection, see Section 22, the implementation of such macros
is straightforward. The following macro selects one of four function pointers according to
the first argument being

• a narrow character pointer, or
• a wide character pointer

and according to const qualification.

. tgstring.h

165 /**
166 ** @brief An internal macro to select a const conserving string
167 ** function.
168 **
169 ** This macro simply selects the function that corresponds to

the
170 ** type of argument @a X. It is not meant to be used directly

but
171 ** to be integrated in specific macros that overload C library
172 ** functions.
173 **
174 ** The argument @a X must correspond to an array or pointer ,
175 ** otherwise an error is triggered in the controlling expression

.
176 **
177 ** If any of the 4 cases makes no sense for the type generic
178 ** interface in question , that case can be switched off by
179 ** passing a 0 instead of a function. A use of that case in user
180 ** code then results in a compile time error.
181 **
182 ** @see strchr on how to integrate this into a type generic user
183 ** interface
184 **/
185 # define _TG_TO_CONST(SN, SC, WN, WC, X, ...) \
186 _Generic (&(X[0]), \
187 char*: SN, \
188 char const*: SC, \
189 wchar_t *: WN, \
190 wchar_t const *: WC \
191 )((X), __VA_ARGS__)

Then we add auxiliar defintions such as the following two:

. tgstring.h

214 _TG_INLINE
215 char const*strchr_const(char const *_s, int _c) {
216 return strchr(_s, _c);
217 }

. tgstring.h

219 _TG_INLINE
220 wchar_t const*wcschr_const(wchar_t const *_s, wchar_t _c) {
221 return wcschr(_s, _c);
222 }

Here, _TG_INLINE can hide some specialized storage class, or attribute such as static inline,
register or _Attribute(_Always_inline) if such features are included in C2x.

Then we define strchr as a macro:
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. tgstring.h

224 # undef strchr
225 # define strchr (...) \
226 _TG_TO_CONST(strchr , strchr_const , wcschr , wcschr_const , \
227 __VA_ARGS__)

The functions that should be covered by such type generic macros are: memchr,
strlen, strncat, strncmp, strncpy, strpbrk, strrchr, strspn, strstr, strtod, strtof,
strtok, strtol, strtold, strtoll, strtoul, strtoul, strtoull, strtoumax, wcsncmp,
wcsncpy, wcspbrk, wcsrchr, wcsspn, wcsstr, wcstod, wcstof, wcstok, wcstol, wcstold,
wcstoll, wcstoul, wcstoul, wcstoull, wmemchr, and wmemset.

24. Modules

Since decades, C is one of the most widely used programming languages6, and is used
successfully for large software projects that are ubiquitous in modern computing devices
of all scales. For many programmers, software projects and commercial enterprises C
has advantages (relative simplicity, faithfulness to modern architectures, backward and
forward compatibility) that largely outweigh its shortcomings. Among these shortcomings,
is a lack of two important closely related features: modularity and reusability. C misses
to encapsulate different translation units (TU) properly: all symbols that are part of the
interface of a software unit such as functions are shared between all TU that are linked
together into an executable.

The common practice to cope with that difficulty is the introduction of naming con-
ventions. Usually software units (modules) are attributed a name prefix that is used for
all data types and functions that constitute the programmable interface (API). Often such
naming conventions (and more generally coding styles) are perceived as a burden. They
require a lot of self-discipline and experience, and C is missing features that would support
or ease their application.

24.1. C needs a specific approach. Modular C is a new approach that takes up at
that point and proposes to fill the gap. It adds one feature (composed identifiers) to the
core language and operates with a handful of directives to glue different modules into one
project, providing modularity and reusability.

Modular C is thought to be simple and to conserve most features of the core language
and of the habits of its community. It should not develop into a new language of its own,
but remain a shallow addition on top of C. Hopefully it would be possible to add it as an
optional feature to the standard.

24.2. All is about naming. Already C’s handling of its own library API already
shows all weaknesses of the approach:

• It is intrusive: naming choices for the C library strongly influence possible
choices for other projects.

• It is inconsistent: the naming convention shows a history of random choices.
• It is ever-growing: every version adds new constraints.
• It is incomplete: struct field names or parameters of inline functions are not

"officially" reserved
A typical example when using composed identifiers, and some directives to import (and
abbreviate) other modules, would look like this:

1 #pragma CMOD separator '

2 #pragma CMOD module head = proj ' structs ' list
3 #pragma CMOD import elem = proj ' structs ' element

6http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
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4 #pragma CMOD import io = C ' io
5 #pragma CMOD import printf = C ' io ' printf
6
7 /* The following declarations are exported */
8 #pragma CMOD declaration
9

10 /* Exports proj ' structs ' list */
11 struct head {
12 elem* first;
13 elem* last;
14 };
15
16 /* From here on, only exported if external linkage. */
17 #pragma CMOD definition
18
19 void say_hello(void){
20 io ' puts("Hello␣world");
21 }
22 static unsigned count;
23 static void say_goodbye(void){
24 printf("on␣exit␣we␣see␣%u", count);
25 }
26 head* init(head* h) {
27 if (h) *h = (head){ 0 };
28 return h;
29 }
30 /* Exports proj ' structs ' list ' top , no conflict with ctype.h */
31 double top(head* h) {
32 return h->first.val;
33 }

As you can see the main part of this is still "normal" C, only the interpretation and
visibility of some identifiers change. There is a much longer story to tell about the features
that come almost free when introducing this naming and import scheme. If you want to
know more about Modern C you should read on with the research report7 that I have
written about it and then just try the reference implementation8:

https://scm.gforge.inria.fr/anonscm/git/cmod/cmod.git

There are still a lot of bugs and missing features, please help me to find them. Below you
find a list of the advantages that you might get in return.

24.3. Modular C features.
Encapsulation: We ensure encapsulation by introducing a unique composed module name

for each TU that is used to prefix identifiers for export. This creates unique global
identifiers that will never enter in conflict with any identifier of another module,
or with local identifiers of its own, such as function or macro parameters or block
scope variables. Thereby by default the import of a module will not pollute the
name space of the importer nor interfere with parameter lists.

Declaration by definition: Generally, any identifier in a module will be defined (and
thereby declared) exactly once. No additional declarations in header files or
forward declarations for struct types are necessary.

Brevity: An abbreviation feature for module names systematically avoids the use of long
prefixed identifiers as they are necessary for usual naming conventions.

7https://hal.inria.fr/hal-01169491v2/document
8http://cmod.gforge.inria.fr/

https://hal.inria.fr/hal-01169491v2/document
http://cmod.gforge.inria.fr/
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Completeness: The naming scheme using composed identifiers applies to all file scope
identifiers, that are objects, functions, enumeration constants, types and macros.

Separation: Implementation and interface of a module are mostly specified through stan-
dard language features. The separation between the two is oriented along the C
notion of external versus internal linkage. For an inline function, the module that
defines it also provides its “instantiation”. Type declarations and macro defini-
tions that are to be exported have to be placed in code sections that are identified
with a declaration directive.

Code Reuse: We export functionality to other modules in two different ways:
• by interface definition and declaration as described above, similar to what

is usually provided through a C header file,
• by sharing of code snippets, similar to X macros or C++’s templates. The

later allows to create parameterized data structures or functions easily.
Acyclic dependency: Import of modules is not from source but uses a compiled object

file. This enforces that the import relation between modules defines a directed
acyclic graph. By that it can be updated automatically by tools such as POSIX’
make and we are able to provide infrastructure for orderly startup and shutdown
of modules according to the import dependency.

Exchangeability: The abbreviation feature allows easy interchange of software compo-
nents that fulfill the same interface contract.

Optimization: Our approach allows for the full set of optimizations that the C compiler
provides. It eases the use of inline functions and can be made compatible with
link time optimization.

C library structure: We provide a more comprehensive and structured approach to the C
library.

Extensibility: Our approach doesn’t interfere with other extensions of C, such as OpenMP
or OpenCL.

Migration path: We propose a migration path for existing software to the module model.
Legacy interfaces through traditional header files can still be used for external
users of modules.

25. Simplify the object and value models

C’s object model has several quirks that make it difficult to understand, even by ex-
perts. The goal here is to streamline the model by eliminating special cases.

Goal 15 Simplify the value and memory models.

25.1. Remove objects of temporary lifetime. Objects of temporary lifetime had
been introduced to be able to handle array fields in struct types. If e.g. the return of
a function is such a struct, with C11 the array field can only be accessed by taking its
address. With the introduction of designators that can access arrays without using their
address, see Section 21.5 above, this wouldn’t be necessary anymore.

Code that accesses array fields of returned structures directly is rare, anyhow:

1 return functionCall(a, b).array[i];

We can reasonably expect that at least the designator can be made ICE.

25.2. Introduce comparison operator for object types. Although C has the concept
of equality for (almost) all its object types, the == operator is not introduced for all these
types. It is easy to define this operator for struct explicitly by a recursive definition. So
let’s just do this.

In contrast to that, equality of union is not well defined, so trying to use == for union
types should remain a constraint violation.
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With the introduction of this operator, we also can easily require value consistency:

• Force consistency between assignment = and comparison (== and !=) for all data
types that allow for these operators.

25.3. Make memcpy and memcmp consistent. The memory (layout) model for types
defines how an object of a given type can be accessed through memory. As of today the
specification of memcpy can be interpreted that it will not successfully write a determinate
value to padding bytes in structures. A later call to memcmp that is issued without knowledge
about the struct and its padding, could then fail because it evaluates padding bytes to be
unequal.

Although union s have values, their field overlay is only described through that layout.
This is even the case if the union object itself is addressless, e.g. because it is an rvalue or
declared with register.

Similar to the above ideas on values, we require representation consistency:

• Force consistency between memcpy and memcmp for all objects that have an ad-
dress.

25.4. Enforce representation consistency for _Atomic objects. This guaranty should
also be extended to _Atomic objects. All functional interfaces make it clear that this type
of object is acted upon for their representation. In any case comparison with == would first
to an atomic load of the value, and the comparison would then be done with the unqualified
value.

The generic atomic_compare_exchange_weak etc. interfaces may perform compari-
son and storage operations. These should be clearly defined as operations on the represen-
tation. That is:

• The comparison operation has a result as-if it would be done with memcmp.
– Some values that have multiple representations could test unequal for that

reason, although a comparison of the values would lead to equality. This
can happen for integer types with padding bits such as _Bool.

– Some floating point values that will never test equal, e.g. NAN, will test equal
as representations.

• The assignment operation is done as-if with memcpy. In both cases (update of
the expected value or update of the atomic target) this must be compatible with
future compare-exchange operations on one of the involved objects.

25.5. Make string literals char const[]. Modifying string literals (and wide string
literals) has no defined behavior, bring their type in sync with this. Modifying old programs
that are in order with this might be tedious, but should always be possible. It would be
simplified by type generic string functions, see 23.3.

25.6. Default initialize padding to 0. Treat padding bytes in struct and union just
as if they where declared as unsigned char[n] for appropriate value of n.

25.7. Make restrict qualification part of the function interface. The restrict
qualifier is semantically different from the other three qualifiers:

• It doesn’t reflect a property of the qualified object but of a pointed-to object.
• Such qualified parameters imposes a restriction to the caller of the function, not

to the callee.

25.7.1. Function parameters. The restriction is problematic for the caller, because
the qualification is not part of the prototype. As of C11 and before, the two following lines
are compatible function prototypes:
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1 extern void *memmove (void*restrict , void const*restrict , size_t)
;

2 extern void *memmove (void*, void const*, size_t);

So on one hand, a restrict qualification constrains the caller of a function, but on
the other hand this constraint is not part of the interface and can only be deduced from an
informal description.

25.7.2. Function return. Functions that return pointers don’t give any information
concerning aliasing. This can lead to missed optimization opportunities when the function
actually provides a pointer to a new object that are not yet part of the abstract state. The
possibility of using a restrict qualifier for such a pointer would clarify this:

1 void*restrict malloc(size_t);

clearly states that the pointer that is returned by malloc cannot alias with any object
previously known in the abstract state.

25.7.3. Proposed additions.

• Add restrict qualification as a discriminator to function parameter types.
• Clarify the role of qualifications of function return types. Omit const, volatile

and _Atomic from such return types, but keep restrict qualification as discrim-
inating qualification.

25.8. References. Should we introduce references similar to C++? This would cer-
tainly improve the handling of array parameters a lot.

26. Contexts

26.1. Introduce evaluation contexts in the standard. Introduce classes of the ex-
pected type for each context of expression evaluation:

• Type specification context T expressions in sizeof(T), _Alignof(T), offsetof(T, ...),
casts (T), compound literals (T){ ... } and variable declarations.

• Type evaluation context expressions in sizeof E, and all expressions in _Generic.
• Object context for operators &, ++ and -- and the left operands of all assignment

operators.
• Value contexts

– ICE context for initialization of static integer objects, case expressions, ini-
tialization of enumeration constants and designator [] operator, including
array lengths in FLA declarations.
It is a constraint violation to provide
∗ a negative value to a designator [] operator.
∗ a 0 value to a designator [] operator that is used for an array declara-

tion.
– Boolean context for initialization or assignment to _Bool objects, and con-

trolling expressions of if, while, do-while and for.
– Integer context for initialization or assignment to other non-_Bool integer

objects, controlling expressions of switch and dynamic [] operator.
– Floating point context for initialization or assignment to floating point ob-

jects.
– Pointer context for initialization or assignment to pointer objects.
– Void context for evaluation of expressions that are unused.
– Unspecific context for function calls that do not impose one of the other

context to their arguments, in particular variadic functions.
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26.2. Convert object pointers to void* in unspecific context. All object pointers
can be implicitly converted to void*. Even if the platform has different formats for some
specific object pointers, a necessary conversion should not be of the concern of the pro-
grammer when, e.g., printing an address with printf. Features in stdarg.h should be<stdarg.h>

easily adaptable to such a change.

26.3. Introduce nullptr as a generic null pointer constant and deprecate NULL.
Historically, the incompatibility in C++ between (void*)0 and other pointer types, had
forced the wide use of some forms of integer zero, 0 or 0L as expansion of NULL, also in the
C community. This use still has a major problem: NULL might or might not have the same
width as a pointer, and thus using it in unspecific context such as functions with va_arg
parameters can lead to serious bugs.

After having imposed such a choice, C++ still wasn’t satisfied and moved on to a real
solution of their problem and introduced nullptr. Basically nullptr is what NULL had
been intended to be from the beginning: a generic null pointer constant, that can’t be used
in integer contexts.

For C, a simple macro with expansion ((void*)0) can serve that goal, so one option
could be to force NULL to have that value. Unfortunately, currently NULL is still defined
quite differently on different platforms, and it seems that different assumptions are widely
made about what NULL would be. Therefore it seems to be simpler to phase the use of NULL
out and introduce a new feature, that is designed analogous to the C++ feature.

This could be implemented as a macro, similar to the following

1 typedef void* __nullptr_t;
2 #define nullptr (( __nullptr_t)+0)

or could be implemented as a keyword.



List of Rules

A C and C++ are different, don’t mix them and don’t mix them up. iii
B Don’t panic. 1
0.1.1.1 C is an imperative programming language. 1
0.1.2.1 C is a compiled programming language. 3
0.1.2.2 A C program is portable between different platforms. 3
0.1.2.3 A C program should compile cleanly without warnings. 5
0.2.1.1 Punctuation characters can be used with several different meanings. 6
0.2.2.1 All identifiers of a program have to be declared. 7
0.2.2.2 Identifiers may have several consistent declarations. 8
0.2.2.3 Declarations are bound to the scope in which they appear. 8
0.2.3.1 Declarations specify identifiers whereas definitions specify objects. 9
0.2.3.2 An object is defined at the same time as it is initialized. 9
0.2.3.3 Missing elements in initializers default to 0. 9
0.2.3.4 For an array with n the first element has index 0, the last has index n-1. 9
0.2.3.5 Each object must have exactly one definition. 10
0.2.4.1 Domain iterations should be coded with a for statement. 10
0.2.4.2 The loop variable should be defined in the initial part of a for. 11
1.3.1.1 The value 0 represents logical false. 16
1.3.1.2 Any value different from 0 represents logical true. 16
1.3.1.3 Don’t compare to 0, false or true. 16
1.3.1.4 All scalars have a truth value. 16
1.3.3.1 case values must be integer constant expressions. 21
1.3.3.2 case labels must not jump beyond a variable definition. 21
1.4.0.1 The type size_t represents values in the range [0, SIZE_MAX]. 22
1.4.1.1 Unsigned arithmetic is always well defined. 24
1.4.1.2 Operations +, - and * on size_t provide the mathematically correct

result if it is representable as a size_t. 24
1.4.1.3 For unsigned values, a == (a/b)*b + (a%b). 24
1.4.1.4 Unsigned / and % are well defined only if the second operand is not 0. 24
1.4.1.5 Arithmetic on size_t implicitly does computation %(SIZE_MAX+1). 24
1.4.1.6 In case of overflow, unsigned arithmetic wraps around. 25
1.4.1.7 The result of unsigned / and % is always smaller than the operands. 25
1.4.1.8 Unsigned / and % can’t overflow. 25
1.4.2.1 Operators must have all their characters directly attached to each other. 25
1.4.2.2 Side effects in value expressions are evil. 26
1.4.2.3 Never modify more than one object in a statement. 26
1.4.3.1 Comparison operators return the values false or true. 26

269
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1.4.3.2 Logic operators return the values false or true. 27
1.4.5.1 &&, ||, ?: and , evaluate their first operand first. 28
1.4.5.2 Don’t use the , operator. 28
1.4.5.3 Most operators don’t sequence their operands. 28
1.4.5.4 Function calls don’t sequence their argument expressions. 28
1.4.5.5 Functions that are called inside expressions should not have side effects. 28
1.5.0.1 All values are numbers or translate to such. 29
1.5.0.2 All values have a type that is statically determined. 30
1.5.0.3 Possible operations on a value are determined by its type. 30
1.5.0.4 A value’s type determines the results of all operations. 30
1.5.0.5 A type’s binary representation determines the results of all operations. 30
1.5.0.6 A type’s binary representation is observable. 30
1.5.0.7 Programs execute as if following the abstract state machine. 30as-if
1.5.0.8 Type determines optimization opportunities. 31
1.5.1.1 Each of the 4 classes of base types has 3 distinct unpromoted types. 32
1.5.1.2 Use size_t for sizes, cardinalities or ordinal numbers. 32
1.5.1.3 Use unsigned for small quantities that can’t be negative. 32
1.5.1.4 Use signed for small quantities that bear a sign. 32
1.5.1.5 Use ptrdiff_t for large differences that bear a sign. 32
1.5.1.6 Use double for floating point calculations. 32
1.5.1.7 Use double complex for complex calculations. 33
1.5.2.1 Consecutive string literals are concatenated. 34
1.5.2.2 Numerical literals are never negative. 34
1.5.2.3 Decimal integer constants are signed. 34
1.5.2.4 A decimal integer constant has the first of the 3 signed types that fits it. 34
1.5.2.5 The same value can have different types. 34
1.5.2.6 Don’t use octal or hexadecimal constants to express negative values. 35
1.5.2.7 Use decimal constants to express negative values. 35
1.5.2.8 Different literals can have the same value. 35
1.5.2.9 The effective value of a decimal floating point constant may be different

from its literal value. 35
1.5.2.10 Literals have value, type and binary representation. 36
1.5.3.1 All variables should be initialized. 36
1.5.3.2 Use designated initializers for all aggregate data types. 36
1.5.3.3 {0} is a valid initializer for all object types that are not VLA. 36
1.5.4.1 All constants with particular meaning must be named. 37
1.5.4.2 All constants with different meaning must be distinguished. 37
1.5.4.3 An object of const-qualified type is read-only. 37
1.5.4.4 String literals are read-only. 38
1.5.4.5 Enumeration constants have either an explicit or positional value. 38
1.5.4.6 Enumeration constants are of type signed int. 38
1.5.4.7 An integer constant expression doesn’t evaluate any object. 39
1.5.4.8 Macro names are in all caps. 39
1.5.4.9 A compound literal defines an object. 40
1.5.4.10 Don’t hide a terminating semicolon inside a macro. 40
1.5.4.11 Right-indent continuation markers for macros to the same column. 40
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1.5.4.12 I is reserved for the imaginary unit. 40
1.5.5.1 The same value may have different binary representations. 41
1.5.5.2 Unsigned arithmetic wraps nicely. 41
1.5.5.3 The maximum value of any integer type is of the form 2p − 1. 41
1.5.5.4 Arithmetic on an unsigned integer type is determined by its precision. 41
1.5.5.5 The second operand of a shift operation must be less than the precision. 43
1.5.5.6 Positive values are represented independently from signedness. 44
1.5.5.7 Once the abstract state machine reaches an undefined state no further

assumption about the continuation of the execution can be made. 45
1.5.5.8 It is your responsibility to avoid undefined behavior of all operations. 45
1.5.5.9 Signed arithmetic may trap badly. 45
1.5.5.10 In twos’ complement representation INT_MIN < -INT_MAX. 45
1.5.5.11 Negation may overflow for signed arithmetic. 45
1.5.5.12 Use unsigned types for bit operations. 45
1.5.5.13 If the type uintN_t is provided it is an unsigned integer type with

exactly N bits width and precision. 46
1.5.5.14 If the type intN_t is provided it is signed, with two’s complement

representation, has a width of exactly N bits and a precision of N − 1. 46
1.5.5.15 If types with the required properties exist for values of 8, 16, 32 or 64,

types uintN_t and intN_t respectively must be provided. 46
1.5.5.16 For any of the fixed-width types that are provided, _MIN (only signed),

maximum _MAX and literals _C macros are provided, too. 46
1.5.5.17 Floating point operations are neither associative, commutative or

distributive. 47
1.5.5.18 Never compare floating point values for equality. 48
1.6.1.1 Arrays are not pointers. 49
1.6.1.2 An array in a condition evaluates to true. 50
1.6.1.3 There are array objects but no array values. 50
1.6.1.4 Arrays can’t be compared. 50
1.6.1.5 Arrays can’t be assigned to. 50
1.6.1.6 VLA can’t have initializers. 50
1.6.1.7 VLA can’t be declared outside functions. 50
1.6.1.8 The length of an FLA is determined by an ICE or an initializer. 50
1.6.1.9 An array length specification must be strictly positive. 50
1.6.1.10 An array with a length not an integer constant expression is an VLA. 51
1.6.1.11 The length of an array A is (sizeof A)/(sizeof A[0]). 51
1.6.1.12 The innermost dimension of an array parameter to a function is lost. 51
1.6.1.13 Don’t use the sizeof operator on array parameters to functions. 51
1.6.1.14 Array parameters behave as-if the array is passed by referenceC . 51
1.6.1.15 A string is a 0-terminated array of char. 52
1.6.1.16 Using a string function with a non-string has undefined behavior. 53
1.6.2.1 Pointers are opaque objects. 54
1.6.2.2 Pointers are valid, null or indeterminate. 54
1.6.2.3 Initialization or assignment with 0 makes a pointer null. 54
1.6.2.4 In logical expressions, pointers evaluate to false iff they are null. 54
1.6.2.5 Indeterminate pointers lead to undefined behavior. 54
1.6.2.6 Always initialize pointers. 54
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1.6.3.1 Omitted struct initializers force the corresponding field to 0. 56
1.6.3.2 A struct initializer must initialize at least one field. 56
1.6.3.3 struct parameters are passed by value. 57
1.6.3.4 Structures can be assigned with = but not compared with == or !=. 57
1.6.3.5 A structure layout is an important design decision. 57
1.6.3.6 All struct declarations in a nested declaration have the same scope of

visibility. 59
1.6.4.1 Forward-declare a struct within a typedef using the same identifier as

the tag name. 59
1.6.4.2 Identifier names terminating with _t are reserved. 60
1.7.1.1 All functions must have prototypes. 62
1.7.1.2 Functions only have one entry but several return. 62
1.7.1.3 A function return must be consistent with its type. 62
1.7.1.4 Reaching the end of the {} block of a function is equivalent to a return

statement without expression. 62
1.7.1.5 Reaching the end of the {} block of a function is only allowed for void

functions. 62
1.7.2.1 Use EXIT_SUCCESS or EXIT_FAILURE as return values of main. 63
1.7.2.2 Reaching the end of the {} block of main is equivalent to a return with

value EXIT_SUCCESS. 63
1.7.2.3 Calling exit(s) is equivalent evaluation of return s in main. 63
1.7.2.4 exit never fails and never returns to its caller. 63
1.7.2.5 All commandline arguments are transferred as strings. 63
1.7.2.6 Of the arguments to main, argv[0] holds the name of the program

invocation. 63
1.7.2.7 Of the arguments to main, argv[argc] is 0. 63
1.7.3.1 Make all preconditions for a function explicit. 64
1.7.3.2 In a recursive function, first check the termination condition. 64
1.7.3.3 Ensure the preconditions of a recursive function in a wrapper function. 65
1.7.3.4 Multiple recursion may lead to exponential computation times. 67
1.7.3.5 A bad algorithm will never lead to a performing implementation. 68
1.7.3.6 Improving an algorithm can dramatically improve performance. 68
1.8.0.1 Failure is always an option. 70
1.8.0.2 Check the return value of library functions for errors. 71
1.8.0.3 Fail fast, fail early and fail often. 71
1.8.0.4 Identifier names terminating with _s are reserved. 72
1.8.0.5 Missed preconditions for the execution platform must abort compilation. 72
1.8.0.6 Only evaluate macros and integer literals in a preprocessor condition. 72
1.8.0.7 In preprocessor conditions unknown identifiers evaluate to 0. 72
1.8.2.1 Opaque types are specified through functional interfaces. 75
1.8.2.2 Don’t rely on implementation details of opaque types. 75
1.8.2.3 puts and fputs differ in their end of line handling. 75
1.8.2.4 Text input and output converts data. 78
1.8.2.5 There are three commonly used conversion to encode end-of-line. 78
1.8.2.6 Text lines should not contain trailing white space. 79
1.8.2.7 Parameters of printf must exactly correspond to the format specifiers. 79
1.8.2.8 Use "%+d", "%#X" and "%a" for conversions that have to be read, later. 80
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1.8.2.9 Don’t use gets. 81
1.8.2.10 fgetc returns int to be capable to encode a special error status, EOF, in

addition to all valid characters. 82
1.8.2.11 End of file can only be detected after a failed read. 82
1.8.3.1 The interpretation of numerically encoded characters depends on the

execution character set. 84
1.8.6.1 Regular program termination should use return from main. 91
1.8.6.2 Use exit from a function that may terminate the regular control flow. 91
1.8.6.3 Don’t use other functions for program termination than exit, unless

you have to inhibit the execution of library cleanups. 91
1.8.6.4 Use as many assert as you may to confirm runtime properties. 92
1.8.6.5 In production compilations, use NDEBUG to switch off all assert. 92

Level 2 93
C All C code must be readable. 93
2.9.0.1 Short term memory and the field of vision are small. 93
2.9.0.2 Coding style is not a question of taste but of culture. 93
2.9.0.3 When you enter an established project you enter a new cultural space. 93
2.9.1.1 Choose a consistent strategy for white space and other text formatting. 94
2.9.1.2 Have your text editor automatically format your code correctly. 94
2.9.2.1 Choose a consistent naming policy for all identifiers. 94
2.9.2.2 Any identifier that is visible in a header file must be conforming. 95
2.9.2.3 Don’t pollute the global name space. 95
2.9.2.4 Names must be recognizable and quickly distinguishable. 96
2.9.2.5 Naming is a creative act. 97
2.9.2.6 File scope identifiers must be comprehensive. 97
2.9.2.7 A type name identifies a concept. 97
2.9.2.8 A global constant identifies an artifact. 97
2.9.2.9 A global variable identifies state. 97
2.9.2.10 A function or functional macro identifies an action. 97
2.10.0.1 Function interfaces describe what is done. 98 what
2.10.0.2 Interface comments document the purpose of a function. 98 what for
2.10.0.3 Function code tells how things are done. 98 how
2.10.0.4 Code comments explain why things are done as they are. 98 why
2.10.0.5 Separate interface and implementation. 98
2.10.0.6 Document the interface – Explain the implementation. 98
2.10.1.1 Document interfaces thoroughly. 99
2.10.1.2 Structure your code in units that have strong semantic connections. 100
2.10.2.1 Implement literally. 101
2.10.2.2 Control flow must be obvious. 101
2.10.3.1 Macros should not change control flow in a surprising way. 101
2.10.3.2 Function like macros should syntactically behave like function calls. 102
2.10.4.1 Function parameters are passed by value. 103
2.10.4.2 Global variables are frowned upon. 103
2.10.4.3 Express small tasks as pure functions whenever possible. 104
2.11.1.1 Using * with an indeterminate or null pointer has undefined behavior. 107
2.11.2.1 A valid pointer addresses the first element of an array of the base type. 107
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2.11.2.2 The length an array object cannot be reconstructed from a pointer. 108
2.11.2.3 Pointers are not arrays. 108
2.11.2.4 Pointers have truth. 108
2.11.2.5 A pointed-to object must be of the indicated type. 109
2.11.2.6 A pointer must point to a valid object, one position beyond a valid object

or be null. 109
2.11.2.7 Only subtract pointers to elements of an array object. 109
2.11.2.8 All pointer differences have type ptrdiff_t. 110
2.11.2.9 Use ptrdiff_t to encode signed differences of positions or sizes. 110
2.11.4.1 Don’t hide pointers in a typedef. 112
2.11.5.1 The two expressions A[i] and *(A+i) are equivalent. 113
2.11.5.2 Evaluation of an array A returns &A[0]. 113
2.11.6.1 In a function declaration any array parameters rewrites to a pointer. 113
2.11.6.2 Only the innermost dimension of an array parameter is rewritten. 114
2.11.6.3 Declare length parameters before array parameters. 114
2.11.7.1 Don’t use NULL. 115
2.11.8.1 A function f without following opening ( decays to a pointer to its start. 115
2.11.8.2 Function pointers must be used with their exact type. 117
2.11.8.3 The function call operator (...) applies to function pointers. 117
2.12.0.1 Pointer types with distinct base types are distinct. 119
2.12.1.1 sizeof(char) is 1 by definition. 119
2.12.1.2 Every object A can be viewed as unsigned char[sizeof A]. 119
2.12.1.3 Pointers to character types are special. 119
2.12.1.4 Use the type char for character and string data. 119
2.12.1.5 Use the type unsigned char as the atom of all object types. 119
2.12.1.6 The sizeof operator can be applied to objects and object types. 119
2.12.2.1 The in-memory order of the representation digits of a numerical type is

implementation defined. 120
2.12.2.2 On most architectures CHAR_BIT is 8 and UCHAR_MAX is 255. 121
2.12.3.1 With the exclusion of character types, only pointers of the same

base type may alias. 122Aliasing
2.12.3.2 Avoid the & operator. 122
2.12.4.1 Any object pointer converts to and from void*. 122
2.12.4.2 Converting an object pointer to void* and then back to the same type is

the identity operation. 122
2.12.4.3 Avoid void*. 122avoid2*
2.12.5.1 Chose your arithmetic types such that implicit conversions are harmless.123
2.12.5.2 Don’t use narrow types in arithmetic. 123
2.12.5.3 Use unsigned types whenever you may. 123
2.12.5.4 Don’t use casts. 124
2.12.6.1 Objects must be accessed through their effective type

or through a pointer to a character type. 124Effective Type
2.12.6.2 Any member of an object that has an effective union type can be

accessed at any time, provided the byte representation amounts to a valid
value of the access type. 124

2.12.6.3 The effective type of a variable or compound literal is the type of its
declaration. 124
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2.12.6.4 Variables and compound literals must be accessed through their declared
type or through a pointer to a character type. 125

2.13.1.1 Don’t cast the return of malloc and friends. 128
2.13.1.2 Objects that are allocated through malloc are uninitialized. 128
2.13.1.3 malloc indicates failure by returning a null pointer value. 132
2.13.1.4 For every malloc there must be a free. 135
2.13.1.5 For every free there must be a malloc. 135
2.13.1.6 Only call free with pointers as they are returned by malloc. 135
2.13.2.1 Identifiers only have visibility inside their scope, starting at their

declaration. 136
2.13.2.2 The visibility of an identifier can be shadowed by an identifier of the

same name in a subordinate scope. 136
2.13.2.3 Every definition of a variable creates a new distinct object. 136
2.13.2.4 Read-only object literals may overlap. 137
2.13.2.5 Objects have a lifetime outside of which they can’t be accessed. 137
2.13.2.6 Refering to an object outside of its lifetime has undefined behavior. 137
2.13.2.7 Objects with static storage duration are always initialized. 138
2.13.2.8 Unless they are VLA or temporary objects, automatic objects have a

lifetime corresponding to the execution of their block of definition. 138
2.13.2.9 The & operator is not allowed for variables declared with register. 138
2.13.2.10 Variables declared with register can’t alias. 138
2.13.2.11 Declare local variables in performance critical code as register. 138
2.13.2.12 For an object that is not a VLA, lifetime starts when the scope of the

definition is entered, and it ends when that scope is left. 139
2.13.2.13 Initializers of automatic variables and compound literals are evaluated

each time the definition is met. 139
2.13.2.14 For a VLA, lifetime starts when the definition is encountered, ends when

the visibility scope is left. 139
2.13.2.15 Objects of temporary lifetime are read-only. 140
2.13.2.16 Temporary lifetime ends at the end of the enclosing full expression. 140
2.13.3.1 Objects of static or thread storage duration are initialized per default. 140
2.13.3.2 Objects of automatic or allocated storage duration must be initialized

explicitly. 140
2.13.3.3 Systematically provide an initialization function for each of your data

types. 140
2.14.1.1 The string strto... conversion functions are not const-safe. 147
2.14.1.2 The memchr and strchr search functions are not const-safe. 148
2.14.1.3 The strspn and strcspn search functions are const-safe. 148
2.14.1.4 sprintf makes no provision against buffer overflow. 150
2.14.1.5 Use snprintf when formatting output of unknown length. 150
2.14.3.1 Multibyte characters don’t contain null bytes. 154
2.14.3.2 Multibyte strings are null terminated. 154
2.15.0.1 Labels for goto are visible in the whole function that contains them. 162
2.15.0.2 goto can only jump to a label inside the same function. 162
2.15.0.3 goto should not jump over variable initializations. 162

Level 3 165
D Premature optimization is the root of all evil. 165
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3.16.0.1 Optimizers are clever enough to eliminate unused initializations. 166
3.16.0.2 The different notations of pointer arguments to functions result in the

same binary code. 166
3.16.0.3 Not taking addresses of local variables helps the optimizer because it

inhibits aliasing. 166
3.16.1.1 Inlining can open a lot of optimization opportunities. 167
3.16.1.2 Adding a compatible declaration without inline keyword ensures the

emission of the function symbol in the current TU. 168
3.16.1.3 An inline function definition is visible in all TU. 169
3.16.1.4 An inline definition goes in a header file. 169
3.16.1.5 An additional declaration without inline goes in exactly one TU. 169
3.16.1.6 Only expose functions as inline if you consider them to be stable. 169
3.16.1.7 All identifiers that are local to an inline function should be protected

by a convenient naming convention. 169
3.16.1.8 inline functions can’t access identifiers of static functions. 169
3.16.1.9 inline functions can’t define or access identifiers of static objects. 169
3.16.2.1 A restrict-qualified pointer has to provide exclusive access. 170
3.16.2.2 A restrict-qualification constrains the caller of a function. 170
E Don’t speculate about performance of code, verify it rigorously. 171
3.16.3.1 Complexity assessment of algorithms needs proofs. 171
3.16.3.2 Performance assessment of code needs measurement. 171
3.16.3.3 All measurements introduce bias. 171
3.16.3.4 Instrumentation changes compile time and runtime properties. 171
3.16.3.5 Collecting higher order moments of measurements to compute variance

and skew is simple and cheap. 177
3.16.3.6 Run time measurements must be hardened with statistics. 177
3.17.0.1 Whenever possible, prefer an inline function to a functional macro. 177
3.17.0.2 A functional macro shall provide a simple interface to a complex task. 178
3.17.1.1 Macro replacement is done in an early translation phase, before any

other interpretation is given to the tokens that compose the program. 179
3.17.1.2 If the name of functional macro is not followed by () it is not expanded.

179
3.17.3.1 The line number in __LINE__ may not fit into an int. 184
3.17.3.2 Using __LINE__ is inherently dangerous. 184
3.17.3.3 Stringification with operator # does not expand macros in its argument. 184
3.17.4.1 When passed to a variadic parameter, all arithmetic types are converted

as for arithmetic operations, with the exception of float arguments which
are converted to double. 189

3.17.4.2 A variadic function has to receive valid information about the type of
each argument in the variadic list. 189

3.17.4.3 Using variadic functions is not portable, unless each argument is forced
to a specific type. 190

3.17.4.4 Avoid variadic functions for new interfaces. 190
3.17.4.5 The va_arg mechnanism doesn’t give access to the length of the

va_list. 191
3.17.4.6 A variadic function needs a specific convention for the length of the list. 191
3.17.5.1 The result type of a _Generic expression depends on the type of chosen

expression. 193
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3.17.5.2 Using _Generic with inline functions adds optimization oportunities. 193
3.17.5.3 The type expressions in a _Generic expression should only be

unqualified types, no array types and no function types. 193
3.17.5.4 The type expressions in a _Generic expression must refer to mutually

incompatible types. 194
3.17.5.5 The type expressions in a _Generic expression cannot be a pointer to

VLA. 194
3.17.5.6 All choices expression1 ... expressionN in a _Generic must be valid. 195
3.18.1.1 Side effects in functions can lead to indeterminate results. 200
3.18.1.2 The specific operation of any operator is sequenced after the evaluation

of all its operands. 200
3.18.1.3 The effect of updating an object by any of the assignment, increment or

decrement operators is sequenced after the evaluation of its operands. 201
3.18.1.4 A function call is sequenced with respect to all evaluations of the caller. 201
3.18.1.5 Initialization list expressions for array or structure types are

indeterminately sequenced. 201
3.18.2.1 Each iteration defines a new instance of a local object. 202
3.18.2.2 goto should only be used for exceptional changes in control flow. 202
3.18.3.1 Each function call defines a new instance of a local object. 202
3.18.4.1 longjmp never returns to the caller. 205
3.18.4.2 When reached through normal control flow, a call to setjmp marks the

call location as a jump target and returns 0. 205
3.18.4.3 Leaving the scope of a call to setjmp invalidates the jump target. 205
3.18.4.4 A call to longjmp transfers control directly to the position that was set

by setjmp as if that had returned the condition argument. 205
3.18.4.5 A 0 as condition parameter to longjmp is replaced by 1. 205
3.18.4.6 setjmp may only be used in simple comparisons inside controlling

expression of conditionals. 207
3.18.4.7 Optimization interacts badly with calls to setjmp. 207
3.18.4.8 Objects that are modified across longjmp must be volatile. 207
3.18.4.9 volatile objects are reloaded from memory each time they are

accessed. 207
3.18.4.10 volatile objects are stored to memory each time they are modified. 208
3.18.4.11 The typedef for jmp_buf hides an array type. 208
3.18.5.1 C’s signal handling interface is minimal and should only be used for

elementary situations. 209
3.18.5.2 Signal handlers can kick in at any point of execution. 212
3.18.5.3 After return from a signal handler, execution resumes exactly where it

was interrupted. 212
3.18.5.4 A C statement may correspond to several processor instructions. 212
3.18.5.5 Signal handlers need types with uninterruptible operations. 212
3.18.5.6 Objects of type sig_atomic_t should not be used as counters. 213
3.18.5.7 Unless specified otherwise, C library functions are not asynchrounous

signal safe. 213
3.19.2.1 Pass thread specific data through function arguments. 219
3.19.2.2 Keep thread specific state in local variables. 219
3.19.2.3 Use thread_local if initialization can be determined at compile time. 219
3.19.3.1 Every mutex must be initialized with mtx_init. 221
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3.19.3.2 A thread that holds a non-recursive mutex must not call any of the mutex
lock function for it. 221

3.19.3.3 A recursive mutex is only released after the holding thread issues as
many calls to mtx_unlock as it has acquired locks. 221

3.19.3.4 A locked mutex must be released before the termination of the thread. 221
3.19.3.5 A thread must only call mtx_unlock on a mutex that it holds. 221
3.19.3.6 Each successful mutex lock corresponds to exactly one call to

mtx_unlock. 221
3.19.3.7 A mutex must be destroyed at the end of its lifetime. 222
3.19.4.1 On return from a cnd_t wait, the expression must be checked, again. 223
3.19.4.2 A condition variable can only be used simultaneously with one mutex. 224
3.19.4.3 A cnd_t must be initialized dynamically. 224
3.19.4.4 A cnd_t must be destroyed at the end of its lifetime. 224
3.19.5.1 Returning from main or calling exit terminates all threads. 225
3.19.5.2 While blocking on mtx_t or cnd_t a thread frees processing resources. 226
3.20.0.1 Every evaluation has an effect. 227
3.20.1.1 If F is sequenced before E, then F → E. 228
3.20.1.2 The set of modifications of an atomic object A are performed in an order

that is consistent with the sequenced before relation of any threads that deals
with A. 228

3.20.1.3 An acquire operation E in a thread TE synchronizes with a release
operation F in another thread TF if E reads the value that F has written. 228

3.20.1.4 If F synchronizes with E, all effects X that have happened before F
must be visible at all evaluations G that happen after E. 228

3.20.1.5 We only can conclude that one evaluation happened before another if
we have a sequenced chain of synchronizations that links them. 228

3.20.1.6 If an evaluation F happened before E, all effects that are known to have
happened before F are also known to have happened before E. 229

3.20.2.1 Critical sections that are protected by the same mutex occur sequentially.229
3.20.2.2 In a critical section that is protected by mutex mut all effects of previous

critical sections protected by mut are visible. 229
3.20.2.3 cnd_wait or cnd_timedwait have release-acquire semantics. 229
3.20.2.4 Calls to cnd_signal or cnd_broadcast should always occur inside a

critical section that is protected by the same mutex as the waiters. 229
3.20.3.1 All atomic operations with sequential consistency occur in one global

modification order, regardless of the atomic object they are applied to. 230
3.20.3.2 All operators and functional interfaces on atomics that don’t specify

otherwise have sequential consistency. 230
3.20.4.1 Synchronizing functional interface for atomic objects have a form with

_explicit appended which allows to specify its consistency model. 231

Level 4 233
4.21.0.1 Objects that are declared with register storage duration can’t alias. 234
4.21.2.1 File scope static const objects may be replicated in all compilation

units that use them. 236
4.21.2.2 File scope static const objects cannot be used inside inline functions

with external linkage. 236
4.21.2.3 File scope extern const objects may miss optimization opportunities

for constant folding and instruction immediates. 237
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4.21.2.4 File scope extern or static const objects may miss optimization
opportunities because of mispredicted aliasing. 237

4.21.3.1 Changing an identifier that represents an integer constant to be an ICE,
can change effective types of objects and execution paths. 240
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strnlen_s, 54
strpbrk, 87, 262, 263, 265
strrchr, 87, 262, 263, 265
strspn, 54, 55, 86, 87, 151, 154, 157, 265, 277
strstr, 87, 157, 262, 263, 265
strtod, 19, 20, 64, 70, 72, 85, 154, 263, 265
strtof, 85, 265
strtoimax, 85
strtok, 87, 265
strtol, 85, 154, 198, 265
strtold, 85, 265
strtoll, 85, 198, 265
strtoul, 85, 85, 86, 149, 154, 198, 199, 265
strtoull, 85, 149, 150, 198, 227, 265
strtoumax, 85, 265
structure

field, 56, 57
strxfrm, 92
sugar, 3
switch, 20
symmetric difference, 43
synchronization, 229
synchronizes with, 230
system call, 173

tag, 60
tag name, 60
tan, 74, 75
tanh, 74, 75
task, 217
text mode IO, 162
tgamma, 74, 75
tgmath.h, 19, 28, 41, 49, 74, 179, 192, 263
thrd_create, 72, 200, 218, 219, 227, 230
thrd_current, 227
thrd_detach, 227, 228
thrd_equal, 227
thrd_exit, 200, 227, 230
thrd_join, 218–220, 228, 230
thrd_sleep, 228
thrd_start_t, 218
thrd_t, 218, 219, 226–228
thrd_yield, 228
thread, 217
thread specific storage, 221
thread_local, 139, 221, 260, 280
threads.h, 221
time, 34, 59, 87, 87, 88, 89, 89, 102, 256, 260
time.h, 34, 56, 58, 87, 97
time_t, 34, 58, 87, 87–89
TIME_UTC, 89, 174, 178, 224, 260
timespec, 58–60, 87, 88, 89, 97, 99, 102, 112,

175, 178, 222, 224, 225, 228
timespec_get, 87, 88, 89, 89, 173, 174, 178, 179,

224, 260
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tm, 56–60, 87–89, 283
tm_hour, 56, 57, 59
tm_isdst, 56, 57, 88
tm_mday, 56–59, 87
tm_min, 56, 57, 59
tm_mon, 56–59, 87
tm_sec, 56, 57, 59, 87
tm_wday, 56, 57, 87, 88
tm_yday, 56–59, 88
tm_year, 56–59, 87
TMP_MAX, 260
tmpnam, 260
to, 187
tolower, 84
tooDeep, 204, 205, 206–208
toupper, 84, 85
trailing semicolon, 105
trailing white space, 79
translation unit, 100
traps, 209
true, 14, 16, 18–20, 26, 27, 27, 40, 42, 44, 45, 46,

51, 66, 68, 72, 86, 99, 219, 220, 222, 224,
271–273

trunc, 74, 74, 75
tss_create, 221
tss_delete, 221
TSS_DTOR_ITERATIONS, 260
tss_dtor_t, 221
tss_get, 221
tss_set, 221
tss_t, 221, 260
TU, 100
tv_nsec, 58, 88, 89, 112, 174
tv_sec, 58, 88, 97, 112, 113, 224
type, 7, 8, 30

aggregate, 50
derived, 32
incomplete, 37
narrow, 32

UCHAR_MAX, 42, 122, 123, 123, 239, 240, 276
UINT16_C, 47
UINT16_MAX, 47
uint16_t, 47
UINT32_C, 47
UINT32_MAX, 47
uint32_t, 47, 48
UINT64_C, 47, 48
UINT64_MAX, 47
uint64_t, 47, 174, 178
UINT8_C, 47
UINT8_MAX, 47
uint8_t, 47
UINT_MAX, 42, 42, 45–47, 125
uintmax_t, 34, 81, 85, 154, 248, 254
ULLONG_MAX, 42
ULONG_MAX, 42, 86
undef, 257, 265
ungetc, 219, 222
Unicode, 157
uninterruptible operation, 214
unsigned, 13
UTF-16, 161

UTF-32, 161
UTF-8, 161

va_arg, 191, 192, 270, 278
va_copy, 191
va_end, 191, 192
va_list, 191, 192, 278
va_start, 191, 192
value, 9, 30, 30
variable

condition, 224
global, 105

variables, 7
variadic functions, 180
vfprintf, 192
visible, 8
VLA, see variable length array, 142

wchar.h, 157
wchar_t, 154, 157–161, 263, 264
wcs, 157
wcschr, 264
wcsncmp, 265
wcsncpy, 265
wcspbrk, 265
wcsrchr, 265
wcsspn, 265
wcsstr, 265
wcstod, 265
wcstof, 265
wcstok, 265
wcstol, 265
wcstold, 265
wcstoll, 265
wcstoul, 265
wcstoull, 265
wctype, 256
wctype.h, 158
WEOF, 161
while, 18
wide character, 157
wide character strings, 157
wide characters, 157
wmemchr, 265
wmemset, 265
word boundary, 127
wrapper, 66

xmm0, 177
xmm1, 177
xmm2, 177
xmm3, 177
xmm4, 177
xor, 23, 43, 299
xor_eq, 23, 43, 299


	Level 0. Encounter
	1. Getting started
	1.1. Imperative programming
	1.2. Compiling and running

	2. The principal structure of a program
	2.1. Grammar
	2.2. Declarations
	2.3. Definitions
	2.4. Statements


	Level 1. Acquaintance
	Warning to experienced C programmers
	3. Everything is about control
	3.1. Conditional execution
	3.2. Iterations
	3.3. Multiple selection

	4. Expressing computations
	4.1. Arithmetic
	4.2. Operators that modify objects
	4.3. Boolean context
	4.4. The ternary or conditional operator
	4.5. Evaluation order

	5. Basic values and data
	5.1. Basic types
	5.2. Specifying values
	5.3. Initializers
	5.4. Named constants
	5.5. Binary representions

	6. Aggregate data types
	6.1. Arrays
	6.2. Pointers as opaque types
	6.3. Structures
	6.4. New names for types: typedef

	7. Functions
	7.1. Simple functions
	7.2. main is special
	7.3. Recursion

	8. C Library functions
	8.1. Mathematics
	8.2. Input, output and file manipulation
	8.3. String processing and conversion
	8.4. Time
	8.5. Runtime environment settings
	8.6. Program termination and assertions


	Level 2. Cognition
	9. Style
	9.1. Formatting
	9.2. Naming

	10. Organization and documentation
	10.1. Interface documentation
	10.2. Implementation
	10.3. Macros
	10.4. Pure functions

	11. Pointers
	11.1. Address-of and object-of operators
	11.2. Pointer arithmetic
	11.3. Pointers and structs
	11.4. Opaque structures
	11.5. Array and pointer access are the same
	11.6. Array and pointer parameters are the same
	11.7. Null pointers
	11.8. Function pointers

	12. The C memory model
	12.1. A uniform memory model
	12.2. Unions
	12.3. Memory and state
	12.4. Pointers to unspecific objects
	12.5. Implicit and explicit conversions
	12.6. Effective Type
	12.7. Alignment

	13. Allocation, initialization and destruction
	13.1. malloc and friends
	13.2. Storage duration, lifetime and visibility
	13.3. Initialization
	13.4. Digression: a machine model

	14. More involved use of the C library
	14.1. Text processing
	14.2. Formatted input
	14.3. Extended character sets
	14.4. Binary files

	15. Error checking and cleanup

	Level 3. Experience
	16. Performance
	Safety first
	Optimizers are good enough
	Help the compiler
	16.1. Inline functions
	16.2. Avoid aliasing: restrict qualifiers
	16.3. Measurement and inspection

	17. Functionlike macros
	17.1. how does it work
	17.2. Argument checking
	17.3. Accessing the calling context
	17.4. Variable length argument lists
	17.5. Type generic programming

	18. Variations in Control Flow
	18.1. Sequencing
	18.2. Short jumps
	18.3. Functions
	18.4. Long jumps
	18.5. Signal handlers

	19. Threads
	19.1. Simple inter-thread control
	19.2. Thread local data
	19.3. Critical data and critical sections
	19.4. Communicating through condition variables
	19.5. More sophisticated thread management

	20. Atomic access and memory consistency
	20.1. The ``happend before'' relation
	20.2. Synchronizing C library calls
	20.3. Sequential consistency
	20.4. Other consistency models


	Level 4. Ambition
	21. The register overhaul
	Overview
	21.1. Introduce register storage class in file scope
	21.2. Typed constants with register storage class and const qualification
	21.3. Extend ICE to register constants
	21.4. Functions
	21.5. Unify designators

	22. Improve type generic expression programming
	22.1. Storage class for compound literals
	22.2. Inferred types for variables and functions
	22.3. Anonymous functions

	23. Improve the C library
	23.1. Make the presence of all C library headers mandatory
	23.2. Add requirements for sequence points
	23.3. Provide type generic interfaces for string functions

	24. Modules
	24.1. C needs a specific approach
	24.2. All is about naming
	24.3. Modular C features

	25. Simplify the object and value models
	25.1. Remove objects of temporary lifetime
	25.2. Introduce comparison operator for object types
	25.3. Make memcpy and memcmp consistent
	25.4. Enforce representation consistency for _Atomic objects
	25.5. Make string literals char const[]
	25.6. Default initialize padding to 0
	25.7. Make restrict qualification part of the function interface
	25.8. References

	26. Contexts
	26.1. Introduce evaluation contexts in the standard
	26.2. Convert object pointers to void* in unspecific context
	26.3. Introduce nullptr as a generic null pointer constant and deprecate NULL


	List of Rules
	Listings
	Bibliography
	Index

